1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/tcp.h>
35 #include <linux/ipv6.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
48 #define DRV_VERSION "1.0.8-k2"
49 char igb_driver_name
[] = "igb";
50 char igb_driver_version
[] = DRV_VERSION
;
51 static const char igb_driver_string
[] =
52 "Intel(R) Gigabit Ethernet Network Driver";
53 static const char igb_copyright
[] = "Copyright (c) 2007 Intel Corporation.";
56 static const struct e1000_info
*igb_info_tbl
[] = {
57 [board_82575
] = &e1000_82575_info
,
60 static struct pci_device_id igb_pci_tbl
[] = {
61 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_COPPER
), board_82575
},
62 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_FIBER_SERDES
), board_82575
},
63 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575GB_QUAD_COPPER
), board_82575
},
64 /* required last entry */
68 MODULE_DEVICE_TABLE(pci
, igb_pci_tbl
);
70 void igb_reset(struct igb_adapter
*);
71 static int igb_setup_all_tx_resources(struct igb_adapter
*);
72 static int igb_setup_all_rx_resources(struct igb_adapter
*);
73 static void igb_free_all_tx_resources(struct igb_adapter
*);
74 static void igb_free_all_rx_resources(struct igb_adapter
*);
75 static void igb_free_tx_resources(struct igb_adapter
*, struct igb_ring
*);
76 static void igb_free_rx_resources(struct igb_adapter
*, struct igb_ring
*);
77 void igb_update_stats(struct igb_adapter
*);
78 static int igb_probe(struct pci_dev
*, const struct pci_device_id
*);
79 static void __devexit
igb_remove(struct pci_dev
*pdev
);
80 static int igb_sw_init(struct igb_adapter
*);
81 static int igb_open(struct net_device
*);
82 static int igb_close(struct net_device
*);
83 static void igb_configure_tx(struct igb_adapter
*);
84 static void igb_configure_rx(struct igb_adapter
*);
85 static void igb_setup_rctl(struct igb_adapter
*);
86 static void igb_clean_all_tx_rings(struct igb_adapter
*);
87 static void igb_clean_all_rx_rings(struct igb_adapter
*);
88 static void igb_clean_tx_ring(struct igb_adapter
*, struct igb_ring
*);
89 static void igb_clean_rx_ring(struct igb_adapter
*, struct igb_ring
*);
90 static void igb_set_multi(struct net_device
*);
91 static void igb_update_phy_info(unsigned long);
92 static void igb_watchdog(unsigned long);
93 static void igb_watchdog_task(struct work_struct
*);
94 static int igb_xmit_frame_ring_adv(struct sk_buff
*, struct net_device
*,
96 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*);
97 static struct net_device_stats
*igb_get_stats(struct net_device
*);
98 static int igb_change_mtu(struct net_device
*, int);
99 static int igb_set_mac(struct net_device
*, void *);
100 static irqreturn_t
igb_intr(int irq
, void *);
101 static irqreturn_t
igb_intr_msi(int irq
, void *);
102 static irqreturn_t
igb_msix_other(int irq
, void *);
103 static irqreturn_t
igb_msix_rx(int irq
, void *);
104 static irqreturn_t
igb_msix_tx(int irq
, void *);
105 static int igb_clean_rx_ring_msix(struct napi_struct
*, int);
106 static bool igb_clean_tx_irq(struct igb_adapter
*, struct igb_ring
*);
107 static int igb_clean(struct napi_struct
*, int);
108 static bool igb_clean_rx_irq_adv(struct igb_adapter
*,
109 struct igb_ring
*, int *, int);
110 static void igb_alloc_rx_buffers_adv(struct igb_adapter
*,
111 struct igb_ring
*, int);
112 static int igb_ioctl(struct net_device
*, struct ifreq
*, int cmd
);
113 static void igb_tx_timeout(struct net_device
*);
114 static void igb_reset_task(struct work_struct
*);
115 static void igb_vlan_rx_register(struct net_device
*, struct vlan_group
*);
116 static void igb_vlan_rx_add_vid(struct net_device
*, u16
);
117 static void igb_vlan_rx_kill_vid(struct net_device
*, u16
);
118 static void igb_restore_vlan(struct igb_adapter
*);
120 static int igb_suspend(struct pci_dev
*, pm_message_t
);
122 static int igb_resume(struct pci_dev
*);
124 static void igb_shutdown(struct pci_dev
*);
126 #ifdef CONFIG_NET_POLL_CONTROLLER
127 /* for netdump / net console */
128 static void igb_netpoll(struct net_device
*);
131 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*,
132 pci_channel_state_t
);
133 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*);
134 static void igb_io_resume(struct pci_dev
*);
136 static struct pci_error_handlers igb_err_handler
= {
137 .error_detected
= igb_io_error_detected
,
138 .slot_reset
= igb_io_slot_reset
,
139 .resume
= igb_io_resume
,
143 static struct pci_driver igb_driver
= {
144 .name
= igb_driver_name
,
145 .id_table
= igb_pci_tbl
,
147 .remove
= __devexit_p(igb_remove
),
149 /* Power Managment Hooks */
150 .suspend
= igb_suspend
,
151 .resume
= igb_resume
,
153 .shutdown
= igb_shutdown
,
154 .err_handler
= &igb_err_handler
157 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
158 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION
);
164 * igb_get_hw_dev_name - return device name string
165 * used by hardware layer to print debugging information
167 char *igb_get_hw_dev_name(struct e1000_hw
*hw
)
169 struct igb_adapter
*adapter
= hw
->back
;
170 return adapter
->netdev
->name
;
175 * igb_init_module - Driver Registration Routine
177 * igb_init_module is the first routine called when the driver is
178 * loaded. All it does is register with the PCI subsystem.
180 static int __init
igb_init_module(void)
183 printk(KERN_INFO
"%s - version %s\n",
184 igb_driver_string
, igb_driver_version
);
186 printk(KERN_INFO
"%s\n", igb_copyright
);
188 ret
= pci_register_driver(&igb_driver
);
192 module_init(igb_init_module
);
195 * igb_exit_module - Driver Exit Cleanup Routine
197 * igb_exit_module is called just before the driver is removed
200 static void __exit
igb_exit_module(void)
202 pci_unregister_driver(&igb_driver
);
205 module_exit(igb_exit_module
);
208 * igb_alloc_queues - Allocate memory for all rings
209 * @adapter: board private structure to initialize
211 * We allocate one ring per queue at run-time since we don't know the
212 * number of queues at compile-time.
214 static int igb_alloc_queues(struct igb_adapter
*adapter
)
218 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
219 sizeof(struct igb_ring
), GFP_KERNEL
);
220 if (!adapter
->tx_ring
)
223 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
224 sizeof(struct igb_ring
), GFP_KERNEL
);
225 if (!adapter
->rx_ring
) {
226 kfree(adapter
->tx_ring
);
230 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
231 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
232 ring
->adapter
= adapter
;
233 ring
->itr_register
= E1000_ITR
;
235 if (!ring
->napi
.poll
)
236 netif_napi_add(adapter
->netdev
, &ring
->napi
, igb_clean
,
237 adapter
->napi
.weight
/
238 adapter
->num_rx_queues
);
243 #define IGB_N0_QUEUE -1
244 static void igb_assign_vector(struct igb_adapter
*adapter
, int rx_queue
,
245 int tx_queue
, int msix_vector
)
248 struct e1000_hw
*hw
= &adapter
->hw
;
249 /* The 82575 assigns vectors using a bitmask, which matches the
250 bitmask for the EICR/EIMS/EIMC registers. To assign one
251 or more queues to a vector, we write the appropriate bits
252 into the MSIXBM register for that vector. */
253 if (rx_queue
> IGB_N0_QUEUE
) {
254 msixbm
= E1000_EICR_RX_QUEUE0
<< rx_queue
;
255 adapter
->rx_ring
[rx_queue
].eims_value
= msixbm
;
257 if (tx_queue
> IGB_N0_QUEUE
) {
258 msixbm
|= E1000_EICR_TX_QUEUE0
<< tx_queue
;
259 adapter
->tx_ring
[tx_queue
].eims_value
=
260 E1000_EICR_TX_QUEUE0
<< tx_queue
;
262 array_wr32(E1000_MSIXBM(0), msix_vector
, msixbm
);
266 * igb_configure_msix - Configure MSI-X hardware
268 * igb_configure_msix sets up the hardware to properly
269 * generate MSI-X interrupts.
271 static void igb_configure_msix(struct igb_adapter
*adapter
)
275 struct e1000_hw
*hw
= &adapter
->hw
;
277 adapter
->eims_enable_mask
= 0;
279 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
280 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[i
];
281 igb_assign_vector(adapter
, IGB_N0_QUEUE
, i
, vector
++);
282 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
283 if (tx_ring
->itr_val
)
284 writel(1000000000 / (tx_ring
->itr_val
* 256),
285 hw
->hw_addr
+ tx_ring
->itr_register
);
287 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
290 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
291 struct igb_ring
*rx_ring
= &adapter
->rx_ring
[i
];
292 igb_assign_vector(adapter
, i
, IGB_N0_QUEUE
, vector
++);
293 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
294 if (rx_ring
->itr_val
)
295 writel(1000000000 / (rx_ring
->itr_val
* 256),
296 hw
->hw_addr
+ rx_ring
->itr_register
);
298 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
302 /* set vector for other causes, i.e. link changes */
303 array_wr32(E1000_MSIXBM(0), vector
++,
306 /* disable IAM for ICR interrupt bits */
309 tmp
= rd32(E1000_CTRL_EXT
);
310 /* enable MSI-X PBA support*/
311 tmp
|= E1000_CTRL_EXT_PBA_CLR
;
313 /* Auto-Mask interrupts upon ICR read. */
314 tmp
|= E1000_CTRL_EXT_EIAME
;
315 tmp
|= E1000_CTRL_EXT_IRCA
;
317 wr32(E1000_CTRL_EXT
, tmp
);
318 adapter
->eims_enable_mask
|= E1000_EIMS_OTHER
;
324 * igb_request_msix - Initialize MSI-X interrupts
326 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
329 static int igb_request_msix(struct igb_adapter
*adapter
)
331 struct net_device
*netdev
= adapter
->netdev
;
332 int i
, err
= 0, vector
= 0;
336 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
337 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
338 sprintf(ring
->name
, "%s-tx%d", netdev
->name
, i
);
339 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
340 &igb_msix_tx
, 0, ring
->name
,
341 &(adapter
->tx_ring
[i
]));
344 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
345 ring
->itr_val
= adapter
->itr
;
348 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
349 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
350 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
351 sprintf(ring
->name
, "%s-rx%d", netdev
->name
, i
);
353 memcpy(ring
->name
, netdev
->name
, IFNAMSIZ
);
354 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
355 &igb_msix_rx
, 0, ring
->name
,
356 &(adapter
->rx_ring
[i
]));
359 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
360 ring
->itr_val
= adapter
->itr
;
364 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
365 &igb_msix_other
, 0, netdev
->name
, netdev
);
369 adapter
->napi
.poll
= igb_clean_rx_ring_msix
;
370 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
371 adapter
->rx_ring
[i
].napi
.poll
= adapter
->napi
.poll
;
372 igb_configure_msix(adapter
);
378 static void igb_reset_interrupt_capability(struct igb_adapter
*adapter
)
380 if (adapter
->msix_entries
) {
381 pci_disable_msix(adapter
->pdev
);
382 kfree(adapter
->msix_entries
);
383 adapter
->msix_entries
= NULL
;
384 } else if (adapter
->msi_enabled
)
385 pci_disable_msi(adapter
->pdev
);
391 * igb_set_interrupt_capability - set MSI or MSI-X if supported
393 * Attempt to configure interrupts using the best available
394 * capabilities of the hardware and kernel.
396 static void igb_set_interrupt_capability(struct igb_adapter
*adapter
)
401 numvecs
= adapter
->num_tx_queues
+ adapter
->num_rx_queues
+ 1;
402 adapter
->msix_entries
= kcalloc(numvecs
, sizeof(struct msix_entry
),
404 if (!adapter
->msix_entries
)
407 for (i
= 0; i
< numvecs
; i
++)
408 adapter
->msix_entries
[i
].entry
= i
;
410 err
= pci_enable_msix(adapter
->pdev
,
411 adapter
->msix_entries
,
416 igb_reset_interrupt_capability(adapter
);
418 /* If we can't do MSI-X, try MSI */
420 adapter
->num_rx_queues
= 1;
421 if (!pci_enable_msi(adapter
->pdev
))
422 adapter
->msi_enabled
= 1;
427 * igb_request_irq - initialize interrupts
429 * Attempts to configure interrupts using the best available
430 * capabilities of the hardware and kernel.
432 static int igb_request_irq(struct igb_adapter
*adapter
)
434 struct net_device
*netdev
= adapter
->netdev
;
435 struct e1000_hw
*hw
= &adapter
->hw
;
438 if (adapter
->msix_entries
) {
439 err
= igb_request_msix(adapter
);
441 /* enable IAM, auto-mask,
442 * DO NOT USE EIAME or IAME in legacy mode */
443 wr32(E1000_IAM
, IMS_ENABLE_MASK
);
446 /* fall back to MSI */
447 igb_reset_interrupt_capability(adapter
);
448 if (!pci_enable_msi(adapter
->pdev
))
449 adapter
->msi_enabled
= 1;
450 igb_free_all_tx_resources(adapter
);
451 igb_free_all_rx_resources(adapter
);
452 adapter
->num_rx_queues
= 1;
453 igb_alloc_queues(adapter
);
455 if (adapter
->msi_enabled
) {
456 err
= request_irq(adapter
->pdev
->irq
, &igb_intr_msi
, 0,
457 netdev
->name
, netdev
);
460 /* fall back to legacy interrupts */
461 igb_reset_interrupt_capability(adapter
);
462 adapter
->msi_enabled
= 0;
465 err
= request_irq(adapter
->pdev
->irq
, &igb_intr
, IRQF_SHARED
,
466 netdev
->name
, netdev
);
469 dev_err(&adapter
->pdev
->dev
, "Error %d getting interrupt\n",
474 /* enable IAM, auto-mask */
475 wr32(E1000_IAM
, IMS_ENABLE_MASK
);
481 static void igb_free_irq(struct igb_adapter
*adapter
)
483 struct net_device
*netdev
= adapter
->netdev
;
485 if (adapter
->msix_entries
) {
488 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
489 free_irq(adapter
->msix_entries
[vector
++].vector
,
490 &(adapter
->tx_ring
[i
]));
491 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
492 free_irq(adapter
->msix_entries
[vector
++].vector
,
493 &(adapter
->rx_ring
[i
]));
495 free_irq(adapter
->msix_entries
[vector
++].vector
, netdev
);
499 free_irq(adapter
->pdev
->irq
, netdev
);
503 * igb_irq_disable - Mask off interrupt generation on the NIC
504 * @adapter: board private structure
506 static void igb_irq_disable(struct igb_adapter
*adapter
)
508 struct e1000_hw
*hw
= &adapter
->hw
;
510 if (adapter
->msix_entries
) {
511 wr32(E1000_EIMC
, ~0);
516 synchronize_irq(adapter
->pdev
->irq
);
520 * igb_irq_enable - Enable default interrupt generation settings
521 * @adapter: board private structure
523 static void igb_irq_enable(struct igb_adapter
*adapter
)
525 struct e1000_hw
*hw
= &adapter
->hw
;
527 if (adapter
->msix_entries
) {
529 adapter
->eims_enable_mask
);
531 adapter
->eims_enable_mask
);
532 wr32(E1000_IMS
, E1000_IMS_LSC
);
534 wr32(E1000_IMS
, IMS_ENABLE_MASK
);
537 static void igb_update_mng_vlan(struct igb_adapter
*adapter
)
539 struct net_device
*netdev
= adapter
->netdev
;
540 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
541 u16 old_vid
= adapter
->mng_vlan_id
;
542 if (adapter
->vlgrp
) {
543 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
544 if (adapter
->hw
.mng_cookie
.status
&
545 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
546 igb_vlan_rx_add_vid(netdev
, vid
);
547 adapter
->mng_vlan_id
= vid
;
549 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
551 if ((old_vid
!= (u16
)IGB_MNG_VLAN_NONE
) &&
553 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
554 igb_vlan_rx_kill_vid(netdev
, old_vid
);
556 adapter
->mng_vlan_id
= vid
;
561 * igb_release_hw_control - release control of the h/w to f/w
562 * @adapter: address of board private structure
564 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
565 * For ASF and Pass Through versions of f/w this means that the
566 * driver is no longer loaded.
569 static void igb_release_hw_control(struct igb_adapter
*adapter
)
571 struct e1000_hw
*hw
= &adapter
->hw
;
574 /* Let firmware take over control of h/w */
575 ctrl_ext
= rd32(E1000_CTRL_EXT
);
577 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
582 * igb_get_hw_control - get control of the h/w from f/w
583 * @adapter: address of board private structure
585 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
586 * For ASF and Pass Through versions of f/w this means that
587 * the driver is loaded.
590 static void igb_get_hw_control(struct igb_adapter
*adapter
)
592 struct e1000_hw
*hw
= &adapter
->hw
;
595 /* Let firmware know the driver has taken over */
596 ctrl_ext
= rd32(E1000_CTRL_EXT
);
598 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
601 static void igb_init_manageability(struct igb_adapter
*adapter
)
603 struct e1000_hw
*hw
= &adapter
->hw
;
605 if (adapter
->en_mng_pt
) {
606 u32 manc2h
= rd32(E1000_MANC2H
);
607 u32 manc
= rd32(E1000_MANC
);
609 /* disable hardware interception of ARP */
610 manc
&= ~(E1000_MANC_ARP_EN
);
612 /* enable receiving management packets to the host */
613 /* this will probably generate destination unreachable messages
614 * from the host OS, but the packets will be handled on SMBUS */
615 manc
|= E1000_MANC_EN_MNG2HOST
;
616 #define E1000_MNG2HOST_PORT_623 (1 << 5)
617 #define E1000_MNG2HOST_PORT_664 (1 << 6)
618 manc2h
|= E1000_MNG2HOST_PORT_623
;
619 manc2h
|= E1000_MNG2HOST_PORT_664
;
620 wr32(E1000_MANC2H
, manc2h
);
622 wr32(E1000_MANC
, manc
);
626 static void igb_release_manageability(struct igb_adapter
*adapter
)
628 struct e1000_hw
*hw
= &adapter
->hw
;
630 if (adapter
->en_mng_pt
) {
631 u32 manc
= rd32(E1000_MANC
);
633 /* re-enable hardware interception of ARP */
634 manc
|= E1000_MANC_ARP_EN
;
635 manc
&= ~E1000_MANC_EN_MNG2HOST
;
637 /* don't explicitly have to mess with MANC2H since
638 * MANC has an enable disable that gates MANC2H */
640 /* XXX stop the hardware watchdog ? */
641 wr32(E1000_MANC
, manc
);
646 * igb_configure - configure the hardware for RX and TX
647 * @adapter: private board structure
649 static void igb_configure(struct igb_adapter
*adapter
)
651 struct net_device
*netdev
= adapter
->netdev
;
654 igb_get_hw_control(adapter
);
655 igb_set_multi(netdev
);
657 igb_restore_vlan(adapter
);
658 igb_init_manageability(adapter
);
660 igb_configure_tx(adapter
);
661 igb_setup_rctl(adapter
);
662 igb_configure_rx(adapter
);
663 /* call IGB_DESC_UNUSED which always leaves
664 * at least 1 descriptor unused to make sure
665 * next_to_use != next_to_clean */
666 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
667 struct igb_ring
*ring
= &adapter
->rx_ring
[i
];
668 igb_alloc_rx_buffers_adv(adapter
, ring
, IGB_DESC_UNUSED(ring
));
672 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
677 * igb_up - Open the interface and prepare it to handle traffic
678 * @adapter: board private structure
681 int igb_up(struct igb_adapter
*adapter
)
683 struct e1000_hw
*hw
= &adapter
->hw
;
686 /* hardware has been reset, we need to reload some things */
687 igb_configure(adapter
);
689 clear_bit(__IGB_DOWN
, &adapter
->state
);
691 napi_enable(&adapter
->napi
);
693 if (adapter
->msix_entries
) {
694 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
695 napi_enable(&adapter
->rx_ring
[i
].napi
);
696 igb_configure_msix(adapter
);
699 /* Clear any pending interrupts. */
701 igb_irq_enable(adapter
);
703 /* Fire a link change interrupt to start the watchdog. */
704 wr32(E1000_ICS
, E1000_ICS_LSC
);
708 void igb_down(struct igb_adapter
*adapter
)
710 struct e1000_hw
*hw
= &adapter
->hw
;
711 struct net_device
*netdev
= adapter
->netdev
;
715 /* signal that we're down so the interrupt handler does not
716 * reschedule our watchdog timer */
717 set_bit(__IGB_DOWN
, &adapter
->state
);
719 /* disable receives in the hardware */
720 rctl
= rd32(E1000_RCTL
);
721 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
722 /* flush and sleep below */
724 netif_stop_queue(netdev
);
726 /* disable transmits in the hardware */
727 tctl
= rd32(E1000_TCTL
);
728 tctl
&= ~E1000_TCTL_EN
;
729 wr32(E1000_TCTL
, tctl
);
730 /* flush both disables and wait for them to finish */
734 napi_disable(&adapter
->napi
);
736 if (adapter
->msix_entries
)
737 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
738 napi_disable(&adapter
->rx_ring
[i
].napi
);
739 igb_irq_disable(adapter
);
741 del_timer_sync(&adapter
->watchdog_timer
);
742 del_timer_sync(&adapter
->phy_info_timer
);
744 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
745 netif_carrier_off(netdev
);
746 adapter
->link_speed
= 0;
747 adapter
->link_duplex
= 0;
750 igb_clean_all_tx_rings(adapter
);
751 igb_clean_all_rx_rings(adapter
);
754 void igb_reinit_locked(struct igb_adapter
*adapter
)
756 WARN_ON(in_interrupt());
757 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
761 clear_bit(__IGB_RESETTING
, &adapter
->state
);
764 void igb_reset(struct igb_adapter
*adapter
)
766 struct e1000_hw
*hw
= &adapter
->hw
;
767 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
768 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
771 /* Repartition Pba for greater than 9k mtu
772 * To take effect CTRL.RST is required.
776 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
777 /* adjust PBA for jumbo frames */
778 wr32(E1000_PBA
, pba
);
780 /* To maintain wire speed transmits, the Tx FIFO should be
781 * large enough to accommodate two full transmit packets,
782 * rounded up to the next 1KB and expressed in KB. Likewise,
783 * the Rx FIFO should be large enough to accommodate at least
784 * one full receive packet and is similarly rounded up and
785 * expressed in KB. */
786 pba
= rd32(E1000_PBA
);
787 /* upper 16 bits has Tx packet buffer allocation size in KB */
788 tx_space
= pba
>> 16;
789 /* lower 16 bits has Rx packet buffer allocation size in KB */
791 /* the tx fifo also stores 16 bytes of information about the tx
792 * but don't include ethernet FCS because hardware appends it */
793 min_tx_space
= (adapter
->max_frame_size
+
794 sizeof(struct e1000_tx_desc
) -
796 min_tx_space
= ALIGN(min_tx_space
, 1024);
798 /* software strips receive CRC, so leave room for it */
799 min_rx_space
= adapter
->max_frame_size
;
800 min_rx_space
= ALIGN(min_rx_space
, 1024);
803 /* If current Tx allocation is less than the min Tx FIFO size,
804 * and the min Tx FIFO size is less than the current Rx FIFO
805 * allocation, take space away from current Rx allocation */
806 if (tx_space
< min_tx_space
&&
807 ((min_tx_space
- tx_space
) < pba
)) {
808 pba
= pba
- (min_tx_space
- tx_space
);
810 /* if short on rx space, rx wins and must trump tx
812 if (pba
< min_rx_space
)
816 wr32(E1000_PBA
, pba
);
818 /* flow control settings */
819 /* The high water mark must be low enough to fit one full frame
820 * (or the size used for early receive) above it in the Rx FIFO.
821 * Set it to the lower of:
822 * - 90% of the Rx FIFO size, or
823 * - the full Rx FIFO size minus one full frame */
824 hwm
= min(((pba
<< 10) * 9 / 10),
825 ((pba
<< 10) - adapter
->max_frame_size
));
827 fc
->high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
828 fc
->low_water
= fc
->high_water
- 8;
829 fc
->pause_time
= 0xFFFF;
831 fc
->type
= fc
->original_type
;
833 /* Allow time for pending master requests to run */
834 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
837 if (adapter
->hw
.mac
.ops
.init_hw(&adapter
->hw
))
838 dev_err(&adapter
->pdev
->dev
, "Hardware Error\n");
840 igb_update_mng_vlan(adapter
);
842 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
843 wr32(E1000_VET
, ETHERNET_IEEE_VLAN_TYPE
);
845 igb_reset_adaptive(&adapter
->hw
);
846 adapter
->hw
.phy
.ops
.get_phy_info(&adapter
->hw
);
847 igb_release_manageability(adapter
);
851 * igb_probe - Device Initialization Routine
852 * @pdev: PCI device information struct
853 * @ent: entry in igb_pci_tbl
855 * Returns 0 on success, negative on failure
857 * igb_probe initializes an adapter identified by a pci_dev structure.
858 * The OS initialization, configuring of the adapter private structure,
859 * and a hardware reset occur.
861 static int __devinit
igb_probe(struct pci_dev
*pdev
,
862 const struct pci_device_id
*ent
)
864 struct net_device
*netdev
;
865 struct igb_adapter
*adapter
;
867 const struct e1000_info
*ei
= igb_info_tbl
[ent
->driver_data
];
868 unsigned long mmio_start
, mmio_len
;
869 static int cards_found
;
870 int i
, err
, pci_using_dac
;
872 u16 eeprom_apme_mask
= IGB_EEPROM_APME
;
875 err
= pci_enable_device(pdev
);
880 err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
);
882 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
886 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
888 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
890 dev_err(&pdev
->dev
, "No usable DMA "
891 "configuration, aborting\n");
897 err
= pci_request_regions(pdev
, igb_driver_name
);
901 pci_set_master(pdev
);
904 netdev
= alloc_etherdev(sizeof(struct igb_adapter
));
906 goto err_alloc_etherdev
;
908 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
910 pci_set_drvdata(pdev
, netdev
);
911 adapter
= netdev_priv(netdev
);
912 adapter
->netdev
= netdev
;
913 adapter
->pdev
= pdev
;
916 adapter
->msg_enable
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
918 mmio_start
= pci_resource_start(pdev
, 0);
919 mmio_len
= pci_resource_len(pdev
, 0);
922 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
923 if (!adapter
->hw
.hw_addr
)
926 netdev
->open
= &igb_open
;
927 netdev
->stop
= &igb_close
;
928 netdev
->get_stats
= &igb_get_stats
;
929 netdev
->set_multicast_list
= &igb_set_multi
;
930 netdev
->set_mac_address
= &igb_set_mac
;
931 netdev
->change_mtu
= &igb_change_mtu
;
932 netdev
->do_ioctl
= &igb_ioctl
;
933 igb_set_ethtool_ops(netdev
);
934 netdev
->tx_timeout
= &igb_tx_timeout
;
935 netdev
->watchdog_timeo
= 5 * HZ
;
936 netif_napi_add(netdev
, &adapter
->napi
, igb_clean
, 64);
937 netdev
->vlan_rx_register
= igb_vlan_rx_register
;
938 netdev
->vlan_rx_add_vid
= igb_vlan_rx_add_vid
;
939 netdev
->vlan_rx_kill_vid
= igb_vlan_rx_kill_vid
;
940 #ifdef CONFIG_NET_POLL_CONTROLLER
941 netdev
->poll_controller
= igb_netpoll
;
943 netdev
->hard_start_xmit
= &igb_xmit_frame_adv
;
945 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
947 netdev
->mem_start
= mmio_start
;
948 netdev
->mem_end
= mmio_start
+ mmio_len
;
950 adapter
->bd_number
= cards_found
;
952 /* PCI config space info */
953 hw
->vendor_id
= pdev
->vendor
;
954 hw
->device_id
= pdev
->device
;
955 hw
->revision_id
= pdev
->revision
;
956 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
957 hw
->subsystem_device_id
= pdev
->subsystem_device
;
959 /* setup the private structure */
961 /* Copy the default MAC, PHY and NVM function pointers */
962 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
963 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
964 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
965 /* Initialize skew-specific constants */
966 err
= ei
->get_invariants(hw
);
970 err
= igb_sw_init(adapter
);
974 igb_get_bus_info_pcie(hw
);
976 hw
->phy
.autoneg_wait_to_complete
= false;
977 hw
->mac
.adaptive_ifs
= true;
980 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
981 hw
->phy
.mdix
= AUTO_ALL_MODES
;
982 hw
->phy
.disable_polarity_correction
= false;
983 hw
->phy
.ms_type
= e1000_ms_hw_default
;
986 if (igb_check_reset_block(hw
))
988 "PHY reset is blocked due to SOL/IDER session.\n");
990 netdev
->features
= NETIF_F_SG
|
994 NETIF_F_HW_VLAN_FILTER
;
996 netdev
->features
|= NETIF_F_TSO
;
998 netdev
->features
|= NETIF_F_TSO6
;
1000 netdev
->features
|= NETIF_F_HIGHDMA
;
1002 netdev
->features
|= NETIF_F_LLTX
;
1003 adapter
->en_mng_pt
= igb_enable_mng_pass_thru(&adapter
->hw
);
1005 /* before reading the NVM, reset the controller to put the device in a
1006 * known good starting state */
1007 hw
->mac
.ops
.reset_hw(hw
);
1009 /* make sure the NVM is good */
1010 if (igb_validate_nvm_checksum(hw
) < 0) {
1011 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
1016 /* copy the MAC address out of the NVM */
1017 if (hw
->mac
.ops
.read_mac_addr(hw
))
1018 dev_err(&pdev
->dev
, "NVM Read Error\n");
1020 memcpy(netdev
->dev_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1021 memcpy(netdev
->perm_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1023 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
1024 dev_err(&pdev
->dev
, "Invalid MAC Address\n");
1029 init_timer(&adapter
->watchdog_timer
);
1030 adapter
->watchdog_timer
.function
= &igb_watchdog
;
1031 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1033 init_timer(&adapter
->phy_info_timer
);
1034 adapter
->phy_info_timer
.function
= &igb_update_phy_info
;
1035 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
1037 INIT_WORK(&adapter
->reset_task
, igb_reset_task
);
1038 INIT_WORK(&adapter
->watchdog_task
, igb_watchdog_task
);
1040 /* Initialize link & ring properties that are user-changeable */
1041 adapter
->tx_ring
->count
= 256;
1042 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1043 adapter
->tx_ring
[i
].count
= adapter
->tx_ring
->count
;
1044 adapter
->rx_ring
->count
= 256;
1045 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1046 adapter
->rx_ring
[i
].count
= adapter
->rx_ring
->count
;
1048 adapter
->fc_autoneg
= true;
1049 hw
->mac
.autoneg
= true;
1050 hw
->phy
.autoneg_advertised
= 0x2f;
1052 hw
->fc
.original_type
= e1000_fc_default
;
1053 hw
->fc
.type
= e1000_fc_default
;
1055 adapter
->itr_setting
= 3;
1056 adapter
->itr
= IGB_START_ITR
;
1058 igb_validate_mdi_setting(hw
);
1060 adapter
->rx_csum
= 1;
1062 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1063 * enable the ACPI Magic Packet filter
1066 if (hw
->bus
.func
== 0 ||
1067 hw
->device_id
== E1000_DEV_ID_82575EB_COPPER
)
1068 hw
->nvm
.ops
.read_nvm(hw
, NVM_INIT_CONTROL3_PORT_A
, 1,
1071 if (eeprom_data
& eeprom_apme_mask
)
1072 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1074 /* now that we have the eeprom settings, apply the special cases where
1075 * the eeprom may be wrong or the board simply won't support wake on
1076 * lan on a particular port */
1077 switch (pdev
->device
) {
1078 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1079 adapter
->eeprom_wol
= 0;
1081 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1082 /* Wake events only supported on port A for dual fiber
1083 * regardless of eeprom setting */
1084 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
)
1085 adapter
->eeprom_wol
= 0;
1089 /* initialize the wol settings based on the eeprom settings */
1090 adapter
->wol
= adapter
->eeprom_wol
;
1092 /* reset the hardware with the new settings */
1095 /* let the f/w know that the h/w is now under the control of the
1097 igb_get_hw_control(adapter
);
1099 /* tell the stack to leave us alone until igb_open() is called */
1100 netif_carrier_off(netdev
);
1101 netif_stop_queue(netdev
);
1103 strcpy(netdev
->name
, "eth%d");
1104 err
= register_netdev(netdev
);
1108 dev_info(&pdev
->dev
, "Intel(R) Gigabit Ethernet Network Connection\n");
1109 /* print bus type/speed/width info */
1110 dev_info(&pdev
->dev
,
1111 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1113 ((hw
->bus
.speed
== e1000_bus_speed_2500
)
1114 ? "2.5Gb/s" : "unknown"),
1115 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
)
1116 ? "Width x4" : (hw
->bus
.width
== e1000_bus_width_pcie_x1
)
1117 ? "Width x1" : "unknown"),
1118 netdev
->dev_addr
[0], netdev
->dev_addr
[1], netdev
->dev_addr
[2],
1119 netdev
->dev_addr
[3], netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
1121 igb_read_part_num(hw
, &part_num
);
1122 dev_info(&pdev
->dev
, "%s: PBA No: %06x-%03x\n", netdev
->name
,
1123 (part_num
>> 8), (part_num
& 0xff));
1125 dev_info(&pdev
->dev
,
1126 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1127 adapter
->msix_entries
? "MSI-X" :
1128 adapter
->msi_enabled
? "MSI" : "legacy",
1129 adapter
->num_rx_queues
, adapter
->num_tx_queues
);
1135 igb_release_hw_control(adapter
);
1137 if (!igb_check_reset_block(hw
))
1138 hw
->phy
.ops
.reset_phy(hw
);
1140 if (hw
->flash_address
)
1141 iounmap(hw
->flash_address
);
1143 igb_remove_device(hw
);
1144 kfree(adapter
->tx_ring
);
1145 kfree(adapter
->rx_ring
);
1148 iounmap(hw
->hw_addr
);
1150 free_netdev(netdev
);
1152 pci_release_regions(pdev
);
1155 pci_disable_device(pdev
);
1160 * igb_remove - Device Removal Routine
1161 * @pdev: PCI device information struct
1163 * igb_remove is called by the PCI subsystem to alert the driver
1164 * that it should release a PCI device. The could be caused by a
1165 * Hot-Plug event, or because the driver is going to be removed from
1168 static void __devexit
igb_remove(struct pci_dev
*pdev
)
1170 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1171 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1173 /* flush_scheduled work may reschedule our watchdog task, so
1174 * explicitly disable watchdog tasks from being rescheduled */
1175 set_bit(__IGB_DOWN
, &adapter
->state
);
1176 del_timer_sync(&adapter
->watchdog_timer
);
1177 del_timer_sync(&adapter
->phy_info_timer
);
1179 flush_scheduled_work();
1182 igb_release_manageability(adapter
);
1184 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1185 * would have already happened in close and is redundant. */
1186 igb_release_hw_control(adapter
);
1188 unregister_netdev(netdev
);
1190 if (!igb_check_reset_block(&adapter
->hw
))
1191 adapter
->hw
.phy
.ops
.reset_phy(&adapter
->hw
);
1193 igb_remove_device(&adapter
->hw
);
1194 igb_reset_interrupt_capability(adapter
);
1196 kfree(adapter
->tx_ring
);
1197 kfree(adapter
->rx_ring
);
1199 iounmap(adapter
->hw
.hw_addr
);
1200 if (adapter
->hw
.flash_address
)
1201 iounmap(adapter
->hw
.flash_address
);
1202 pci_release_regions(pdev
);
1204 free_netdev(netdev
);
1206 pci_disable_device(pdev
);
1210 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1211 * @adapter: board private structure to initialize
1213 * igb_sw_init initializes the Adapter private data structure.
1214 * Fields are initialized based on PCI device information and
1215 * OS network device settings (MTU size).
1217 static int __devinit
igb_sw_init(struct igb_adapter
*adapter
)
1219 struct e1000_hw
*hw
= &adapter
->hw
;
1220 struct net_device
*netdev
= adapter
->netdev
;
1221 struct pci_dev
*pdev
= adapter
->pdev
;
1223 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->bus
.pci_cmd_word
);
1225 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1226 adapter
->rx_ps_hdr_size
= 0; /* disable packet split */
1227 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1228 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1230 /* Number of supported queues. */
1231 /* Having more queues than CPUs doesn't make sense. */
1232 adapter
->num_tx_queues
= 1;
1233 adapter
->num_rx_queues
= min(IGB_MAX_RX_QUEUES
, num_online_cpus());
1235 igb_set_interrupt_capability(adapter
);
1237 if (igb_alloc_queues(adapter
)) {
1238 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
1242 /* Explicitly disable IRQ since the NIC can be in any state. */
1243 igb_irq_disable(adapter
);
1245 set_bit(__IGB_DOWN
, &adapter
->state
);
1250 * igb_open - Called when a network interface is made active
1251 * @netdev: network interface device structure
1253 * Returns 0 on success, negative value on failure
1255 * The open entry point is called when a network interface is made
1256 * active by the system (IFF_UP). At this point all resources needed
1257 * for transmit and receive operations are allocated, the interrupt
1258 * handler is registered with the OS, the watchdog timer is started,
1259 * and the stack is notified that the interface is ready.
1261 static int igb_open(struct net_device
*netdev
)
1263 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1264 struct e1000_hw
*hw
= &adapter
->hw
;
1268 /* disallow open during test */
1269 if (test_bit(__IGB_TESTING
, &adapter
->state
))
1272 /* allocate transmit descriptors */
1273 err
= igb_setup_all_tx_resources(adapter
);
1277 /* allocate receive descriptors */
1278 err
= igb_setup_all_rx_resources(adapter
);
1282 /* e1000_power_up_phy(adapter); */
1284 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
1285 if ((adapter
->hw
.mng_cookie
.status
&
1286 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
1287 igb_update_mng_vlan(adapter
);
1289 /* before we allocate an interrupt, we must be ready to handle it.
1290 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1291 * as soon as we call pci_request_irq, so we have to setup our
1292 * clean_rx handler before we do so. */
1293 igb_configure(adapter
);
1295 err
= igb_request_irq(adapter
);
1299 /* From here on the code is the same as igb_up() */
1300 clear_bit(__IGB_DOWN
, &adapter
->state
);
1302 napi_enable(&adapter
->napi
);
1303 if (adapter
->msix_entries
)
1304 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1305 napi_enable(&adapter
->rx_ring
[i
].napi
);
1307 igb_irq_enable(adapter
);
1309 /* Clear any pending interrupts. */
1311 /* Fire a link status change interrupt to start the watchdog. */
1312 wr32(E1000_ICS
, E1000_ICS_LSC
);
1317 igb_release_hw_control(adapter
);
1318 /* e1000_power_down_phy(adapter); */
1319 igb_free_all_rx_resources(adapter
);
1321 igb_free_all_tx_resources(adapter
);
1329 * igb_close - Disables a network interface
1330 * @netdev: network interface device structure
1332 * Returns 0, this is not allowed to fail
1334 * The close entry point is called when an interface is de-activated
1335 * by the OS. The hardware is still under the driver's control, but
1336 * needs to be disabled. A global MAC reset is issued to stop the
1337 * hardware, and all transmit and receive resources are freed.
1339 static int igb_close(struct net_device
*netdev
)
1341 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1343 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
1346 igb_free_irq(adapter
);
1348 igb_free_all_tx_resources(adapter
);
1349 igb_free_all_rx_resources(adapter
);
1351 /* kill manageability vlan ID if supported, but not if a vlan with
1352 * the same ID is registered on the host OS (let 8021q kill it) */
1353 if ((adapter
->hw
.mng_cookie
.status
&
1354 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1356 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
1357 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1363 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1364 * @adapter: board private structure
1365 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1367 * Return 0 on success, negative on failure
1370 int igb_setup_tx_resources(struct igb_adapter
*adapter
,
1371 struct igb_ring
*tx_ring
)
1373 struct pci_dev
*pdev
= adapter
->pdev
;
1376 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1377 tx_ring
->buffer_info
= vmalloc(size
);
1378 if (!tx_ring
->buffer_info
)
1380 memset(tx_ring
->buffer_info
, 0, size
);
1382 /* round up to nearest 4K */
1383 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
)
1385 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1387 tx_ring
->desc
= pci_alloc_consistent(pdev
, tx_ring
->size
,
1393 tx_ring
->adapter
= adapter
;
1394 tx_ring
->next_to_use
= 0;
1395 tx_ring
->next_to_clean
= 0;
1396 spin_lock_init(&tx_ring
->tx_clean_lock
);
1397 spin_lock_init(&tx_ring
->tx_lock
);
1401 vfree(tx_ring
->buffer_info
);
1402 dev_err(&adapter
->pdev
->dev
,
1403 "Unable to allocate memory for the transmit descriptor ring\n");
1408 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1409 * (Descriptors) for all queues
1410 * @adapter: board private structure
1412 * Return 0 on success, negative on failure
1414 static int igb_setup_all_tx_resources(struct igb_adapter
*adapter
)
1418 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1419 err
= igb_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1421 dev_err(&adapter
->pdev
->dev
,
1422 "Allocation for Tx Queue %u failed\n", i
);
1423 for (i
--; i
>= 0; i
--)
1424 igb_free_tx_resources(adapter
,
1425 &adapter
->tx_ring
[i
]);
1434 * igb_configure_tx - Configure transmit Unit after Reset
1435 * @adapter: board private structure
1437 * Configure the Tx unit of the MAC after a reset.
1439 static void igb_configure_tx(struct igb_adapter
*adapter
)
1442 struct e1000_hw
*hw
= &adapter
->hw
;
1447 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1448 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
1450 wr32(E1000_TDLEN(i
),
1451 ring
->count
* sizeof(struct e1000_tx_desc
));
1453 wr32(E1000_TDBAL(i
),
1454 tdba
& 0x00000000ffffffffULL
);
1455 wr32(E1000_TDBAH(i
), tdba
>> 32);
1457 tdwba
= ring
->dma
+ ring
->count
* sizeof(struct e1000_tx_desc
);
1458 tdwba
|= 1; /* enable head wb */
1459 wr32(E1000_TDWBAL(i
),
1460 tdwba
& 0x00000000ffffffffULL
);
1461 wr32(E1000_TDWBAH(i
), tdwba
>> 32);
1463 ring
->head
= E1000_TDH(i
);
1464 ring
->tail
= E1000_TDT(i
);
1465 writel(0, hw
->hw_addr
+ ring
->tail
);
1466 writel(0, hw
->hw_addr
+ ring
->head
);
1467 txdctl
= rd32(E1000_TXDCTL(i
));
1468 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1469 wr32(E1000_TXDCTL(i
), txdctl
);
1471 /* Turn off Relaxed Ordering on head write-backs. The
1472 * writebacks MUST be delivered in order or it will
1473 * completely screw up our bookeeping.
1475 txctrl
= rd32(E1000_DCA_TXCTRL(i
));
1476 txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1477 wr32(E1000_DCA_TXCTRL(i
), txctrl
);
1482 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1484 /* Program the Transmit Control Register */
1486 tctl
= rd32(E1000_TCTL
);
1487 tctl
&= ~E1000_TCTL_CT
;
1488 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1489 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1491 igb_config_collision_dist(hw
);
1493 /* Setup Transmit Descriptor Settings for eop descriptor */
1494 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_RS
;
1496 /* Enable transmits */
1497 tctl
|= E1000_TCTL_EN
;
1499 wr32(E1000_TCTL
, tctl
);
1503 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1504 * @adapter: board private structure
1505 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1507 * Returns 0 on success, negative on failure
1510 int igb_setup_rx_resources(struct igb_adapter
*adapter
,
1511 struct igb_ring
*rx_ring
)
1513 struct pci_dev
*pdev
= adapter
->pdev
;
1516 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1517 rx_ring
->buffer_info
= vmalloc(size
);
1518 if (!rx_ring
->buffer_info
)
1520 memset(rx_ring
->buffer_info
, 0, size
);
1522 desc_len
= sizeof(union e1000_adv_rx_desc
);
1524 /* Round up to nearest 4K */
1525 rx_ring
->size
= rx_ring
->count
* desc_len
;
1526 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1528 rx_ring
->desc
= pci_alloc_consistent(pdev
, rx_ring
->size
,
1534 rx_ring
->next_to_clean
= 0;
1535 rx_ring
->next_to_use
= 0;
1536 rx_ring
->pending_skb
= NULL
;
1538 rx_ring
->adapter
= adapter
;
1539 /* FIXME: do we want to setup ring->napi->poll here? */
1540 rx_ring
->napi
.poll
= adapter
->napi
.poll
;
1545 vfree(rx_ring
->buffer_info
);
1546 dev_err(&adapter
->pdev
->dev
, "Unable to allocate memory for "
1547 "the receive descriptor ring\n");
1552 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1553 * (Descriptors) for all queues
1554 * @adapter: board private structure
1556 * Return 0 on success, negative on failure
1558 static int igb_setup_all_rx_resources(struct igb_adapter
*adapter
)
1562 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1563 err
= igb_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1565 dev_err(&adapter
->pdev
->dev
,
1566 "Allocation for Rx Queue %u failed\n", i
);
1567 for (i
--; i
>= 0; i
--)
1568 igb_free_rx_resources(adapter
,
1569 &adapter
->rx_ring
[i
]);
1578 * igb_setup_rctl - configure the receive control registers
1579 * @adapter: Board private structure
1581 static void igb_setup_rctl(struct igb_adapter
*adapter
)
1583 struct e1000_hw
*hw
= &adapter
->hw
;
1588 rctl
= rd32(E1000_RCTL
);
1590 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1592 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1593 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1594 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1596 /* disable the stripping of CRC because it breaks
1597 * BMC firmware connected over SMBUS
1598 rctl |= E1000_RCTL_SECRC;
1601 rctl
&= ~E1000_RCTL_SBP
;
1603 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1604 rctl
&= ~E1000_RCTL_LPE
;
1606 rctl
|= E1000_RCTL_LPE
;
1607 if (adapter
->rx_buffer_len
<= IGB_RXBUFFER_2048
) {
1608 /* Setup buffer sizes */
1609 rctl
&= ~E1000_RCTL_SZ_4096
;
1610 rctl
|= E1000_RCTL_BSEX
;
1611 switch (adapter
->rx_buffer_len
) {
1612 case IGB_RXBUFFER_256
:
1613 rctl
|= E1000_RCTL_SZ_256
;
1614 rctl
&= ~E1000_RCTL_BSEX
;
1616 case IGB_RXBUFFER_512
:
1617 rctl
|= E1000_RCTL_SZ_512
;
1618 rctl
&= ~E1000_RCTL_BSEX
;
1620 case IGB_RXBUFFER_1024
:
1621 rctl
|= E1000_RCTL_SZ_1024
;
1622 rctl
&= ~E1000_RCTL_BSEX
;
1624 case IGB_RXBUFFER_2048
:
1626 rctl
|= E1000_RCTL_SZ_2048
;
1627 rctl
&= ~E1000_RCTL_BSEX
;
1629 case IGB_RXBUFFER_4096
:
1630 rctl
|= E1000_RCTL_SZ_4096
;
1632 case IGB_RXBUFFER_8192
:
1633 rctl
|= E1000_RCTL_SZ_8192
;
1635 case IGB_RXBUFFER_16384
:
1636 rctl
|= E1000_RCTL_SZ_16384
;
1640 rctl
&= ~E1000_RCTL_BSEX
;
1641 srrctl
= adapter
->rx_buffer_len
>> E1000_SRRCTL_BSIZEPKT_SHIFT
;
1644 /* 82575 and greater support packet-split where the protocol
1645 * header is placed in skb->data and the packet data is
1646 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1647 * In the case of a non-split, skb->data is linearly filled,
1648 * followed by the page buffers. Therefore, skb->data is
1649 * sized to hold the largest protocol header.
1651 /* allocations using alloc_page take too long for regular MTU
1652 * so only enable packet split for jumbo frames */
1653 if (rctl
& E1000_RCTL_LPE
) {
1654 adapter
->rx_ps_hdr_size
= IGB_RXBUFFER_128
;
1655 srrctl
= adapter
->rx_ps_hdr_size
<<
1656 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1657 /* buffer size is ALWAYS one page */
1658 srrctl
|= PAGE_SIZE
>> E1000_SRRCTL_BSIZEPKT_SHIFT
;
1659 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1661 adapter
->rx_ps_hdr_size
= 0;
1662 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1665 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1666 wr32(E1000_SRRCTL(i
), srrctl
);
1668 wr32(E1000_RCTL
, rctl
);
1672 * igb_configure_rx - Configure receive Unit after Reset
1673 * @adapter: board private structure
1675 * Configure the Rx unit of the MAC after a reset.
1677 static void igb_configure_rx(struct igb_adapter
*adapter
)
1680 struct e1000_hw
*hw
= &adapter
->hw
;
1685 /* disable receives while setting up the descriptors */
1686 rctl
= rd32(E1000_RCTL
);
1687 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
1691 if (adapter
->itr_setting
> 3)
1693 1000000000 / (adapter
->itr
* 256));
1695 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1696 * the Base and Length of the Rx Descriptor Ring */
1697 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1698 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
1700 wr32(E1000_RDBAL(i
),
1701 rdba
& 0x00000000ffffffffULL
);
1702 wr32(E1000_RDBAH(i
), rdba
>> 32);
1703 wr32(E1000_RDLEN(i
),
1704 ring
->count
* sizeof(union e1000_adv_rx_desc
));
1706 ring
->head
= E1000_RDH(i
);
1707 ring
->tail
= E1000_RDT(i
);
1708 writel(0, hw
->hw_addr
+ ring
->tail
);
1709 writel(0, hw
->hw_addr
+ ring
->head
);
1711 rxdctl
= rd32(E1000_RXDCTL(i
));
1712 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1713 rxdctl
&= 0xFFF00000;
1714 rxdctl
|= IGB_RX_PTHRESH
;
1715 rxdctl
|= IGB_RX_HTHRESH
<< 8;
1716 rxdctl
|= IGB_RX_WTHRESH
<< 16;
1717 wr32(E1000_RXDCTL(i
), rxdctl
);
1720 if (adapter
->num_rx_queues
> 1) {
1729 get_random_bytes(&random
[0], 40);
1732 for (j
= 0; j
< (32 * 4); j
++) {
1734 (j
% adapter
->num_rx_queues
) << shift
;
1737 hw
->hw_addr
+ E1000_RETA(0) + (j
& ~3));
1739 mrqc
= E1000_MRQC_ENABLE_RSS_4Q
;
1741 /* Fill out hash function seeds */
1742 for (j
= 0; j
< 10; j
++)
1743 array_wr32(E1000_RSSRK(0), j
, random
[j
]);
1745 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4
|
1746 E1000_MRQC_RSS_FIELD_IPV4_TCP
);
1747 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6
|
1748 E1000_MRQC_RSS_FIELD_IPV6_TCP
);
1749 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4_UDP
|
1750 E1000_MRQC_RSS_FIELD_IPV6_UDP
);
1751 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX
|
1752 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
1755 wr32(E1000_MRQC
, mrqc
);
1757 /* Multiqueue and raw packet checksumming are mutually
1758 * exclusive. Note that this not the same as TCP/IP
1759 * checksumming, which works fine. */
1760 rxcsum
= rd32(E1000_RXCSUM
);
1761 rxcsum
|= E1000_RXCSUM_PCSD
;
1762 wr32(E1000_RXCSUM
, rxcsum
);
1764 /* Enable Receive Checksum Offload for TCP and UDP */
1765 rxcsum
= rd32(E1000_RXCSUM
);
1766 if (adapter
->rx_csum
) {
1767 rxcsum
|= E1000_RXCSUM_TUOFL
;
1769 /* Enable IPv4 payload checksum for UDP fragments
1770 * Must be used in conjunction with packet-split. */
1771 if (adapter
->rx_ps_hdr_size
)
1772 rxcsum
|= E1000_RXCSUM_IPPCSE
;
1774 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1775 /* don't need to clear IPPCSE as it defaults to 0 */
1777 wr32(E1000_RXCSUM
, rxcsum
);
1782 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
1784 wr32(E1000_RLPML
, adapter
->max_frame_size
);
1786 /* Enable Receives */
1787 wr32(E1000_RCTL
, rctl
);
1791 * igb_free_tx_resources - Free Tx Resources per Queue
1792 * @adapter: board private structure
1793 * @tx_ring: Tx descriptor ring for a specific queue
1795 * Free all transmit software resources
1797 static void igb_free_tx_resources(struct igb_adapter
*adapter
,
1798 struct igb_ring
*tx_ring
)
1800 struct pci_dev
*pdev
= adapter
->pdev
;
1802 igb_clean_tx_ring(adapter
, tx_ring
);
1804 vfree(tx_ring
->buffer_info
);
1805 tx_ring
->buffer_info
= NULL
;
1807 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
1809 tx_ring
->desc
= NULL
;
1813 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1814 * @adapter: board private structure
1816 * Free all transmit software resources
1818 static void igb_free_all_tx_resources(struct igb_adapter
*adapter
)
1822 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1823 igb_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1826 static void igb_unmap_and_free_tx_resource(struct igb_adapter
*adapter
,
1827 struct igb_buffer
*buffer_info
)
1829 if (buffer_info
->dma
) {
1830 pci_unmap_page(adapter
->pdev
,
1832 buffer_info
->length
,
1834 buffer_info
->dma
= 0;
1836 if (buffer_info
->skb
) {
1837 dev_kfree_skb_any(buffer_info
->skb
);
1838 buffer_info
->skb
= NULL
;
1840 buffer_info
->time_stamp
= 0;
1841 /* buffer_info must be completely set up in the transmit path */
1845 * igb_clean_tx_ring - Free Tx Buffers
1846 * @adapter: board private structure
1847 * @tx_ring: ring to be cleaned
1849 static void igb_clean_tx_ring(struct igb_adapter
*adapter
,
1850 struct igb_ring
*tx_ring
)
1852 struct igb_buffer
*buffer_info
;
1856 if (!tx_ring
->buffer_info
)
1858 /* Free all the Tx ring sk_buffs */
1860 for (i
= 0; i
< tx_ring
->count
; i
++) {
1861 buffer_info
= &tx_ring
->buffer_info
[i
];
1862 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
1865 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1866 memset(tx_ring
->buffer_info
, 0, size
);
1868 /* Zero out the descriptor ring */
1870 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1872 tx_ring
->next_to_use
= 0;
1873 tx_ring
->next_to_clean
= 0;
1875 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
1876 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
1880 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1881 * @adapter: board private structure
1883 static void igb_clean_all_tx_rings(struct igb_adapter
*adapter
)
1887 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1888 igb_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
1892 * igb_free_rx_resources - Free Rx Resources
1893 * @adapter: board private structure
1894 * @rx_ring: ring to clean the resources from
1896 * Free all receive software resources
1898 static void igb_free_rx_resources(struct igb_adapter
*adapter
,
1899 struct igb_ring
*rx_ring
)
1901 struct pci_dev
*pdev
= adapter
->pdev
;
1903 igb_clean_rx_ring(adapter
, rx_ring
);
1905 vfree(rx_ring
->buffer_info
);
1906 rx_ring
->buffer_info
= NULL
;
1908 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
1910 rx_ring
->desc
= NULL
;
1914 * igb_free_all_rx_resources - Free Rx Resources for All Queues
1915 * @adapter: board private structure
1917 * Free all receive software resources
1919 static void igb_free_all_rx_resources(struct igb_adapter
*adapter
)
1923 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1924 igb_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1928 * igb_clean_rx_ring - Free Rx Buffers per Queue
1929 * @adapter: board private structure
1930 * @rx_ring: ring to free buffers from
1932 static void igb_clean_rx_ring(struct igb_adapter
*adapter
,
1933 struct igb_ring
*rx_ring
)
1935 struct igb_buffer
*buffer_info
;
1936 struct pci_dev
*pdev
= adapter
->pdev
;
1940 if (!rx_ring
->buffer_info
)
1942 /* Free all the Rx ring sk_buffs */
1943 for (i
= 0; i
< rx_ring
->count
; i
++) {
1944 buffer_info
= &rx_ring
->buffer_info
[i
];
1945 if (buffer_info
->dma
) {
1946 if (adapter
->rx_ps_hdr_size
)
1947 pci_unmap_single(pdev
, buffer_info
->dma
,
1948 adapter
->rx_ps_hdr_size
,
1949 PCI_DMA_FROMDEVICE
);
1951 pci_unmap_single(pdev
, buffer_info
->dma
,
1952 adapter
->rx_buffer_len
,
1953 PCI_DMA_FROMDEVICE
);
1954 buffer_info
->dma
= 0;
1957 if (buffer_info
->skb
) {
1958 dev_kfree_skb(buffer_info
->skb
);
1959 buffer_info
->skb
= NULL
;
1961 if (buffer_info
->page
) {
1962 pci_unmap_page(pdev
, buffer_info
->page_dma
,
1963 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
1964 put_page(buffer_info
->page
);
1965 buffer_info
->page
= NULL
;
1966 buffer_info
->page_dma
= 0;
1970 /* there also may be some cached data from a chained receive */
1971 if (rx_ring
->pending_skb
) {
1972 dev_kfree_skb(rx_ring
->pending_skb
);
1973 rx_ring
->pending_skb
= NULL
;
1976 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1977 memset(rx_ring
->buffer_info
, 0, size
);
1979 /* Zero out the descriptor ring */
1980 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1982 rx_ring
->next_to_clean
= 0;
1983 rx_ring
->next_to_use
= 0;
1985 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1986 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1990 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1991 * @adapter: board private structure
1993 static void igb_clean_all_rx_rings(struct igb_adapter
*adapter
)
1997 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1998 igb_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2002 * igb_set_mac - Change the Ethernet Address of the NIC
2003 * @netdev: network interface device structure
2004 * @p: pointer to an address structure
2006 * Returns 0 on success, negative on failure
2008 static int igb_set_mac(struct net_device
*netdev
, void *p
)
2010 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2011 struct sockaddr
*addr
= p
;
2013 if (!is_valid_ether_addr(addr
->sa_data
))
2014 return -EADDRNOTAVAIL
;
2016 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2017 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
2019 adapter
->hw
.mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
2025 * igb_set_multi - Multicast and Promiscuous mode set
2026 * @netdev: network interface device structure
2028 * The set_multi entry point is called whenever the multicast address
2029 * list or the network interface flags are updated. This routine is
2030 * responsible for configuring the hardware for proper multicast,
2031 * promiscuous mode, and all-multi behavior.
2033 static void igb_set_multi(struct net_device
*netdev
)
2035 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2036 struct e1000_hw
*hw
= &adapter
->hw
;
2037 struct e1000_mac_info
*mac
= &hw
->mac
;
2038 struct dev_mc_list
*mc_ptr
;
2043 /* Check for Promiscuous and All Multicast modes */
2045 rctl
= rd32(E1000_RCTL
);
2047 if (netdev
->flags
& IFF_PROMISC
)
2048 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2049 else if (netdev
->flags
& IFF_ALLMULTI
) {
2050 rctl
|= E1000_RCTL_MPE
;
2051 rctl
&= ~E1000_RCTL_UPE
;
2053 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2055 wr32(E1000_RCTL
, rctl
);
2057 if (!netdev
->mc_count
) {
2058 /* nothing to program, so clear mc list */
2059 igb_update_mc_addr_list(hw
, NULL
, 0, 1,
2060 mac
->rar_entry_count
);
2064 mta_list
= kzalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2068 /* The shared function expects a packed array of only addresses. */
2069 mc_ptr
= netdev
->mc_list
;
2071 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2074 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
, ETH_ALEN
);
2075 mc_ptr
= mc_ptr
->next
;
2077 igb_update_mc_addr_list(hw
, mta_list
, i
, 1, mac
->rar_entry_count
);
2081 /* Need to wait a few seconds after link up to get diagnostic information from
2083 static void igb_update_phy_info(unsigned long data
)
2085 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
2086 adapter
->hw
.phy
.ops
.get_phy_info(&adapter
->hw
);
2090 * igb_watchdog - Timer Call-back
2091 * @data: pointer to adapter cast into an unsigned long
2093 static void igb_watchdog(unsigned long data
)
2095 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
2096 /* Do the rest outside of interrupt context */
2097 schedule_work(&adapter
->watchdog_task
);
2100 static void igb_watchdog_task(struct work_struct
*work
)
2102 struct igb_adapter
*adapter
= container_of(work
,
2103 struct igb_adapter
, watchdog_task
);
2104 struct e1000_hw
*hw
= &adapter
->hw
;
2106 struct net_device
*netdev
= adapter
->netdev
;
2107 struct igb_ring
*tx_ring
= adapter
->tx_ring
;
2108 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2112 if ((netif_carrier_ok(netdev
)) &&
2113 (rd32(E1000_STATUS
) & E1000_STATUS_LU
))
2116 ret_val
= hw
->mac
.ops
.check_for_link(&adapter
->hw
);
2117 if ((ret_val
== E1000_ERR_PHY
) &&
2118 (hw
->phy
.type
== e1000_phy_igp_3
) &&
2120 E1000_PHY_CTRL_GBE_DISABLE
))
2121 dev_info(&adapter
->pdev
->dev
,
2122 "Gigabit has been disabled, downgrading speed\n");
2124 if ((hw
->phy
.media_type
== e1000_media_type_internal_serdes
) &&
2125 !(rd32(E1000_TXCW
) & E1000_TXCW_ANE
))
2126 link
= mac
->serdes_has_link
;
2128 link
= rd32(E1000_STATUS
) &
2132 if (!netif_carrier_ok(netdev
)) {
2134 hw
->mac
.ops
.get_speed_and_duplex(&adapter
->hw
,
2135 &adapter
->link_speed
,
2136 &adapter
->link_duplex
);
2138 ctrl
= rd32(E1000_CTRL
);
2139 dev_info(&adapter
->pdev
->dev
,
2140 "NIC Link is Up %d Mbps %s, "
2141 "Flow Control: %s\n",
2142 adapter
->link_speed
,
2143 adapter
->link_duplex
== FULL_DUPLEX
?
2144 "Full Duplex" : "Half Duplex",
2145 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2146 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2147 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2148 E1000_CTRL_TFCE
) ? "TX" : "None")));
2150 /* tweak tx_queue_len according to speed/duplex and
2151 * adjust the timeout factor */
2152 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2153 adapter
->tx_timeout_factor
= 1;
2154 switch (adapter
->link_speed
) {
2156 netdev
->tx_queue_len
= 10;
2157 adapter
->tx_timeout_factor
= 14;
2160 netdev
->tx_queue_len
= 100;
2161 /* maybe add some timeout factor ? */
2165 netif_carrier_on(netdev
);
2166 netif_wake_queue(netdev
);
2168 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2169 mod_timer(&adapter
->phy_info_timer
,
2170 round_jiffies(jiffies
+ 2 * HZ
));
2173 if (netif_carrier_ok(netdev
)) {
2174 adapter
->link_speed
= 0;
2175 adapter
->link_duplex
= 0;
2176 dev_info(&adapter
->pdev
->dev
, "NIC Link is Down\n");
2177 netif_carrier_off(netdev
);
2178 netif_stop_queue(netdev
);
2179 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2180 mod_timer(&adapter
->phy_info_timer
,
2181 round_jiffies(jiffies
+ 2 * HZ
));
2186 igb_update_stats(adapter
);
2188 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2189 adapter
->tpt_old
= adapter
->stats
.tpt
;
2190 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2191 adapter
->colc_old
= adapter
->stats
.colc
;
2193 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
2194 adapter
->gorc_old
= adapter
->stats
.gorc
;
2195 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
2196 adapter
->gotc_old
= adapter
->stats
.gotc
;
2198 igb_update_adaptive(&adapter
->hw
);
2200 if (!netif_carrier_ok(netdev
)) {
2201 if (IGB_DESC_UNUSED(tx_ring
) + 1 < tx_ring
->count
) {
2202 /* We've lost link, so the controller stops DMA,
2203 * but we've got queued Tx work that's never going
2204 * to get done, so reset controller to flush Tx.
2205 * (Do the reset outside of interrupt context). */
2206 adapter
->tx_timeout_count
++;
2207 schedule_work(&adapter
->reset_task
);
2211 /* Cause software interrupt to ensure rx ring is cleaned */
2212 wr32(E1000_ICS
, E1000_ICS_RXDMT0
);
2214 /* Force detection of hung controller every watchdog period */
2215 tx_ring
->detect_tx_hung
= true;
2217 /* Reset the timer */
2218 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2219 mod_timer(&adapter
->watchdog_timer
,
2220 round_jiffies(jiffies
+ 2 * HZ
));
2223 enum latency_range
{
2227 latency_invalid
= 255
2231 static void igb_lower_rx_eitr(struct igb_adapter
*adapter
,
2232 struct igb_ring
*rx_ring
)
2234 struct e1000_hw
*hw
= &adapter
->hw
;
2237 new_val
= rx_ring
->itr_val
/ 2;
2238 if (new_val
< IGB_MIN_DYN_ITR
)
2239 new_val
= IGB_MIN_DYN_ITR
;
2241 if (new_val
!= rx_ring
->itr_val
) {
2242 rx_ring
->itr_val
= new_val
;
2243 wr32(rx_ring
->itr_register
,
2244 1000000000 / (new_val
* 256));
2248 static void igb_raise_rx_eitr(struct igb_adapter
*adapter
,
2249 struct igb_ring
*rx_ring
)
2251 struct e1000_hw
*hw
= &adapter
->hw
;
2254 new_val
= rx_ring
->itr_val
* 2;
2255 if (new_val
> IGB_MAX_DYN_ITR
)
2256 new_val
= IGB_MAX_DYN_ITR
;
2258 if (new_val
!= rx_ring
->itr_val
) {
2259 rx_ring
->itr_val
= new_val
;
2260 wr32(rx_ring
->itr_register
,
2261 1000000000 / (new_val
* 256));
2266 * igb_update_itr - update the dynamic ITR value based on statistics
2267 * Stores a new ITR value based on packets and byte
2268 * counts during the last interrupt. The advantage of per interrupt
2269 * computation is faster updates and more accurate ITR for the current
2270 * traffic pattern. Constants in this function were computed
2271 * based on theoretical maximum wire speed and thresholds were set based
2272 * on testing data as well as attempting to minimize response time
2273 * while increasing bulk throughput.
2274 * this functionality is controlled by the InterruptThrottleRate module
2275 * parameter (see igb_param.c)
2276 * NOTE: These calculations are only valid when operating in a single-
2277 * queue environment.
2278 * @adapter: pointer to adapter
2279 * @itr_setting: current adapter->itr
2280 * @packets: the number of packets during this measurement interval
2281 * @bytes: the number of bytes during this measurement interval
2283 static unsigned int igb_update_itr(struct igb_adapter
*adapter
, u16 itr_setting
,
2284 int packets
, int bytes
)
2286 unsigned int retval
= itr_setting
;
2289 goto update_itr_done
;
2291 switch (itr_setting
) {
2292 case lowest_latency
:
2293 /* handle TSO and jumbo frames */
2294 if (bytes
/packets
> 8000)
2295 retval
= bulk_latency
;
2296 else if ((packets
< 5) && (bytes
> 512))
2297 retval
= low_latency
;
2299 case low_latency
: /* 50 usec aka 20000 ints/s */
2300 if (bytes
> 10000) {
2301 /* this if handles the TSO accounting */
2302 if (bytes
/packets
> 8000) {
2303 retval
= bulk_latency
;
2304 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
2305 retval
= bulk_latency
;
2306 } else if ((packets
> 35)) {
2307 retval
= lowest_latency
;
2309 } else if (bytes
/packets
> 2000) {
2310 retval
= bulk_latency
;
2311 } else if (packets
<= 2 && bytes
< 512) {
2312 retval
= lowest_latency
;
2315 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2316 if (bytes
> 25000) {
2318 retval
= low_latency
;
2319 } else if (bytes
< 6000) {
2320 retval
= low_latency
;
2329 static void igb_set_itr(struct igb_adapter
*adapter
, u16 itr_register
,
2333 u32 new_itr
= adapter
->itr
;
2335 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2336 if (adapter
->link_speed
!= SPEED_1000
) {
2342 adapter
->rx_itr
= igb_update_itr(adapter
,
2344 adapter
->rx_ring
->total_packets
,
2345 adapter
->rx_ring
->total_bytes
);
2346 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2347 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2348 adapter
->rx_itr
= low_latency
;
2351 adapter
->tx_itr
= igb_update_itr(adapter
,
2353 adapter
->tx_ring
->total_packets
,
2354 adapter
->tx_ring
->total_bytes
);
2355 /* conservative mode (itr 3) eliminates the
2356 * lowest_latency setting */
2357 if (adapter
->itr_setting
== 3 &&
2358 adapter
->tx_itr
== lowest_latency
)
2359 adapter
->tx_itr
= low_latency
;
2361 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2363 current_itr
= adapter
->rx_itr
;
2366 switch (current_itr
) {
2367 /* counts and packets in update_itr are dependent on these numbers */
2368 case lowest_latency
:
2372 new_itr
= 20000; /* aka hwitr = ~200 */
2382 if (new_itr
!= adapter
->itr
) {
2383 /* this attempts to bias the interrupt rate towards Bulk
2384 * by adding intermediate steps when interrupt rate is
2386 new_itr
= new_itr
> adapter
->itr
?
2387 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2389 /* Don't write the value here; it resets the adapter's
2390 * internal timer, and causes us to delay far longer than
2391 * we should between interrupts. Instead, we write the ITR
2392 * value at the beginning of the next interrupt so the timing
2393 * ends up being correct.
2395 adapter
->itr
= new_itr
;
2396 adapter
->set_itr
= 1;
2403 #define IGB_TX_FLAGS_CSUM 0x00000001
2404 #define IGB_TX_FLAGS_VLAN 0x00000002
2405 #define IGB_TX_FLAGS_TSO 0x00000004
2406 #define IGB_TX_FLAGS_IPV4 0x00000008
2407 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2408 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2410 static inline int igb_tso_adv(struct igb_adapter
*adapter
,
2411 struct igb_ring
*tx_ring
,
2412 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
2414 struct e1000_adv_tx_context_desc
*context_desc
;
2417 struct igb_buffer
*buffer_info
;
2418 u32 info
= 0, tu_cmd
= 0;
2419 u32 mss_l4len_idx
, l4len
;
2422 if (skb_header_cloned(skb
)) {
2423 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2428 l4len
= tcp_hdrlen(skb
);
2431 if (skb
->protocol
== htons(ETH_P_IP
)) {
2432 struct iphdr
*iph
= ip_hdr(skb
);
2435 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2439 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
2440 ipv6_hdr(skb
)->payload_len
= 0;
2441 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2442 &ipv6_hdr(skb
)->daddr
,
2446 i
= tx_ring
->next_to_use
;
2448 buffer_info
= &tx_ring
->buffer_info
[i
];
2449 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2450 /* VLAN MACLEN IPLEN */
2451 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2452 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2453 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2454 *hdr_len
+= skb_network_offset(skb
);
2455 info
|= skb_network_header_len(skb
);
2456 *hdr_len
+= skb_network_header_len(skb
);
2457 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2459 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2460 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2462 if (skb
->protocol
== htons(ETH_P_IP
))
2463 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2464 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2466 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2469 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
2470 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
2472 /* Context index must be unique per ring. Luckily, so is the interrupt
2474 mss_l4len_idx
|= tx_ring
->eims_value
>> 4;
2476 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
2477 context_desc
->seqnum_seed
= 0;
2479 buffer_info
->time_stamp
= jiffies
;
2480 buffer_info
->dma
= 0;
2482 if (i
== tx_ring
->count
)
2485 tx_ring
->next_to_use
= i
;
2490 static inline bool igb_tx_csum_adv(struct igb_adapter
*adapter
,
2491 struct igb_ring
*tx_ring
,
2492 struct sk_buff
*skb
, u32 tx_flags
)
2494 struct e1000_adv_tx_context_desc
*context_desc
;
2496 struct igb_buffer
*buffer_info
;
2497 u32 info
= 0, tu_cmd
= 0;
2499 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2500 (tx_flags
& IGB_TX_FLAGS_VLAN
)) {
2501 i
= tx_ring
->next_to_use
;
2502 buffer_info
= &tx_ring
->buffer_info
[i
];
2503 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2505 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2506 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2507 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2508 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2509 info
|= skb_network_header_len(skb
);
2511 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2513 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2515 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2516 if (skb
->protocol
== htons(ETH_P_IP
))
2517 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2518 if (skb
->sk
&& (skb
->sk
->sk_protocol
== IPPROTO_TCP
))
2519 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2522 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2523 context_desc
->seqnum_seed
= 0;
2524 context_desc
->mss_l4len_idx
=
2525 cpu_to_le32(tx_ring
->eims_value
>> 4);
2527 buffer_info
->time_stamp
= jiffies
;
2528 buffer_info
->dma
= 0;
2531 if (i
== tx_ring
->count
)
2533 tx_ring
->next_to_use
= i
;
2542 #define IGB_MAX_TXD_PWR 16
2543 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2545 static inline int igb_tx_map_adv(struct igb_adapter
*adapter
,
2546 struct igb_ring
*tx_ring
,
2547 struct sk_buff
*skb
)
2549 struct igb_buffer
*buffer_info
;
2550 unsigned int len
= skb_headlen(skb
);
2551 unsigned int count
= 0, i
;
2554 i
= tx_ring
->next_to_use
;
2556 buffer_info
= &tx_ring
->buffer_info
[i
];
2557 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2558 buffer_info
->length
= len
;
2559 /* set time_stamp *before* dma to help avoid a possible race */
2560 buffer_info
->time_stamp
= jiffies
;
2561 buffer_info
->dma
= pci_map_single(adapter
->pdev
, skb
->data
, len
,
2565 if (i
== tx_ring
->count
)
2568 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2569 struct skb_frag_struct
*frag
;
2571 frag
= &skb_shinfo(skb
)->frags
[f
];
2574 buffer_info
= &tx_ring
->buffer_info
[i
];
2575 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2576 buffer_info
->length
= len
;
2577 buffer_info
->time_stamp
= jiffies
;
2578 buffer_info
->dma
= pci_map_page(adapter
->pdev
,
2586 if (i
== tx_ring
->count
)
2590 i
= (i
== 0) ? tx_ring
->count
- 1 : i
- 1;
2591 tx_ring
->buffer_info
[i
].skb
= skb
;
2596 static inline void igb_tx_queue_adv(struct igb_adapter
*adapter
,
2597 struct igb_ring
*tx_ring
,
2598 int tx_flags
, int count
, u32 paylen
,
2601 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2602 struct igb_buffer
*buffer_info
;
2603 u32 olinfo_status
= 0, cmd_type_len
;
2606 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2607 E1000_ADVTXD_DCMD_DEXT
);
2609 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2610 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2612 if (tx_flags
& IGB_TX_FLAGS_TSO
) {
2613 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2615 /* insert tcp checksum */
2616 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2618 /* insert ip checksum */
2619 if (tx_flags
& IGB_TX_FLAGS_IPV4
)
2620 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2622 } else if (tx_flags
& IGB_TX_FLAGS_CSUM
) {
2623 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2626 if (tx_flags
& (IGB_TX_FLAGS_CSUM
| IGB_TX_FLAGS_TSO
|
2628 olinfo_status
|= tx_ring
->eims_value
>> 4;
2630 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2632 i
= tx_ring
->next_to_use
;
2634 buffer_info
= &tx_ring
->buffer_info
[i
];
2635 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
2636 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2637 tx_desc
->read
.cmd_type_len
=
2638 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2639 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2641 if (i
== tx_ring
->count
)
2645 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2646 /* Force memory writes to complete before letting h/w
2647 * know there are new descriptors to fetch. (Only
2648 * applicable for weak-ordered memory model archs,
2649 * such as IA-64). */
2652 tx_ring
->next_to_use
= i
;
2653 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2654 /* we need this if more than one processor can write to our tail
2655 * at a time, it syncronizes IO on IA64/Altix systems */
2659 static int __igb_maybe_stop_tx(struct net_device
*netdev
,
2660 struct igb_ring
*tx_ring
, int size
)
2662 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2664 netif_stop_queue(netdev
);
2665 /* Herbert's original patch had:
2666 * smp_mb__after_netif_stop_queue();
2667 * but since that doesn't exist yet, just open code it. */
2670 /* We need to check again in a case another CPU has just
2671 * made room available. */
2672 if (IGB_DESC_UNUSED(tx_ring
) < size
)
2676 netif_start_queue(netdev
);
2677 ++adapter
->restart_queue
;
2681 static int igb_maybe_stop_tx(struct net_device
*netdev
,
2682 struct igb_ring
*tx_ring
, int size
)
2684 if (IGB_DESC_UNUSED(tx_ring
) >= size
)
2686 return __igb_maybe_stop_tx(netdev
, tx_ring
, size
);
2689 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2691 static int igb_xmit_frame_ring_adv(struct sk_buff
*skb
,
2692 struct net_device
*netdev
,
2693 struct igb_ring
*tx_ring
)
2695 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2696 unsigned int tx_flags
= 0;
2698 unsigned long irq_flags
;
2702 len
= skb_headlen(skb
);
2704 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
2705 dev_kfree_skb_any(skb
);
2706 return NETDEV_TX_OK
;
2709 if (skb
->len
<= 0) {
2710 dev_kfree_skb_any(skb
);
2711 return NETDEV_TX_OK
;
2714 if (!spin_trylock_irqsave(&tx_ring
->tx_lock
, irq_flags
))
2715 /* Collision - tell upper layer to requeue */
2716 return NETDEV_TX_LOCKED
;
2718 /* need: 1 descriptor per page,
2719 * + 2 desc gap to keep tail from touching head,
2720 * + 1 desc for skb->data,
2721 * + 1 desc for context descriptor,
2722 * otherwise try next time */
2723 if (igb_maybe_stop_tx(netdev
, tx_ring
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2724 /* this is a hard error */
2725 spin_unlock_irqrestore(&tx_ring
->tx_lock
, irq_flags
);
2726 return NETDEV_TX_BUSY
;
2729 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2730 tx_flags
|= IGB_TX_FLAGS_VLAN
;
2731 tx_flags
|= (vlan_tx_tag_get(skb
) << IGB_TX_FLAGS_VLAN_SHIFT
);
2734 tso
= skb_is_gso(skb
) ? igb_tso_adv(adapter
, tx_ring
, skb
, tx_flags
,
2738 dev_kfree_skb_any(skb
);
2739 spin_unlock_irqrestore(&tx_ring
->tx_lock
, irq_flags
);
2740 return NETDEV_TX_OK
;
2744 tx_flags
|= IGB_TX_FLAGS_TSO
;
2745 else if (igb_tx_csum_adv(adapter
, tx_ring
, skb
, tx_flags
))
2746 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2747 tx_flags
|= IGB_TX_FLAGS_CSUM
;
2749 if (skb
->protocol
== htons(ETH_P_IP
))
2750 tx_flags
|= IGB_TX_FLAGS_IPV4
;
2752 igb_tx_queue_adv(adapter
, tx_ring
, tx_flags
,
2753 igb_tx_map_adv(adapter
, tx_ring
, skb
),
2756 netdev
->trans_start
= jiffies
;
2758 /* Make sure there is space in the ring for the next send. */
2759 igb_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 4);
2761 spin_unlock_irqrestore(&tx_ring
->tx_lock
, irq_flags
);
2762 return NETDEV_TX_OK
;
2765 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*netdev
)
2767 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2768 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[0];
2770 /* This goes back to the question of how to logically map a tx queue
2771 * to a flow. Right now, performance is impacted slightly negatively
2772 * if using multiple tx queues. If the stack breaks away from a
2773 * single qdisc implementation, we can look at this again. */
2774 return (igb_xmit_frame_ring_adv(skb
, netdev
, tx_ring
));
2778 * igb_tx_timeout - Respond to a Tx Hang
2779 * @netdev: network interface device structure
2781 static void igb_tx_timeout(struct net_device
*netdev
)
2783 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2784 struct e1000_hw
*hw
= &adapter
->hw
;
2786 /* Do the reset outside of interrupt context */
2787 adapter
->tx_timeout_count
++;
2788 schedule_work(&adapter
->reset_task
);
2789 wr32(E1000_EICS
, adapter
->eims_enable_mask
&
2790 ~(E1000_EIMS_TCP_TIMER
| E1000_EIMS_OTHER
));
2793 static void igb_reset_task(struct work_struct
*work
)
2795 struct igb_adapter
*adapter
;
2796 adapter
= container_of(work
, struct igb_adapter
, reset_task
);
2798 igb_reinit_locked(adapter
);
2802 * igb_get_stats - Get System Network Statistics
2803 * @netdev: network interface device structure
2805 * Returns the address of the device statistics structure.
2806 * The statistics are actually updated from the timer callback.
2808 static struct net_device_stats
*
2809 igb_get_stats(struct net_device
*netdev
)
2811 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2813 /* only return the current stats */
2814 return &adapter
->net_stats
;
2818 * igb_change_mtu - Change the Maximum Transfer Unit
2819 * @netdev: network interface device structure
2820 * @new_mtu: new value for maximum frame size
2822 * Returns 0 on success, negative on failure
2824 static int igb_change_mtu(struct net_device
*netdev
, int new_mtu
)
2826 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2827 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2829 if ((max_frame
< ETH_ZLEN
+ ETH_FCS_LEN
) ||
2830 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
2831 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
2835 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2836 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
2837 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
2841 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
2843 /* igb_down has a dependency on max_frame_size */
2844 adapter
->max_frame_size
= max_frame
;
2845 if (netif_running(netdev
))
2848 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2849 * means we reserve 2 more, this pushes us to allocate from the next
2851 * i.e. RXBUFFER_2048 --> size-4096 slab
2854 if (max_frame
<= IGB_RXBUFFER_256
)
2855 adapter
->rx_buffer_len
= IGB_RXBUFFER_256
;
2856 else if (max_frame
<= IGB_RXBUFFER_512
)
2857 adapter
->rx_buffer_len
= IGB_RXBUFFER_512
;
2858 else if (max_frame
<= IGB_RXBUFFER_1024
)
2859 adapter
->rx_buffer_len
= IGB_RXBUFFER_1024
;
2860 else if (max_frame
<= IGB_RXBUFFER_2048
)
2861 adapter
->rx_buffer_len
= IGB_RXBUFFER_2048
;
2863 adapter
->rx_buffer_len
= IGB_RXBUFFER_4096
;
2864 /* adjust allocation if LPE protects us, and we aren't using SBP */
2865 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
2866 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
))
2867 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
2869 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
2870 netdev
->mtu
, new_mtu
);
2871 netdev
->mtu
= new_mtu
;
2873 if (netif_running(netdev
))
2878 clear_bit(__IGB_RESETTING
, &adapter
->state
);
2884 * igb_update_stats - Update the board statistics counters
2885 * @adapter: board private structure
2888 void igb_update_stats(struct igb_adapter
*adapter
)
2890 struct e1000_hw
*hw
= &adapter
->hw
;
2891 struct pci_dev
*pdev
= adapter
->pdev
;
2894 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2897 * Prevent stats update while adapter is being reset, or if the pci
2898 * connection is down.
2900 if (adapter
->link_speed
== 0)
2902 if (pci_channel_offline(pdev
))
2905 adapter
->stats
.crcerrs
+= rd32(E1000_CRCERRS
);
2906 adapter
->stats
.gprc
+= rd32(E1000_GPRC
);
2907 adapter
->stats
.gorc
+= rd32(E1000_GORCL
);
2908 rd32(E1000_GORCH
); /* clear GORCL */
2909 adapter
->stats
.bprc
+= rd32(E1000_BPRC
);
2910 adapter
->stats
.mprc
+= rd32(E1000_MPRC
);
2911 adapter
->stats
.roc
+= rd32(E1000_ROC
);
2913 adapter
->stats
.prc64
+= rd32(E1000_PRC64
);
2914 adapter
->stats
.prc127
+= rd32(E1000_PRC127
);
2915 adapter
->stats
.prc255
+= rd32(E1000_PRC255
);
2916 adapter
->stats
.prc511
+= rd32(E1000_PRC511
);
2917 adapter
->stats
.prc1023
+= rd32(E1000_PRC1023
);
2918 adapter
->stats
.prc1522
+= rd32(E1000_PRC1522
);
2919 adapter
->stats
.symerrs
+= rd32(E1000_SYMERRS
);
2920 adapter
->stats
.sec
+= rd32(E1000_SEC
);
2922 adapter
->stats
.mpc
+= rd32(E1000_MPC
);
2923 adapter
->stats
.scc
+= rd32(E1000_SCC
);
2924 adapter
->stats
.ecol
+= rd32(E1000_ECOL
);
2925 adapter
->stats
.mcc
+= rd32(E1000_MCC
);
2926 adapter
->stats
.latecol
+= rd32(E1000_LATECOL
);
2927 adapter
->stats
.dc
+= rd32(E1000_DC
);
2928 adapter
->stats
.rlec
+= rd32(E1000_RLEC
);
2929 adapter
->stats
.xonrxc
+= rd32(E1000_XONRXC
);
2930 adapter
->stats
.xontxc
+= rd32(E1000_XONTXC
);
2931 adapter
->stats
.xoffrxc
+= rd32(E1000_XOFFRXC
);
2932 adapter
->stats
.xofftxc
+= rd32(E1000_XOFFTXC
);
2933 adapter
->stats
.fcruc
+= rd32(E1000_FCRUC
);
2934 adapter
->stats
.gptc
+= rd32(E1000_GPTC
);
2935 adapter
->stats
.gotc
+= rd32(E1000_GOTCL
);
2936 rd32(E1000_GOTCH
); /* clear GOTCL */
2937 adapter
->stats
.rnbc
+= rd32(E1000_RNBC
);
2938 adapter
->stats
.ruc
+= rd32(E1000_RUC
);
2939 adapter
->stats
.rfc
+= rd32(E1000_RFC
);
2940 adapter
->stats
.rjc
+= rd32(E1000_RJC
);
2941 adapter
->stats
.tor
+= rd32(E1000_TORH
);
2942 adapter
->stats
.tot
+= rd32(E1000_TOTH
);
2943 adapter
->stats
.tpr
+= rd32(E1000_TPR
);
2945 adapter
->stats
.ptc64
+= rd32(E1000_PTC64
);
2946 adapter
->stats
.ptc127
+= rd32(E1000_PTC127
);
2947 adapter
->stats
.ptc255
+= rd32(E1000_PTC255
);
2948 adapter
->stats
.ptc511
+= rd32(E1000_PTC511
);
2949 adapter
->stats
.ptc1023
+= rd32(E1000_PTC1023
);
2950 adapter
->stats
.ptc1522
+= rd32(E1000_PTC1522
);
2952 adapter
->stats
.mptc
+= rd32(E1000_MPTC
);
2953 adapter
->stats
.bptc
+= rd32(E1000_BPTC
);
2955 /* used for adaptive IFS */
2957 hw
->mac
.tx_packet_delta
= rd32(E1000_TPT
);
2958 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
2959 hw
->mac
.collision_delta
= rd32(E1000_COLC
);
2960 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
2962 adapter
->stats
.algnerrc
+= rd32(E1000_ALGNERRC
);
2963 adapter
->stats
.rxerrc
+= rd32(E1000_RXERRC
);
2964 adapter
->stats
.tncrs
+= rd32(E1000_TNCRS
);
2965 adapter
->stats
.tsctc
+= rd32(E1000_TSCTC
);
2966 adapter
->stats
.tsctfc
+= rd32(E1000_TSCTFC
);
2968 adapter
->stats
.iac
+= rd32(E1000_IAC
);
2969 adapter
->stats
.icrxoc
+= rd32(E1000_ICRXOC
);
2970 adapter
->stats
.icrxptc
+= rd32(E1000_ICRXPTC
);
2971 adapter
->stats
.icrxatc
+= rd32(E1000_ICRXATC
);
2972 adapter
->stats
.ictxptc
+= rd32(E1000_ICTXPTC
);
2973 adapter
->stats
.ictxatc
+= rd32(E1000_ICTXATC
);
2974 adapter
->stats
.ictxqec
+= rd32(E1000_ICTXQEC
);
2975 adapter
->stats
.ictxqmtc
+= rd32(E1000_ICTXQMTC
);
2976 adapter
->stats
.icrxdmtc
+= rd32(E1000_ICRXDMTC
);
2978 /* Fill out the OS statistics structure */
2979 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
2980 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
2984 /* RLEC on some newer hardware can be incorrect so build
2985 * our own version based on RUC and ROC */
2986 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
2987 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
2988 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
2989 adapter
->stats
.cexterr
;
2990 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
2992 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
2993 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
2994 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
2997 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
2998 adapter
->stats
.latecol
;
2999 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3000 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3001 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3003 /* Tx Dropped needs to be maintained elsewhere */
3006 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
3007 if ((adapter
->link_speed
== SPEED_1000
) &&
3008 (!hw
->phy
.ops
.read_phy_reg(hw
, PHY_1000T_STATUS
,
3010 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3011 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3015 /* Management Stats */
3016 adapter
->stats
.mgptc
+= rd32(E1000_MGTPTC
);
3017 adapter
->stats
.mgprc
+= rd32(E1000_MGTPRC
);
3018 adapter
->stats
.mgpdc
+= rd32(E1000_MGTPDC
);
3022 static irqreturn_t
igb_msix_other(int irq
, void *data
)
3024 struct net_device
*netdev
= data
;
3025 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3026 struct e1000_hw
*hw
= &adapter
->hw
;
3028 /* disable interrupts from the "other" bit, avoid re-entry */
3029 wr32(E1000_EIMC
, E1000_EIMS_OTHER
);
3031 eicr
= rd32(E1000_EICR
);
3033 if (eicr
& E1000_EIMS_OTHER
) {
3034 u32 icr
= rd32(E1000_ICR
);
3035 /* reading ICR causes bit 31 of EICR to be cleared */
3036 if (!(icr
& E1000_ICR_LSC
))
3037 goto no_link_interrupt
;
3038 hw
->mac
.get_link_status
= 1;
3039 /* guard against interrupt when we're going down */
3040 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3041 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3045 wr32(E1000_IMS
, E1000_IMS_LSC
);
3046 wr32(E1000_EIMS
, E1000_EIMS_OTHER
);
3051 static irqreturn_t
igb_msix_tx(int irq
, void *data
)
3053 struct igb_ring
*tx_ring
= data
;
3054 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3055 struct e1000_hw
*hw
= &adapter
->hw
;
3057 if (!tx_ring
->itr_val
)
3058 wr32(E1000_EIMC
, tx_ring
->eims_value
);
3060 tx_ring
->total_bytes
= 0;
3061 tx_ring
->total_packets
= 0;
3062 if (!igb_clean_tx_irq(adapter
, tx_ring
))
3063 /* Ring was not completely cleaned, so fire another interrupt */
3064 wr32(E1000_EICS
, tx_ring
->eims_value
);
3066 if (!tx_ring
->itr_val
)
3067 wr32(E1000_EIMS
, tx_ring
->eims_value
);
3071 static irqreturn_t
igb_msix_rx(int irq
, void *data
)
3073 struct igb_ring
*rx_ring
= data
;
3074 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3075 struct e1000_hw
*hw
= &adapter
->hw
;
3077 if (!rx_ring
->itr_val
)
3078 wr32(E1000_EIMC
, rx_ring
->eims_value
);
3080 if (netif_rx_schedule_prep(adapter
->netdev
, &rx_ring
->napi
)) {
3081 rx_ring
->total_bytes
= 0;
3082 rx_ring
->total_packets
= 0;
3083 rx_ring
->no_itr_adjust
= 0;
3084 __netif_rx_schedule(adapter
->netdev
, &rx_ring
->napi
);
3086 if (!rx_ring
->no_itr_adjust
) {
3087 igb_lower_rx_eitr(adapter
, rx_ring
);
3088 rx_ring
->no_itr_adjust
= 1;
3097 * igb_intr_msi - Interrupt Handler
3098 * @irq: interrupt number
3099 * @data: pointer to a network interface device structure
3101 static irqreturn_t
igb_intr_msi(int irq
, void *data
)
3103 struct net_device
*netdev
= data
;
3104 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3105 struct napi_struct
*napi
= &adapter
->napi
;
3106 struct e1000_hw
*hw
= &adapter
->hw
;
3107 /* read ICR disables interrupts using IAM */
3108 u32 icr
= rd32(E1000_ICR
);
3110 /* Write the ITR value calculated at the end of the
3111 * previous interrupt.
3113 if (adapter
->set_itr
) {
3115 1000000000 / (adapter
->itr
* 256));
3116 adapter
->set_itr
= 0;
3119 /* read ICR disables interrupts using IAM */
3120 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3121 hw
->mac
.get_link_status
= 1;
3122 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3123 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3126 if (netif_rx_schedule_prep(netdev
, napi
)) {
3127 adapter
->tx_ring
->total_bytes
= 0;
3128 adapter
->tx_ring
->total_packets
= 0;
3129 adapter
->rx_ring
->total_bytes
= 0;
3130 adapter
->rx_ring
->total_packets
= 0;
3131 __netif_rx_schedule(netdev
, napi
);
3138 * igb_intr - Interrupt Handler
3139 * @irq: interrupt number
3140 * @data: pointer to a network interface device structure
3142 static irqreturn_t
igb_intr(int irq
, void *data
)
3144 struct net_device
*netdev
= data
;
3145 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3146 struct napi_struct
*napi
= &adapter
->napi
;
3147 struct e1000_hw
*hw
= &adapter
->hw
;
3148 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3149 * need for the IMC write */
3150 u32 icr
= rd32(E1000_ICR
);
3153 return IRQ_NONE
; /* Not our interrupt */
3155 /* Write the ITR value calculated at the end of the
3156 * previous interrupt.
3158 if (adapter
->set_itr
) {
3160 1000000000 / (adapter
->itr
* 256));
3161 adapter
->set_itr
= 0;
3164 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3165 * not set, then the adapter didn't send an interrupt */
3166 if (!(icr
& E1000_ICR_INT_ASSERTED
))
3169 eicr
= rd32(E1000_EICR
);
3171 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3172 hw
->mac
.get_link_status
= 1;
3173 /* guard against interrupt when we're going down */
3174 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3175 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3178 if (netif_rx_schedule_prep(netdev
, napi
)) {
3179 adapter
->tx_ring
->total_bytes
= 0;
3180 adapter
->rx_ring
->total_bytes
= 0;
3181 adapter
->tx_ring
->total_packets
= 0;
3182 adapter
->rx_ring
->total_packets
= 0;
3183 __netif_rx_schedule(netdev
, napi
);
3190 * igb_clean - NAPI Rx polling callback
3191 * @adapter: board private structure
3193 static int igb_clean(struct napi_struct
*napi
, int budget
)
3195 struct igb_adapter
*adapter
= container_of(napi
, struct igb_adapter
,
3197 struct net_device
*netdev
= adapter
->netdev
;
3198 int tx_clean_complete
= 1, work_done
= 0;
3201 /* Must NOT use netdev_priv macro here. */
3202 adapter
= netdev
->priv
;
3204 /* Keep link state information with original netdev */
3205 if (!netif_carrier_ok(netdev
))
3208 /* igb_clean is called per-cpu. This lock protects tx_ring[i] from
3209 * being cleaned by multiple cpus simultaneously. A failure obtaining
3210 * the lock means tx_ring[i] is currently being cleaned anyway. */
3211 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
3212 if (spin_trylock(&adapter
->tx_ring
[i
].tx_clean_lock
)) {
3213 tx_clean_complete
&= igb_clean_tx_irq(adapter
,
3214 &adapter
->tx_ring
[i
]);
3215 spin_unlock(&adapter
->tx_ring
[i
].tx_clean_lock
);
3219 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
3220 igb_clean_rx_irq_adv(adapter
, &adapter
->rx_ring
[i
], &work_done
,
3221 adapter
->rx_ring
[i
].napi
.weight
);
3223 /* If no Tx and not enough Rx work done, exit the polling mode */
3224 if ((tx_clean_complete
&& (work_done
< budget
)) ||
3225 !netif_running(netdev
)) {
3227 if (adapter
->itr_setting
& 3)
3228 igb_set_itr(adapter
, E1000_ITR
, false);
3229 netif_rx_complete(netdev
, napi
);
3230 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3231 igb_irq_enable(adapter
);
3238 static int igb_clean_rx_ring_msix(struct napi_struct
*napi
, int budget
)
3240 struct igb_ring
*rx_ring
= container_of(napi
, struct igb_ring
, napi
);
3241 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3242 struct e1000_hw
*hw
= &adapter
->hw
;
3243 struct net_device
*netdev
= adapter
->netdev
;
3246 /* Keep link state information with original netdev */
3247 if (!netif_carrier_ok(netdev
))
3250 igb_clean_rx_irq_adv(adapter
, rx_ring
, &work_done
, budget
);
3253 /* If not enough Rx work done, exit the polling mode */
3254 if ((work_done
== 0) || !netif_running(netdev
)) {
3256 netif_rx_complete(netdev
, napi
);
3258 wr32(E1000_EIMS
, rx_ring
->eims_value
);
3259 if ((adapter
->itr_setting
& 3) && !rx_ring
->no_itr_adjust
&&
3260 (rx_ring
->total_packets
> IGB_DYN_ITR_PACKET_THRESHOLD
)) {
3261 int mean_size
= rx_ring
->total_bytes
/
3262 rx_ring
->total_packets
;
3263 if (mean_size
< IGB_DYN_ITR_LENGTH_LOW
)
3264 igb_raise_rx_eitr(adapter
, rx_ring
);
3265 else if (mean_size
> IGB_DYN_ITR_LENGTH_HIGH
)
3266 igb_lower_rx_eitr(adapter
, rx_ring
);
3274 * igb_clean_tx_irq - Reclaim resources after transmit completes
3275 * @adapter: board private structure
3276 * returns true if ring is completely cleaned
3278 static bool igb_clean_tx_irq(struct igb_adapter
*adapter
,
3279 struct igb_ring
*tx_ring
)
3281 struct net_device
*netdev
= adapter
->netdev
;
3282 struct e1000_hw
*hw
= &adapter
->hw
;
3283 struct e1000_tx_desc
*tx_desc
;
3284 struct igb_buffer
*buffer_info
;
3285 struct sk_buff
*skb
;
3288 unsigned int count
= 0;
3289 bool cleaned
= false;
3291 unsigned int total_bytes
= 0, total_packets
= 0;
3294 head
= *(volatile u32
*)((struct e1000_tx_desc
*)tx_ring
->desc
3296 head
= le32_to_cpu(head
);
3297 i
= tx_ring
->next_to_clean
;
3301 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3302 buffer_info
= &tx_ring
->buffer_info
[i
];
3303 skb
= buffer_info
->skb
;
3306 unsigned int segs
, bytecount
;
3307 /* gso_segs is currently only valid for tcp */
3308 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3309 /* multiply data chunks by size of headers */
3310 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3312 total_packets
+= segs
;
3313 total_bytes
+= bytecount
;
3316 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
3317 tx_desc
->upper
.data
= 0;
3320 if (i
== tx_ring
->count
)
3324 if (count
== IGB_MAX_TX_CLEAN
) {
3331 head
= *(volatile u32
*)((struct e1000_tx_desc
*)tx_ring
->desc
3333 head
= le32_to_cpu(head
);
3334 if (head
== oldhead
)
3339 tx_ring
->next_to_clean
= i
;
3341 if (unlikely(cleaned
&&
3342 netif_carrier_ok(netdev
) &&
3343 IGB_DESC_UNUSED(tx_ring
) >= IGB_TX_QUEUE_WAKE
)) {
3344 /* Make sure that anybody stopping the queue after this
3345 * sees the new next_to_clean.
3348 if (netif_queue_stopped(netdev
) &&
3349 !(test_bit(__IGB_DOWN
, &adapter
->state
))) {
3350 netif_wake_queue(netdev
);
3351 ++adapter
->restart_queue
;
3355 if (tx_ring
->detect_tx_hung
) {
3356 /* Detect a transmit hang in hardware, this serializes the
3357 * check with the clearing of time_stamp and movement of i */
3358 tx_ring
->detect_tx_hung
= false;
3359 if (tx_ring
->buffer_info
[i
].time_stamp
&&
3360 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
3361 (adapter
->tx_timeout_factor
* HZ
))
3362 && !(rd32(E1000_STATUS
) &
3363 E1000_STATUS_TXOFF
)) {
3365 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3366 /* detected Tx unit hang */
3367 dev_err(&adapter
->pdev
->dev
,
3368 "Detected Tx Unit Hang\n"
3372 " next_to_use <%x>\n"
3373 " next_to_clean <%x>\n"
3375 "buffer_info[next_to_clean]\n"
3376 " time_stamp <%lx>\n"
3378 " desc.status <%x>\n",
3379 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3380 sizeof(struct igb_ring
)),
3381 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
3382 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
3383 tx_ring
->next_to_use
,
3384 tx_ring
->next_to_clean
,
3386 tx_ring
->buffer_info
[i
].time_stamp
,
3388 tx_desc
->upper
.fields
.status
);
3389 netif_stop_queue(netdev
);
3392 tx_ring
->total_bytes
+= total_bytes
;
3393 tx_ring
->total_packets
+= total_packets
;
3394 adapter
->net_stats
.tx_bytes
+= total_bytes
;
3395 adapter
->net_stats
.tx_packets
+= total_packets
;
3401 * igb_receive_skb - helper function to handle rx indications
3402 * @adapter: board private structure
3403 * @status: descriptor status field as written by hardware
3404 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3405 * @skb: pointer to sk_buff to be indicated to stack
3407 static void igb_receive_skb(struct igb_adapter
*adapter
, u8 status
, u16 vlan
,
3408 struct sk_buff
*skb
)
3410 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
3411 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3413 E1000_RXD_SPC_VLAN_MASK
);
3415 netif_receive_skb(skb
);
3419 static inline void igb_rx_checksum_adv(struct igb_adapter
*adapter
,
3420 u32 status_err
, struct sk_buff
*skb
)
3422 skb
->ip_summed
= CHECKSUM_NONE
;
3424 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3425 if ((status_err
& E1000_RXD_STAT_IXSM
) || !adapter
->rx_csum
)
3427 /* TCP/UDP checksum error bit is set */
3429 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
3430 /* let the stack verify checksum errors */
3431 adapter
->hw_csum_err
++;
3434 /* It must be a TCP or UDP packet with a valid checksum */
3435 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
3436 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3438 adapter
->hw_csum_good
++;
3441 static bool igb_clean_rx_irq_adv(struct igb_adapter
*adapter
,
3442 struct igb_ring
*rx_ring
,
3443 int *work_done
, int budget
)
3445 struct net_device
*netdev
= adapter
->netdev
;
3446 struct pci_dev
*pdev
= adapter
->pdev
;
3447 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
3448 struct igb_buffer
*buffer_info
, *next_buffer
;
3449 struct sk_buff
*skb
;
3451 u32 length
, hlen
, staterr
;
3452 bool cleaned
= false;
3453 int cleaned_count
= 0;
3454 unsigned int total_bytes
= 0, total_packets
= 0;
3456 i
= rx_ring
->next_to_clean
;
3457 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3458 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3460 while (staterr
& E1000_RXD_STAT_DD
) {
3461 if (*work_done
>= budget
)
3464 buffer_info
= &rx_ring
->buffer_info
[i
];
3466 /* HW will not DMA in data larger than the given buffer, even
3467 * if it parses the (NFS, of course) header to be larger. In
3468 * that case, it fills the header buffer and spills the rest
3471 hlen
= le16_to_cpu((rx_desc
->wb
.lower
.lo_dword
.hdr_info
&
3472 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
);
3473 if (hlen
> adapter
->rx_ps_hdr_size
)
3474 hlen
= adapter
->rx_ps_hdr_size
;
3476 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
3480 if (rx_ring
->pending_skb
!= NULL
) {
3481 skb
= rx_ring
->pending_skb
;
3482 rx_ring
->pending_skb
= NULL
;
3483 j
= rx_ring
->pending_skb_page
;
3485 skb
= buffer_info
->skb
;
3486 prefetch(skb
->data
- NET_IP_ALIGN
);
3487 buffer_info
->skb
= NULL
;
3489 pci_unmap_single(pdev
, buffer_info
->dma
,
3490 adapter
->rx_ps_hdr_size
+
3492 PCI_DMA_FROMDEVICE
);
3495 pci_unmap_single(pdev
, buffer_info
->dma
,
3496 adapter
->rx_buffer_len
+
3498 PCI_DMA_FROMDEVICE
);
3499 skb_put(skb
, length
);
3506 pci_unmap_page(pdev
, buffer_info
->page_dma
,
3507 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3508 buffer_info
->page_dma
= 0;
3509 skb_fill_page_desc(skb
, j
, buffer_info
->page
,
3511 buffer_info
->page
= NULL
;
3514 skb
->data_len
+= length
;
3515 skb
->truesize
+= length
;
3516 rx_desc
->wb
.upper
.status_error
= 0;
3517 if (staterr
& E1000_RXD_STAT_EOP
)
3523 if (i
== rx_ring
->count
)
3526 buffer_info
= &rx_ring
->buffer_info
[i
];
3527 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3528 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3529 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
3530 if (!(staterr
& E1000_RXD_STAT_DD
)) {
3531 rx_ring
->pending_skb
= skb
;
3532 rx_ring
->pending_skb_page
= j
;
3537 pskb_trim(skb
, skb
->len
- 4);
3539 if (i
== rx_ring
->count
)
3541 next_rxd
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3543 next_buffer
= &rx_ring
->buffer_info
[i
];
3545 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
3546 dev_kfree_skb_irq(skb
);
3549 rx_ring
->no_itr_adjust
|= (staterr
& E1000_RXD_STAT_DYNINT
);
3551 total_bytes
+= skb
->len
;
3554 igb_rx_checksum_adv(adapter
, staterr
, skb
);
3556 skb
->protocol
= eth_type_trans(skb
, netdev
);
3558 igb_receive_skb(adapter
, staterr
, rx_desc
->wb
.upper
.vlan
, skb
);
3560 netdev
->last_rx
= jiffies
;
3563 rx_desc
->wb
.upper
.status_error
= 0;
3565 /* return some buffers to hardware, one at a time is too slow */
3566 if (cleaned_count
>= IGB_RX_BUFFER_WRITE
) {
3567 igb_alloc_rx_buffers_adv(adapter
, rx_ring
,
3572 /* use prefetched values */
3574 buffer_info
= next_buffer
;
3576 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3579 rx_ring
->next_to_clean
= i
;
3580 cleaned_count
= IGB_DESC_UNUSED(rx_ring
);
3583 igb_alloc_rx_buffers_adv(adapter
, rx_ring
, cleaned_count
);
3585 rx_ring
->total_packets
+= total_packets
;
3586 rx_ring
->total_bytes
+= total_bytes
;
3587 rx_ring
->rx_stats
.packets
+= total_packets
;
3588 rx_ring
->rx_stats
.bytes
+= total_bytes
;
3589 adapter
->net_stats
.rx_bytes
+= total_bytes
;
3590 adapter
->net_stats
.rx_packets
+= total_packets
;
3596 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3597 * @adapter: address of board private structure
3599 static void igb_alloc_rx_buffers_adv(struct igb_adapter
*adapter
,
3600 struct igb_ring
*rx_ring
,
3603 struct net_device
*netdev
= adapter
->netdev
;
3604 struct pci_dev
*pdev
= adapter
->pdev
;
3605 union e1000_adv_rx_desc
*rx_desc
;
3606 struct igb_buffer
*buffer_info
;
3607 struct sk_buff
*skb
;
3610 i
= rx_ring
->next_to_use
;
3611 buffer_info
= &rx_ring
->buffer_info
[i
];
3613 while (cleaned_count
--) {
3614 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3616 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page
) {
3617 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
3618 if (!buffer_info
->page
) {
3619 adapter
->alloc_rx_buff_failed
++;
3622 buffer_info
->page_dma
=
3626 PCI_DMA_FROMDEVICE
);
3629 if (!buffer_info
->skb
) {
3632 if (adapter
->rx_ps_hdr_size
)
3633 bufsz
= adapter
->rx_ps_hdr_size
;
3635 bufsz
= adapter
->rx_buffer_len
;
3636 bufsz
+= NET_IP_ALIGN
;
3637 skb
= netdev_alloc_skb(netdev
, bufsz
);
3640 adapter
->alloc_rx_buff_failed
++;
3644 /* Make buffer alignment 2 beyond a 16 byte boundary
3645 * this will result in a 16 byte aligned IP header after
3646 * the 14 byte MAC header is removed
3648 skb_reserve(skb
, NET_IP_ALIGN
);
3650 buffer_info
->skb
= skb
;
3651 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
3653 PCI_DMA_FROMDEVICE
);
3656 /* Refresh the desc even if buffer_addrs didn't change because
3657 * each write-back erases this info. */
3658 if (adapter
->rx_ps_hdr_size
) {
3659 rx_desc
->read
.pkt_addr
=
3660 cpu_to_le64(buffer_info
->page_dma
);
3661 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
3663 rx_desc
->read
.pkt_addr
=
3664 cpu_to_le64(buffer_info
->dma
);
3665 rx_desc
->read
.hdr_addr
= 0;
3669 if (i
== rx_ring
->count
)
3671 buffer_info
= &rx_ring
->buffer_info
[i
];
3675 if (rx_ring
->next_to_use
!= i
) {
3676 rx_ring
->next_to_use
= i
;
3678 i
= (rx_ring
->count
- 1);
3682 /* Force memory writes to complete before letting h/w
3683 * know there are new descriptors to fetch. (Only
3684 * applicable for weak-ordered memory model archs,
3685 * such as IA-64). */
3687 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
3697 static int igb_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
3699 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3700 struct mii_ioctl_data
*data
= if_mii(ifr
);
3702 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
3707 data
->phy_id
= adapter
->hw
.phy
.addr
;
3710 if (!capable(CAP_NET_ADMIN
))
3712 if (adapter
->hw
.phy
.ops
.read_phy_reg(&adapter
->hw
,
3714 & 0x1F, &data
->val_out
))
3730 static int igb_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
3736 return igb_mii_ioctl(netdev
, ifr
, cmd
);
3742 static void igb_vlan_rx_register(struct net_device
*netdev
,
3743 struct vlan_group
*grp
)
3745 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3746 struct e1000_hw
*hw
= &adapter
->hw
;
3749 igb_irq_disable(adapter
);
3750 adapter
->vlgrp
= grp
;
3753 /* enable VLAN tag insert/strip */
3754 ctrl
= rd32(E1000_CTRL
);
3755 ctrl
|= E1000_CTRL_VME
;
3756 wr32(E1000_CTRL
, ctrl
);
3758 /* enable VLAN receive filtering */
3759 rctl
= rd32(E1000_RCTL
);
3760 rctl
|= E1000_RCTL_VFE
;
3761 rctl
&= ~E1000_RCTL_CFIEN
;
3762 wr32(E1000_RCTL
, rctl
);
3763 igb_update_mng_vlan(adapter
);
3765 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
3767 /* disable VLAN tag insert/strip */
3768 ctrl
= rd32(E1000_CTRL
);
3769 ctrl
&= ~E1000_CTRL_VME
;
3770 wr32(E1000_CTRL
, ctrl
);
3772 /* disable VLAN filtering */
3773 rctl
= rd32(E1000_RCTL
);
3774 rctl
&= ~E1000_RCTL_VFE
;
3775 wr32(E1000_RCTL
, rctl
);
3776 if (adapter
->mng_vlan_id
!= (u16
)IGB_MNG_VLAN_NONE
) {
3777 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
3778 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
3781 adapter
->max_frame_size
);
3784 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3785 igb_irq_enable(adapter
);
3788 static void igb_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
3790 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3791 struct e1000_hw
*hw
= &adapter
->hw
;
3794 if ((adapter
->hw
.mng_cookie
.status
&
3795 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3796 (vid
== adapter
->mng_vlan_id
))
3798 /* add VID to filter table */
3799 index
= (vid
>> 5) & 0x7F;
3800 vfta
= array_rd32(E1000_VFTA
, index
);
3801 vfta
|= (1 << (vid
& 0x1F));
3802 igb_write_vfta(&adapter
->hw
, index
, vfta
);
3805 static void igb_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
3807 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3808 struct e1000_hw
*hw
= &adapter
->hw
;
3811 igb_irq_disable(adapter
);
3812 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
3814 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3815 igb_irq_enable(adapter
);
3817 if ((adapter
->hw
.mng_cookie
.status
&
3818 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3819 (vid
== adapter
->mng_vlan_id
)) {
3820 /* release control to f/w */
3821 igb_release_hw_control(adapter
);
3825 /* remove VID from filter table */
3826 index
= (vid
>> 5) & 0x7F;
3827 vfta
= array_rd32(E1000_VFTA
, index
);
3828 vfta
&= ~(1 << (vid
& 0x1F));
3829 igb_write_vfta(&adapter
->hw
, index
, vfta
);
3832 static void igb_restore_vlan(struct igb_adapter
*adapter
)
3834 igb_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
3836 if (adapter
->vlgrp
) {
3838 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
3839 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
3841 igb_vlan_rx_add_vid(adapter
->netdev
, vid
);
3846 int igb_set_spd_dplx(struct igb_adapter
*adapter
, u16 spddplx
)
3848 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3852 /* Fiber NICs only allow 1000 gbps Full duplex */
3853 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
3854 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
3855 dev_err(&adapter
->pdev
->dev
,
3856 "Unsupported Speed/Duplex configuration\n");
3861 case SPEED_10
+ DUPLEX_HALF
:
3862 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
3864 case SPEED_10
+ DUPLEX_FULL
:
3865 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
3867 case SPEED_100
+ DUPLEX_HALF
:
3868 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
3870 case SPEED_100
+ DUPLEX_FULL
:
3871 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
3873 case SPEED_1000
+ DUPLEX_FULL
:
3875 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
3877 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
3879 dev_err(&adapter
->pdev
->dev
,
3880 "Unsupported Speed/Duplex configuration\n");
3887 static int igb_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3889 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3890 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3891 struct e1000_hw
*hw
= &adapter
->hw
;
3892 u32 ctrl
, ctrl_ext
, rctl
, status
;
3893 u32 wufc
= adapter
->wol
;
3898 netif_device_detach(netdev
);
3900 if (netif_running(netdev
)) {
3901 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
3903 igb_free_irq(adapter
);
3907 retval
= pci_save_state(pdev
);
3912 status
= rd32(E1000_STATUS
);
3913 if (status
& E1000_STATUS_LU
)
3914 wufc
&= ~E1000_WUFC_LNKC
;
3917 igb_setup_rctl(adapter
);
3918 igb_set_multi(netdev
);
3920 /* turn on all-multi mode if wake on multicast is enabled */
3921 if (wufc
& E1000_WUFC_MC
) {
3922 rctl
= rd32(E1000_RCTL
);
3923 rctl
|= E1000_RCTL_MPE
;
3924 wr32(E1000_RCTL
, rctl
);
3927 ctrl
= rd32(E1000_CTRL
);
3928 /* advertise wake from D3Cold */
3929 #define E1000_CTRL_ADVD3WUC 0x00100000
3930 /* phy power management enable */
3931 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3932 ctrl
|= E1000_CTRL_ADVD3WUC
;
3933 wr32(E1000_CTRL
, ctrl
);
3935 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
3936 adapter
->hw
.phy
.media_type
==
3937 e1000_media_type_internal_serdes
) {
3938 /* keep the laser running in D3 */
3939 ctrl_ext
= rd32(E1000_CTRL_EXT
);
3940 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
3941 wr32(E1000_CTRL_EXT
, ctrl_ext
);
3944 /* Allow time for pending master requests to run */
3945 igb_disable_pcie_master(&adapter
->hw
);
3947 wr32(E1000_WUC
, E1000_WUC_PME_EN
);
3948 wr32(E1000_WUFC
, wufc
);
3949 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3950 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3953 wr32(E1000_WUFC
, 0);
3954 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3955 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3958 igb_release_manageability(adapter
);
3960 /* make sure adapter isn't asleep if manageability is enabled */
3961 if (adapter
->en_mng_pt
) {
3962 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3963 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3966 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3967 * would have already happened in close and is redundant. */
3968 igb_release_hw_control(adapter
);
3970 pci_disable_device(pdev
);
3972 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
3978 static int igb_resume(struct pci_dev
*pdev
)
3980 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3981 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3982 struct e1000_hw
*hw
= &adapter
->hw
;
3985 pci_set_power_state(pdev
, PCI_D0
);
3986 pci_restore_state(pdev
);
3987 err
= pci_enable_device(pdev
);
3990 "igb: Cannot enable PCI device from suspend\n");
3993 pci_set_master(pdev
);
3995 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3996 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3998 if (netif_running(netdev
)) {
3999 err
= igb_request_irq(adapter
);
4004 /* e1000_power_up_phy(adapter); */
4007 wr32(E1000_WUS
, ~0);
4009 igb_init_manageability(adapter
);
4011 if (netif_running(netdev
))
4014 netif_device_attach(netdev
);
4016 /* let the f/w know that the h/w is now under the control of the
4018 igb_get_hw_control(adapter
);
4024 static void igb_shutdown(struct pci_dev
*pdev
)
4026 igb_suspend(pdev
, PMSG_SUSPEND
);
4029 #ifdef CONFIG_NET_POLL_CONTROLLER
4031 * Polling 'interrupt' - used by things like netconsole to send skbs
4032 * without having to re-enable interrupts. It's not called while
4033 * the interrupt routine is executing.
4035 static void igb_netpoll(struct net_device
*netdev
)
4037 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4041 igb_irq_disable(adapter
);
4042 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
4043 igb_clean_tx_irq(adapter
, &adapter
->tx_ring
[i
]);
4045 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
4046 igb_clean_rx_irq_adv(adapter
, &adapter
->rx_ring
[i
],
4048 adapter
->rx_ring
[i
].napi
.weight
);
4050 igb_irq_enable(adapter
);
4052 #endif /* CONFIG_NET_POLL_CONTROLLER */
4055 * igb_io_error_detected - called when PCI error is detected
4056 * @pdev: Pointer to PCI device
4057 * @state: The current pci connection state
4059 * This function is called after a PCI bus error affecting
4060 * this device has been detected.
4062 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*pdev
,
4063 pci_channel_state_t state
)
4065 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4066 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4068 netif_device_detach(netdev
);
4070 if (netif_running(netdev
))
4072 pci_disable_device(pdev
);
4074 /* Request a slot slot reset. */
4075 return PCI_ERS_RESULT_NEED_RESET
;
4079 * igb_io_slot_reset - called after the pci bus has been reset.
4080 * @pdev: Pointer to PCI device
4082 * Restart the card from scratch, as if from a cold-boot. Implementation
4083 * resembles the first-half of the igb_resume routine.
4085 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*pdev
)
4087 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4088 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4089 struct e1000_hw
*hw
= &adapter
->hw
;
4091 if (pci_enable_device(pdev
)) {
4093 "Cannot re-enable PCI device after reset.\n");
4094 return PCI_ERS_RESULT_DISCONNECT
;
4096 pci_set_master(pdev
);
4098 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4099 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4102 wr32(E1000_WUS
, ~0);
4104 return PCI_ERS_RESULT_RECOVERED
;
4108 * igb_io_resume - called when traffic can start flowing again.
4109 * @pdev: Pointer to PCI device
4111 * This callback is called when the error recovery driver tells us that
4112 * its OK to resume normal operation. Implementation resembles the
4113 * second-half of the igb_resume routine.
4115 static void igb_io_resume(struct pci_dev
*pdev
)
4117 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4118 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4120 igb_init_manageability(adapter
);
4122 if (netif_running(netdev
)) {
4123 if (igb_up(adapter
)) {
4124 dev_err(&pdev
->dev
, "igb_up failed after reset\n");
4129 netif_device_attach(netdev
);
4131 /* let the f/w know that the h/w is now under the control of the
4133 igb_get_hw_control(adapter
);