KVM: SVM: Let gcc to choose which registers to save (x86_64)
[linux-2.6/openmoko-kernel/knife-kernel.git] / kernel / profile.c
blobe64c2da11c0f89018c31aca62dd69688d22d59eb
1 /*
2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9 * Red Hat, July 2004
10 * Consolidation of architecture support code for profiling,
11 * William Irwin, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/profile.h>
24 #include <linux/highmem.h>
25 #include <linux/mutex.h>
26 #include <asm/sections.h>
27 #include <asm/semaphore.h>
28 #include <asm/irq_regs.h>
29 #include <asm/ptrace.h>
31 struct profile_hit {
32 u32 pc, hits;
34 #define PROFILE_GRPSHIFT 3
35 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
36 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
37 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
39 /* Oprofile timer tick hook */
40 static int (*timer_hook)(struct pt_regs *) __read_mostly;
42 static atomic_t *prof_buffer;
43 static unsigned long prof_len, prof_shift;
45 int prof_on __read_mostly;
46 EXPORT_SYMBOL_GPL(prof_on);
48 static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
49 #ifdef CONFIG_SMP
50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51 static DEFINE_PER_CPU(int, cpu_profile_flip);
52 static DEFINE_MUTEX(profile_flip_mutex);
53 #endif /* CONFIG_SMP */
55 static int __init profile_setup(char *str)
57 static char __initdata schedstr[] = "schedule";
58 static char __initdata sleepstr[] = "sleep";
59 static char __initdata kvmstr[] = "kvm";
60 int par;
62 if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63 #ifdef CONFIG_SCHEDSTATS
64 prof_on = SLEEP_PROFILING;
65 if (str[strlen(sleepstr)] == ',')
66 str += strlen(sleepstr) + 1;
67 if (get_option(&str, &par))
68 prof_shift = par;
69 printk(KERN_INFO
70 "kernel sleep profiling enabled (shift: %ld)\n",
71 prof_shift);
72 #else
73 printk(KERN_WARNING
74 "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76 } else if (!strncmp(str, schedstr, strlen(schedstr))) {
77 prof_on = SCHED_PROFILING;
78 if (str[strlen(schedstr)] == ',')
79 str += strlen(schedstr) + 1;
80 if (get_option(&str, &par))
81 prof_shift = par;
82 printk(KERN_INFO
83 "kernel schedule profiling enabled (shift: %ld)\n",
84 prof_shift);
85 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 prof_on = KVM_PROFILING;
87 if (str[strlen(kvmstr)] == ',')
88 str += strlen(kvmstr) + 1;
89 if (get_option(&str, &par))
90 prof_shift = par;
91 printk(KERN_INFO
92 "kernel KVM profiling enabled (shift: %ld)\n",
93 prof_shift);
94 } else if (get_option(&str, &par)) {
95 prof_shift = par;
96 prof_on = CPU_PROFILING;
97 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98 prof_shift);
100 return 1;
102 __setup("profile=", profile_setup);
105 void __init profile_init(void)
107 if (!prof_on)
108 return;
110 /* only text is profiled */
111 prof_len = (_etext - _stext) >> prof_shift;
112 prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
115 /* Profile event notifications */
117 #ifdef CONFIG_PROFILING
119 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
120 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
121 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
123 void profile_task_exit(struct task_struct *task)
125 blocking_notifier_call_chain(&task_exit_notifier, 0, task);
128 int profile_handoff_task(struct task_struct *task)
130 int ret;
131 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
132 return (ret == NOTIFY_OK) ? 1 : 0;
135 void profile_munmap(unsigned long addr)
137 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
140 int task_handoff_register(struct notifier_block *n)
142 return atomic_notifier_chain_register(&task_free_notifier, n);
144 EXPORT_SYMBOL_GPL(task_handoff_register);
146 int task_handoff_unregister(struct notifier_block *n)
148 return atomic_notifier_chain_unregister(&task_free_notifier, n);
150 EXPORT_SYMBOL_GPL(task_handoff_unregister);
152 int profile_event_register(enum profile_type type, struct notifier_block *n)
154 int err = -EINVAL;
156 switch (type) {
157 case PROFILE_TASK_EXIT:
158 err = blocking_notifier_chain_register(
159 &task_exit_notifier, n);
160 break;
161 case PROFILE_MUNMAP:
162 err = blocking_notifier_chain_register(
163 &munmap_notifier, n);
164 break;
167 return err;
169 EXPORT_SYMBOL_GPL(profile_event_register);
171 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
173 int err = -EINVAL;
175 switch (type) {
176 case PROFILE_TASK_EXIT:
177 err = blocking_notifier_chain_unregister(
178 &task_exit_notifier, n);
179 break;
180 case PROFILE_MUNMAP:
181 err = blocking_notifier_chain_unregister(
182 &munmap_notifier, n);
183 break;
186 return err;
188 EXPORT_SYMBOL_GPL(profile_event_unregister);
190 int register_timer_hook(int (*hook)(struct pt_regs *))
192 if (timer_hook)
193 return -EBUSY;
194 timer_hook = hook;
195 return 0;
197 EXPORT_SYMBOL_GPL(register_timer_hook);
199 void unregister_timer_hook(int (*hook)(struct pt_regs *))
201 WARN_ON(hook != timer_hook);
202 timer_hook = NULL;
203 /* make sure all CPUs see the NULL hook */
204 synchronize_sched(); /* Allow ongoing interrupts to complete. */
206 EXPORT_SYMBOL_GPL(unregister_timer_hook);
208 #endif /* CONFIG_PROFILING */
211 #ifdef CONFIG_SMP
213 * Each cpu has a pair of open-addressed hashtables for pending
214 * profile hits. read_profile() IPI's all cpus to request them
215 * to flip buffers and flushes their contents to prof_buffer itself.
216 * Flip requests are serialized by the profile_flip_mutex. The sole
217 * use of having a second hashtable is for avoiding cacheline
218 * contention that would otherwise happen during flushes of pending
219 * profile hits required for the accuracy of reported profile hits
220 * and so resurrect the interrupt livelock issue.
222 * The open-addressed hashtables are indexed by profile buffer slot
223 * and hold the number of pending hits to that profile buffer slot on
224 * a cpu in an entry. When the hashtable overflows, all pending hits
225 * are accounted to their corresponding profile buffer slots with
226 * atomic_add() and the hashtable emptied. As numerous pending hits
227 * may be accounted to a profile buffer slot in a hashtable entry,
228 * this amortizes a number of atomic profile buffer increments likely
229 * to be far larger than the number of entries in the hashtable,
230 * particularly given that the number of distinct profile buffer
231 * positions to which hits are accounted during short intervals (e.g.
232 * several seconds) is usually very small. Exclusion from buffer
233 * flipping is provided by interrupt disablement (note that for
234 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
235 * process context).
236 * The hash function is meant to be lightweight as opposed to strong,
237 * and was vaguely inspired by ppc64 firmware-supported inverted
238 * pagetable hash functions, but uses a full hashtable full of finite
239 * collision chains, not just pairs of them.
241 * -- wli
243 static void __profile_flip_buffers(void *unused)
245 int cpu = smp_processor_id();
247 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
250 static void profile_flip_buffers(void)
252 int i, j, cpu;
254 mutex_lock(&profile_flip_mutex);
255 j = per_cpu(cpu_profile_flip, get_cpu());
256 put_cpu();
257 on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
258 for_each_online_cpu(cpu) {
259 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
260 for (i = 0; i < NR_PROFILE_HIT; ++i) {
261 if (!hits[i].hits) {
262 if (hits[i].pc)
263 hits[i].pc = 0;
264 continue;
266 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
267 hits[i].hits = hits[i].pc = 0;
270 mutex_unlock(&profile_flip_mutex);
273 static void profile_discard_flip_buffers(void)
275 int i, cpu;
277 mutex_lock(&profile_flip_mutex);
278 i = per_cpu(cpu_profile_flip, get_cpu());
279 put_cpu();
280 on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
281 for_each_online_cpu(cpu) {
282 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
283 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
285 mutex_unlock(&profile_flip_mutex);
288 void profile_hits(int type, void *__pc, unsigned int nr_hits)
290 unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
291 int i, j, cpu;
292 struct profile_hit *hits;
294 if (prof_on != type || !prof_buffer)
295 return;
296 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
297 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
298 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
299 cpu = get_cpu();
300 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
301 if (!hits) {
302 put_cpu();
303 return;
306 * We buffer the global profiler buffer into a per-CPU
307 * queue and thus reduce the number of global (and possibly
308 * NUMA-alien) accesses. The write-queue is self-coalescing:
310 local_irq_save(flags);
311 do {
312 for (j = 0; j < PROFILE_GRPSZ; ++j) {
313 if (hits[i + j].pc == pc) {
314 hits[i + j].hits += nr_hits;
315 goto out;
316 } else if (!hits[i + j].hits) {
317 hits[i + j].pc = pc;
318 hits[i + j].hits = nr_hits;
319 goto out;
322 i = (i + secondary) & (NR_PROFILE_HIT - 1);
323 } while (i != primary);
326 * Add the current hit(s) and flush the write-queue out
327 * to the global buffer:
329 atomic_add(nr_hits, &prof_buffer[pc]);
330 for (i = 0; i < NR_PROFILE_HIT; ++i) {
331 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
332 hits[i].pc = hits[i].hits = 0;
334 out:
335 local_irq_restore(flags);
336 put_cpu();
339 static int __devinit profile_cpu_callback(struct notifier_block *info,
340 unsigned long action, void *__cpu)
342 int node, cpu = (unsigned long)__cpu;
343 struct page *page;
345 switch (action) {
346 case CPU_UP_PREPARE:
347 case CPU_UP_PREPARE_FROZEN:
348 node = cpu_to_node(cpu);
349 per_cpu(cpu_profile_flip, cpu) = 0;
350 if (!per_cpu(cpu_profile_hits, cpu)[1]) {
351 page = alloc_pages_node(node,
352 GFP_KERNEL | __GFP_ZERO,
354 if (!page)
355 return NOTIFY_BAD;
356 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
358 if (!per_cpu(cpu_profile_hits, cpu)[0]) {
359 page = alloc_pages_node(node,
360 GFP_KERNEL | __GFP_ZERO,
362 if (!page)
363 goto out_free;
364 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
366 break;
367 out_free:
368 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
369 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
370 __free_page(page);
371 return NOTIFY_BAD;
372 case CPU_ONLINE:
373 case CPU_ONLINE_FROZEN:
374 cpu_set(cpu, prof_cpu_mask);
375 break;
376 case CPU_UP_CANCELED:
377 case CPU_UP_CANCELED_FROZEN:
378 case CPU_DEAD:
379 case CPU_DEAD_FROZEN:
380 cpu_clear(cpu, prof_cpu_mask);
381 if (per_cpu(cpu_profile_hits, cpu)[0]) {
382 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
383 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
384 __free_page(page);
386 if (per_cpu(cpu_profile_hits, cpu)[1]) {
387 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
388 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
389 __free_page(page);
391 break;
393 return NOTIFY_OK;
395 #else /* !CONFIG_SMP */
396 #define profile_flip_buffers() do { } while (0)
397 #define profile_discard_flip_buffers() do { } while (0)
398 #define profile_cpu_callback NULL
400 void profile_hits(int type, void *__pc, unsigned int nr_hits)
402 unsigned long pc;
404 if (prof_on != type || !prof_buffer)
405 return;
406 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
407 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
409 #endif /* !CONFIG_SMP */
410 EXPORT_SYMBOL_GPL(profile_hits);
412 void profile_tick(int type)
414 struct pt_regs *regs = get_irq_regs();
416 if (type == CPU_PROFILING && timer_hook)
417 timer_hook(regs);
418 if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
419 profile_hit(type, (void *)profile_pc(regs));
422 #ifdef CONFIG_PROC_FS
423 #include <linux/proc_fs.h>
424 #include <asm/uaccess.h>
425 #include <asm/ptrace.h>
427 static int prof_cpu_mask_read_proc(char *page, char **start, off_t off,
428 int count, int *eof, void *data)
430 int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
431 if (count - len < 2)
432 return -EINVAL;
433 len += sprintf(page + len, "\n");
434 return len;
437 static int prof_cpu_mask_write_proc(struct file *file,
438 const char __user *buffer, unsigned long count, void *data)
440 cpumask_t *mask = (cpumask_t *)data;
441 unsigned long full_count = count, err;
442 cpumask_t new_value;
444 err = cpumask_parse_user(buffer, count, new_value);
445 if (err)
446 return err;
448 *mask = new_value;
449 return full_count;
452 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
454 struct proc_dir_entry *entry;
456 /* create /proc/irq/prof_cpu_mask */
457 entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
458 if (!entry)
459 return;
460 entry->data = (void *)&prof_cpu_mask;
461 entry->read_proc = prof_cpu_mask_read_proc;
462 entry->write_proc = prof_cpu_mask_write_proc;
466 * This function accesses profiling information. The returned data is
467 * binary: the sampling step and the actual contents of the profile
468 * buffer. Use of the program readprofile is recommended in order to
469 * get meaningful info out of these data.
471 static ssize_t
472 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
474 unsigned long p = *ppos;
475 ssize_t read;
476 char *pnt;
477 unsigned int sample_step = 1 << prof_shift;
479 profile_flip_buffers();
480 if (p >= (prof_len+1)*sizeof(unsigned int))
481 return 0;
482 if (count > (prof_len+1)*sizeof(unsigned int) - p)
483 count = (prof_len+1)*sizeof(unsigned int) - p;
484 read = 0;
486 while (p < sizeof(unsigned int) && count > 0) {
487 if (put_user(*((char *)(&sample_step)+p), buf))
488 return -EFAULT;
489 buf++; p++; count--; read++;
491 pnt = (char *)prof_buffer + p - sizeof(atomic_t);
492 if (copy_to_user(buf, (void *)pnt, count))
493 return -EFAULT;
494 read += count;
495 *ppos += read;
496 return read;
500 * Writing to /proc/profile resets the counters
502 * Writing a 'profiling multiplier' value into it also re-sets the profiling
503 * interrupt frequency, on architectures that support this.
505 static ssize_t write_profile(struct file *file, const char __user *buf,
506 size_t count, loff_t *ppos)
508 #ifdef CONFIG_SMP
509 extern int setup_profiling_timer(unsigned int multiplier);
511 if (count == sizeof(int)) {
512 unsigned int multiplier;
514 if (copy_from_user(&multiplier, buf, sizeof(int)))
515 return -EFAULT;
517 if (setup_profiling_timer(multiplier))
518 return -EINVAL;
520 #endif
521 profile_discard_flip_buffers();
522 memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
523 return count;
526 static const struct file_operations proc_profile_operations = {
527 .read = read_profile,
528 .write = write_profile,
531 #ifdef CONFIG_SMP
532 static void __init profile_nop(void *unused)
536 static int __init create_hash_tables(void)
538 int cpu;
540 for_each_online_cpu(cpu) {
541 int node = cpu_to_node(cpu);
542 struct page *page;
544 page = alloc_pages_node(node,
545 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
547 if (!page)
548 goto out_cleanup;
549 per_cpu(cpu_profile_hits, cpu)[1]
550 = (struct profile_hit *)page_address(page);
551 page = alloc_pages_node(node,
552 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
554 if (!page)
555 goto out_cleanup;
556 per_cpu(cpu_profile_hits, cpu)[0]
557 = (struct profile_hit *)page_address(page);
559 return 0;
560 out_cleanup:
561 prof_on = 0;
562 smp_mb();
563 on_each_cpu(profile_nop, NULL, 0, 1);
564 for_each_online_cpu(cpu) {
565 struct page *page;
567 if (per_cpu(cpu_profile_hits, cpu)[0]) {
568 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
569 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
570 __free_page(page);
572 if (per_cpu(cpu_profile_hits, cpu)[1]) {
573 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
574 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
575 __free_page(page);
578 return -1;
580 #else
581 #define create_hash_tables() ({ 0; })
582 #endif
584 static int __init create_proc_profile(void)
586 struct proc_dir_entry *entry;
588 if (!prof_on)
589 return 0;
590 if (create_hash_tables())
591 return -1;
592 entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL);
593 if (!entry)
594 return 0;
595 entry->proc_fops = &proc_profile_operations;
596 entry->size = (1+prof_len) * sizeof(atomic_t);
597 hotcpu_notifier(profile_cpu_callback, 0);
598 return 0;
600 module_init(create_proc_profile);
601 #endif /* CONFIG_PROC_FS */