[MTD] [NAND] FSL UPM NAND driver
[linux-2.6/openmoko-kernel/knife-kernel.git] / arch / parisc / mm / init.c
blobeb80f5e33d7dad11b2cb11b9e8a2b9136c0863dc
1 /*
2 * linux/arch/parisc/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
9 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
20 #include <linux/initrd.h>
21 #include <linux/swap.h>
22 #include <linux/unistd.h>
23 #include <linux/nodemask.h> /* for node_online_map */
24 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
26 #include <asm/pgalloc.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29 #include <asm/pdc_chassis.h>
30 #include <asm/mmzone.h>
31 #include <asm/sections.h>
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35 extern int data_start;
37 #ifdef CONFIG_DISCONTIGMEM
38 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
39 bootmem_data_t bmem_data[MAX_NUMNODES] __read_mostly;
40 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
41 #endif
43 static struct resource data_resource = {
44 .name = "Kernel data",
45 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
48 static struct resource code_resource = {
49 .name = "Kernel code",
50 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
53 static struct resource pdcdata_resource = {
54 .name = "PDC data (Page Zero)",
55 .start = 0,
56 .end = 0x9ff,
57 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
60 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
62 /* The following array is initialized from the firmware specific
63 * information retrieved in kernel/inventory.c.
66 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
67 int npmem_ranges __read_mostly;
69 #ifdef CONFIG_64BIT
70 #define MAX_MEM (~0UL)
71 #else /* !CONFIG_64BIT */
72 #define MAX_MEM (3584U*1024U*1024U)
73 #endif /* !CONFIG_64BIT */
75 static unsigned long mem_limit __read_mostly = MAX_MEM;
77 static void __init mem_limit_func(void)
79 char *cp, *end;
80 unsigned long limit;
82 /* We need this before __setup() functions are called */
84 limit = MAX_MEM;
85 for (cp = boot_command_line; *cp; ) {
86 if (memcmp(cp, "mem=", 4) == 0) {
87 cp += 4;
88 limit = memparse(cp, &end);
89 if (end != cp)
90 break;
91 cp = end;
92 } else {
93 while (*cp != ' ' && *cp)
94 ++cp;
95 while (*cp == ' ')
96 ++cp;
100 if (limit < mem_limit)
101 mem_limit = limit;
104 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
106 static void __init setup_bootmem(void)
108 unsigned long bootmap_size;
109 unsigned long mem_max;
110 unsigned long bootmap_pages;
111 unsigned long bootmap_start_pfn;
112 unsigned long bootmap_pfn;
113 #ifndef CONFIG_DISCONTIGMEM
114 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
115 int npmem_holes;
116 #endif
117 int i, sysram_resource_count;
119 disable_sr_hashing(); /* Turn off space register hashing */
122 * Sort the ranges. Since the number of ranges is typically
123 * small, and performance is not an issue here, just do
124 * a simple insertion sort.
127 for (i = 1; i < npmem_ranges; i++) {
128 int j;
130 for (j = i; j > 0; j--) {
131 unsigned long tmp;
133 if (pmem_ranges[j-1].start_pfn <
134 pmem_ranges[j].start_pfn) {
136 break;
138 tmp = pmem_ranges[j-1].start_pfn;
139 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
140 pmem_ranges[j].start_pfn = tmp;
141 tmp = pmem_ranges[j-1].pages;
142 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
143 pmem_ranges[j].pages = tmp;
147 #ifndef CONFIG_DISCONTIGMEM
149 * Throw out ranges that are too far apart (controlled by
150 * MAX_GAP).
153 for (i = 1; i < npmem_ranges; i++) {
154 if (pmem_ranges[i].start_pfn -
155 (pmem_ranges[i-1].start_pfn +
156 pmem_ranges[i-1].pages) > MAX_GAP) {
157 npmem_ranges = i;
158 printk("Large gap in memory detected (%ld pages). "
159 "Consider turning on CONFIG_DISCONTIGMEM\n",
160 pmem_ranges[i].start_pfn -
161 (pmem_ranges[i-1].start_pfn +
162 pmem_ranges[i-1].pages));
163 break;
166 #endif
168 if (npmem_ranges > 1) {
170 /* Print the memory ranges */
172 printk(KERN_INFO "Memory Ranges:\n");
174 for (i = 0; i < npmem_ranges; i++) {
175 unsigned long start;
176 unsigned long size;
178 size = (pmem_ranges[i].pages << PAGE_SHIFT);
179 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
180 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
181 i,start, start + (size - 1), size >> 20);
185 sysram_resource_count = npmem_ranges;
186 for (i = 0; i < sysram_resource_count; i++) {
187 struct resource *res = &sysram_resources[i];
188 res->name = "System RAM";
189 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
190 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
191 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
192 request_resource(&iomem_resource, res);
196 * For 32 bit kernels we limit the amount of memory we can
197 * support, in order to preserve enough kernel address space
198 * for other purposes. For 64 bit kernels we don't normally
199 * limit the memory, but this mechanism can be used to
200 * artificially limit the amount of memory (and it is written
201 * to work with multiple memory ranges).
204 mem_limit_func(); /* check for "mem=" argument */
206 mem_max = 0;
207 num_physpages = 0;
208 for (i = 0; i < npmem_ranges; i++) {
209 unsigned long rsize;
211 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
212 if ((mem_max + rsize) > mem_limit) {
213 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
214 if (mem_max == mem_limit)
215 npmem_ranges = i;
216 else {
217 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
218 - (mem_max >> PAGE_SHIFT);
219 npmem_ranges = i + 1;
220 mem_max = mem_limit;
222 num_physpages += pmem_ranges[i].pages;
223 break;
225 num_physpages += pmem_ranges[i].pages;
226 mem_max += rsize;
229 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
231 #ifndef CONFIG_DISCONTIGMEM
232 /* Merge the ranges, keeping track of the holes */
235 unsigned long end_pfn;
236 unsigned long hole_pages;
238 npmem_holes = 0;
239 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
240 for (i = 1; i < npmem_ranges; i++) {
242 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
243 if (hole_pages) {
244 pmem_holes[npmem_holes].start_pfn = end_pfn;
245 pmem_holes[npmem_holes++].pages = hole_pages;
246 end_pfn += hole_pages;
248 end_pfn += pmem_ranges[i].pages;
251 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
252 npmem_ranges = 1;
254 #endif
256 bootmap_pages = 0;
257 for (i = 0; i < npmem_ranges; i++)
258 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
260 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
262 #ifdef CONFIG_DISCONTIGMEM
263 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
264 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
265 NODE_DATA(i)->bdata = &bmem_data[i];
267 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
269 for (i = 0; i < npmem_ranges; i++)
270 node_set_online(i);
271 #endif
274 * Initialize and free the full range of memory in each range.
275 * Note that the only writing these routines do are to the bootmap,
276 * and we've made sure to locate the bootmap properly so that they
277 * won't be writing over anything important.
280 bootmap_pfn = bootmap_start_pfn;
281 max_pfn = 0;
282 for (i = 0; i < npmem_ranges; i++) {
283 unsigned long start_pfn;
284 unsigned long npages;
286 start_pfn = pmem_ranges[i].start_pfn;
287 npages = pmem_ranges[i].pages;
289 bootmap_size = init_bootmem_node(NODE_DATA(i),
290 bootmap_pfn,
291 start_pfn,
292 (start_pfn + npages) );
293 free_bootmem_node(NODE_DATA(i),
294 (start_pfn << PAGE_SHIFT),
295 (npages << PAGE_SHIFT) );
296 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
297 if ((start_pfn + npages) > max_pfn)
298 max_pfn = start_pfn + npages;
301 /* IOMMU is always used to access "high mem" on those boxes
302 * that can support enough mem that a PCI device couldn't
303 * directly DMA to any physical addresses.
304 * ISA DMA support will need to revisit this.
306 max_low_pfn = max_pfn;
308 if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
309 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
310 BUG();
313 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
315 #define PDC_CONSOLE_IO_IODC_SIZE 32768
317 reserve_bootmem_node(NODE_DATA(0), 0UL,
318 (unsigned long)(PAGE0->mem_free +
319 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
320 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
321 (unsigned long)(_end - _text), BOOTMEM_DEFAULT);
322 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
323 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
324 BOOTMEM_DEFAULT);
326 #ifndef CONFIG_DISCONTIGMEM
328 /* reserve the holes */
330 for (i = 0; i < npmem_holes; i++) {
331 reserve_bootmem_node(NODE_DATA(0),
332 (pmem_holes[i].start_pfn << PAGE_SHIFT),
333 (pmem_holes[i].pages << PAGE_SHIFT),
334 BOOTMEM_DEFAULT);
336 #endif
338 #ifdef CONFIG_BLK_DEV_INITRD
339 if (initrd_start) {
340 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
341 if (__pa(initrd_start) < mem_max) {
342 unsigned long initrd_reserve;
344 if (__pa(initrd_end) > mem_max) {
345 initrd_reserve = mem_max - __pa(initrd_start);
346 } else {
347 initrd_reserve = initrd_end - initrd_start;
349 initrd_below_start_ok = 1;
350 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
352 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
353 initrd_reserve, BOOTMEM_DEFAULT);
356 #endif
358 data_resource.start = virt_to_phys(&data_start);
359 data_resource.end = virt_to_phys(_end) - 1;
360 code_resource.start = virt_to_phys(_text);
361 code_resource.end = virt_to_phys(&data_start)-1;
363 /* We don't know which region the kernel will be in, so try
364 * all of them.
366 for (i = 0; i < sysram_resource_count; i++) {
367 struct resource *res = &sysram_resources[i];
368 request_resource(res, &code_resource);
369 request_resource(res, &data_resource);
371 request_resource(&sysram_resources[0], &pdcdata_resource);
374 void free_initmem(void)
376 unsigned long addr, init_begin, init_end;
378 printk(KERN_INFO "Freeing unused kernel memory: ");
380 #ifdef CONFIG_DEBUG_KERNEL
381 /* Attempt to catch anyone trying to execute code here
382 * by filling the page with BRK insns.
384 * If we disable interrupts for all CPUs, then IPI stops working.
385 * Kinda breaks the global cache flushing.
387 local_irq_disable();
389 memset(__init_begin, 0x00,
390 (unsigned long)__init_end - (unsigned long)__init_begin);
392 flush_data_cache();
393 asm volatile("sync" : : );
394 flush_icache_range((unsigned long)__init_begin, (unsigned long)__init_end);
395 asm volatile("sync" : : );
397 local_irq_enable();
398 #endif
400 /* align __init_begin and __init_end to page size,
401 ignoring linker script where we might have tried to save RAM */
402 init_begin = PAGE_ALIGN((unsigned long)(__init_begin));
403 init_end = PAGE_ALIGN((unsigned long)(__init_end));
404 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
405 ClearPageReserved(virt_to_page(addr));
406 init_page_count(virt_to_page(addr));
407 free_page(addr);
408 num_physpages++;
409 totalram_pages++;
412 /* set up a new led state on systems shipped LED State panel */
413 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
415 printk("%luk freed\n", (init_end - init_begin) >> 10);
419 #ifdef CONFIG_DEBUG_RODATA
420 void mark_rodata_ro(void)
422 /* rodata memory was already mapped with KERNEL_RO access rights by
423 pagetable_init() and map_pages(). No need to do additional stuff here */
424 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
425 (unsigned long)(__end_rodata - __start_rodata) >> 10);
427 #endif
431 * Just an arbitrary offset to serve as a "hole" between mapping areas
432 * (between top of physical memory and a potential pcxl dma mapping
433 * area, and below the vmalloc mapping area).
435 * The current 32K value just means that there will be a 32K "hole"
436 * between mapping areas. That means that any out-of-bounds memory
437 * accesses will hopefully be caught. The vmalloc() routines leaves
438 * a hole of 4kB between each vmalloced area for the same reason.
441 /* Leave room for gateway page expansion */
442 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
443 #error KERNEL_MAP_START is in gateway reserved region
444 #endif
445 #define MAP_START (KERNEL_MAP_START)
447 #define VM_MAP_OFFSET (32*1024)
448 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
449 & ~(VM_MAP_OFFSET-1)))
451 void *vmalloc_start __read_mostly;
452 EXPORT_SYMBOL(vmalloc_start);
454 #ifdef CONFIG_PA11
455 unsigned long pcxl_dma_start __read_mostly;
456 #endif
458 void __init mem_init(void)
460 int codesize, reservedpages, datasize, initsize;
462 high_memory = __va((max_pfn << PAGE_SHIFT));
464 #ifndef CONFIG_DISCONTIGMEM
465 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
466 totalram_pages += free_all_bootmem();
467 #else
469 int i;
471 for (i = 0; i < npmem_ranges; i++)
472 totalram_pages += free_all_bootmem_node(NODE_DATA(i));
474 #endif
476 codesize = (unsigned long)_etext - (unsigned long)_text;
477 datasize = (unsigned long)_edata - (unsigned long)_etext;
478 initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
480 reservedpages = 0;
482 unsigned long pfn;
483 #ifdef CONFIG_DISCONTIGMEM
484 int i;
486 for (i = 0; i < npmem_ranges; i++) {
487 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
488 if (PageReserved(pfn_to_page(pfn)))
489 reservedpages++;
492 #else /* !CONFIG_DISCONTIGMEM */
493 for (pfn = 0; pfn < max_pfn; pfn++) {
495 * Only count reserved RAM pages
497 if (PageReserved(pfn_to_page(pfn)))
498 reservedpages++;
500 #endif
503 #ifdef CONFIG_PA11
504 if (hppa_dma_ops == &pcxl_dma_ops) {
505 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
506 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
507 } else {
508 pcxl_dma_start = 0;
509 vmalloc_start = SET_MAP_OFFSET(MAP_START);
511 #else
512 vmalloc_start = SET_MAP_OFFSET(MAP_START);
513 #endif
515 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
516 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
517 num_physpages << (PAGE_SHIFT-10),
518 codesize >> 10,
519 reservedpages << (PAGE_SHIFT-10),
520 datasize >> 10,
521 initsize >> 10
524 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
525 printk("virtual kernel memory layout:\n"
526 " vmalloc : 0x%p - 0x%p (%4ld MB)\n"
527 " memory : 0x%p - 0x%p (%4ld MB)\n"
528 " .init : 0x%p - 0x%p (%4ld kB)\n"
529 " .data : 0x%p - 0x%p (%4ld kB)\n"
530 " .text : 0x%p - 0x%p (%4ld kB)\n",
532 (void*)VMALLOC_START, (void*)VMALLOC_END,
533 (VMALLOC_END - VMALLOC_START) >> 20,
535 __va(0), high_memory,
536 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
538 __init_begin, __init_end,
539 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
541 _etext, _edata,
542 ((unsigned long)_edata - (unsigned long)_etext) >> 10,
544 _text, _etext,
545 ((unsigned long)_etext - (unsigned long)_text) >> 10);
546 #endif
549 unsigned long *empty_zero_page __read_mostly;
551 void show_mem(void)
553 int i,free = 0,total = 0,reserved = 0;
554 int shared = 0, cached = 0;
556 printk(KERN_INFO "Mem-info:\n");
557 show_free_areas();
558 printk(KERN_INFO "Free swap: %6ldkB\n",
559 nr_swap_pages<<(PAGE_SHIFT-10));
560 #ifndef CONFIG_DISCONTIGMEM
561 i = max_mapnr;
562 while (i-- > 0) {
563 total++;
564 if (PageReserved(mem_map+i))
565 reserved++;
566 else if (PageSwapCache(mem_map+i))
567 cached++;
568 else if (!page_count(&mem_map[i]))
569 free++;
570 else
571 shared += page_count(&mem_map[i]) - 1;
573 #else
574 for (i = 0; i < npmem_ranges; i++) {
575 int j;
577 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
578 struct page *p;
579 unsigned long flags;
581 pgdat_resize_lock(NODE_DATA(i), &flags);
582 p = nid_page_nr(i, j) - node_start_pfn(i);
584 total++;
585 if (PageReserved(p))
586 reserved++;
587 else if (PageSwapCache(p))
588 cached++;
589 else if (!page_count(p))
590 free++;
591 else
592 shared += page_count(p) - 1;
593 pgdat_resize_unlock(NODE_DATA(i), &flags);
596 #endif
597 printk(KERN_INFO "%d pages of RAM\n", total);
598 printk(KERN_INFO "%d reserved pages\n", reserved);
599 printk(KERN_INFO "%d pages shared\n", shared);
600 printk(KERN_INFO "%d pages swap cached\n", cached);
603 #ifdef CONFIG_DISCONTIGMEM
605 struct zonelist *zl;
606 int i, j, k;
608 for (i = 0; i < npmem_ranges; i++) {
609 for (j = 0; j < MAX_NR_ZONES; j++) {
610 zl = NODE_DATA(i)->node_zonelists + j;
612 printk("Zone list for zone %d on node %d: ", j, i);
613 for (k = 0; zl->zones[k] != NULL; k++)
614 printk("[%d/%s] ", zone_to_nid(zl->zones[k]), zl->zones[k]->name);
615 printk("\n");
619 #endif
623 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
625 pgd_t *pg_dir;
626 pmd_t *pmd;
627 pte_t *pg_table;
628 unsigned long end_paddr;
629 unsigned long start_pmd;
630 unsigned long start_pte;
631 unsigned long tmp1;
632 unsigned long tmp2;
633 unsigned long address;
634 unsigned long ro_start;
635 unsigned long ro_end;
636 unsigned long fv_addr;
637 unsigned long gw_addr;
638 extern const unsigned long fault_vector_20;
639 extern void * const linux_gateway_page;
641 ro_start = __pa((unsigned long)_text);
642 ro_end = __pa((unsigned long)&data_start);
643 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
644 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
646 end_paddr = start_paddr + size;
648 pg_dir = pgd_offset_k(start_vaddr);
650 #if PTRS_PER_PMD == 1
651 start_pmd = 0;
652 #else
653 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
654 #endif
655 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
657 address = start_paddr;
658 while (address < end_paddr) {
659 #if PTRS_PER_PMD == 1
660 pmd = (pmd_t *)__pa(pg_dir);
661 #else
662 pmd = (pmd_t *)pgd_address(*pg_dir);
665 * pmd is physical at this point
668 if (!pmd) {
669 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
670 pmd = (pmd_t *) __pa(pmd);
673 pgd_populate(NULL, pg_dir, __va(pmd));
674 #endif
675 pg_dir++;
677 /* now change pmd to kernel virtual addresses */
679 pmd = (pmd_t *)__va(pmd) + start_pmd;
680 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
683 * pg_table is physical at this point
686 pg_table = (pte_t *)pmd_address(*pmd);
687 if (!pg_table) {
688 pg_table = (pte_t *)
689 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
690 pg_table = (pte_t *) __pa(pg_table);
693 pmd_populate_kernel(NULL, pmd, __va(pg_table));
695 /* now change pg_table to kernel virtual addresses */
697 pg_table = (pte_t *) __va(pg_table) + start_pte;
698 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
699 pte_t pte;
702 * Map the fault vector writable so we can
703 * write the HPMC checksum.
705 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
706 if (address >= ro_start && address < ro_end
707 && address != fv_addr
708 && address != gw_addr)
709 pte = __mk_pte(address, PAGE_KERNEL_RO);
710 else
711 #endif
712 pte = __mk_pte(address, pgprot);
714 if (address >= end_paddr)
715 pte_val(pte) = 0;
717 set_pte(pg_table, pte);
719 address += PAGE_SIZE;
721 start_pte = 0;
723 if (address >= end_paddr)
724 break;
726 start_pmd = 0;
731 * pagetable_init() sets up the page tables
733 * Note that gateway_init() places the Linux gateway page at page 0.
734 * Since gateway pages cannot be dereferenced this has the desirable
735 * side effect of trapping those pesky NULL-reference errors in the
736 * kernel.
738 static void __init pagetable_init(void)
740 int range;
742 /* Map each physical memory range to its kernel vaddr */
744 for (range = 0; range < npmem_ranges; range++) {
745 unsigned long start_paddr;
746 unsigned long end_paddr;
747 unsigned long size;
749 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
750 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
751 size = pmem_ranges[range].pages << PAGE_SHIFT;
753 map_pages((unsigned long)__va(start_paddr), start_paddr,
754 size, PAGE_KERNEL);
757 #ifdef CONFIG_BLK_DEV_INITRD
758 if (initrd_end && initrd_end > mem_limit) {
759 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
760 map_pages(initrd_start, __pa(initrd_start),
761 initrd_end - initrd_start, PAGE_KERNEL);
763 #endif
765 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
766 memset(empty_zero_page, 0, PAGE_SIZE);
769 static void __init gateway_init(void)
771 unsigned long linux_gateway_page_addr;
772 /* FIXME: This is 'const' in order to trick the compiler
773 into not treating it as DP-relative data. */
774 extern void * const linux_gateway_page;
776 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
779 * Setup Linux Gateway page.
781 * The Linux gateway page will reside in kernel space (on virtual
782 * page 0), so it doesn't need to be aliased into user space.
785 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
786 PAGE_SIZE, PAGE_GATEWAY);
789 #ifdef CONFIG_HPUX
790 void
791 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
793 pgd_t *pg_dir;
794 pmd_t *pmd;
795 pte_t *pg_table;
796 unsigned long start_pmd;
797 unsigned long start_pte;
798 unsigned long address;
799 unsigned long hpux_gw_page_addr;
800 /* FIXME: This is 'const' in order to trick the compiler
801 into not treating it as DP-relative data. */
802 extern void * const hpux_gateway_page;
804 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
807 * Setup HP-UX Gateway page.
809 * The HP-UX gateway page resides in the user address space,
810 * so it needs to be aliased into each process.
813 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
815 #if PTRS_PER_PMD == 1
816 start_pmd = 0;
817 #else
818 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
819 #endif
820 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
822 address = __pa(&hpux_gateway_page);
823 #if PTRS_PER_PMD == 1
824 pmd = (pmd_t *)__pa(pg_dir);
825 #else
826 pmd = (pmd_t *) pgd_address(*pg_dir);
829 * pmd is physical at this point
832 if (!pmd) {
833 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
834 pmd = (pmd_t *) __pa(pmd);
837 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
838 #endif
839 /* now change pmd to kernel virtual addresses */
841 pmd = (pmd_t *)__va(pmd) + start_pmd;
844 * pg_table is physical at this point
847 pg_table = (pte_t *) pmd_address(*pmd);
848 if (!pg_table)
849 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
851 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
853 /* now change pg_table to kernel virtual addresses */
855 pg_table = (pte_t *) __va(pg_table) + start_pte;
856 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
858 EXPORT_SYMBOL(map_hpux_gateway_page);
859 #endif
861 void __init paging_init(void)
863 int i;
865 setup_bootmem();
866 pagetable_init();
867 gateway_init();
868 flush_cache_all_local(); /* start with known state */
869 flush_tlb_all_local(NULL);
871 for (i = 0; i < npmem_ranges; i++) {
872 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
874 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
876 #ifdef CONFIG_DISCONTIGMEM
877 /* Need to initialize the pfnnid_map before we can initialize
878 the zone */
880 int j;
881 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
882 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
883 j++) {
884 pfnnid_map[j] = i;
887 #endif
889 free_area_init_node(i, NODE_DATA(i), zones_size,
890 pmem_ranges[i].start_pfn, NULL);
894 #ifdef CONFIG_PA20
897 * Currently, all PA20 chips have 18 bit protection IDs, which is the
898 * limiting factor (space ids are 32 bits).
901 #define NR_SPACE_IDS 262144
903 #else
906 * Currently we have a one-to-one relationship between space IDs and
907 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
908 * support 15 bit protection IDs, so that is the limiting factor.
909 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
910 * probably not worth the effort for a special case here.
913 #define NR_SPACE_IDS 32768
915 #endif /* !CONFIG_PA20 */
917 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
918 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
920 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
921 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
922 static unsigned long space_id_index;
923 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
924 static unsigned long dirty_space_ids = 0;
926 static DEFINE_SPINLOCK(sid_lock);
928 unsigned long alloc_sid(void)
930 unsigned long index;
932 spin_lock(&sid_lock);
934 if (free_space_ids == 0) {
935 if (dirty_space_ids != 0) {
936 spin_unlock(&sid_lock);
937 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
938 spin_lock(&sid_lock);
940 BUG_ON(free_space_ids == 0);
943 free_space_ids--;
945 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
946 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
947 space_id_index = index;
949 spin_unlock(&sid_lock);
951 return index << SPACEID_SHIFT;
954 void free_sid(unsigned long spaceid)
956 unsigned long index = spaceid >> SPACEID_SHIFT;
957 unsigned long *dirty_space_offset;
959 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
960 index &= (BITS_PER_LONG - 1);
962 spin_lock(&sid_lock);
964 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
966 *dirty_space_offset |= (1L << index);
967 dirty_space_ids++;
969 spin_unlock(&sid_lock);
973 #ifdef CONFIG_SMP
974 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
976 int i;
978 /* NOTE: sid_lock must be held upon entry */
980 *ndirtyptr = dirty_space_ids;
981 if (dirty_space_ids != 0) {
982 for (i = 0; i < SID_ARRAY_SIZE; i++) {
983 dirty_array[i] = dirty_space_id[i];
984 dirty_space_id[i] = 0;
986 dirty_space_ids = 0;
989 return;
992 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
994 int i;
996 /* NOTE: sid_lock must be held upon entry */
998 if (ndirty != 0) {
999 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1000 space_id[i] ^= dirty_array[i];
1003 free_space_ids += ndirty;
1004 space_id_index = 0;
1008 #else /* CONFIG_SMP */
1010 static void recycle_sids(void)
1012 int i;
1014 /* NOTE: sid_lock must be held upon entry */
1016 if (dirty_space_ids != 0) {
1017 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1018 space_id[i] ^= dirty_space_id[i];
1019 dirty_space_id[i] = 0;
1022 free_space_ids += dirty_space_ids;
1023 dirty_space_ids = 0;
1024 space_id_index = 0;
1027 #endif
1030 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1031 * purged, we can safely reuse the space ids that were released but
1032 * not flushed from the tlb.
1035 #ifdef CONFIG_SMP
1037 static unsigned long recycle_ndirty;
1038 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1039 static unsigned int recycle_inuse;
1041 void flush_tlb_all(void)
1043 int do_recycle;
1045 do_recycle = 0;
1046 spin_lock(&sid_lock);
1047 if (dirty_space_ids > RECYCLE_THRESHOLD) {
1048 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
1049 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1050 recycle_inuse++;
1051 do_recycle++;
1053 spin_unlock(&sid_lock);
1054 on_each_cpu(flush_tlb_all_local, NULL, 1, 1);
1055 if (do_recycle) {
1056 spin_lock(&sid_lock);
1057 recycle_sids(recycle_ndirty,recycle_dirty_array);
1058 recycle_inuse = 0;
1059 spin_unlock(&sid_lock);
1062 #else
1063 void flush_tlb_all(void)
1065 spin_lock(&sid_lock);
1066 flush_tlb_all_local(NULL);
1067 recycle_sids();
1068 spin_unlock(&sid_lock);
1070 #endif
1072 #ifdef CONFIG_BLK_DEV_INITRD
1073 void free_initrd_mem(unsigned long start, unsigned long end)
1075 if (start >= end)
1076 return;
1077 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1078 for (; start < end; start += PAGE_SIZE) {
1079 ClearPageReserved(virt_to_page(start));
1080 init_page_count(virt_to_page(start));
1081 free_page(start);
1082 num_physpages++;
1083 totalram_pages++;
1086 #endif