scsi: fix sense_slab/bio swapping livelock
[linux-2.6/openmoko-kernel/knife-kernel.git] / kernel / cgroup.c
blob62f1a5231fe958d2496e99831d015bdf2a8948a5
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
48 #include <asm/atomic.h>
50 static DEFINE_MUTEX(cgroup_mutex);
52 /* Generate an array of cgroup subsystem pointers */
53 #define SUBSYS(_x) &_x ## _subsys,
55 static struct cgroup_subsys *subsys[] = {
56 #include <linux/cgroup_subsys.h>
60 * A cgroupfs_root represents the root of a cgroup hierarchy,
61 * and may be associated with a superblock to form an active
62 * hierarchy
64 struct cgroupfs_root {
65 struct super_block *sb;
68 * The bitmask of subsystems intended to be attached to this
69 * hierarchy
71 unsigned long subsys_bits;
73 /* The bitmask of subsystems currently attached to this hierarchy */
74 unsigned long actual_subsys_bits;
76 /* A list running through the attached subsystems */
77 struct list_head subsys_list;
79 /* The root cgroup for this hierarchy */
80 struct cgroup top_cgroup;
82 /* Tracks how many cgroups are currently defined in hierarchy.*/
83 int number_of_cgroups;
85 /* A list running through the mounted hierarchies */
86 struct list_head root_list;
88 /* Hierarchy-specific flags */
89 unsigned long flags;
91 /* The path to use for release notifications. No locking
92 * between setting and use - so if userspace updates this
93 * while child cgroups exist, you could miss a
94 * notification. We ensure that it's always a valid
95 * NUL-terminated string */
96 char release_agent_path[PATH_MAX];
101 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
102 * subsystems that are otherwise unattached - it never has more than a
103 * single cgroup, and all tasks are part of that cgroup.
105 static struct cgroupfs_root rootnode;
107 /* The list of hierarchy roots */
109 static LIST_HEAD(roots);
110 static int root_count;
112 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
113 #define dummytop (&rootnode.top_cgroup)
115 /* This flag indicates whether tasks in the fork and exit paths should
116 * check for fork/exit handlers to call. This avoids us having to do
117 * extra work in the fork/exit path if none of the subsystems need to
118 * be called.
120 static int need_forkexit_callback;
122 /* bits in struct cgroup flags field */
123 enum {
124 /* Control Group is dead */
125 CGRP_REMOVED,
126 /* Control Group has previously had a child cgroup or a task,
127 * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set) */
128 CGRP_RELEASABLE,
129 /* Control Group requires release notifications to userspace */
130 CGRP_NOTIFY_ON_RELEASE,
133 /* convenient tests for these bits */
134 inline int cgroup_is_removed(const struct cgroup *cgrp)
136 return test_bit(CGRP_REMOVED, &cgrp->flags);
139 /* bits in struct cgroupfs_root flags field */
140 enum {
141 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
144 static int cgroup_is_releasable(const struct cgroup *cgrp)
146 const int bits =
147 (1 << CGRP_RELEASABLE) |
148 (1 << CGRP_NOTIFY_ON_RELEASE);
149 return (cgrp->flags & bits) == bits;
152 static int notify_on_release(const struct cgroup *cgrp)
154 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
158 * for_each_subsys() allows you to iterate on each subsystem attached to
159 * an active hierarchy
161 #define for_each_subsys(_root, _ss) \
162 list_for_each_entry(_ss, &_root->subsys_list, sibling)
164 /* for_each_root() allows you to iterate across the active hierarchies */
165 #define for_each_root(_root) \
166 list_for_each_entry(_root, &roots, root_list)
168 /* the list of cgroups eligible for automatic release. Protected by
169 * release_list_lock */
170 static LIST_HEAD(release_list);
171 static DEFINE_SPINLOCK(release_list_lock);
172 static void cgroup_release_agent(struct work_struct *work);
173 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
174 static void check_for_release(struct cgroup *cgrp);
176 /* Link structure for associating css_set objects with cgroups */
177 struct cg_cgroup_link {
179 * List running through cg_cgroup_links associated with a
180 * cgroup, anchored on cgroup->css_sets
182 struct list_head cgrp_link_list;
184 * List running through cg_cgroup_links pointing at a
185 * single css_set object, anchored on css_set->cg_links
187 struct list_head cg_link_list;
188 struct css_set *cg;
191 /* The default css_set - used by init and its children prior to any
192 * hierarchies being mounted. It contains a pointer to the root state
193 * for each subsystem. Also used to anchor the list of css_sets. Not
194 * reference-counted, to improve performance when child cgroups
195 * haven't been created.
198 static struct css_set init_css_set;
199 static struct cg_cgroup_link init_css_set_link;
201 /* css_set_lock protects the list of css_set objects, and the
202 * chain of tasks off each css_set. Nests outside task->alloc_lock
203 * due to cgroup_iter_start() */
204 static DEFINE_RWLOCK(css_set_lock);
205 static int css_set_count;
207 /* We don't maintain the lists running through each css_set to its
208 * task until after the first call to cgroup_iter_start(). This
209 * reduces the fork()/exit() overhead for people who have cgroups
210 * compiled into their kernel but not actually in use */
211 static int use_task_css_set_links;
213 /* When we create or destroy a css_set, the operation simply
214 * takes/releases a reference count on all the cgroups referenced
215 * by subsystems in this css_set. This can end up multiple-counting
216 * some cgroups, but that's OK - the ref-count is just a
217 * busy/not-busy indicator; ensuring that we only count each cgroup
218 * once would require taking a global lock to ensure that no
219 * subsystems moved between hierarchies while we were doing so.
221 * Possible TODO: decide at boot time based on the number of
222 * registered subsystems and the number of CPUs or NUMA nodes whether
223 * it's better for performance to ref-count every subsystem, or to
224 * take a global lock and only add one ref count to each hierarchy.
228 * unlink a css_set from the list and free it
230 static void unlink_css_set(struct css_set *cg)
232 write_lock(&css_set_lock);
233 list_del(&cg->list);
234 css_set_count--;
235 while (!list_empty(&cg->cg_links)) {
236 struct cg_cgroup_link *link;
237 link = list_entry(cg->cg_links.next,
238 struct cg_cgroup_link, cg_link_list);
239 list_del(&link->cg_link_list);
240 list_del(&link->cgrp_link_list);
241 kfree(link);
243 write_unlock(&css_set_lock);
246 static void __release_css_set(struct kref *k, int taskexit)
248 int i;
249 struct css_set *cg = container_of(k, struct css_set, ref);
251 unlink_css_set(cg);
253 rcu_read_lock();
254 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
255 struct cgroup *cgrp = cg->subsys[i]->cgroup;
256 if (atomic_dec_and_test(&cgrp->count) &&
257 notify_on_release(cgrp)) {
258 if (taskexit)
259 set_bit(CGRP_RELEASABLE, &cgrp->flags);
260 check_for_release(cgrp);
263 rcu_read_unlock();
264 kfree(cg);
267 static void release_css_set(struct kref *k)
269 __release_css_set(k, 0);
272 static void release_css_set_taskexit(struct kref *k)
274 __release_css_set(k, 1);
278 * refcounted get/put for css_set objects
280 static inline void get_css_set(struct css_set *cg)
282 kref_get(&cg->ref);
285 static inline void put_css_set(struct css_set *cg)
287 kref_put(&cg->ref, release_css_set);
290 static inline void put_css_set_taskexit(struct css_set *cg)
292 kref_put(&cg->ref, release_css_set_taskexit);
296 * find_existing_css_set() is a helper for
297 * find_css_set(), and checks to see whether an existing
298 * css_set is suitable. This currently walks a linked-list for
299 * simplicity; a later patch will use a hash table for better
300 * performance
302 * oldcg: the cgroup group that we're using before the cgroup
303 * transition
305 * cgrp: the cgroup that we're moving into
307 * template: location in which to build the desired set of subsystem
308 * state objects for the new cgroup group
310 static struct css_set *find_existing_css_set(
311 struct css_set *oldcg,
312 struct cgroup *cgrp,
313 struct cgroup_subsys_state *template[])
315 int i;
316 struct cgroupfs_root *root = cgrp->root;
317 struct list_head *l = &init_css_set.list;
319 /* Built the set of subsystem state objects that we want to
320 * see in the new css_set */
321 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
322 if (root->subsys_bits & (1UL << i)) {
323 /* Subsystem is in this hierarchy. So we want
324 * the subsystem state from the new
325 * cgroup */
326 template[i] = cgrp->subsys[i];
327 } else {
328 /* Subsystem is not in this hierarchy, so we
329 * don't want to change the subsystem state */
330 template[i] = oldcg->subsys[i];
334 /* Look through existing cgroup groups to find one to reuse */
335 do {
336 struct css_set *cg =
337 list_entry(l, struct css_set, list);
339 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
340 /* All subsystems matched */
341 return cg;
343 /* Try the next cgroup group */
344 l = l->next;
345 } while (l != &init_css_set.list);
347 /* No existing cgroup group matched */
348 return NULL;
352 * allocate_cg_links() allocates "count" cg_cgroup_link structures
353 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
354 * success or a negative error
356 static int allocate_cg_links(int count, struct list_head *tmp)
358 struct cg_cgroup_link *link;
359 int i;
360 INIT_LIST_HEAD(tmp);
361 for (i = 0; i < count; i++) {
362 link = kmalloc(sizeof(*link), GFP_KERNEL);
363 if (!link) {
364 while (!list_empty(tmp)) {
365 link = list_entry(tmp->next,
366 struct cg_cgroup_link,
367 cgrp_link_list);
368 list_del(&link->cgrp_link_list);
369 kfree(link);
371 return -ENOMEM;
373 list_add(&link->cgrp_link_list, tmp);
375 return 0;
378 static void free_cg_links(struct list_head *tmp)
380 while (!list_empty(tmp)) {
381 struct cg_cgroup_link *link;
382 link = list_entry(tmp->next,
383 struct cg_cgroup_link,
384 cgrp_link_list);
385 list_del(&link->cgrp_link_list);
386 kfree(link);
391 * find_css_set() takes an existing cgroup group and a
392 * cgroup object, and returns a css_set object that's
393 * equivalent to the old group, but with the given cgroup
394 * substituted into the appropriate hierarchy. Must be called with
395 * cgroup_mutex held
397 static struct css_set *find_css_set(
398 struct css_set *oldcg, struct cgroup *cgrp)
400 struct css_set *res;
401 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
402 int i;
404 struct list_head tmp_cg_links;
405 struct cg_cgroup_link *link;
407 /* First see if we already have a cgroup group that matches
408 * the desired set */
409 write_lock(&css_set_lock);
410 res = find_existing_css_set(oldcg, cgrp, template);
411 if (res)
412 get_css_set(res);
413 write_unlock(&css_set_lock);
415 if (res)
416 return res;
418 res = kmalloc(sizeof(*res), GFP_KERNEL);
419 if (!res)
420 return NULL;
422 /* Allocate all the cg_cgroup_link objects that we'll need */
423 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
424 kfree(res);
425 return NULL;
428 kref_init(&res->ref);
429 INIT_LIST_HEAD(&res->cg_links);
430 INIT_LIST_HEAD(&res->tasks);
432 /* Copy the set of subsystem state objects generated in
433 * find_existing_css_set() */
434 memcpy(res->subsys, template, sizeof(res->subsys));
436 write_lock(&css_set_lock);
437 /* Add reference counts and links from the new css_set. */
438 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
439 struct cgroup *cgrp = res->subsys[i]->cgroup;
440 struct cgroup_subsys *ss = subsys[i];
441 atomic_inc(&cgrp->count);
443 * We want to add a link once per cgroup, so we
444 * only do it for the first subsystem in each
445 * hierarchy
447 if (ss->root->subsys_list.next == &ss->sibling) {
448 BUG_ON(list_empty(&tmp_cg_links));
449 link = list_entry(tmp_cg_links.next,
450 struct cg_cgroup_link,
451 cgrp_link_list);
452 list_del(&link->cgrp_link_list);
453 list_add(&link->cgrp_link_list, &cgrp->css_sets);
454 link->cg = res;
455 list_add(&link->cg_link_list, &res->cg_links);
458 if (list_empty(&rootnode.subsys_list)) {
459 link = list_entry(tmp_cg_links.next,
460 struct cg_cgroup_link,
461 cgrp_link_list);
462 list_del(&link->cgrp_link_list);
463 list_add(&link->cgrp_link_list, &dummytop->css_sets);
464 link->cg = res;
465 list_add(&link->cg_link_list, &res->cg_links);
468 BUG_ON(!list_empty(&tmp_cg_links));
470 /* Link this cgroup group into the list */
471 list_add(&res->list, &init_css_set.list);
472 css_set_count++;
473 write_unlock(&css_set_lock);
475 return res;
479 * There is one global cgroup mutex. We also require taking
480 * task_lock() when dereferencing a task's cgroup subsys pointers.
481 * See "The task_lock() exception", at the end of this comment.
483 * A task must hold cgroup_mutex to modify cgroups.
485 * Any task can increment and decrement the count field without lock.
486 * So in general, code holding cgroup_mutex can't rely on the count
487 * field not changing. However, if the count goes to zero, then only
488 * cgroup_attach_task() can increment it again. Because a count of zero
489 * means that no tasks are currently attached, therefore there is no
490 * way a task attached to that cgroup can fork (the other way to
491 * increment the count). So code holding cgroup_mutex can safely
492 * assume that if the count is zero, it will stay zero. Similarly, if
493 * a task holds cgroup_mutex on a cgroup with zero count, it
494 * knows that the cgroup won't be removed, as cgroup_rmdir()
495 * needs that mutex.
497 * The cgroup_common_file_write handler for operations that modify
498 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
499 * single threading all such cgroup modifications across the system.
501 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
502 * (usually) take cgroup_mutex. These are the two most performance
503 * critical pieces of code here. The exception occurs on cgroup_exit(),
504 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
505 * is taken, and if the cgroup count is zero, a usermode call made
506 * to the release agent with the name of the cgroup (path relative to
507 * the root of cgroup file system) as the argument.
509 * A cgroup can only be deleted if both its 'count' of using tasks
510 * is zero, and its list of 'children' cgroups is empty. Since all
511 * tasks in the system use _some_ cgroup, and since there is always at
512 * least one task in the system (init, pid == 1), therefore, top_cgroup
513 * always has either children cgroups and/or using tasks. So we don't
514 * need a special hack to ensure that top_cgroup cannot be deleted.
516 * The task_lock() exception
518 * The need for this exception arises from the action of
519 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
520 * another. It does so using cgroup_mutex, however there are
521 * several performance critical places that need to reference
522 * task->cgroup without the expense of grabbing a system global
523 * mutex. Therefore except as noted below, when dereferencing or, as
524 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
525 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
526 * the task_struct routinely used for such matters.
528 * P.S. One more locking exception. RCU is used to guard the
529 * update of a tasks cgroup pointer by cgroup_attach_task()
533 * cgroup_lock - lock out any changes to cgroup structures
536 void cgroup_lock(void)
538 mutex_lock(&cgroup_mutex);
542 * cgroup_unlock - release lock on cgroup changes
544 * Undo the lock taken in a previous cgroup_lock() call.
546 void cgroup_unlock(void)
548 mutex_unlock(&cgroup_mutex);
552 * A couple of forward declarations required, due to cyclic reference loop:
553 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
554 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
555 * -> cgroup_mkdir.
558 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
559 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
560 static int cgroup_populate_dir(struct cgroup *cgrp);
561 static struct inode_operations cgroup_dir_inode_operations;
562 static struct file_operations proc_cgroupstats_operations;
564 static struct backing_dev_info cgroup_backing_dev_info = {
565 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
568 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
570 struct inode *inode = new_inode(sb);
572 if (inode) {
573 inode->i_mode = mode;
574 inode->i_uid = current->fsuid;
575 inode->i_gid = current->fsgid;
576 inode->i_blocks = 0;
577 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
578 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
580 return inode;
584 * Call subsys's pre_destroy handler.
585 * This is called before css refcnt check.
587 static void cgroup_call_pre_destroy(struct cgroup *cgrp)
589 struct cgroup_subsys *ss;
590 for_each_subsys(cgrp->root, ss)
591 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
592 ss->pre_destroy(ss, cgrp);
593 return;
596 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
598 /* is dentry a directory ? if so, kfree() associated cgroup */
599 if (S_ISDIR(inode->i_mode)) {
600 struct cgroup *cgrp = dentry->d_fsdata;
601 struct cgroup_subsys *ss;
602 BUG_ON(!(cgroup_is_removed(cgrp)));
603 /* It's possible for external users to be holding css
604 * reference counts on a cgroup; css_put() needs to
605 * be able to access the cgroup after decrementing
606 * the reference count in order to know if it needs to
607 * queue the cgroup to be handled by the release
608 * agent */
609 synchronize_rcu();
611 mutex_lock(&cgroup_mutex);
613 * Release the subsystem state objects.
615 for_each_subsys(cgrp->root, ss) {
616 if (cgrp->subsys[ss->subsys_id])
617 ss->destroy(ss, cgrp);
620 cgrp->root->number_of_cgroups--;
621 mutex_unlock(&cgroup_mutex);
623 /* Drop the active superblock reference that we took when we
624 * created the cgroup */
625 deactivate_super(cgrp->root->sb);
627 kfree(cgrp);
629 iput(inode);
632 static void remove_dir(struct dentry *d)
634 struct dentry *parent = dget(d->d_parent);
636 d_delete(d);
637 simple_rmdir(parent->d_inode, d);
638 dput(parent);
641 static void cgroup_clear_directory(struct dentry *dentry)
643 struct list_head *node;
645 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
646 spin_lock(&dcache_lock);
647 node = dentry->d_subdirs.next;
648 while (node != &dentry->d_subdirs) {
649 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
650 list_del_init(node);
651 if (d->d_inode) {
652 /* This should never be called on a cgroup
653 * directory with child cgroups */
654 BUG_ON(d->d_inode->i_mode & S_IFDIR);
655 d = dget_locked(d);
656 spin_unlock(&dcache_lock);
657 d_delete(d);
658 simple_unlink(dentry->d_inode, d);
659 dput(d);
660 spin_lock(&dcache_lock);
662 node = dentry->d_subdirs.next;
664 spin_unlock(&dcache_lock);
668 * NOTE : the dentry must have been dget()'ed
670 static void cgroup_d_remove_dir(struct dentry *dentry)
672 cgroup_clear_directory(dentry);
674 spin_lock(&dcache_lock);
675 list_del_init(&dentry->d_u.d_child);
676 spin_unlock(&dcache_lock);
677 remove_dir(dentry);
680 static int rebind_subsystems(struct cgroupfs_root *root,
681 unsigned long final_bits)
683 unsigned long added_bits, removed_bits;
684 struct cgroup *cgrp = &root->top_cgroup;
685 int i;
687 removed_bits = root->actual_subsys_bits & ~final_bits;
688 added_bits = final_bits & ~root->actual_subsys_bits;
689 /* Check that any added subsystems are currently free */
690 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
691 unsigned long bit = 1UL << i;
692 struct cgroup_subsys *ss = subsys[i];
693 if (!(bit & added_bits))
694 continue;
695 if (ss->root != &rootnode) {
696 /* Subsystem isn't free */
697 return -EBUSY;
701 /* Currently we don't handle adding/removing subsystems when
702 * any child cgroups exist. This is theoretically supportable
703 * but involves complex error handling, so it's being left until
704 * later */
705 if (!list_empty(&cgrp->children))
706 return -EBUSY;
708 /* Process each subsystem */
709 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
710 struct cgroup_subsys *ss = subsys[i];
711 unsigned long bit = 1UL << i;
712 if (bit & added_bits) {
713 /* We're binding this subsystem to this hierarchy */
714 BUG_ON(cgrp->subsys[i]);
715 BUG_ON(!dummytop->subsys[i]);
716 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
717 cgrp->subsys[i] = dummytop->subsys[i];
718 cgrp->subsys[i]->cgroup = cgrp;
719 list_add(&ss->sibling, &root->subsys_list);
720 rcu_assign_pointer(ss->root, root);
721 if (ss->bind)
722 ss->bind(ss, cgrp);
724 } else if (bit & removed_bits) {
725 /* We're removing this subsystem */
726 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
727 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
728 if (ss->bind)
729 ss->bind(ss, dummytop);
730 dummytop->subsys[i]->cgroup = dummytop;
731 cgrp->subsys[i] = NULL;
732 rcu_assign_pointer(subsys[i]->root, &rootnode);
733 list_del(&ss->sibling);
734 } else if (bit & final_bits) {
735 /* Subsystem state should already exist */
736 BUG_ON(!cgrp->subsys[i]);
737 } else {
738 /* Subsystem state shouldn't exist */
739 BUG_ON(cgrp->subsys[i]);
742 root->subsys_bits = root->actual_subsys_bits = final_bits;
743 synchronize_rcu();
745 return 0;
748 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
750 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
751 struct cgroup_subsys *ss;
753 mutex_lock(&cgroup_mutex);
754 for_each_subsys(root, ss)
755 seq_printf(seq, ",%s", ss->name);
756 if (test_bit(ROOT_NOPREFIX, &root->flags))
757 seq_puts(seq, ",noprefix");
758 if (strlen(root->release_agent_path))
759 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
760 mutex_unlock(&cgroup_mutex);
761 return 0;
764 struct cgroup_sb_opts {
765 unsigned long subsys_bits;
766 unsigned long flags;
767 char *release_agent;
770 /* Convert a hierarchy specifier into a bitmask of subsystems and
771 * flags. */
772 static int parse_cgroupfs_options(char *data,
773 struct cgroup_sb_opts *opts)
775 char *token, *o = data ?: "all";
777 opts->subsys_bits = 0;
778 opts->flags = 0;
779 opts->release_agent = NULL;
781 while ((token = strsep(&o, ",")) != NULL) {
782 if (!*token)
783 return -EINVAL;
784 if (!strcmp(token, "all")) {
785 /* Add all non-disabled subsystems */
786 int i;
787 opts->subsys_bits = 0;
788 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
789 struct cgroup_subsys *ss = subsys[i];
790 if (!ss->disabled)
791 opts->subsys_bits |= 1ul << i;
793 } else if (!strcmp(token, "noprefix")) {
794 set_bit(ROOT_NOPREFIX, &opts->flags);
795 } else if (!strncmp(token, "release_agent=", 14)) {
796 /* Specifying two release agents is forbidden */
797 if (opts->release_agent)
798 return -EINVAL;
799 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
800 if (!opts->release_agent)
801 return -ENOMEM;
802 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
803 opts->release_agent[PATH_MAX - 1] = 0;
804 } else {
805 struct cgroup_subsys *ss;
806 int i;
807 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
808 ss = subsys[i];
809 if (!strcmp(token, ss->name)) {
810 if (!ss->disabled)
811 set_bit(i, &opts->subsys_bits);
812 break;
815 if (i == CGROUP_SUBSYS_COUNT)
816 return -ENOENT;
820 /* We can't have an empty hierarchy */
821 if (!opts->subsys_bits)
822 return -EINVAL;
824 return 0;
827 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
829 int ret = 0;
830 struct cgroupfs_root *root = sb->s_fs_info;
831 struct cgroup *cgrp = &root->top_cgroup;
832 struct cgroup_sb_opts opts;
834 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
835 mutex_lock(&cgroup_mutex);
837 /* See what subsystems are wanted */
838 ret = parse_cgroupfs_options(data, &opts);
839 if (ret)
840 goto out_unlock;
842 /* Don't allow flags to change at remount */
843 if (opts.flags != root->flags) {
844 ret = -EINVAL;
845 goto out_unlock;
848 ret = rebind_subsystems(root, opts.subsys_bits);
850 /* (re)populate subsystem files */
851 if (!ret)
852 cgroup_populate_dir(cgrp);
854 if (opts.release_agent)
855 strcpy(root->release_agent_path, opts.release_agent);
856 out_unlock:
857 if (opts.release_agent)
858 kfree(opts.release_agent);
859 mutex_unlock(&cgroup_mutex);
860 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
861 return ret;
864 static struct super_operations cgroup_ops = {
865 .statfs = simple_statfs,
866 .drop_inode = generic_delete_inode,
867 .show_options = cgroup_show_options,
868 .remount_fs = cgroup_remount,
871 static void init_cgroup_root(struct cgroupfs_root *root)
873 struct cgroup *cgrp = &root->top_cgroup;
874 INIT_LIST_HEAD(&root->subsys_list);
875 INIT_LIST_HEAD(&root->root_list);
876 root->number_of_cgroups = 1;
877 cgrp->root = root;
878 cgrp->top_cgroup = cgrp;
879 INIT_LIST_HEAD(&cgrp->sibling);
880 INIT_LIST_HEAD(&cgrp->children);
881 INIT_LIST_HEAD(&cgrp->css_sets);
882 INIT_LIST_HEAD(&cgrp->release_list);
885 static int cgroup_test_super(struct super_block *sb, void *data)
887 struct cgroupfs_root *new = data;
888 struct cgroupfs_root *root = sb->s_fs_info;
890 /* First check subsystems */
891 if (new->subsys_bits != root->subsys_bits)
892 return 0;
894 /* Next check flags */
895 if (new->flags != root->flags)
896 return 0;
898 return 1;
901 static int cgroup_set_super(struct super_block *sb, void *data)
903 int ret;
904 struct cgroupfs_root *root = data;
906 ret = set_anon_super(sb, NULL);
907 if (ret)
908 return ret;
910 sb->s_fs_info = root;
911 root->sb = sb;
913 sb->s_blocksize = PAGE_CACHE_SIZE;
914 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
915 sb->s_magic = CGROUP_SUPER_MAGIC;
916 sb->s_op = &cgroup_ops;
918 return 0;
921 static int cgroup_get_rootdir(struct super_block *sb)
923 struct inode *inode =
924 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
925 struct dentry *dentry;
927 if (!inode)
928 return -ENOMEM;
930 inode->i_fop = &simple_dir_operations;
931 inode->i_op = &cgroup_dir_inode_operations;
932 /* directories start off with i_nlink == 2 (for "." entry) */
933 inc_nlink(inode);
934 dentry = d_alloc_root(inode);
935 if (!dentry) {
936 iput(inode);
937 return -ENOMEM;
939 sb->s_root = dentry;
940 return 0;
943 static int cgroup_get_sb(struct file_system_type *fs_type,
944 int flags, const char *unused_dev_name,
945 void *data, struct vfsmount *mnt)
947 struct cgroup_sb_opts opts;
948 int ret = 0;
949 struct super_block *sb;
950 struct cgroupfs_root *root;
951 struct list_head tmp_cg_links, *l;
952 INIT_LIST_HEAD(&tmp_cg_links);
954 /* First find the desired set of subsystems */
955 ret = parse_cgroupfs_options(data, &opts);
956 if (ret) {
957 if (opts.release_agent)
958 kfree(opts.release_agent);
959 return ret;
962 root = kzalloc(sizeof(*root), GFP_KERNEL);
963 if (!root) {
964 if (opts.release_agent)
965 kfree(opts.release_agent);
966 return -ENOMEM;
969 init_cgroup_root(root);
970 root->subsys_bits = opts.subsys_bits;
971 root->flags = opts.flags;
972 if (opts.release_agent) {
973 strcpy(root->release_agent_path, opts.release_agent);
974 kfree(opts.release_agent);
977 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
979 if (IS_ERR(sb)) {
980 kfree(root);
981 return PTR_ERR(sb);
984 if (sb->s_fs_info != root) {
985 /* Reusing an existing superblock */
986 BUG_ON(sb->s_root == NULL);
987 kfree(root);
988 root = NULL;
989 } else {
990 /* New superblock */
991 struct cgroup *cgrp = &root->top_cgroup;
992 struct inode *inode;
994 BUG_ON(sb->s_root != NULL);
996 ret = cgroup_get_rootdir(sb);
997 if (ret)
998 goto drop_new_super;
999 inode = sb->s_root->d_inode;
1001 mutex_lock(&inode->i_mutex);
1002 mutex_lock(&cgroup_mutex);
1005 * We're accessing css_set_count without locking
1006 * css_set_lock here, but that's OK - it can only be
1007 * increased by someone holding cgroup_lock, and
1008 * that's us. The worst that can happen is that we
1009 * have some link structures left over
1011 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1012 if (ret) {
1013 mutex_unlock(&cgroup_mutex);
1014 mutex_unlock(&inode->i_mutex);
1015 goto drop_new_super;
1018 ret = rebind_subsystems(root, root->subsys_bits);
1019 if (ret == -EBUSY) {
1020 mutex_unlock(&cgroup_mutex);
1021 mutex_unlock(&inode->i_mutex);
1022 goto drop_new_super;
1025 /* EBUSY should be the only error here */
1026 BUG_ON(ret);
1028 list_add(&root->root_list, &roots);
1029 root_count++;
1031 sb->s_root->d_fsdata = &root->top_cgroup;
1032 root->top_cgroup.dentry = sb->s_root;
1034 /* Link the top cgroup in this hierarchy into all
1035 * the css_set objects */
1036 write_lock(&css_set_lock);
1037 l = &init_css_set.list;
1038 do {
1039 struct css_set *cg;
1040 struct cg_cgroup_link *link;
1041 cg = list_entry(l, struct css_set, list);
1042 BUG_ON(list_empty(&tmp_cg_links));
1043 link = list_entry(tmp_cg_links.next,
1044 struct cg_cgroup_link,
1045 cgrp_link_list);
1046 list_del(&link->cgrp_link_list);
1047 link->cg = cg;
1048 list_add(&link->cgrp_link_list,
1049 &root->top_cgroup.css_sets);
1050 list_add(&link->cg_link_list, &cg->cg_links);
1051 l = l->next;
1052 } while (l != &init_css_set.list);
1053 write_unlock(&css_set_lock);
1055 free_cg_links(&tmp_cg_links);
1057 BUG_ON(!list_empty(&cgrp->sibling));
1058 BUG_ON(!list_empty(&cgrp->children));
1059 BUG_ON(root->number_of_cgroups != 1);
1061 cgroup_populate_dir(cgrp);
1062 mutex_unlock(&inode->i_mutex);
1063 mutex_unlock(&cgroup_mutex);
1066 return simple_set_mnt(mnt, sb);
1068 drop_new_super:
1069 up_write(&sb->s_umount);
1070 deactivate_super(sb);
1071 free_cg_links(&tmp_cg_links);
1072 return ret;
1075 static void cgroup_kill_sb(struct super_block *sb) {
1076 struct cgroupfs_root *root = sb->s_fs_info;
1077 struct cgroup *cgrp = &root->top_cgroup;
1078 int ret;
1080 BUG_ON(!root);
1082 BUG_ON(root->number_of_cgroups != 1);
1083 BUG_ON(!list_empty(&cgrp->children));
1084 BUG_ON(!list_empty(&cgrp->sibling));
1086 mutex_lock(&cgroup_mutex);
1088 /* Rebind all subsystems back to the default hierarchy */
1089 ret = rebind_subsystems(root, 0);
1090 /* Shouldn't be able to fail ... */
1091 BUG_ON(ret);
1094 * Release all the links from css_sets to this hierarchy's
1095 * root cgroup
1097 write_lock(&css_set_lock);
1098 while (!list_empty(&cgrp->css_sets)) {
1099 struct cg_cgroup_link *link;
1100 link = list_entry(cgrp->css_sets.next,
1101 struct cg_cgroup_link, cgrp_link_list);
1102 list_del(&link->cg_link_list);
1103 list_del(&link->cgrp_link_list);
1104 kfree(link);
1106 write_unlock(&css_set_lock);
1108 if (!list_empty(&root->root_list)) {
1109 list_del(&root->root_list);
1110 root_count--;
1112 mutex_unlock(&cgroup_mutex);
1114 kfree(root);
1115 kill_litter_super(sb);
1118 static struct file_system_type cgroup_fs_type = {
1119 .name = "cgroup",
1120 .get_sb = cgroup_get_sb,
1121 .kill_sb = cgroup_kill_sb,
1124 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1126 return dentry->d_fsdata;
1129 static inline struct cftype *__d_cft(struct dentry *dentry)
1131 return dentry->d_fsdata;
1135 * cgroup_path - generate the path of a cgroup
1136 * @cgrp: the cgroup in question
1137 * @buf: the buffer to write the path into
1138 * @buflen: the length of the buffer
1140 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1141 * Returns 0 on success, -errno on error.
1143 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1145 char *start;
1147 if (cgrp == dummytop) {
1149 * Inactive subsystems have no dentry for their root
1150 * cgroup
1152 strcpy(buf, "/");
1153 return 0;
1156 start = buf + buflen;
1158 *--start = '\0';
1159 for (;;) {
1160 int len = cgrp->dentry->d_name.len;
1161 if ((start -= len) < buf)
1162 return -ENAMETOOLONG;
1163 memcpy(start, cgrp->dentry->d_name.name, len);
1164 cgrp = cgrp->parent;
1165 if (!cgrp)
1166 break;
1167 if (!cgrp->parent)
1168 continue;
1169 if (--start < buf)
1170 return -ENAMETOOLONG;
1171 *start = '/';
1173 memmove(buf, start, buf + buflen - start);
1174 return 0;
1178 * Return the first subsystem attached to a cgroup's hierarchy, and
1179 * its subsystem id.
1182 static void get_first_subsys(const struct cgroup *cgrp,
1183 struct cgroup_subsys_state **css, int *subsys_id)
1185 const struct cgroupfs_root *root = cgrp->root;
1186 const struct cgroup_subsys *test_ss;
1187 BUG_ON(list_empty(&root->subsys_list));
1188 test_ss = list_entry(root->subsys_list.next,
1189 struct cgroup_subsys, sibling);
1190 if (css) {
1191 *css = cgrp->subsys[test_ss->subsys_id];
1192 BUG_ON(!*css);
1194 if (subsys_id)
1195 *subsys_id = test_ss->subsys_id;
1199 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1200 * @cgrp: the cgroup the task is attaching to
1201 * @tsk: the task to be attached
1203 * Call holding cgroup_mutex. May take task_lock of
1204 * the task 'tsk' during call.
1206 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1208 int retval = 0;
1209 struct cgroup_subsys *ss;
1210 struct cgroup *oldcgrp;
1211 struct css_set *cg = tsk->cgroups;
1212 struct css_set *newcg;
1213 struct cgroupfs_root *root = cgrp->root;
1214 int subsys_id;
1216 get_first_subsys(cgrp, NULL, &subsys_id);
1218 /* Nothing to do if the task is already in that cgroup */
1219 oldcgrp = task_cgroup(tsk, subsys_id);
1220 if (cgrp == oldcgrp)
1221 return 0;
1223 for_each_subsys(root, ss) {
1224 if (ss->can_attach) {
1225 retval = ss->can_attach(ss, cgrp, tsk);
1226 if (retval)
1227 return retval;
1232 * Locate or allocate a new css_set for this task,
1233 * based on its final set of cgroups
1235 newcg = find_css_set(cg, cgrp);
1236 if (!newcg)
1237 return -ENOMEM;
1239 task_lock(tsk);
1240 if (tsk->flags & PF_EXITING) {
1241 task_unlock(tsk);
1242 put_css_set(newcg);
1243 return -ESRCH;
1245 rcu_assign_pointer(tsk->cgroups, newcg);
1246 task_unlock(tsk);
1248 /* Update the css_set linked lists if we're using them */
1249 write_lock(&css_set_lock);
1250 if (!list_empty(&tsk->cg_list)) {
1251 list_del(&tsk->cg_list);
1252 list_add(&tsk->cg_list, &newcg->tasks);
1254 write_unlock(&css_set_lock);
1256 for_each_subsys(root, ss) {
1257 if (ss->attach)
1258 ss->attach(ss, cgrp, oldcgrp, tsk);
1260 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1261 synchronize_rcu();
1262 put_css_set(cg);
1263 return 0;
1267 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
1268 * cgroup_mutex, may take task_lock of task
1270 static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
1272 pid_t pid;
1273 struct task_struct *tsk;
1274 int ret;
1276 if (sscanf(pidbuf, "%d", &pid) != 1)
1277 return -EIO;
1279 if (pid) {
1280 rcu_read_lock();
1281 tsk = find_task_by_vpid(pid);
1282 if (!tsk || tsk->flags & PF_EXITING) {
1283 rcu_read_unlock();
1284 return -ESRCH;
1286 get_task_struct(tsk);
1287 rcu_read_unlock();
1289 if ((current->euid) && (current->euid != tsk->uid)
1290 && (current->euid != tsk->suid)) {
1291 put_task_struct(tsk);
1292 return -EACCES;
1294 } else {
1295 tsk = current;
1296 get_task_struct(tsk);
1299 ret = cgroup_attach_task(cgrp, tsk);
1300 put_task_struct(tsk);
1301 return ret;
1304 /* The various types of files and directories in a cgroup file system */
1305 enum cgroup_filetype {
1306 FILE_ROOT,
1307 FILE_DIR,
1308 FILE_TASKLIST,
1309 FILE_NOTIFY_ON_RELEASE,
1310 FILE_RELEASABLE,
1311 FILE_RELEASE_AGENT,
1314 static ssize_t cgroup_write_uint(struct cgroup *cgrp, struct cftype *cft,
1315 struct file *file,
1316 const char __user *userbuf,
1317 size_t nbytes, loff_t *unused_ppos)
1319 char buffer[64];
1320 int retval = 0;
1321 u64 val;
1322 char *end;
1324 if (!nbytes)
1325 return -EINVAL;
1326 if (nbytes >= sizeof(buffer))
1327 return -E2BIG;
1328 if (copy_from_user(buffer, userbuf, nbytes))
1329 return -EFAULT;
1331 buffer[nbytes] = 0; /* nul-terminate */
1333 /* strip newline if necessary */
1334 if (nbytes && (buffer[nbytes-1] == '\n'))
1335 buffer[nbytes-1] = 0;
1336 val = simple_strtoull(buffer, &end, 0);
1337 if (*end)
1338 return -EINVAL;
1340 /* Pass to subsystem */
1341 retval = cft->write_uint(cgrp, cft, val);
1342 if (!retval)
1343 retval = nbytes;
1344 return retval;
1347 static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
1348 struct cftype *cft,
1349 struct file *file,
1350 const char __user *userbuf,
1351 size_t nbytes, loff_t *unused_ppos)
1353 enum cgroup_filetype type = cft->private;
1354 char *buffer;
1355 int retval = 0;
1357 if (nbytes >= PATH_MAX)
1358 return -E2BIG;
1360 /* +1 for nul-terminator */
1361 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1362 if (buffer == NULL)
1363 return -ENOMEM;
1365 if (copy_from_user(buffer, userbuf, nbytes)) {
1366 retval = -EFAULT;
1367 goto out1;
1369 buffer[nbytes] = 0; /* nul-terminate */
1370 strstrip(buffer); /* strip -just- trailing whitespace */
1372 mutex_lock(&cgroup_mutex);
1375 * This was already checked for in cgroup_file_write(), but
1376 * check again now we're holding cgroup_mutex.
1378 if (cgroup_is_removed(cgrp)) {
1379 retval = -ENODEV;
1380 goto out2;
1383 switch (type) {
1384 case FILE_TASKLIST:
1385 retval = attach_task_by_pid(cgrp, buffer);
1386 break;
1387 case FILE_NOTIFY_ON_RELEASE:
1388 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
1389 if (simple_strtoul(buffer, NULL, 10) != 0)
1390 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1391 else
1392 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1393 break;
1394 case FILE_RELEASE_AGENT:
1395 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1396 strcpy(cgrp->root->release_agent_path, buffer);
1397 break;
1398 default:
1399 retval = -EINVAL;
1400 goto out2;
1403 if (retval == 0)
1404 retval = nbytes;
1405 out2:
1406 mutex_unlock(&cgroup_mutex);
1407 out1:
1408 kfree(buffer);
1409 return retval;
1412 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1413 size_t nbytes, loff_t *ppos)
1415 struct cftype *cft = __d_cft(file->f_dentry);
1416 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1418 if (!cft || cgroup_is_removed(cgrp))
1419 return -ENODEV;
1420 if (cft->write)
1421 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1422 if (cft->write_uint)
1423 return cgroup_write_uint(cgrp, cft, file, buf, nbytes, ppos);
1424 return -EINVAL;
1427 static ssize_t cgroup_read_uint(struct cgroup *cgrp, struct cftype *cft,
1428 struct file *file,
1429 char __user *buf, size_t nbytes,
1430 loff_t *ppos)
1432 char tmp[64];
1433 u64 val = cft->read_uint(cgrp, cft);
1434 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1436 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1439 static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
1440 struct cftype *cft,
1441 struct file *file,
1442 char __user *buf,
1443 size_t nbytes, loff_t *ppos)
1445 enum cgroup_filetype type = cft->private;
1446 char *page;
1447 ssize_t retval = 0;
1448 char *s;
1450 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1451 return -ENOMEM;
1453 s = page;
1455 switch (type) {
1456 case FILE_RELEASE_AGENT:
1458 struct cgroupfs_root *root;
1459 size_t n;
1460 mutex_lock(&cgroup_mutex);
1461 root = cgrp->root;
1462 n = strnlen(root->release_agent_path,
1463 sizeof(root->release_agent_path));
1464 n = min(n, (size_t) PAGE_SIZE);
1465 strncpy(s, root->release_agent_path, n);
1466 mutex_unlock(&cgroup_mutex);
1467 s += n;
1468 break;
1470 default:
1471 retval = -EINVAL;
1472 goto out;
1474 *s++ = '\n';
1476 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1477 out:
1478 free_page((unsigned long)page);
1479 return retval;
1482 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1483 size_t nbytes, loff_t *ppos)
1485 struct cftype *cft = __d_cft(file->f_dentry);
1486 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1488 if (!cft || cgroup_is_removed(cgrp))
1489 return -ENODEV;
1491 if (cft->read)
1492 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1493 if (cft->read_uint)
1494 return cgroup_read_uint(cgrp, cft, file, buf, nbytes, ppos);
1495 return -EINVAL;
1498 static int cgroup_file_open(struct inode *inode, struct file *file)
1500 int err;
1501 struct cftype *cft;
1503 err = generic_file_open(inode, file);
1504 if (err)
1505 return err;
1507 cft = __d_cft(file->f_dentry);
1508 if (!cft)
1509 return -ENODEV;
1510 if (cft->open)
1511 err = cft->open(inode, file);
1512 else
1513 err = 0;
1515 return err;
1518 static int cgroup_file_release(struct inode *inode, struct file *file)
1520 struct cftype *cft = __d_cft(file->f_dentry);
1521 if (cft->release)
1522 return cft->release(inode, file);
1523 return 0;
1527 * cgroup_rename - Only allow simple rename of directories in place.
1529 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1530 struct inode *new_dir, struct dentry *new_dentry)
1532 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1533 return -ENOTDIR;
1534 if (new_dentry->d_inode)
1535 return -EEXIST;
1536 if (old_dir != new_dir)
1537 return -EIO;
1538 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1541 static struct file_operations cgroup_file_operations = {
1542 .read = cgroup_file_read,
1543 .write = cgroup_file_write,
1544 .llseek = generic_file_llseek,
1545 .open = cgroup_file_open,
1546 .release = cgroup_file_release,
1549 static struct inode_operations cgroup_dir_inode_operations = {
1550 .lookup = simple_lookup,
1551 .mkdir = cgroup_mkdir,
1552 .rmdir = cgroup_rmdir,
1553 .rename = cgroup_rename,
1556 static int cgroup_create_file(struct dentry *dentry, int mode,
1557 struct super_block *sb)
1559 static struct dentry_operations cgroup_dops = {
1560 .d_iput = cgroup_diput,
1563 struct inode *inode;
1565 if (!dentry)
1566 return -ENOENT;
1567 if (dentry->d_inode)
1568 return -EEXIST;
1570 inode = cgroup_new_inode(mode, sb);
1571 if (!inode)
1572 return -ENOMEM;
1574 if (S_ISDIR(mode)) {
1575 inode->i_op = &cgroup_dir_inode_operations;
1576 inode->i_fop = &simple_dir_operations;
1578 /* start off with i_nlink == 2 (for "." entry) */
1579 inc_nlink(inode);
1581 /* start with the directory inode held, so that we can
1582 * populate it without racing with another mkdir */
1583 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1584 } else if (S_ISREG(mode)) {
1585 inode->i_size = 0;
1586 inode->i_fop = &cgroup_file_operations;
1588 dentry->d_op = &cgroup_dops;
1589 d_instantiate(dentry, inode);
1590 dget(dentry); /* Extra count - pin the dentry in core */
1591 return 0;
1595 * cgroup_create_dir - create a directory for an object.
1596 * @cgrp: the cgroup we create the directory for. It must have a valid
1597 * ->parent field. And we are going to fill its ->dentry field.
1598 * @dentry: dentry of the new cgroup
1599 * @mode: mode to set on new directory.
1601 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1602 int mode)
1604 struct dentry *parent;
1605 int error = 0;
1607 parent = cgrp->parent->dentry;
1608 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1609 if (!error) {
1610 dentry->d_fsdata = cgrp;
1611 inc_nlink(parent->d_inode);
1612 cgrp->dentry = dentry;
1613 dget(dentry);
1615 dput(dentry);
1617 return error;
1620 int cgroup_add_file(struct cgroup *cgrp,
1621 struct cgroup_subsys *subsys,
1622 const struct cftype *cft)
1624 struct dentry *dir = cgrp->dentry;
1625 struct dentry *dentry;
1626 int error;
1628 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1629 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1630 strcpy(name, subsys->name);
1631 strcat(name, ".");
1633 strcat(name, cft->name);
1634 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1635 dentry = lookup_one_len(name, dir, strlen(name));
1636 if (!IS_ERR(dentry)) {
1637 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1638 cgrp->root->sb);
1639 if (!error)
1640 dentry->d_fsdata = (void *)cft;
1641 dput(dentry);
1642 } else
1643 error = PTR_ERR(dentry);
1644 return error;
1647 int cgroup_add_files(struct cgroup *cgrp,
1648 struct cgroup_subsys *subsys,
1649 const struct cftype cft[],
1650 int count)
1652 int i, err;
1653 for (i = 0; i < count; i++) {
1654 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1655 if (err)
1656 return err;
1658 return 0;
1662 * cgroup_task_count - count the number of tasks in a cgroup.
1663 * @cgrp: the cgroup in question
1665 * Return the number of tasks in the cgroup.
1667 int cgroup_task_count(const struct cgroup *cgrp)
1669 int count = 0;
1670 struct list_head *l;
1672 read_lock(&css_set_lock);
1673 l = cgrp->css_sets.next;
1674 while (l != &cgrp->css_sets) {
1675 struct cg_cgroup_link *link =
1676 list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1677 count += atomic_read(&link->cg->ref.refcount);
1678 l = l->next;
1680 read_unlock(&css_set_lock);
1681 return count;
1685 * Advance a list_head iterator. The iterator should be positioned at
1686 * the start of a css_set
1688 static void cgroup_advance_iter(struct cgroup *cgrp,
1689 struct cgroup_iter *it)
1691 struct list_head *l = it->cg_link;
1692 struct cg_cgroup_link *link;
1693 struct css_set *cg;
1695 /* Advance to the next non-empty css_set */
1696 do {
1697 l = l->next;
1698 if (l == &cgrp->css_sets) {
1699 it->cg_link = NULL;
1700 return;
1702 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1703 cg = link->cg;
1704 } while (list_empty(&cg->tasks));
1705 it->cg_link = l;
1706 it->task = cg->tasks.next;
1710 * To reduce the fork() overhead for systems that are not actually
1711 * using their cgroups capability, we don't maintain the lists running
1712 * through each css_set to its tasks until we see the list actually
1713 * used - in other words after the first call to cgroup_iter_start().
1715 * The tasklist_lock is not held here, as do_each_thread() and
1716 * while_each_thread() are protected by RCU.
1718 void cgroup_enable_task_cg_lists(void)
1720 struct task_struct *p, *g;
1721 write_lock(&css_set_lock);
1722 use_task_css_set_links = 1;
1723 do_each_thread(g, p) {
1724 task_lock(p);
1725 if (list_empty(&p->cg_list))
1726 list_add(&p->cg_list, &p->cgroups->tasks);
1727 task_unlock(p);
1728 } while_each_thread(g, p);
1729 write_unlock(&css_set_lock);
1732 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1735 * The first time anyone tries to iterate across a cgroup,
1736 * we need to enable the list linking each css_set to its
1737 * tasks, and fix up all existing tasks.
1739 if (!use_task_css_set_links)
1740 cgroup_enable_task_cg_lists();
1742 read_lock(&css_set_lock);
1743 it->cg_link = &cgrp->css_sets;
1744 cgroup_advance_iter(cgrp, it);
1747 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1748 struct cgroup_iter *it)
1750 struct task_struct *res;
1751 struct list_head *l = it->task;
1753 /* If the iterator cg is NULL, we have no tasks */
1754 if (!it->cg_link)
1755 return NULL;
1756 res = list_entry(l, struct task_struct, cg_list);
1757 /* Advance iterator to find next entry */
1758 l = l->next;
1759 if (l == &res->cgroups->tasks) {
1760 /* We reached the end of this task list - move on to
1761 * the next cg_cgroup_link */
1762 cgroup_advance_iter(cgrp, it);
1763 } else {
1764 it->task = l;
1766 return res;
1769 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1771 read_unlock(&css_set_lock);
1774 static inline int started_after_time(struct task_struct *t1,
1775 struct timespec *time,
1776 struct task_struct *t2)
1778 int start_diff = timespec_compare(&t1->start_time, time);
1779 if (start_diff > 0) {
1780 return 1;
1781 } else if (start_diff < 0) {
1782 return 0;
1783 } else {
1785 * Arbitrarily, if two processes started at the same
1786 * time, we'll say that the lower pointer value
1787 * started first. Note that t2 may have exited by now
1788 * so this may not be a valid pointer any longer, but
1789 * that's fine - it still serves to distinguish
1790 * between two tasks started (effectively) simultaneously.
1792 return t1 > t2;
1797 * This function is a callback from heap_insert() and is used to order
1798 * the heap.
1799 * In this case we order the heap in descending task start time.
1801 static inline int started_after(void *p1, void *p2)
1803 struct task_struct *t1 = p1;
1804 struct task_struct *t2 = p2;
1805 return started_after_time(t1, &t2->start_time, t2);
1809 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1810 * @scan: struct cgroup_scanner containing arguments for the scan
1812 * Arguments include pointers to callback functions test_task() and
1813 * process_task().
1814 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1815 * and if it returns true, call process_task() for it also.
1816 * The test_task pointer may be NULL, meaning always true (select all tasks).
1817 * Effectively duplicates cgroup_iter_{start,next,end}()
1818 * but does not lock css_set_lock for the call to process_task().
1819 * The struct cgroup_scanner may be embedded in any structure of the caller's
1820 * creation.
1821 * It is guaranteed that process_task() will act on every task that
1822 * is a member of the cgroup for the duration of this call. This
1823 * function may or may not call process_task() for tasks that exit
1824 * or move to a different cgroup during the call, or are forked or
1825 * move into the cgroup during the call.
1827 * Note that test_task() may be called with locks held, and may in some
1828 * situations be called multiple times for the same task, so it should
1829 * be cheap.
1830 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1831 * pre-allocated and will be used for heap operations (and its "gt" member will
1832 * be overwritten), else a temporary heap will be used (allocation of which
1833 * may cause this function to fail).
1835 int cgroup_scan_tasks(struct cgroup_scanner *scan)
1837 int retval, i;
1838 struct cgroup_iter it;
1839 struct task_struct *p, *dropped;
1840 /* Never dereference latest_task, since it's not refcounted */
1841 struct task_struct *latest_task = NULL;
1842 struct ptr_heap tmp_heap;
1843 struct ptr_heap *heap;
1844 struct timespec latest_time = { 0, 0 };
1846 if (scan->heap) {
1847 /* The caller supplied our heap and pre-allocated its memory */
1848 heap = scan->heap;
1849 heap->gt = &started_after;
1850 } else {
1851 /* We need to allocate our own heap memory */
1852 heap = &tmp_heap;
1853 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1854 if (retval)
1855 /* cannot allocate the heap */
1856 return retval;
1859 again:
1861 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1862 * to determine which are of interest, and using the scanner's
1863 * "process_task" callback to process any of them that need an update.
1864 * Since we don't want to hold any locks during the task updates,
1865 * gather tasks to be processed in a heap structure.
1866 * The heap is sorted by descending task start time.
1867 * If the statically-sized heap fills up, we overflow tasks that
1868 * started later, and in future iterations only consider tasks that
1869 * started after the latest task in the previous pass. This
1870 * guarantees forward progress and that we don't miss any tasks.
1872 heap->size = 0;
1873 cgroup_iter_start(scan->cg, &it);
1874 while ((p = cgroup_iter_next(scan->cg, &it))) {
1876 * Only affect tasks that qualify per the caller's callback,
1877 * if he provided one
1879 if (scan->test_task && !scan->test_task(p, scan))
1880 continue;
1882 * Only process tasks that started after the last task
1883 * we processed
1885 if (!started_after_time(p, &latest_time, latest_task))
1886 continue;
1887 dropped = heap_insert(heap, p);
1888 if (dropped == NULL) {
1890 * The new task was inserted; the heap wasn't
1891 * previously full
1893 get_task_struct(p);
1894 } else if (dropped != p) {
1896 * The new task was inserted, and pushed out a
1897 * different task
1899 get_task_struct(p);
1900 put_task_struct(dropped);
1903 * Else the new task was newer than anything already in
1904 * the heap and wasn't inserted
1907 cgroup_iter_end(scan->cg, &it);
1909 if (heap->size) {
1910 for (i = 0; i < heap->size; i++) {
1911 struct task_struct *p = heap->ptrs[i];
1912 if (i == 0) {
1913 latest_time = p->start_time;
1914 latest_task = p;
1916 /* Process the task per the caller's callback */
1917 scan->process_task(p, scan);
1918 put_task_struct(p);
1921 * If we had to process any tasks at all, scan again
1922 * in case some of them were in the middle of forking
1923 * children that didn't get processed.
1924 * Not the most efficient way to do it, but it avoids
1925 * having to take callback_mutex in the fork path
1927 goto again;
1929 if (heap == &tmp_heap)
1930 heap_free(&tmp_heap);
1931 return 0;
1935 * Stuff for reading the 'tasks' file.
1937 * Reading this file can return large amounts of data if a cgroup has
1938 * *lots* of attached tasks. So it may need several calls to read(),
1939 * but we cannot guarantee that the information we produce is correct
1940 * unless we produce it entirely atomically.
1942 * Upon tasks file open(), a struct ctr_struct is allocated, that
1943 * will have a pointer to an array (also allocated here). The struct
1944 * ctr_struct * is stored in file->private_data. Its resources will
1945 * be freed by release() when the file is closed. The array is used
1946 * to sprintf the PIDs and then used by read().
1948 struct ctr_struct {
1949 char *buf;
1950 int bufsz;
1954 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
1955 * 'cgrp'. Return actual number of pids loaded. No need to
1956 * task_lock(p) when reading out p->cgroup, since we're in an RCU
1957 * read section, so the css_set can't go away, and is
1958 * immutable after creation.
1960 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
1962 int n = 0;
1963 struct cgroup_iter it;
1964 struct task_struct *tsk;
1965 cgroup_iter_start(cgrp, &it);
1966 while ((tsk = cgroup_iter_next(cgrp, &it))) {
1967 if (unlikely(n == npids))
1968 break;
1969 pidarray[n++] = task_pid_vnr(tsk);
1971 cgroup_iter_end(cgrp, &it);
1972 return n;
1976 * cgroupstats_build - build and fill cgroupstats
1977 * @stats: cgroupstats to fill information into
1978 * @dentry: A dentry entry belonging to the cgroup for which stats have
1979 * been requested.
1981 * Build and fill cgroupstats so that taskstats can export it to user
1982 * space.
1984 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
1986 int ret = -EINVAL;
1987 struct cgroup *cgrp;
1988 struct cgroup_iter it;
1989 struct task_struct *tsk;
1991 * Validate dentry by checking the superblock operations
1993 if (dentry->d_sb->s_op != &cgroup_ops)
1994 goto err;
1996 ret = 0;
1997 cgrp = dentry->d_fsdata;
1998 rcu_read_lock();
2000 cgroup_iter_start(cgrp, &it);
2001 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2002 switch (tsk->state) {
2003 case TASK_RUNNING:
2004 stats->nr_running++;
2005 break;
2006 case TASK_INTERRUPTIBLE:
2007 stats->nr_sleeping++;
2008 break;
2009 case TASK_UNINTERRUPTIBLE:
2010 stats->nr_uninterruptible++;
2011 break;
2012 case TASK_STOPPED:
2013 stats->nr_stopped++;
2014 break;
2015 default:
2016 if (delayacct_is_task_waiting_on_io(tsk))
2017 stats->nr_io_wait++;
2018 break;
2021 cgroup_iter_end(cgrp, &it);
2023 rcu_read_unlock();
2024 err:
2025 return ret;
2028 static int cmppid(const void *a, const void *b)
2030 return *(pid_t *)a - *(pid_t *)b;
2034 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2035 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2036 * count 'cnt' of how many chars would be written if buf were large enough.
2038 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
2040 int cnt = 0;
2041 int i;
2043 for (i = 0; i < npids; i++)
2044 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
2045 return cnt;
2049 * Handle an open on 'tasks' file. Prepare a buffer listing the
2050 * process id's of tasks currently attached to the cgroup being opened.
2052 * Does not require any specific cgroup mutexes, and does not take any.
2054 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2056 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2057 struct ctr_struct *ctr;
2058 pid_t *pidarray;
2059 int npids;
2060 char c;
2062 if (!(file->f_mode & FMODE_READ))
2063 return 0;
2065 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
2066 if (!ctr)
2067 goto err0;
2070 * If cgroup gets more users after we read count, we won't have
2071 * enough space - tough. This race is indistinguishable to the
2072 * caller from the case that the additional cgroup users didn't
2073 * show up until sometime later on.
2075 npids = cgroup_task_count(cgrp);
2076 if (npids) {
2077 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2078 if (!pidarray)
2079 goto err1;
2081 npids = pid_array_load(pidarray, npids, cgrp);
2082 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2084 /* Call pid_array_to_buf() twice, first just to get bufsz */
2085 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
2086 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
2087 if (!ctr->buf)
2088 goto err2;
2089 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
2091 kfree(pidarray);
2092 } else {
2093 ctr->buf = NULL;
2094 ctr->bufsz = 0;
2096 file->private_data = ctr;
2097 return 0;
2099 err2:
2100 kfree(pidarray);
2101 err1:
2102 kfree(ctr);
2103 err0:
2104 return -ENOMEM;
2107 static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
2108 struct cftype *cft,
2109 struct file *file, char __user *buf,
2110 size_t nbytes, loff_t *ppos)
2112 struct ctr_struct *ctr = file->private_data;
2114 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
2117 static int cgroup_tasks_release(struct inode *unused_inode,
2118 struct file *file)
2120 struct ctr_struct *ctr;
2122 if (file->f_mode & FMODE_READ) {
2123 ctr = file->private_data;
2124 kfree(ctr->buf);
2125 kfree(ctr);
2127 return 0;
2130 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2131 struct cftype *cft)
2133 return notify_on_release(cgrp);
2136 static u64 cgroup_read_releasable(struct cgroup *cgrp, struct cftype *cft)
2138 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
2142 * for the common functions, 'private' gives the type of file
2144 static struct cftype files[] = {
2146 .name = "tasks",
2147 .open = cgroup_tasks_open,
2148 .read = cgroup_tasks_read,
2149 .write = cgroup_common_file_write,
2150 .release = cgroup_tasks_release,
2151 .private = FILE_TASKLIST,
2155 .name = "notify_on_release",
2156 .read_uint = cgroup_read_notify_on_release,
2157 .write = cgroup_common_file_write,
2158 .private = FILE_NOTIFY_ON_RELEASE,
2162 .name = "releasable",
2163 .read_uint = cgroup_read_releasable,
2164 .private = FILE_RELEASABLE,
2168 static struct cftype cft_release_agent = {
2169 .name = "release_agent",
2170 .read = cgroup_common_file_read,
2171 .write = cgroup_common_file_write,
2172 .private = FILE_RELEASE_AGENT,
2175 static int cgroup_populate_dir(struct cgroup *cgrp)
2177 int err;
2178 struct cgroup_subsys *ss;
2180 /* First clear out any existing files */
2181 cgroup_clear_directory(cgrp->dentry);
2183 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2184 if (err < 0)
2185 return err;
2187 if (cgrp == cgrp->top_cgroup) {
2188 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2189 return err;
2192 for_each_subsys(cgrp->root, ss) {
2193 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2194 return err;
2197 return 0;
2200 static void init_cgroup_css(struct cgroup_subsys_state *css,
2201 struct cgroup_subsys *ss,
2202 struct cgroup *cgrp)
2204 css->cgroup = cgrp;
2205 atomic_set(&css->refcnt, 0);
2206 css->flags = 0;
2207 if (cgrp == dummytop)
2208 set_bit(CSS_ROOT, &css->flags);
2209 BUG_ON(cgrp->subsys[ss->subsys_id]);
2210 cgrp->subsys[ss->subsys_id] = css;
2214 * cgroup_create - create a cgroup
2215 * @parent: cgroup that will be parent of the new cgroup
2216 * @dentry: dentry of the new cgroup
2217 * @mode: mode to set on new inode
2219 * Must be called with the mutex on the parent inode held
2221 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2222 int mode)
2224 struct cgroup *cgrp;
2225 struct cgroupfs_root *root = parent->root;
2226 int err = 0;
2227 struct cgroup_subsys *ss;
2228 struct super_block *sb = root->sb;
2230 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2231 if (!cgrp)
2232 return -ENOMEM;
2234 /* Grab a reference on the superblock so the hierarchy doesn't
2235 * get deleted on unmount if there are child cgroups. This
2236 * can be done outside cgroup_mutex, since the sb can't
2237 * disappear while someone has an open control file on the
2238 * fs */
2239 atomic_inc(&sb->s_active);
2241 mutex_lock(&cgroup_mutex);
2243 INIT_LIST_HEAD(&cgrp->sibling);
2244 INIT_LIST_HEAD(&cgrp->children);
2245 INIT_LIST_HEAD(&cgrp->css_sets);
2246 INIT_LIST_HEAD(&cgrp->release_list);
2248 cgrp->parent = parent;
2249 cgrp->root = parent->root;
2250 cgrp->top_cgroup = parent->top_cgroup;
2252 if (notify_on_release(parent))
2253 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2255 for_each_subsys(root, ss) {
2256 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2257 if (IS_ERR(css)) {
2258 err = PTR_ERR(css);
2259 goto err_destroy;
2261 init_cgroup_css(css, ss, cgrp);
2264 list_add(&cgrp->sibling, &cgrp->parent->children);
2265 root->number_of_cgroups++;
2267 err = cgroup_create_dir(cgrp, dentry, mode);
2268 if (err < 0)
2269 goto err_remove;
2271 /* The cgroup directory was pre-locked for us */
2272 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2274 err = cgroup_populate_dir(cgrp);
2275 /* If err < 0, we have a half-filled directory - oh well ;) */
2277 mutex_unlock(&cgroup_mutex);
2278 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2280 return 0;
2282 err_remove:
2284 list_del(&cgrp->sibling);
2285 root->number_of_cgroups--;
2287 err_destroy:
2289 for_each_subsys(root, ss) {
2290 if (cgrp->subsys[ss->subsys_id])
2291 ss->destroy(ss, cgrp);
2294 mutex_unlock(&cgroup_mutex);
2296 /* Release the reference count that we took on the superblock */
2297 deactivate_super(sb);
2299 kfree(cgrp);
2300 return err;
2303 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2305 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2307 /* the vfs holds inode->i_mutex already */
2308 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2311 static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2313 /* Check the reference count on each subsystem. Since we
2314 * already established that there are no tasks in the
2315 * cgroup, if the css refcount is also 0, then there should
2316 * be no outstanding references, so the subsystem is safe to
2317 * destroy. We scan across all subsystems rather than using
2318 * the per-hierarchy linked list of mounted subsystems since
2319 * we can be called via check_for_release() with no
2320 * synchronization other than RCU, and the subsystem linked
2321 * list isn't RCU-safe */
2322 int i;
2323 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2324 struct cgroup_subsys *ss = subsys[i];
2325 struct cgroup_subsys_state *css;
2326 /* Skip subsystems not in this hierarchy */
2327 if (ss->root != cgrp->root)
2328 continue;
2329 css = cgrp->subsys[ss->subsys_id];
2330 /* When called from check_for_release() it's possible
2331 * that by this point the cgroup has been removed
2332 * and the css deleted. But a false-positive doesn't
2333 * matter, since it can only happen if the cgroup
2334 * has been deleted and hence no longer needs the
2335 * release agent to be called anyway. */
2336 if (css && atomic_read(&css->refcnt))
2337 return 1;
2339 return 0;
2342 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2344 struct cgroup *cgrp = dentry->d_fsdata;
2345 struct dentry *d;
2346 struct cgroup *parent;
2347 struct super_block *sb;
2348 struct cgroupfs_root *root;
2350 /* the vfs holds both inode->i_mutex already */
2352 mutex_lock(&cgroup_mutex);
2353 if (atomic_read(&cgrp->count) != 0) {
2354 mutex_unlock(&cgroup_mutex);
2355 return -EBUSY;
2357 if (!list_empty(&cgrp->children)) {
2358 mutex_unlock(&cgroup_mutex);
2359 return -EBUSY;
2362 parent = cgrp->parent;
2363 root = cgrp->root;
2364 sb = root->sb;
2367 * Call pre_destroy handlers of subsys. Notify subsystems
2368 * that rmdir() request comes.
2370 cgroup_call_pre_destroy(cgrp);
2372 if (cgroup_has_css_refs(cgrp)) {
2373 mutex_unlock(&cgroup_mutex);
2374 return -EBUSY;
2377 spin_lock(&release_list_lock);
2378 set_bit(CGRP_REMOVED, &cgrp->flags);
2379 if (!list_empty(&cgrp->release_list))
2380 list_del(&cgrp->release_list);
2381 spin_unlock(&release_list_lock);
2382 /* delete my sibling from parent->children */
2383 list_del(&cgrp->sibling);
2384 spin_lock(&cgrp->dentry->d_lock);
2385 d = dget(cgrp->dentry);
2386 cgrp->dentry = NULL;
2387 spin_unlock(&d->d_lock);
2389 cgroup_d_remove_dir(d);
2390 dput(d);
2392 set_bit(CGRP_RELEASABLE, &parent->flags);
2393 check_for_release(parent);
2395 mutex_unlock(&cgroup_mutex);
2396 return 0;
2399 static void cgroup_init_subsys(struct cgroup_subsys *ss)
2401 struct cgroup_subsys_state *css;
2402 struct list_head *l;
2404 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2406 /* Create the top cgroup state for this subsystem */
2407 ss->root = &rootnode;
2408 css = ss->create(ss, dummytop);
2409 /* We don't handle early failures gracefully */
2410 BUG_ON(IS_ERR(css));
2411 init_cgroup_css(css, ss, dummytop);
2413 /* Update all cgroup groups to contain a subsys
2414 * pointer to this state - since the subsystem is
2415 * newly registered, all tasks and hence all cgroup
2416 * groups are in the subsystem's top cgroup. */
2417 write_lock(&css_set_lock);
2418 l = &init_css_set.list;
2419 do {
2420 struct css_set *cg =
2421 list_entry(l, struct css_set, list);
2422 cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2423 l = l->next;
2424 } while (l != &init_css_set.list);
2425 write_unlock(&css_set_lock);
2427 /* If this subsystem requested that it be notified with fork
2428 * events, we should send it one now for every process in the
2429 * system */
2430 if (ss->fork) {
2431 struct task_struct *g, *p;
2433 read_lock(&tasklist_lock);
2434 do_each_thread(g, p) {
2435 ss->fork(ss, p);
2436 } while_each_thread(g, p);
2437 read_unlock(&tasklist_lock);
2440 need_forkexit_callback |= ss->fork || ss->exit;
2442 ss->active = 1;
2446 * cgroup_init_early - cgroup initialization at system boot
2448 * Initialize cgroups at system boot, and initialize any
2449 * subsystems that request early init.
2451 int __init cgroup_init_early(void)
2453 int i;
2454 kref_init(&init_css_set.ref);
2455 kref_get(&init_css_set.ref);
2456 INIT_LIST_HEAD(&init_css_set.list);
2457 INIT_LIST_HEAD(&init_css_set.cg_links);
2458 INIT_LIST_HEAD(&init_css_set.tasks);
2459 css_set_count = 1;
2460 init_cgroup_root(&rootnode);
2461 list_add(&rootnode.root_list, &roots);
2462 root_count = 1;
2463 init_task.cgroups = &init_css_set;
2465 init_css_set_link.cg = &init_css_set;
2466 list_add(&init_css_set_link.cgrp_link_list,
2467 &rootnode.top_cgroup.css_sets);
2468 list_add(&init_css_set_link.cg_link_list,
2469 &init_css_set.cg_links);
2471 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2472 struct cgroup_subsys *ss = subsys[i];
2474 BUG_ON(!ss->name);
2475 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2476 BUG_ON(!ss->create);
2477 BUG_ON(!ss->destroy);
2478 if (ss->subsys_id != i) {
2479 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2480 ss->name, ss->subsys_id);
2481 BUG();
2484 if (ss->early_init)
2485 cgroup_init_subsys(ss);
2487 return 0;
2491 * cgroup_init - cgroup initialization
2493 * Register cgroup filesystem and /proc file, and initialize
2494 * any subsystems that didn't request early init.
2496 int __init cgroup_init(void)
2498 int err;
2499 int i;
2500 struct proc_dir_entry *entry;
2502 err = bdi_init(&cgroup_backing_dev_info);
2503 if (err)
2504 return err;
2506 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2507 struct cgroup_subsys *ss = subsys[i];
2508 if (!ss->early_init)
2509 cgroup_init_subsys(ss);
2512 err = register_filesystem(&cgroup_fs_type);
2513 if (err < 0)
2514 goto out;
2516 entry = create_proc_entry("cgroups", 0, NULL);
2517 if (entry)
2518 entry->proc_fops = &proc_cgroupstats_operations;
2520 out:
2521 if (err)
2522 bdi_destroy(&cgroup_backing_dev_info);
2524 return err;
2528 * proc_cgroup_show()
2529 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2530 * - Used for /proc/<pid>/cgroup.
2531 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2532 * doesn't really matter if tsk->cgroup changes after we read it,
2533 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2534 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2535 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2536 * cgroup to top_cgroup.
2539 /* TODO: Use a proper seq_file iterator */
2540 static int proc_cgroup_show(struct seq_file *m, void *v)
2542 struct pid *pid;
2543 struct task_struct *tsk;
2544 char *buf;
2545 int retval;
2546 struct cgroupfs_root *root;
2548 retval = -ENOMEM;
2549 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2550 if (!buf)
2551 goto out;
2553 retval = -ESRCH;
2554 pid = m->private;
2555 tsk = get_pid_task(pid, PIDTYPE_PID);
2556 if (!tsk)
2557 goto out_free;
2559 retval = 0;
2561 mutex_lock(&cgroup_mutex);
2563 for_each_root(root) {
2564 struct cgroup_subsys *ss;
2565 struct cgroup *cgrp;
2566 int subsys_id;
2567 int count = 0;
2569 /* Skip this hierarchy if it has no active subsystems */
2570 if (!root->actual_subsys_bits)
2571 continue;
2572 for_each_subsys(root, ss)
2573 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2574 seq_putc(m, ':');
2575 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2576 cgrp = task_cgroup(tsk, subsys_id);
2577 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2578 if (retval < 0)
2579 goto out_unlock;
2580 seq_puts(m, buf);
2581 seq_putc(m, '\n');
2584 out_unlock:
2585 mutex_unlock(&cgroup_mutex);
2586 put_task_struct(tsk);
2587 out_free:
2588 kfree(buf);
2589 out:
2590 return retval;
2593 static int cgroup_open(struct inode *inode, struct file *file)
2595 struct pid *pid = PROC_I(inode)->pid;
2596 return single_open(file, proc_cgroup_show, pid);
2599 struct file_operations proc_cgroup_operations = {
2600 .open = cgroup_open,
2601 .read = seq_read,
2602 .llseek = seq_lseek,
2603 .release = single_release,
2606 /* Display information about each subsystem and each hierarchy */
2607 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2609 int i;
2611 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2612 mutex_lock(&cgroup_mutex);
2613 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2614 struct cgroup_subsys *ss = subsys[i];
2615 seq_printf(m, "%s\t%lu\t%d\t%d\n",
2616 ss->name, ss->root->subsys_bits,
2617 ss->root->number_of_cgroups, !ss->disabled);
2619 mutex_unlock(&cgroup_mutex);
2620 return 0;
2623 static int cgroupstats_open(struct inode *inode, struct file *file)
2625 return single_open(file, proc_cgroupstats_show, NULL);
2628 static struct file_operations proc_cgroupstats_operations = {
2629 .open = cgroupstats_open,
2630 .read = seq_read,
2631 .llseek = seq_lseek,
2632 .release = single_release,
2636 * cgroup_fork - attach newly forked task to its parents cgroup.
2637 * @child: pointer to task_struct of forking parent process.
2639 * Description: A task inherits its parent's cgroup at fork().
2641 * A pointer to the shared css_set was automatically copied in
2642 * fork.c by dup_task_struct(). However, we ignore that copy, since
2643 * it was not made under the protection of RCU or cgroup_mutex, so
2644 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2645 * have already changed current->cgroups, allowing the previously
2646 * referenced cgroup group to be removed and freed.
2648 * At the point that cgroup_fork() is called, 'current' is the parent
2649 * task, and the passed argument 'child' points to the child task.
2651 void cgroup_fork(struct task_struct *child)
2653 task_lock(current);
2654 child->cgroups = current->cgroups;
2655 get_css_set(child->cgroups);
2656 task_unlock(current);
2657 INIT_LIST_HEAD(&child->cg_list);
2661 * cgroup_fork_callbacks - run fork callbacks
2662 * @child: the new task
2664 * Called on a new task very soon before adding it to the
2665 * tasklist. No need to take any locks since no-one can
2666 * be operating on this task.
2668 void cgroup_fork_callbacks(struct task_struct *child)
2670 if (need_forkexit_callback) {
2671 int i;
2672 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2673 struct cgroup_subsys *ss = subsys[i];
2674 if (ss->fork)
2675 ss->fork(ss, child);
2681 * cgroup_post_fork - called on a new task after adding it to the task list
2682 * @child: the task in question
2684 * Adds the task to the list running through its css_set if necessary.
2685 * Has to be after the task is visible on the task list in case we race
2686 * with the first call to cgroup_iter_start() - to guarantee that the
2687 * new task ends up on its list.
2689 void cgroup_post_fork(struct task_struct *child)
2691 if (use_task_css_set_links) {
2692 write_lock(&css_set_lock);
2693 if (list_empty(&child->cg_list))
2694 list_add(&child->cg_list, &child->cgroups->tasks);
2695 write_unlock(&css_set_lock);
2699 * cgroup_exit - detach cgroup from exiting task
2700 * @tsk: pointer to task_struct of exiting process
2701 * @run_callback: run exit callbacks?
2703 * Description: Detach cgroup from @tsk and release it.
2705 * Note that cgroups marked notify_on_release force every task in
2706 * them to take the global cgroup_mutex mutex when exiting.
2707 * This could impact scaling on very large systems. Be reluctant to
2708 * use notify_on_release cgroups where very high task exit scaling
2709 * is required on large systems.
2711 * the_top_cgroup_hack:
2713 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2715 * We call cgroup_exit() while the task is still competent to
2716 * handle notify_on_release(), then leave the task attached to the
2717 * root cgroup in each hierarchy for the remainder of its exit.
2719 * To do this properly, we would increment the reference count on
2720 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2721 * code we would add a second cgroup function call, to drop that
2722 * reference. This would just create an unnecessary hot spot on
2723 * the top_cgroup reference count, to no avail.
2725 * Normally, holding a reference to a cgroup without bumping its
2726 * count is unsafe. The cgroup could go away, or someone could
2727 * attach us to a different cgroup, decrementing the count on
2728 * the first cgroup that we never incremented. But in this case,
2729 * top_cgroup isn't going away, and either task has PF_EXITING set,
2730 * which wards off any cgroup_attach_task() attempts, or task is a failed
2731 * fork, never visible to cgroup_attach_task.
2733 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2735 int i;
2736 struct css_set *cg;
2738 if (run_callbacks && need_forkexit_callback) {
2739 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2740 struct cgroup_subsys *ss = subsys[i];
2741 if (ss->exit)
2742 ss->exit(ss, tsk);
2747 * Unlink from the css_set task list if necessary.
2748 * Optimistically check cg_list before taking
2749 * css_set_lock
2751 if (!list_empty(&tsk->cg_list)) {
2752 write_lock(&css_set_lock);
2753 if (!list_empty(&tsk->cg_list))
2754 list_del(&tsk->cg_list);
2755 write_unlock(&css_set_lock);
2758 /* Reassign the task to the init_css_set. */
2759 task_lock(tsk);
2760 cg = tsk->cgroups;
2761 tsk->cgroups = &init_css_set;
2762 task_unlock(tsk);
2763 if (cg)
2764 put_css_set_taskexit(cg);
2768 * cgroup_clone - clone the cgroup the given subsystem is attached to
2769 * @tsk: the task to be moved
2770 * @subsys: the given subsystem
2772 * Duplicate the current cgroup in the hierarchy that the given
2773 * subsystem is attached to, and move this task into the new
2774 * child.
2776 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
2778 struct dentry *dentry;
2779 int ret = 0;
2780 char nodename[MAX_CGROUP_TYPE_NAMELEN];
2781 struct cgroup *parent, *child;
2782 struct inode *inode;
2783 struct css_set *cg;
2784 struct cgroupfs_root *root;
2785 struct cgroup_subsys *ss;
2787 /* We shouldn't be called by an unregistered subsystem */
2788 BUG_ON(!subsys->active);
2790 /* First figure out what hierarchy and cgroup we're dealing
2791 * with, and pin them so we can drop cgroup_mutex */
2792 mutex_lock(&cgroup_mutex);
2793 again:
2794 root = subsys->root;
2795 if (root == &rootnode) {
2796 printk(KERN_INFO
2797 "Not cloning cgroup for unused subsystem %s\n",
2798 subsys->name);
2799 mutex_unlock(&cgroup_mutex);
2800 return 0;
2802 cg = tsk->cgroups;
2803 parent = task_cgroup(tsk, subsys->subsys_id);
2805 snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);
2807 /* Pin the hierarchy */
2808 atomic_inc(&parent->root->sb->s_active);
2810 /* Keep the cgroup alive */
2811 get_css_set(cg);
2812 mutex_unlock(&cgroup_mutex);
2814 /* Now do the VFS work to create a cgroup */
2815 inode = parent->dentry->d_inode;
2817 /* Hold the parent directory mutex across this operation to
2818 * stop anyone else deleting the new cgroup */
2819 mutex_lock(&inode->i_mutex);
2820 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2821 if (IS_ERR(dentry)) {
2822 printk(KERN_INFO
2823 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2824 PTR_ERR(dentry));
2825 ret = PTR_ERR(dentry);
2826 goto out_release;
2829 /* Create the cgroup directory, which also creates the cgroup */
2830 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2831 child = __d_cgrp(dentry);
2832 dput(dentry);
2833 if (ret) {
2834 printk(KERN_INFO
2835 "Failed to create cgroup %s: %d\n", nodename,
2836 ret);
2837 goto out_release;
2840 if (!child) {
2841 printk(KERN_INFO
2842 "Couldn't find new cgroup %s\n", nodename);
2843 ret = -ENOMEM;
2844 goto out_release;
2847 /* The cgroup now exists. Retake cgroup_mutex and check
2848 * that we're still in the same state that we thought we
2849 * were. */
2850 mutex_lock(&cgroup_mutex);
2851 if ((root != subsys->root) ||
2852 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2853 /* Aargh, we raced ... */
2854 mutex_unlock(&inode->i_mutex);
2855 put_css_set(cg);
2857 deactivate_super(parent->root->sb);
2858 /* The cgroup is still accessible in the VFS, but
2859 * we're not going to try to rmdir() it at this
2860 * point. */
2861 printk(KERN_INFO
2862 "Race in cgroup_clone() - leaking cgroup %s\n",
2863 nodename);
2864 goto again;
2867 /* do any required auto-setup */
2868 for_each_subsys(root, ss) {
2869 if (ss->post_clone)
2870 ss->post_clone(ss, child);
2873 /* All seems fine. Finish by moving the task into the new cgroup */
2874 ret = cgroup_attach_task(child, tsk);
2875 mutex_unlock(&cgroup_mutex);
2877 out_release:
2878 mutex_unlock(&inode->i_mutex);
2880 mutex_lock(&cgroup_mutex);
2881 put_css_set(cg);
2882 mutex_unlock(&cgroup_mutex);
2883 deactivate_super(parent->root->sb);
2884 return ret;
2888 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
2889 * @cgrp: the cgroup in question
2891 * See if @cgrp is a descendant of the current task's cgroup in
2892 * the appropriate hierarchy.
2894 * If we are sending in dummytop, then presumably we are creating
2895 * the top cgroup in the subsystem.
2897 * Called only by the ns (nsproxy) cgroup.
2899 int cgroup_is_descendant(const struct cgroup *cgrp)
2901 int ret;
2902 struct cgroup *target;
2903 int subsys_id;
2905 if (cgrp == dummytop)
2906 return 1;
2908 get_first_subsys(cgrp, NULL, &subsys_id);
2909 target = task_cgroup(current, subsys_id);
2910 while (cgrp != target && cgrp!= cgrp->top_cgroup)
2911 cgrp = cgrp->parent;
2912 ret = (cgrp == target);
2913 return ret;
2916 static void check_for_release(struct cgroup *cgrp)
2918 /* All of these checks rely on RCU to keep the cgroup
2919 * structure alive */
2920 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
2921 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
2922 /* Control Group is currently removeable. If it's not
2923 * already queued for a userspace notification, queue
2924 * it now */
2925 int need_schedule_work = 0;
2926 spin_lock(&release_list_lock);
2927 if (!cgroup_is_removed(cgrp) &&
2928 list_empty(&cgrp->release_list)) {
2929 list_add(&cgrp->release_list, &release_list);
2930 need_schedule_work = 1;
2932 spin_unlock(&release_list_lock);
2933 if (need_schedule_work)
2934 schedule_work(&release_agent_work);
2938 void __css_put(struct cgroup_subsys_state *css)
2940 struct cgroup *cgrp = css->cgroup;
2941 rcu_read_lock();
2942 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
2943 set_bit(CGRP_RELEASABLE, &cgrp->flags);
2944 check_for_release(cgrp);
2946 rcu_read_unlock();
2950 * Notify userspace when a cgroup is released, by running the
2951 * configured release agent with the name of the cgroup (path
2952 * relative to the root of cgroup file system) as the argument.
2954 * Most likely, this user command will try to rmdir this cgroup.
2956 * This races with the possibility that some other task will be
2957 * attached to this cgroup before it is removed, or that some other
2958 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
2959 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
2960 * unused, and this cgroup will be reprieved from its death sentence,
2961 * to continue to serve a useful existence. Next time it's released,
2962 * we will get notified again, if it still has 'notify_on_release' set.
2964 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
2965 * means only wait until the task is successfully execve()'d. The
2966 * separate release agent task is forked by call_usermodehelper(),
2967 * then control in this thread returns here, without waiting for the
2968 * release agent task. We don't bother to wait because the caller of
2969 * this routine has no use for the exit status of the release agent
2970 * task, so no sense holding our caller up for that.
2972 static void cgroup_release_agent(struct work_struct *work)
2974 BUG_ON(work != &release_agent_work);
2975 mutex_lock(&cgroup_mutex);
2976 spin_lock(&release_list_lock);
2977 while (!list_empty(&release_list)) {
2978 char *argv[3], *envp[3];
2979 int i;
2980 char *pathbuf;
2981 struct cgroup *cgrp = list_entry(release_list.next,
2982 struct cgroup,
2983 release_list);
2984 list_del_init(&cgrp->release_list);
2985 spin_unlock(&release_list_lock);
2986 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2987 if (!pathbuf) {
2988 spin_lock(&release_list_lock);
2989 continue;
2992 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
2993 kfree(pathbuf);
2994 spin_lock(&release_list_lock);
2995 continue;
2998 i = 0;
2999 argv[i++] = cgrp->root->release_agent_path;
3000 argv[i++] = (char *)pathbuf;
3001 argv[i] = NULL;
3003 i = 0;
3004 /* minimal command environment */
3005 envp[i++] = "HOME=/";
3006 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3007 envp[i] = NULL;
3009 /* Drop the lock while we invoke the usermode helper,
3010 * since the exec could involve hitting disk and hence
3011 * be a slow process */
3012 mutex_unlock(&cgroup_mutex);
3013 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3014 kfree(pathbuf);
3015 mutex_lock(&cgroup_mutex);
3016 spin_lock(&release_list_lock);
3018 spin_unlock(&release_list_lock);
3019 mutex_unlock(&cgroup_mutex);
3022 static int __init cgroup_disable(char *str)
3024 int i;
3025 char *token;
3027 while ((token = strsep(&str, ",")) != NULL) {
3028 if (!*token)
3029 continue;
3031 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3032 struct cgroup_subsys *ss = subsys[i];
3034 if (!strcmp(token, ss->name)) {
3035 ss->disabled = 1;
3036 printk(KERN_INFO "Disabling %s control group"
3037 " subsystem\n", ss->name);
3038 break;
3042 return 1;
3044 __setup("cgroup_disable=", cgroup_disable);