[NETFILTER]: x_tables: struct xt_table_info diet
[linux-2.6/openmoko-kernel/knife-kernel.git] / fs / proc / task_mmu.c
blob8043a3eab52ce49f14f0b23f863b8fb77c6916ba
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/pagemap.h>
8 #include <linux/mempolicy.h>
10 #include <asm/elf.h>
11 #include <asm/uaccess.h>
12 #include <asm/tlbflush.h>
13 #include "internal.h"
15 char *task_mem(struct mm_struct *mm, char *buffer)
17 unsigned long data, text, lib;
18 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
21 * Note: to minimize their overhead, mm maintains hiwater_vm and
22 * hiwater_rss only when about to *lower* total_vm or rss. Any
23 * collector of these hiwater stats must therefore get total_vm
24 * and rss too, which will usually be the higher. Barriers? not
25 * worth the effort, such snapshots can always be inconsistent.
27 hiwater_vm = total_vm = mm->total_vm;
28 if (hiwater_vm < mm->hiwater_vm)
29 hiwater_vm = mm->hiwater_vm;
30 hiwater_rss = total_rss = get_mm_rss(mm);
31 if (hiwater_rss < mm->hiwater_rss)
32 hiwater_rss = mm->hiwater_rss;
34 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
35 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
36 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
37 buffer += sprintf(buffer,
38 "VmPeak:\t%8lu kB\n"
39 "VmSize:\t%8lu kB\n"
40 "VmLck:\t%8lu kB\n"
41 "VmHWM:\t%8lu kB\n"
42 "VmRSS:\t%8lu kB\n"
43 "VmData:\t%8lu kB\n"
44 "VmStk:\t%8lu kB\n"
45 "VmExe:\t%8lu kB\n"
46 "VmLib:\t%8lu kB\n"
47 "VmPTE:\t%8lu kB\n",
48 hiwater_vm << (PAGE_SHIFT-10),
49 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
50 mm->locked_vm << (PAGE_SHIFT-10),
51 hiwater_rss << (PAGE_SHIFT-10),
52 total_rss << (PAGE_SHIFT-10),
53 data << (PAGE_SHIFT-10),
54 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
55 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10);
56 return buffer;
59 unsigned long task_vsize(struct mm_struct *mm)
61 return PAGE_SIZE * mm->total_vm;
64 int task_statm(struct mm_struct *mm, int *shared, int *text,
65 int *data, int *resident)
67 *shared = get_mm_counter(mm, file_rss);
68 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
69 >> PAGE_SHIFT;
70 *data = mm->total_vm - mm->shared_vm;
71 *resident = *shared + get_mm_counter(mm, anon_rss);
72 return mm->total_vm;
75 int proc_exe_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
77 struct vm_area_struct * vma;
78 int result = -ENOENT;
79 struct task_struct *task = get_proc_task(inode);
80 struct mm_struct * mm = NULL;
82 if (task) {
83 mm = get_task_mm(task);
84 put_task_struct(task);
86 if (!mm)
87 goto out;
88 down_read(&mm->mmap_sem);
90 vma = mm->mmap;
91 while (vma) {
92 if ((vma->vm_flags & VM_EXECUTABLE) && vma->vm_file)
93 break;
94 vma = vma->vm_next;
97 if (vma) {
98 *mnt = mntget(vma->vm_file->f_path.mnt);
99 *dentry = dget(vma->vm_file->f_path.dentry);
100 result = 0;
103 up_read(&mm->mmap_sem);
104 mmput(mm);
105 out:
106 return result;
109 static void pad_len_spaces(struct seq_file *m, int len)
111 len = 25 + sizeof(void*) * 6 - len;
112 if (len < 1)
113 len = 1;
114 seq_printf(m, "%*c", len, ' ');
117 struct mem_size_stats
119 unsigned long resident;
120 unsigned long shared_clean;
121 unsigned long shared_dirty;
122 unsigned long private_clean;
123 unsigned long private_dirty;
124 unsigned long referenced;
127 struct pmd_walker {
128 struct vm_area_struct *vma;
129 void *private;
130 void (*action)(struct vm_area_struct *, pmd_t *, unsigned long,
131 unsigned long, void *);
134 static int show_map_internal(struct seq_file *m, void *v, struct mem_size_stats *mss)
136 struct proc_maps_private *priv = m->private;
137 struct task_struct *task = priv->task;
138 struct vm_area_struct *vma = v;
139 struct mm_struct *mm = vma->vm_mm;
140 struct file *file = vma->vm_file;
141 int flags = vma->vm_flags;
142 unsigned long ino = 0;
143 dev_t dev = 0;
144 int len;
146 if (maps_protect && !ptrace_may_attach(task))
147 return -EACCES;
149 if (file) {
150 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
151 dev = inode->i_sb->s_dev;
152 ino = inode->i_ino;
155 seq_printf(m, "%08lx-%08lx %c%c%c%c %08lx %02x:%02x %lu %n",
156 vma->vm_start,
157 vma->vm_end,
158 flags & VM_READ ? 'r' : '-',
159 flags & VM_WRITE ? 'w' : '-',
160 flags & VM_EXEC ? 'x' : '-',
161 flags & VM_MAYSHARE ? 's' : 'p',
162 vma->vm_pgoff << PAGE_SHIFT,
163 MAJOR(dev), MINOR(dev), ino, &len);
166 * Print the dentry name for named mappings, and a
167 * special [heap] marker for the heap:
169 if (file) {
170 pad_len_spaces(m, len);
171 seq_path(m, file->f_path.mnt, file->f_path.dentry, "\n");
172 } else {
173 const char *name = arch_vma_name(vma);
174 if (!name) {
175 if (mm) {
176 if (vma->vm_start <= mm->start_brk &&
177 vma->vm_end >= mm->brk) {
178 name = "[heap]";
179 } else if (vma->vm_start <= mm->start_stack &&
180 vma->vm_end >= mm->start_stack) {
181 name = "[stack]";
183 } else {
184 name = "[vdso]";
187 if (name) {
188 pad_len_spaces(m, len);
189 seq_puts(m, name);
192 seq_putc(m, '\n');
194 if (mss)
195 seq_printf(m,
196 "Size: %8lu kB\n"
197 "Rss: %8lu kB\n"
198 "Shared_Clean: %8lu kB\n"
199 "Shared_Dirty: %8lu kB\n"
200 "Private_Clean: %8lu kB\n"
201 "Private_Dirty: %8lu kB\n"
202 "Referenced: %8lu kB\n",
203 (vma->vm_end - vma->vm_start) >> 10,
204 mss->resident >> 10,
205 mss->shared_clean >> 10,
206 mss->shared_dirty >> 10,
207 mss->private_clean >> 10,
208 mss->private_dirty >> 10,
209 mss->referenced >> 10);
211 if (m->count < m->size) /* vma is copied successfully */
212 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
213 return 0;
216 static int show_map(struct seq_file *m, void *v)
218 return show_map_internal(m, v, NULL);
221 static void smaps_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
222 unsigned long addr, unsigned long end,
223 void *private)
225 struct mem_size_stats *mss = private;
226 pte_t *pte, ptent;
227 spinlock_t *ptl;
228 struct page *page;
230 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
231 for (; addr != end; pte++, addr += PAGE_SIZE) {
232 ptent = *pte;
233 if (!pte_present(ptent))
234 continue;
236 mss->resident += PAGE_SIZE;
238 page = vm_normal_page(vma, addr, ptent);
239 if (!page)
240 continue;
242 /* Accumulate the size in pages that have been accessed. */
243 if (pte_young(ptent) || PageReferenced(page))
244 mss->referenced += PAGE_SIZE;
245 if (page_mapcount(page) >= 2) {
246 if (pte_dirty(ptent))
247 mss->shared_dirty += PAGE_SIZE;
248 else
249 mss->shared_clean += PAGE_SIZE;
250 } else {
251 if (pte_dirty(ptent))
252 mss->private_dirty += PAGE_SIZE;
253 else
254 mss->private_clean += PAGE_SIZE;
257 pte_unmap_unlock(pte - 1, ptl);
258 cond_resched();
261 static void clear_refs_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
262 unsigned long addr, unsigned long end,
263 void *private)
265 pte_t *pte, ptent;
266 spinlock_t *ptl;
267 struct page *page;
269 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
270 for (; addr != end; pte++, addr += PAGE_SIZE) {
271 ptent = *pte;
272 if (!pte_present(ptent))
273 continue;
275 page = vm_normal_page(vma, addr, ptent);
276 if (!page)
277 continue;
279 /* Clear accessed and referenced bits. */
280 ptep_test_and_clear_young(vma, addr, pte);
281 ClearPageReferenced(page);
283 pte_unmap_unlock(pte - 1, ptl);
284 cond_resched();
287 static inline void walk_pmd_range(struct pmd_walker *walker, pud_t *pud,
288 unsigned long addr, unsigned long end)
290 pmd_t *pmd;
291 unsigned long next;
293 for (pmd = pmd_offset(pud, addr); addr != end;
294 pmd++, addr = next) {
295 next = pmd_addr_end(addr, end);
296 if (pmd_none_or_clear_bad(pmd))
297 continue;
298 walker->action(walker->vma, pmd, addr, next, walker->private);
302 static inline void walk_pud_range(struct pmd_walker *walker, pgd_t *pgd,
303 unsigned long addr, unsigned long end)
305 pud_t *pud;
306 unsigned long next;
308 for (pud = pud_offset(pgd, addr); addr != end;
309 pud++, addr = next) {
310 next = pud_addr_end(addr, end);
311 if (pud_none_or_clear_bad(pud))
312 continue;
313 walk_pmd_range(walker, pud, addr, next);
318 * walk_page_range - walk the page tables of a VMA with a callback
319 * @vma - VMA to walk
320 * @action - callback invoked for every bottom-level (PTE) page table
321 * @private - private data passed to the callback function
323 * Recursively walk the page table for the memory area in a VMA, calling
324 * a callback for every bottom-level (PTE) page table.
326 static inline void walk_page_range(struct vm_area_struct *vma,
327 void (*action)(struct vm_area_struct *,
328 pmd_t *, unsigned long,
329 unsigned long, void *),
330 void *private)
332 unsigned long addr = vma->vm_start;
333 unsigned long end = vma->vm_end;
334 struct pmd_walker walker = {
335 .vma = vma,
336 .private = private,
337 .action = action,
339 pgd_t *pgd;
340 unsigned long next;
342 for (pgd = pgd_offset(vma->vm_mm, addr); addr != end;
343 pgd++, addr = next) {
344 next = pgd_addr_end(addr, end);
345 if (pgd_none_or_clear_bad(pgd))
346 continue;
347 walk_pud_range(&walker, pgd, addr, next);
351 static int show_smap(struct seq_file *m, void *v)
353 struct vm_area_struct *vma = v;
354 struct mem_size_stats mss;
356 memset(&mss, 0, sizeof mss);
357 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
358 walk_page_range(vma, smaps_pte_range, &mss);
359 return show_map_internal(m, v, &mss);
362 void clear_refs_smap(struct mm_struct *mm)
364 struct vm_area_struct *vma;
366 down_read(&mm->mmap_sem);
367 for (vma = mm->mmap; vma; vma = vma->vm_next)
368 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
369 walk_page_range(vma, clear_refs_pte_range, NULL);
370 flush_tlb_mm(mm);
371 up_read(&mm->mmap_sem);
374 static void *m_start(struct seq_file *m, loff_t *pos)
376 struct proc_maps_private *priv = m->private;
377 unsigned long last_addr = m->version;
378 struct mm_struct *mm;
379 struct vm_area_struct *vma, *tail_vma = NULL;
380 loff_t l = *pos;
382 /* Clear the per syscall fields in priv */
383 priv->task = NULL;
384 priv->tail_vma = NULL;
387 * We remember last_addr rather than next_addr to hit with
388 * mmap_cache most of the time. We have zero last_addr at
389 * the beginning and also after lseek. We will have -1 last_addr
390 * after the end of the vmas.
393 if (last_addr == -1UL)
394 return NULL;
396 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
397 if (!priv->task)
398 return NULL;
400 mm = mm_for_maps(priv->task);
401 if (!mm)
402 return NULL;
404 priv->tail_vma = tail_vma = get_gate_vma(priv->task);
406 /* Start with last addr hint */
407 if (last_addr && (vma = find_vma(mm, last_addr))) {
408 vma = vma->vm_next;
409 goto out;
413 * Check the vma index is within the range and do
414 * sequential scan until m_index.
416 vma = NULL;
417 if ((unsigned long)l < mm->map_count) {
418 vma = mm->mmap;
419 while (l-- && vma)
420 vma = vma->vm_next;
421 goto out;
424 if (l != mm->map_count)
425 tail_vma = NULL; /* After gate vma */
427 out:
428 if (vma)
429 return vma;
431 /* End of vmas has been reached */
432 m->version = (tail_vma != NULL)? 0: -1UL;
433 up_read(&mm->mmap_sem);
434 mmput(mm);
435 return tail_vma;
438 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
440 if (vma && vma != priv->tail_vma) {
441 struct mm_struct *mm = vma->vm_mm;
442 up_read(&mm->mmap_sem);
443 mmput(mm);
447 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
449 struct proc_maps_private *priv = m->private;
450 struct vm_area_struct *vma = v;
451 struct vm_area_struct *tail_vma = priv->tail_vma;
453 (*pos)++;
454 if (vma && (vma != tail_vma) && vma->vm_next)
455 return vma->vm_next;
456 vma_stop(priv, vma);
457 return (vma != tail_vma)? tail_vma: NULL;
460 static void m_stop(struct seq_file *m, void *v)
462 struct proc_maps_private *priv = m->private;
463 struct vm_area_struct *vma = v;
465 vma_stop(priv, vma);
466 if (priv->task)
467 put_task_struct(priv->task);
470 static struct seq_operations proc_pid_maps_op = {
471 .start = m_start,
472 .next = m_next,
473 .stop = m_stop,
474 .show = show_map
477 static struct seq_operations proc_pid_smaps_op = {
478 .start = m_start,
479 .next = m_next,
480 .stop = m_stop,
481 .show = show_smap
484 static int do_maps_open(struct inode *inode, struct file *file,
485 struct seq_operations *ops)
487 struct proc_maps_private *priv;
488 int ret = -ENOMEM;
489 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
490 if (priv) {
491 priv->pid = proc_pid(inode);
492 ret = seq_open(file, ops);
493 if (!ret) {
494 struct seq_file *m = file->private_data;
495 m->private = priv;
496 } else {
497 kfree(priv);
500 return ret;
503 static int maps_open(struct inode *inode, struct file *file)
505 return do_maps_open(inode, file, &proc_pid_maps_op);
508 const struct file_operations proc_maps_operations = {
509 .open = maps_open,
510 .read = seq_read,
511 .llseek = seq_lseek,
512 .release = seq_release_private,
515 #ifdef CONFIG_NUMA
516 extern int show_numa_map(struct seq_file *m, void *v);
518 static int show_numa_map_checked(struct seq_file *m, void *v)
520 struct proc_maps_private *priv = m->private;
521 struct task_struct *task = priv->task;
523 if (maps_protect && !ptrace_may_attach(task))
524 return -EACCES;
526 return show_numa_map(m, v);
529 static struct seq_operations proc_pid_numa_maps_op = {
530 .start = m_start,
531 .next = m_next,
532 .stop = m_stop,
533 .show = show_numa_map_checked
536 static int numa_maps_open(struct inode *inode, struct file *file)
538 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
541 const struct file_operations proc_numa_maps_operations = {
542 .open = numa_maps_open,
543 .read = seq_read,
544 .llseek = seq_lseek,
545 .release = seq_release_private,
547 #endif
549 static int smaps_open(struct inode *inode, struct file *file)
551 return do_maps_open(inode, file, &proc_pid_smaps_op);
554 const struct file_operations proc_smaps_operations = {
555 .open = smaps_open,
556 .read = seq_read,
557 .llseek = seq_lseek,
558 .release = seq_release_private,