2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
23 #include <linux/clocksource.h>
24 #include <linux/kvm.h>
26 #include <linux/vmalloc.h>
27 #include <linux/module.h>
28 #include <linux/mman.h>
29 #include <linux/highmem.h>
31 #include <asm/uaccess.h>
35 #define MAX_IO_MSRS 256
36 #define CR0_RESERVED_BITS \
37 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
38 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
39 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
40 #define CR4_RESERVED_BITS \
41 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
42 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
43 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
44 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
46 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
48 * - enable syscall per default because its emulated by KVM
49 * - enable LME and LMA per default on 64 bit KVM
52 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffafeULL
;
54 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffffeULL
;
57 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
58 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
60 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
61 struct kvm_cpuid_entry2 __user
*entries
);
63 struct kvm_x86_ops
*kvm_x86_ops
;
65 struct kvm_stats_debugfs_item debugfs_entries
[] = {
66 { "pf_fixed", VCPU_STAT(pf_fixed
) },
67 { "pf_guest", VCPU_STAT(pf_guest
) },
68 { "tlb_flush", VCPU_STAT(tlb_flush
) },
69 { "invlpg", VCPU_STAT(invlpg
) },
70 { "exits", VCPU_STAT(exits
) },
71 { "io_exits", VCPU_STAT(io_exits
) },
72 { "mmio_exits", VCPU_STAT(mmio_exits
) },
73 { "signal_exits", VCPU_STAT(signal_exits
) },
74 { "irq_window", VCPU_STAT(irq_window_exits
) },
75 { "halt_exits", VCPU_STAT(halt_exits
) },
76 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
77 { "hypercalls", VCPU_STAT(hypercalls
) },
78 { "request_irq", VCPU_STAT(request_irq_exits
) },
79 { "irq_exits", VCPU_STAT(irq_exits
) },
80 { "host_state_reload", VCPU_STAT(host_state_reload
) },
81 { "efer_reload", VCPU_STAT(efer_reload
) },
82 { "fpu_reload", VCPU_STAT(fpu_reload
) },
83 { "insn_emulation", VCPU_STAT(insn_emulation
) },
84 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
85 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
86 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
87 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
88 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
89 { "mmu_flooded", VM_STAT(mmu_flooded
) },
90 { "mmu_recycled", VM_STAT(mmu_recycled
) },
91 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
92 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
93 { "largepages", VM_STAT(lpages
) },
98 unsigned long segment_base(u16 selector
)
100 struct descriptor_table gdt
;
101 struct desc_struct
*d
;
102 unsigned long table_base
;
108 asm("sgdt %0" : "=m"(gdt
));
109 table_base
= gdt
.base
;
111 if (selector
& 4) { /* from ldt */
114 asm("sldt %0" : "=g"(ldt_selector
));
115 table_base
= segment_base(ldt_selector
);
117 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
118 v
= d
->base0
| ((unsigned long)d
->base1
<< 16) |
119 ((unsigned long)d
->base2
<< 24);
121 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
122 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
126 EXPORT_SYMBOL_GPL(segment_base
);
128 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
130 if (irqchip_in_kernel(vcpu
->kvm
))
131 return vcpu
->arch
.apic_base
;
133 return vcpu
->arch
.apic_base
;
135 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
137 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
139 /* TODO: reserve bits check */
140 if (irqchip_in_kernel(vcpu
->kvm
))
141 kvm_lapic_set_base(vcpu
, data
);
143 vcpu
->arch
.apic_base
= data
;
145 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
147 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
149 WARN_ON(vcpu
->arch
.exception
.pending
);
150 vcpu
->arch
.exception
.pending
= true;
151 vcpu
->arch
.exception
.has_error_code
= false;
152 vcpu
->arch
.exception
.nr
= nr
;
154 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
156 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
159 ++vcpu
->stat
.pf_guest
;
160 if (vcpu
->arch
.exception
.pending
) {
161 if (vcpu
->arch
.exception
.nr
== PF_VECTOR
) {
162 printk(KERN_DEBUG
"kvm: inject_page_fault:"
163 " double fault 0x%lx\n", addr
);
164 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
165 vcpu
->arch
.exception
.error_code
= 0;
166 } else if (vcpu
->arch
.exception
.nr
== DF_VECTOR
) {
167 /* triple fault -> shutdown */
168 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
172 vcpu
->arch
.cr2
= addr
;
173 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
176 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
178 WARN_ON(vcpu
->arch
.exception
.pending
);
179 vcpu
->arch
.exception
.pending
= true;
180 vcpu
->arch
.exception
.has_error_code
= true;
181 vcpu
->arch
.exception
.nr
= nr
;
182 vcpu
->arch
.exception
.error_code
= error_code
;
184 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
186 static void __queue_exception(struct kvm_vcpu
*vcpu
)
188 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
189 vcpu
->arch
.exception
.has_error_code
,
190 vcpu
->arch
.exception
.error_code
);
194 * Load the pae pdptrs. Return true is they are all valid.
196 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
198 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
199 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
202 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
204 ret
= kvm_read_guest_page(vcpu
->kvm
, pdpt_gfn
, pdpte
,
205 offset
* sizeof(u64
), sizeof(pdpte
));
210 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
211 if ((pdpte
[i
] & 1) && (pdpte
[i
] & 0xfffffff0000001e6ull
)) {
218 memcpy(vcpu
->arch
.pdptrs
, pdpte
, sizeof(vcpu
->arch
.pdptrs
));
223 EXPORT_SYMBOL_GPL(load_pdptrs
);
225 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
227 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
231 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
234 r
= kvm_read_guest(vcpu
->kvm
, vcpu
->arch
.cr3
& ~31u, pdpte
, sizeof(pdpte
));
237 changed
= memcmp(pdpte
, vcpu
->arch
.pdptrs
, sizeof(pdpte
)) != 0;
243 void kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
245 if (cr0
& CR0_RESERVED_BITS
) {
246 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
247 cr0
, vcpu
->arch
.cr0
);
248 kvm_inject_gp(vcpu
, 0);
252 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
253 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
254 kvm_inject_gp(vcpu
, 0);
258 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
259 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
260 "and a clear PE flag\n");
261 kvm_inject_gp(vcpu
, 0);
265 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
267 if ((vcpu
->arch
.shadow_efer
& EFER_LME
)) {
271 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
272 "in long mode while PAE is disabled\n");
273 kvm_inject_gp(vcpu
, 0);
276 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
278 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
279 "in long mode while CS.L == 1\n");
280 kvm_inject_gp(vcpu
, 0);
286 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
287 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
289 kvm_inject_gp(vcpu
, 0);
295 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
296 vcpu
->arch
.cr0
= cr0
;
298 kvm_mmu_reset_context(vcpu
);
301 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
303 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
305 kvm_set_cr0(vcpu
, (vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f));
306 KVMTRACE_1D(LMSW
, vcpu
,
307 (u32
)((vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f)),
310 EXPORT_SYMBOL_GPL(kvm_lmsw
);
312 void kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
314 if (cr4
& CR4_RESERVED_BITS
) {
315 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
316 kvm_inject_gp(vcpu
, 0);
320 if (is_long_mode(vcpu
)) {
321 if (!(cr4
& X86_CR4_PAE
)) {
322 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
324 kvm_inject_gp(vcpu
, 0);
327 } else if (is_paging(vcpu
) && !is_pae(vcpu
) && (cr4
& X86_CR4_PAE
)
328 && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
329 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
330 kvm_inject_gp(vcpu
, 0);
334 if (cr4
& X86_CR4_VMXE
) {
335 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
336 kvm_inject_gp(vcpu
, 0);
339 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
340 vcpu
->arch
.cr4
= cr4
;
341 kvm_mmu_reset_context(vcpu
);
343 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
345 void kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
347 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
348 kvm_mmu_flush_tlb(vcpu
);
352 if (is_long_mode(vcpu
)) {
353 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
354 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
355 kvm_inject_gp(vcpu
, 0);
360 if (cr3
& CR3_PAE_RESERVED_BITS
) {
362 "set_cr3: #GP, reserved bits\n");
363 kvm_inject_gp(vcpu
, 0);
366 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
367 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
369 kvm_inject_gp(vcpu
, 0);
374 * We don't check reserved bits in nonpae mode, because
375 * this isn't enforced, and VMware depends on this.
380 * Does the new cr3 value map to physical memory? (Note, we
381 * catch an invalid cr3 even in real-mode, because it would
382 * cause trouble later on when we turn on paging anyway.)
384 * A real CPU would silently accept an invalid cr3 and would
385 * attempt to use it - with largely undefined (and often hard
386 * to debug) behavior on the guest side.
388 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
389 kvm_inject_gp(vcpu
, 0);
391 vcpu
->arch
.cr3
= cr3
;
392 vcpu
->arch
.mmu
.new_cr3(vcpu
);
395 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
397 void kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
399 if (cr8
& CR8_RESERVED_BITS
) {
400 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
401 kvm_inject_gp(vcpu
, 0);
404 if (irqchip_in_kernel(vcpu
->kvm
))
405 kvm_lapic_set_tpr(vcpu
, cr8
);
407 vcpu
->arch
.cr8
= cr8
;
409 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
411 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
413 if (irqchip_in_kernel(vcpu
->kvm
))
414 return kvm_lapic_get_cr8(vcpu
);
416 return vcpu
->arch
.cr8
;
418 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
421 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
422 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
424 * This list is modified at module load time to reflect the
425 * capabilities of the host cpu.
427 static u32 msrs_to_save
[] = {
428 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
431 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
433 MSR_IA32_TIME_STAMP_COUNTER
, MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
434 MSR_IA32_PERF_STATUS
,
437 static unsigned num_msrs_to_save
;
439 static u32 emulated_msrs
[] = {
440 MSR_IA32_MISC_ENABLE
,
443 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
445 if (efer
& efer_reserved_bits
) {
446 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
448 kvm_inject_gp(vcpu
, 0);
453 && (vcpu
->arch
.shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
454 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
455 kvm_inject_gp(vcpu
, 0);
459 kvm_x86_ops
->set_efer(vcpu
, efer
);
462 efer
|= vcpu
->arch
.shadow_efer
& EFER_LMA
;
464 vcpu
->arch
.shadow_efer
= efer
;
467 void kvm_enable_efer_bits(u64 mask
)
469 efer_reserved_bits
&= ~mask
;
471 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
475 * Writes msr value into into the appropriate "register".
476 * Returns 0 on success, non-0 otherwise.
477 * Assumes vcpu_load() was already called.
479 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
481 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
485 * Adapt set_msr() to msr_io()'s calling convention
487 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
489 return kvm_set_msr(vcpu
, index
, *data
);
492 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
495 struct kvm_wall_clock wc
;
496 struct timespec wc_ts
;
503 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
505 wc_ts
= current_kernel_time();
506 wc
.wc_sec
= wc_ts
.tv_sec
;
507 wc
.wc_nsec
= wc_ts
.tv_nsec
;
508 wc
.wc_version
= version
;
510 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
513 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
516 static void kvm_write_guest_time(struct kvm_vcpu
*v
)
520 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
523 if ((!vcpu
->time_page
))
526 /* Keep irq disabled to prevent changes to the clock */
527 local_irq_save(flags
);
528 kvm_get_msr(v
, MSR_IA32_TIME_STAMP_COUNTER
,
529 &vcpu
->hv_clock
.tsc_timestamp
);
531 local_irq_restore(flags
);
533 /* With all the info we got, fill in the values */
535 vcpu
->hv_clock
.system_time
= ts
.tv_nsec
+
536 (NSEC_PER_SEC
* (u64
)ts
.tv_sec
);
538 * The interface expects us to write an even number signaling that the
539 * update is finished. Since the guest won't see the intermediate
540 * state, we just write "2" at the end
542 vcpu
->hv_clock
.version
= 2;
544 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
546 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
547 sizeof(vcpu
->hv_clock
));
549 kunmap_atomic(shared_kaddr
, KM_USER0
);
551 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
555 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
559 set_efer(vcpu
, data
);
561 case MSR_IA32_MC0_STATUS
:
562 pr_unimpl(vcpu
, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
565 case MSR_IA32_MCG_STATUS
:
566 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
569 case MSR_IA32_MCG_CTL
:
570 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
573 case MSR_IA32_UCODE_REV
:
574 case MSR_IA32_UCODE_WRITE
:
575 case 0x200 ... 0x2ff: /* MTRRs */
577 case MSR_IA32_APICBASE
:
578 kvm_set_apic_base(vcpu
, data
);
580 case MSR_IA32_MISC_ENABLE
:
581 vcpu
->arch
.ia32_misc_enable_msr
= data
;
583 case MSR_KVM_WALL_CLOCK
:
584 vcpu
->kvm
->arch
.wall_clock
= data
;
585 kvm_write_wall_clock(vcpu
->kvm
, data
);
587 case MSR_KVM_SYSTEM_TIME
: {
588 if (vcpu
->arch
.time_page
) {
589 kvm_release_page_dirty(vcpu
->arch
.time_page
);
590 vcpu
->arch
.time_page
= NULL
;
593 vcpu
->arch
.time
= data
;
595 /* we verify if the enable bit is set... */
599 /* ...but clean it before doing the actual write */
600 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
602 vcpu
->arch
.hv_clock
.tsc_to_system_mul
=
603 clocksource_khz2mult(tsc_khz
, 22);
604 vcpu
->arch
.hv_clock
.tsc_shift
= 22;
606 down_read(¤t
->mm
->mmap_sem
);
607 vcpu
->arch
.time_page
=
608 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
609 up_read(¤t
->mm
->mmap_sem
);
611 if (is_error_page(vcpu
->arch
.time_page
)) {
612 kvm_release_page_clean(vcpu
->arch
.time_page
);
613 vcpu
->arch
.time_page
= NULL
;
616 kvm_write_guest_time(vcpu
);
620 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n", msr
, data
);
625 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
629 * Reads an msr value (of 'msr_index') into 'pdata'.
630 * Returns 0 on success, non-0 otherwise.
631 * Assumes vcpu_load() was already called.
633 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
635 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
638 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
643 case 0xc0010010: /* SYSCFG */
644 case 0xc0010015: /* HWCR */
645 case MSR_IA32_PLATFORM_ID
:
646 case MSR_IA32_P5_MC_ADDR
:
647 case MSR_IA32_P5_MC_TYPE
:
648 case MSR_IA32_MC0_CTL
:
649 case MSR_IA32_MCG_STATUS
:
650 case MSR_IA32_MCG_CAP
:
651 case MSR_IA32_MCG_CTL
:
652 case MSR_IA32_MC0_MISC
:
653 case MSR_IA32_MC0_MISC
+4:
654 case MSR_IA32_MC0_MISC
+8:
655 case MSR_IA32_MC0_MISC
+12:
656 case MSR_IA32_MC0_MISC
+16:
657 case MSR_IA32_UCODE_REV
:
658 case MSR_IA32_EBL_CR_POWERON
:
661 case 0x200 ... 0x2ff:
664 case 0xcd: /* fsb frequency */
667 case MSR_IA32_APICBASE
:
668 data
= kvm_get_apic_base(vcpu
);
670 case MSR_IA32_MISC_ENABLE
:
671 data
= vcpu
->arch
.ia32_misc_enable_msr
;
673 case MSR_IA32_PERF_STATUS
:
674 /* TSC increment by tick */
677 data
|= (((uint64_t)4ULL) << 40);
680 data
= vcpu
->arch
.shadow_efer
;
682 case MSR_KVM_WALL_CLOCK
:
683 data
= vcpu
->kvm
->arch
.wall_clock
;
685 case MSR_KVM_SYSTEM_TIME
:
686 data
= vcpu
->arch
.time
;
689 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
695 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
698 * Read or write a bunch of msrs. All parameters are kernel addresses.
700 * @return number of msrs set successfully.
702 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
703 struct kvm_msr_entry
*entries
,
704 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
705 unsigned index
, u64
*data
))
711 down_read(&vcpu
->kvm
->slots_lock
);
712 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
713 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
715 up_read(&vcpu
->kvm
->slots_lock
);
723 * Read or write a bunch of msrs. Parameters are user addresses.
725 * @return number of msrs set successfully.
727 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
728 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
729 unsigned index
, u64
*data
),
732 struct kvm_msrs msrs
;
733 struct kvm_msr_entry
*entries
;
738 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
742 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
746 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
747 entries
= vmalloc(size
);
752 if (copy_from_user(entries
, user_msrs
->entries
, size
))
755 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
760 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
772 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
775 void decache_vcpus_on_cpu(int cpu
)
778 struct kvm_vcpu
*vcpu
;
781 spin_lock(&kvm_lock
);
782 list_for_each_entry(vm
, &vm_list
, vm_list
)
783 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
788 * If the vcpu is locked, then it is running on some
789 * other cpu and therefore it is not cached on the
792 * If it's not locked, check the last cpu it executed
795 if (mutex_trylock(&vcpu
->mutex
)) {
796 if (vcpu
->cpu
== cpu
) {
797 kvm_x86_ops
->vcpu_decache(vcpu
);
800 mutex_unlock(&vcpu
->mutex
);
803 spin_unlock(&kvm_lock
);
806 int kvm_dev_ioctl_check_extension(long ext
)
811 case KVM_CAP_IRQCHIP
:
813 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
814 case KVM_CAP_USER_MEMORY
:
815 case KVM_CAP_SET_TSS_ADDR
:
816 case KVM_CAP_EXT_CPUID
:
817 case KVM_CAP_CLOCKSOURCE
:
819 case KVM_CAP_NOP_IO_DELAY
:
820 case KVM_CAP_MP_STATE
:
824 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
826 case KVM_CAP_NR_VCPUS
:
829 case KVM_CAP_NR_MEMSLOTS
:
830 r
= KVM_MEMORY_SLOTS
;
843 long kvm_arch_dev_ioctl(struct file
*filp
,
844 unsigned int ioctl
, unsigned long arg
)
846 void __user
*argp
= (void __user
*)arg
;
850 case KVM_GET_MSR_INDEX_LIST
: {
851 struct kvm_msr_list __user
*user_msr_list
= argp
;
852 struct kvm_msr_list msr_list
;
856 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
859 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
860 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
863 if (n
< num_msrs_to_save
)
866 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
867 num_msrs_to_save
* sizeof(u32
)))
869 if (copy_to_user(user_msr_list
->indices
870 + num_msrs_to_save
* sizeof(u32
),
872 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
877 case KVM_GET_SUPPORTED_CPUID
: {
878 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
879 struct kvm_cpuid2 cpuid
;
882 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
884 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
890 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
902 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
904 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
905 kvm_write_guest_time(vcpu
);
908 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
910 kvm_x86_ops
->vcpu_put(vcpu
);
911 kvm_put_guest_fpu(vcpu
);
914 static int is_efer_nx(void)
918 rdmsrl(MSR_EFER
, efer
);
919 return efer
& EFER_NX
;
922 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
925 struct kvm_cpuid_entry2
*e
, *entry
;
928 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
929 e
= &vcpu
->arch
.cpuid_entries
[i
];
930 if (e
->function
== 0x80000001) {
935 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
936 entry
->edx
&= ~(1 << 20);
937 printk(KERN_INFO
"kvm: guest NX capability removed\n");
941 /* when an old userspace process fills a new kernel module */
942 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
943 struct kvm_cpuid
*cpuid
,
944 struct kvm_cpuid_entry __user
*entries
)
947 struct kvm_cpuid_entry
*cpuid_entries
;
950 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
953 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
957 if (copy_from_user(cpuid_entries
, entries
,
958 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
960 for (i
= 0; i
< cpuid
->nent
; i
++) {
961 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
962 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
963 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
964 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
965 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
966 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
967 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
968 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
969 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
970 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
972 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
973 cpuid_fix_nx_cap(vcpu
);
977 vfree(cpuid_entries
);
982 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
983 struct kvm_cpuid2
*cpuid
,
984 struct kvm_cpuid_entry2 __user
*entries
)
989 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
992 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
993 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
995 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1002 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
1003 struct kvm_cpuid2
*cpuid
,
1004 struct kvm_cpuid_entry2 __user
*entries
)
1009 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
1012 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
1013 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
1018 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
1022 static inline u32
bit(int bitno
)
1024 return 1 << (bitno
& 31);
1027 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1030 entry
->function
= function
;
1031 entry
->index
= index
;
1032 cpuid_count(entry
->function
, entry
->index
,
1033 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
1037 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1038 u32 index
, int *nent
, int maxnent
)
1040 const u32 kvm_supported_word0_x86_features
= bit(X86_FEATURE_FPU
) |
1041 bit(X86_FEATURE_VME
) | bit(X86_FEATURE_DE
) |
1042 bit(X86_FEATURE_PSE
) | bit(X86_FEATURE_TSC
) |
1043 bit(X86_FEATURE_MSR
) | bit(X86_FEATURE_PAE
) |
1044 bit(X86_FEATURE_CX8
) | bit(X86_FEATURE_APIC
) |
1045 bit(X86_FEATURE_SEP
) | bit(X86_FEATURE_PGE
) |
1046 bit(X86_FEATURE_CMOV
) | bit(X86_FEATURE_PSE36
) |
1047 bit(X86_FEATURE_CLFLSH
) | bit(X86_FEATURE_MMX
) |
1048 bit(X86_FEATURE_FXSR
) | bit(X86_FEATURE_XMM
) |
1049 bit(X86_FEATURE_XMM2
) | bit(X86_FEATURE_SELFSNOOP
);
1050 const u32 kvm_supported_word1_x86_features
= bit(X86_FEATURE_FPU
) |
1051 bit(X86_FEATURE_VME
) | bit(X86_FEATURE_DE
) |
1052 bit(X86_FEATURE_PSE
) | bit(X86_FEATURE_TSC
) |
1053 bit(X86_FEATURE_MSR
) | bit(X86_FEATURE_PAE
) |
1054 bit(X86_FEATURE_CX8
) | bit(X86_FEATURE_APIC
) |
1055 bit(X86_FEATURE_PGE
) |
1056 bit(X86_FEATURE_CMOV
) | bit(X86_FEATURE_PSE36
) |
1057 bit(X86_FEATURE_MMX
) | bit(X86_FEATURE_FXSR
) |
1058 bit(X86_FEATURE_SYSCALL
) |
1059 (bit(X86_FEATURE_NX
) && is_efer_nx()) |
1060 #ifdef CONFIG_X86_64
1061 bit(X86_FEATURE_LM
) |
1063 bit(X86_FEATURE_MMXEXT
) |
1064 bit(X86_FEATURE_3DNOWEXT
) |
1065 bit(X86_FEATURE_3DNOW
);
1066 const u32 kvm_supported_word3_x86_features
=
1067 bit(X86_FEATURE_XMM3
) | bit(X86_FEATURE_CX16
);
1068 const u32 kvm_supported_word6_x86_features
=
1069 bit(X86_FEATURE_LAHF_LM
) | bit(X86_FEATURE_CMP_LEGACY
);
1071 /* all func 2 cpuid_count() should be called on the same cpu */
1073 do_cpuid_1_ent(entry
, function
, index
);
1078 entry
->eax
= min(entry
->eax
, (u32
)0xb);
1081 entry
->edx
&= kvm_supported_word0_x86_features
;
1082 entry
->ecx
&= kvm_supported_word3_x86_features
;
1084 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1085 * may return different values. This forces us to get_cpu() before
1086 * issuing the first command, and also to emulate this annoying behavior
1087 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1089 int t
, times
= entry
->eax
& 0xff;
1091 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1092 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
1093 do_cpuid_1_ent(&entry
[t
], function
, 0);
1094 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1099 /* function 4 and 0xb have additional index. */
1103 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1104 /* read more entries until cache_type is zero */
1105 for (i
= 1; *nent
< maxnent
; ++i
) {
1106 cache_type
= entry
[i
- 1].eax
& 0x1f;
1109 do_cpuid_1_ent(&entry
[i
], function
, i
);
1111 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1119 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1120 /* read more entries until level_type is zero */
1121 for (i
= 1; *nent
< maxnent
; ++i
) {
1122 level_type
= entry
[i
- 1].ecx
& 0xff;
1125 do_cpuid_1_ent(&entry
[i
], function
, i
);
1127 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1133 entry
->eax
= min(entry
->eax
, 0x8000001a);
1136 entry
->edx
&= kvm_supported_word1_x86_features
;
1137 entry
->ecx
&= kvm_supported_word6_x86_features
;
1143 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
1144 struct kvm_cpuid_entry2 __user
*entries
)
1146 struct kvm_cpuid_entry2
*cpuid_entries
;
1147 int limit
, nent
= 0, r
= -E2BIG
;
1150 if (cpuid
->nent
< 1)
1153 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
1157 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
1158 limit
= cpuid_entries
[0].eax
;
1159 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1160 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1161 &nent
, cpuid
->nent
);
1163 if (nent
>= cpuid
->nent
)
1166 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
1167 limit
= cpuid_entries
[nent
- 1].eax
;
1168 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1169 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1170 &nent
, cpuid
->nent
);
1172 if (copy_to_user(entries
, cpuid_entries
,
1173 nent
* sizeof(struct kvm_cpuid_entry2
)))
1179 vfree(cpuid_entries
);
1184 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
1185 struct kvm_lapic_state
*s
)
1188 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
1194 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
1195 struct kvm_lapic_state
*s
)
1198 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
1199 kvm_apic_post_state_restore(vcpu
);
1205 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
1206 struct kvm_interrupt
*irq
)
1208 if (irq
->irq
< 0 || irq
->irq
>= 256)
1210 if (irqchip_in_kernel(vcpu
->kvm
))
1214 set_bit(irq
->irq
, vcpu
->arch
.irq_pending
);
1215 set_bit(irq
->irq
/ BITS_PER_LONG
, &vcpu
->arch
.irq_summary
);
1222 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
1223 struct kvm_tpr_access_ctl
*tac
)
1227 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
1231 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1232 unsigned int ioctl
, unsigned long arg
)
1234 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1235 void __user
*argp
= (void __user
*)arg
;
1239 case KVM_GET_LAPIC
: {
1240 struct kvm_lapic_state lapic
;
1242 memset(&lapic
, 0, sizeof lapic
);
1243 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, &lapic
);
1247 if (copy_to_user(argp
, &lapic
, sizeof lapic
))
1252 case KVM_SET_LAPIC
: {
1253 struct kvm_lapic_state lapic
;
1256 if (copy_from_user(&lapic
, argp
, sizeof lapic
))
1258 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, &lapic
);;
1264 case KVM_INTERRUPT
: {
1265 struct kvm_interrupt irq
;
1268 if (copy_from_user(&irq
, argp
, sizeof irq
))
1270 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
1276 case KVM_SET_CPUID
: {
1277 struct kvm_cpuid __user
*cpuid_arg
= argp
;
1278 struct kvm_cpuid cpuid
;
1281 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1283 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
1288 case KVM_SET_CPUID2
: {
1289 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1290 struct kvm_cpuid2 cpuid
;
1293 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1295 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
1296 cpuid_arg
->entries
);
1301 case KVM_GET_CPUID2
: {
1302 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1303 struct kvm_cpuid2 cpuid
;
1306 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1308 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
1309 cpuid_arg
->entries
);
1313 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1319 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
1322 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
1324 case KVM_TPR_ACCESS_REPORTING
: {
1325 struct kvm_tpr_access_ctl tac
;
1328 if (copy_from_user(&tac
, argp
, sizeof tac
))
1330 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
1334 if (copy_to_user(argp
, &tac
, sizeof tac
))
1339 case KVM_SET_VAPIC_ADDR
: {
1340 struct kvm_vapic_addr va
;
1343 if (!irqchip_in_kernel(vcpu
->kvm
))
1346 if (copy_from_user(&va
, argp
, sizeof va
))
1349 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
1359 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
1363 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
1365 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
1369 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
1370 u32 kvm_nr_mmu_pages
)
1372 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
1375 down_write(&kvm
->slots_lock
);
1377 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
1378 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
1380 up_write(&kvm
->slots_lock
);
1384 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
1386 return kvm
->arch
.n_alloc_mmu_pages
;
1389 gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
1392 struct kvm_mem_alias
*alias
;
1394 for (i
= 0; i
< kvm
->arch
.naliases
; ++i
) {
1395 alias
= &kvm
->arch
.aliases
[i
];
1396 if (gfn
>= alias
->base_gfn
1397 && gfn
< alias
->base_gfn
+ alias
->npages
)
1398 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
1404 * Set a new alias region. Aliases map a portion of physical memory into
1405 * another portion. This is useful for memory windows, for example the PC
1408 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
1409 struct kvm_memory_alias
*alias
)
1412 struct kvm_mem_alias
*p
;
1415 /* General sanity checks */
1416 if (alias
->memory_size
& (PAGE_SIZE
- 1))
1418 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
1420 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
1422 if (alias
->guest_phys_addr
+ alias
->memory_size
1423 < alias
->guest_phys_addr
)
1425 if (alias
->target_phys_addr
+ alias
->memory_size
1426 < alias
->target_phys_addr
)
1429 down_write(&kvm
->slots_lock
);
1431 p
= &kvm
->arch
.aliases
[alias
->slot
];
1432 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
1433 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
1434 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
1436 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
1437 if (kvm
->arch
.aliases
[n
- 1].npages
)
1439 kvm
->arch
.naliases
= n
;
1441 kvm_mmu_zap_all(kvm
);
1443 up_write(&kvm
->slots_lock
);
1451 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1456 switch (chip
->chip_id
) {
1457 case KVM_IRQCHIP_PIC_MASTER
:
1458 memcpy(&chip
->chip
.pic
,
1459 &pic_irqchip(kvm
)->pics
[0],
1460 sizeof(struct kvm_pic_state
));
1462 case KVM_IRQCHIP_PIC_SLAVE
:
1463 memcpy(&chip
->chip
.pic
,
1464 &pic_irqchip(kvm
)->pics
[1],
1465 sizeof(struct kvm_pic_state
));
1467 case KVM_IRQCHIP_IOAPIC
:
1468 memcpy(&chip
->chip
.ioapic
,
1469 ioapic_irqchip(kvm
),
1470 sizeof(struct kvm_ioapic_state
));
1479 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1484 switch (chip
->chip_id
) {
1485 case KVM_IRQCHIP_PIC_MASTER
:
1486 memcpy(&pic_irqchip(kvm
)->pics
[0],
1488 sizeof(struct kvm_pic_state
));
1490 case KVM_IRQCHIP_PIC_SLAVE
:
1491 memcpy(&pic_irqchip(kvm
)->pics
[1],
1493 sizeof(struct kvm_pic_state
));
1495 case KVM_IRQCHIP_IOAPIC
:
1496 memcpy(ioapic_irqchip(kvm
),
1498 sizeof(struct kvm_ioapic_state
));
1504 kvm_pic_update_irq(pic_irqchip(kvm
));
1508 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
1512 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
1516 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
1520 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
1521 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
);
1526 * Get (and clear) the dirty memory log for a memory slot.
1528 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
1529 struct kvm_dirty_log
*log
)
1533 struct kvm_memory_slot
*memslot
;
1536 down_write(&kvm
->slots_lock
);
1538 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
1542 /* If nothing is dirty, don't bother messing with page tables. */
1544 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
1545 kvm_flush_remote_tlbs(kvm
);
1546 memslot
= &kvm
->memslots
[log
->slot
];
1547 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
1548 memset(memslot
->dirty_bitmap
, 0, n
);
1552 up_write(&kvm
->slots_lock
);
1556 long kvm_arch_vm_ioctl(struct file
*filp
,
1557 unsigned int ioctl
, unsigned long arg
)
1559 struct kvm
*kvm
= filp
->private_data
;
1560 void __user
*argp
= (void __user
*)arg
;
1564 case KVM_SET_TSS_ADDR
:
1565 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
1569 case KVM_SET_MEMORY_REGION
: {
1570 struct kvm_memory_region kvm_mem
;
1571 struct kvm_userspace_memory_region kvm_userspace_mem
;
1574 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
1576 kvm_userspace_mem
.slot
= kvm_mem
.slot
;
1577 kvm_userspace_mem
.flags
= kvm_mem
.flags
;
1578 kvm_userspace_mem
.guest_phys_addr
= kvm_mem
.guest_phys_addr
;
1579 kvm_userspace_mem
.memory_size
= kvm_mem
.memory_size
;
1580 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
1585 case KVM_SET_NR_MMU_PAGES
:
1586 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
1590 case KVM_GET_NR_MMU_PAGES
:
1591 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
1593 case KVM_SET_MEMORY_ALIAS
: {
1594 struct kvm_memory_alias alias
;
1597 if (copy_from_user(&alias
, argp
, sizeof alias
))
1599 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &alias
);
1604 case KVM_CREATE_IRQCHIP
:
1606 kvm
->arch
.vpic
= kvm_create_pic(kvm
);
1607 if (kvm
->arch
.vpic
) {
1608 r
= kvm_ioapic_init(kvm
);
1610 kfree(kvm
->arch
.vpic
);
1611 kvm
->arch
.vpic
= NULL
;
1617 case KVM_CREATE_PIT
:
1619 kvm
->arch
.vpit
= kvm_create_pit(kvm
);
1623 case KVM_IRQ_LINE
: {
1624 struct kvm_irq_level irq_event
;
1627 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
1629 if (irqchip_in_kernel(kvm
)) {
1630 mutex_lock(&kvm
->lock
);
1631 if (irq_event
.irq
< 16)
1632 kvm_pic_set_irq(pic_irqchip(kvm
),
1635 kvm_ioapic_set_irq(kvm
->arch
.vioapic
,
1638 mutex_unlock(&kvm
->lock
);
1643 case KVM_GET_IRQCHIP
: {
1644 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1645 struct kvm_irqchip chip
;
1648 if (copy_from_user(&chip
, argp
, sizeof chip
))
1651 if (!irqchip_in_kernel(kvm
))
1653 r
= kvm_vm_ioctl_get_irqchip(kvm
, &chip
);
1657 if (copy_to_user(argp
, &chip
, sizeof chip
))
1662 case KVM_SET_IRQCHIP
: {
1663 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1664 struct kvm_irqchip chip
;
1667 if (copy_from_user(&chip
, argp
, sizeof chip
))
1670 if (!irqchip_in_kernel(kvm
))
1672 r
= kvm_vm_ioctl_set_irqchip(kvm
, &chip
);
1679 struct kvm_pit_state ps
;
1681 if (copy_from_user(&ps
, argp
, sizeof ps
))
1684 if (!kvm
->arch
.vpit
)
1686 r
= kvm_vm_ioctl_get_pit(kvm
, &ps
);
1690 if (copy_to_user(argp
, &ps
, sizeof ps
))
1696 struct kvm_pit_state ps
;
1698 if (copy_from_user(&ps
, argp
, sizeof ps
))
1701 if (!kvm
->arch
.vpit
)
1703 r
= kvm_vm_ioctl_set_pit(kvm
, &ps
);
1716 static void kvm_init_msr_list(void)
1721 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
1722 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
1725 msrs_to_save
[j
] = msrs_to_save
[i
];
1728 num_msrs_to_save
= j
;
1732 * Only apic need an MMIO device hook, so shortcut now..
1734 static struct kvm_io_device
*vcpu_find_pervcpu_dev(struct kvm_vcpu
*vcpu
,
1737 struct kvm_io_device
*dev
;
1739 if (vcpu
->arch
.apic
) {
1740 dev
= &vcpu
->arch
.apic
->dev
;
1741 if (dev
->in_range(dev
, addr
))
1748 static struct kvm_io_device
*vcpu_find_mmio_dev(struct kvm_vcpu
*vcpu
,
1751 struct kvm_io_device
*dev
;
1753 dev
= vcpu_find_pervcpu_dev(vcpu
, addr
);
1755 dev
= kvm_io_bus_find_dev(&vcpu
->kvm
->mmio_bus
, addr
);
1759 int emulator_read_std(unsigned long addr
,
1762 struct kvm_vcpu
*vcpu
)
1765 int r
= X86EMUL_CONTINUE
;
1768 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
1769 unsigned offset
= addr
& (PAGE_SIZE
-1);
1770 unsigned tocopy
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
1773 if (gpa
== UNMAPPED_GVA
) {
1774 r
= X86EMUL_PROPAGATE_FAULT
;
1777 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, tocopy
);
1779 r
= X86EMUL_UNHANDLEABLE
;
1790 EXPORT_SYMBOL_GPL(emulator_read_std
);
1792 static int emulator_read_emulated(unsigned long addr
,
1795 struct kvm_vcpu
*vcpu
)
1797 struct kvm_io_device
*mmio_dev
;
1800 if (vcpu
->mmio_read_completed
) {
1801 memcpy(val
, vcpu
->mmio_data
, bytes
);
1802 vcpu
->mmio_read_completed
= 0;
1803 return X86EMUL_CONTINUE
;
1806 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
1808 /* For APIC access vmexit */
1809 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
1812 if (emulator_read_std(addr
, val
, bytes
, vcpu
)
1813 == X86EMUL_CONTINUE
)
1814 return X86EMUL_CONTINUE
;
1815 if (gpa
== UNMAPPED_GVA
)
1816 return X86EMUL_PROPAGATE_FAULT
;
1820 * Is this MMIO handled locally?
1822 mutex_lock(&vcpu
->kvm
->lock
);
1823 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
);
1825 kvm_iodevice_read(mmio_dev
, gpa
, bytes
, val
);
1826 mutex_unlock(&vcpu
->kvm
->lock
);
1827 return X86EMUL_CONTINUE
;
1829 mutex_unlock(&vcpu
->kvm
->lock
);
1831 vcpu
->mmio_needed
= 1;
1832 vcpu
->mmio_phys_addr
= gpa
;
1833 vcpu
->mmio_size
= bytes
;
1834 vcpu
->mmio_is_write
= 0;
1836 return X86EMUL_UNHANDLEABLE
;
1839 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1840 const void *val
, int bytes
)
1844 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
1847 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
1851 static int emulator_write_emulated_onepage(unsigned long addr
,
1854 struct kvm_vcpu
*vcpu
)
1856 struct kvm_io_device
*mmio_dev
;
1859 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
1861 if (gpa
== UNMAPPED_GVA
) {
1862 kvm_inject_page_fault(vcpu
, addr
, 2);
1863 return X86EMUL_PROPAGATE_FAULT
;
1866 /* For APIC access vmexit */
1867 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
1870 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
1871 return X86EMUL_CONTINUE
;
1875 * Is this MMIO handled locally?
1877 mutex_lock(&vcpu
->kvm
->lock
);
1878 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
);
1880 kvm_iodevice_write(mmio_dev
, gpa
, bytes
, val
);
1881 mutex_unlock(&vcpu
->kvm
->lock
);
1882 return X86EMUL_CONTINUE
;
1884 mutex_unlock(&vcpu
->kvm
->lock
);
1886 vcpu
->mmio_needed
= 1;
1887 vcpu
->mmio_phys_addr
= gpa
;
1888 vcpu
->mmio_size
= bytes
;
1889 vcpu
->mmio_is_write
= 1;
1890 memcpy(vcpu
->mmio_data
, val
, bytes
);
1892 return X86EMUL_CONTINUE
;
1895 int emulator_write_emulated(unsigned long addr
,
1898 struct kvm_vcpu
*vcpu
)
1900 /* Crossing a page boundary? */
1901 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
1904 now
= -addr
& ~PAGE_MASK
;
1905 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
1906 if (rc
!= X86EMUL_CONTINUE
)
1912 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
1914 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
1916 static int emulator_cmpxchg_emulated(unsigned long addr
,
1920 struct kvm_vcpu
*vcpu
)
1922 static int reported
;
1926 printk(KERN_WARNING
"kvm: emulating exchange as write\n");
1928 #ifndef CONFIG_X86_64
1929 /* guests cmpxchg8b have to be emulated atomically */
1936 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
1938 if (gpa
== UNMAPPED_GVA
||
1939 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
1942 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
1947 down_read(¤t
->mm
->mmap_sem
);
1948 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1949 up_read(¤t
->mm
->mmap_sem
);
1951 kaddr
= kmap_atomic(page
, KM_USER0
);
1952 set_64bit((u64
*)(kaddr
+ offset_in_page(gpa
)), val
);
1953 kunmap_atomic(kaddr
, KM_USER0
);
1954 kvm_release_page_dirty(page
);
1959 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
1962 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1964 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
1967 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
1969 return X86EMUL_CONTINUE
;
1972 int emulate_clts(struct kvm_vcpu
*vcpu
)
1974 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
& ~X86_CR0_TS
);
1975 return X86EMUL_CONTINUE
;
1978 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
1980 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
1984 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
1985 return X86EMUL_CONTINUE
;
1987 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __func__
, dr
);
1988 return X86EMUL_UNHANDLEABLE
;
1992 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
1994 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
1997 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
1999 /* FIXME: better handling */
2000 return X86EMUL_UNHANDLEABLE
;
2002 return X86EMUL_CONTINUE
;
2005 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
2007 static int reported
;
2009 unsigned long rip
= vcpu
->arch
.rip
;
2010 unsigned long rip_linear
;
2012 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
2017 emulator_read_std(rip_linear
, (void *)opcodes
, 4, vcpu
);
2019 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2020 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
2023 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
2025 static struct x86_emulate_ops emulate_ops
= {
2026 .read_std
= emulator_read_std
,
2027 .read_emulated
= emulator_read_emulated
,
2028 .write_emulated
= emulator_write_emulated
,
2029 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
2032 int emulate_instruction(struct kvm_vcpu
*vcpu
,
2033 struct kvm_run
*run
,
2039 struct decode_cache
*c
;
2041 vcpu
->arch
.mmio_fault_cr2
= cr2
;
2042 kvm_x86_ops
->cache_regs(vcpu
);
2044 vcpu
->mmio_is_write
= 0;
2045 vcpu
->arch
.pio
.string
= 0;
2047 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
2049 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
2051 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
2052 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
2053 vcpu
->arch
.emulate_ctxt
.mode
=
2054 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
2055 ? X86EMUL_MODE_REAL
: cs_l
2056 ? X86EMUL_MODE_PROT64
: cs_db
2057 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
2059 if (vcpu
->arch
.emulate_ctxt
.mode
== X86EMUL_MODE_PROT64
) {
2060 vcpu
->arch
.emulate_ctxt
.cs_base
= 0;
2061 vcpu
->arch
.emulate_ctxt
.ds_base
= 0;
2062 vcpu
->arch
.emulate_ctxt
.es_base
= 0;
2063 vcpu
->arch
.emulate_ctxt
.ss_base
= 0;
2065 vcpu
->arch
.emulate_ctxt
.cs_base
=
2066 get_segment_base(vcpu
, VCPU_SREG_CS
);
2067 vcpu
->arch
.emulate_ctxt
.ds_base
=
2068 get_segment_base(vcpu
, VCPU_SREG_DS
);
2069 vcpu
->arch
.emulate_ctxt
.es_base
=
2070 get_segment_base(vcpu
, VCPU_SREG_ES
);
2071 vcpu
->arch
.emulate_ctxt
.ss_base
=
2072 get_segment_base(vcpu
, VCPU_SREG_SS
);
2075 vcpu
->arch
.emulate_ctxt
.gs_base
=
2076 get_segment_base(vcpu
, VCPU_SREG_GS
);
2077 vcpu
->arch
.emulate_ctxt
.fs_base
=
2078 get_segment_base(vcpu
, VCPU_SREG_FS
);
2080 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2082 /* Reject the instructions other than VMCALL/VMMCALL when
2083 * try to emulate invalid opcode */
2084 c
= &vcpu
->arch
.emulate_ctxt
.decode
;
2085 if ((emulation_type
& EMULTYPE_TRAP_UD
) &&
2086 (!(c
->twobyte
&& c
->b
== 0x01 &&
2087 (c
->modrm_reg
== 0 || c
->modrm_reg
== 3) &&
2088 c
->modrm_mod
== 3 && c
->modrm_rm
== 1)))
2089 return EMULATE_FAIL
;
2091 ++vcpu
->stat
.insn_emulation
;
2093 ++vcpu
->stat
.insn_emulation_fail
;
2094 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2095 return EMULATE_DONE
;
2096 return EMULATE_FAIL
;
2100 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2102 if (vcpu
->arch
.pio
.string
)
2103 return EMULATE_DO_MMIO
;
2105 if ((r
|| vcpu
->mmio_is_write
) && run
) {
2106 run
->exit_reason
= KVM_EXIT_MMIO
;
2107 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
2108 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
2109 run
->mmio
.len
= vcpu
->mmio_size
;
2110 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
2114 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2115 return EMULATE_DONE
;
2116 if (!vcpu
->mmio_needed
) {
2117 kvm_report_emulation_failure(vcpu
, "mmio");
2118 return EMULATE_FAIL
;
2120 return EMULATE_DO_MMIO
;
2123 kvm_x86_ops
->decache_regs(vcpu
);
2124 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
2126 if (vcpu
->mmio_is_write
) {
2127 vcpu
->mmio_needed
= 0;
2128 return EMULATE_DO_MMIO
;
2131 return EMULATE_DONE
;
2133 EXPORT_SYMBOL_GPL(emulate_instruction
);
2135 static void free_pio_guest_pages(struct kvm_vcpu
*vcpu
)
2139 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.pio
.guest_pages
); ++i
)
2140 if (vcpu
->arch
.pio
.guest_pages
[i
]) {
2141 kvm_release_page_dirty(vcpu
->arch
.pio
.guest_pages
[i
]);
2142 vcpu
->arch
.pio
.guest_pages
[i
] = NULL
;
2146 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
2148 void *p
= vcpu
->arch
.pio_data
;
2151 int nr_pages
= vcpu
->arch
.pio
.guest_pages
[1] ? 2 : 1;
2153 q
= vmap(vcpu
->arch
.pio
.guest_pages
, nr_pages
, VM_READ
|VM_WRITE
,
2156 free_pio_guest_pages(vcpu
);
2159 q
+= vcpu
->arch
.pio
.guest_page_offset
;
2160 bytes
= vcpu
->arch
.pio
.size
* vcpu
->arch
.pio
.cur_count
;
2161 if (vcpu
->arch
.pio
.in
)
2162 memcpy(q
, p
, bytes
);
2164 memcpy(p
, q
, bytes
);
2165 q
-= vcpu
->arch
.pio
.guest_page_offset
;
2167 free_pio_guest_pages(vcpu
);
2171 int complete_pio(struct kvm_vcpu
*vcpu
)
2173 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2177 kvm_x86_ops
->cache_regs(vcpu
);
2181 memcpy(&vcpu
->arch
.regs
[VCPU_REGS_RAX
], vcpu
->arch
.pio_data
,
2185 r
= pio_copy_data(vcpu
);
2187 kvm_x86_ops
->cache_regs(vcpu
);
2194 delta
*= io
->cur_count
;
2196 * The size of the register should really depend on
2197 * current address size.
2199 vcpu
->arch
.regs
[VCPU_REGS_RCX
] -= delta
;
2205 vcpu
->arch
.regs
[VCPU_REGS_RDI
] += delta
;
2207 vcpu
->arch
.regs
[VCPU_REGS_RSI
] += delta
;
2210 kvm_x86_ops
->decache_regs(vcpu
);
2212 io
->count
-= io
->cur_count
;
2218 static void kernel_pio(struct kvm_io_device
*pio_dev
,
2219 struct kvm_vcpu
*vcpu
,
2222 /* TODO: String I/O for in kernel device */
2224 mutex_lock(&vcpu
->kvm
->lock
);
2225 if (vcpu
->arch
.pio
.in
)
2226 kvm_iodevice_read(pio_dev
, vcpu
->arch
.pio
.port
,
2227 vcpu
->arch
.pio
.size
,
2230 kvm_iodevice_write(pio_dev
, vcpu
->arch
.pio
.port
,
2231 vcpu
->arch
.pio
.size
,
2233 mutex_unlock(&vcpu
->kvm
->lock
);
2236 static void pio_string_write(struct kvm_io_device
*pio_dev
,
2237 struct kvm_vcpu
*vcpu
)
2239 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2240 void *pd
= vcpu
->arch
.pio_data
;
2243 mutex_lock(&vcpu
->kvm
->lock
);
2244 for (i
= 0; i
< io
->cur_count
; i
++) {
2245 kvm_iodevice_write(pio_dev
, io
->port
,
2250 mutex_unlock(&vcpu
->kvm
->lock
);
2253 static struct kvm_io_device
*vcpu_find_pio_dev(struct kvm_vcpu
*vcpu
,
2256 return kvm_io_bus_find_dev(&vcpu
->kvm
->pio_bus
, addr
);
2259 int kvm_emulate_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2260 int size
, unsigned port
)
2262 struct kvm_io_device
*pio_dev
;
2264 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2265 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2266 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2267 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2268 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= 1;
2269 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2270 vcpu
->arch
.pio
.in
= in
;
2271 vcpu
->arch
.pio
.string
= 0;
2272 vcpu
->arch
.pio
.down
= 0;
2273 vcpu
->arch
.pio
.guest_page_offset
= 0;
2274 vcpu
->arch
.pio
.rep
= 0;
2276 if (vcpu
->run
->io
.direction
== KVM_EXIT_IO_IN
)
2277 KVMTRACE_2D(IO_READ
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2280 KVMTRACE_2D(IO_WRITE
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2283 kvm_x86_ops
->cache_regs(vcpu
);
2284 memcpy(vcpu
->arch
.pio_data
, &vcpu
->arch
.regs
[VCPU_REGS_RAX
], 4);
2285 kvm_x86_ops
->decache_regs(vcpu
);
2287 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2289 pio_dev
= vcpu_find_pio_dev(vcpu
, port
);
2291 kernel_pio(pio_dev
, vcpu
, vcpu
->arch
.pio_data
);
2297 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
2299 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2300 int size
, unsigned long count
, int down
,
2301 gva_t address
, int rep
, unsigned port
)
2303 unsigned now
, in_page
;
2307 struct kvm_io_device
*pio_dev
;
2309 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2310 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2311 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2312 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2313 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= count
;
2314 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2315 vcpu
->arch
.pio
.in
= in
;
2316 vcpu
->arch
.pio
.string
= 1;
2317 vcpu
->arch
.pio
.down
= down
;
2318 vcpu
->arch
.pio
.guest_page_offset
= offset_in_page(address
);
2319 vcpu
->arch
.pio
.rep
= rep
;
2321 if (vcpu
->run
->io
.direction
== KVM_EXIT_IO_IN
)
2322 KVMTRACE_2D(IO_READ
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2325 KVMTRACE_2D(IO_WRITE
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2329 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2334 in_page
= PAGE_SIZE
- offset_in_page(address
);
2336 in_page
= offset_in_page(address
) + size
;
2337 now
= min(count
, (unsigned long)in_page
/ size
);
2340 * String I/O straddles page boundary. Pin two guest pages
2341 * so that we satisfy atomicity constraints. Do just one
2342 * transaction to avoid complexity.
2349 * String I/O in reverse. Yuck. Kill the guest, fix later.
2351 pr_unimpl(vcpu
, "guest string pio down\n");
2352 kvm_inject_gp(vcpu
, 0);
2355 vcpu
->run
->io
.count
= now
;
2356 vcpu
->arch
.pio
.cur_count
= now
;
2358 if (vcpu
->arch
.pio
.cur_count
== vcpu
->arch
.pio
.count
)
2359 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2361 for (i
= 0; i
< nr_pages
; ++i
) {
2362 page
= gva_to_page(vcpu
, address
+ i
* PAGE_SIZE
);
2363 vcpu
->arch
.pio
.guest_pages
[i
] = page
;
2365 kvm_inject_gp(vcpu
, 0);
2366 free_pio_guest_pages(vcpu
);
2371 pio_dev
= vcpu_find_pio_dev(vcpu
, port
);
2372 if (!vcpu
->arch
.pio
.in
) {
2373 /* string PIO write */
2374 ret
= pio_copy_data(vcpu
);
2375 if (ret
>= 0 && pio_dev
) {
2376 pio_string_write(pio_dev
, vcpu
);
2378 if (vcpu
->arch
.pio
.count
== 0)
2382 pr_unimpl(vcpu
, "no string pio read support yet, "
2383 "port %x size %d count %ld\n",
2388 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
2390 int kvm_arch_init(void *opaque
)
2393 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
2396 printk(KERN_ERR
"kvm: already loaded the other module\n");
2401 if (!ops
->cpu_has_kvm_support()) {
2402 printk(KERN_ERR
"kvm: no hardware support\n");
2406 if (ops
->disabled_by_bios()) {
2407 printk(KERN_ERR
"kvm: disabled by bios\n");
2412 r
= kvm_mmu_module_init();
2416 kvm_init_msr_list();
2419 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2426 void kvm_arch_exit(void)
2429 kvm_mmu_module_exit();
2432 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
2434 ++vcpu
->stat
.halt_exits
;
2435 KVMTRACE_0D(HLT
, vcpu
, handler
);
2436 if (irqchip_in_kernel(vcpu
->kvm
)) {
2437 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
2438 up_read(&vcpu
->kvm
->slots_lock
);
2439 kvm_vcpu_block(vcpu
);
2440 down_read(&vcpu
->kvm
->slots_lock
);
2441 if (vcpu
->arch
.mp_state
!= KVM_MP_STATE_RUNNABLE
)
2445 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
2449 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
2451 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
2454 if (is_long_mode(vcpu
))
2457 return a0
| ((gpa_t
)a1
<< 32);
2460 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
2462 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
2465 kvm_x86_ops
->cache_regs(vcpu
);
2467 nr
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
2468 a0
= vcpu
->arch
.regs
[VCPU_REGS_RBX
];
2469 a1
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2470 a2
= vcpu
->arch
.regs
[VCPU_REGS_RDX
];
2471 a3
= vcpu
->arch
.regs
[VCPU_REGS_RSI
];
2473 KVMTRACE_1D(VMMCALL
, vcpu
, (u32
)nr
, handler
);
2475 if (!is_long_mode(vcpu
)) {
2484 case KVM_HC_VAPIC_POLL_IRQ
:
2488 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
2494 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = ret
;
2495 kvm_x86_ops
->decache_regs(vcpu
);
2496 ++vcpu
->stat
.hypercalls
;
2499 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
2501 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
2503 char instruction
[3];
2508 * Blow out the MMU to ensure that no other VCPU has an active mapping
2509 * to ensure that the updated hypercall appears atomically across all
2512 kvm_mmu_zap_all(vcpu
->kvm
);
2514 kvm_x86_ops
->cache_regs(vcpu
);
2515 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
2516 if (emulator_write_emulated(vcpu
->arch
.rip
, instruction
, 3, vcpu
)
2517 != X86EMUL_CONTINUE
)
2523 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
2525 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
2528 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2530 struct descriptor_table dt
= { limit
, base
};
2532 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
2535 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2537 struct descriptor_table dt
= { limit
, base
};
2539 kvm_x86_ops
->set_idt(vcpu
, &dt
);
2542 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
2543 unsigned long *rflags
)
2545 kvm_lmsw(vcpu
, msw
);
2546 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2549 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
2551 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2554 return vcpu
->arch
.cr0
;
2556 return vcpu
->arch
.cr2
;
2558 return vcpu
->arch
.cr3
;
2560 return vcpu
->arch
.cr4
;
2562 return kvm_get_cr8(vcpu
);
2564 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
2569 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
2570 unsigned long *rflags
)
2574 kvm_set_cr0(vcpu
, mk_cr_64(vcpu
->arch
.cr0
, val
));
2575 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2578 vcpu
->arch
.cr2
= val
;
2581 kvm_set_cr3(vcpu
, val
);
2584 kvm_set_cr4(vcpu
, mk_cr_64(vcpu
->arch
.cr4
, val
));
2587 kvm_set_cr8(vcpu
, val
& 0xfUL
);
2590 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
2594 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
2596 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
2597 int j
, nent
= vcpu
->arch
.cpuid_nent
;
2599 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
2600 /* when no next entry is found, the current entry[i] is reselected */
2601 for (j
= i
+ 1; j
== i
; j
= (j
+ 1) % nent
) {
2602 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
2603 if (ej
->function
== e
->function
) {
2604 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
2608 return 0; /* silence gcc, even though control never reaches here */
2611 /* find an entry with matching function, matching index (if needed), and that
2612 * should be read next (if it's stateful) */
2613 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
2614 u32 function
, u32 index
)
2616 if (e
->function
!= function
)
2618 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
2620 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
2621 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
2626 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
2629 u32 function
, index
;
2630 struct kvm_cpuid_entry2
*e
, *best
;
2632 kvm_x86_ops
->cache_regs(vcpu
);
2633 function
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
2634 index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2635 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = 0;
2636 vcpu
->arch
.regs
[VCPU_REGS_RBX
] = 0;
2637 vcpu
->arch
.regs
[VCPU_REGS_RCX
] = 0;
2638 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = 0;
2640 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
2641 e
= &vcpu
->arch
.cpuid_entries
[i
];
2642 if (is_matching_cpuid_entry(e
, function
, index
)) {
2643 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
2644 move_to_next_stateful_cpuid_entry(vcpu
, i
);
2649 * Both basic or both extended?
2651 if (((e
->function
^ function
) & 0x80000000) == 0)
2652 if (!best
|| e
->function
> best
->function
)
2656 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = best
->eax
;
2657 vcpu
->arch
.regs
[VCPU_REGS_RBX
] = best
->ebx
;
2658 vcpu
->arch
.regs
[VCPU_REGS_RCX
] = best
->ecx
;
2659 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = best
->edx
;
2661 kvm_x86_ops
->decache_regs(vcpu
);
2662 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2663 KVMTRACE_5D(CPUID
, vcpu
, function
,
2664 (u32
)vcpu
->arch
.regs
[VCPU_REGS_RAX
],
2665 (u32
)vcpu
->arch
.regs
[VCPU_REGS_RBX
],
2666 (u32
)vcpu
->arch
.regs
[VCPU_REGS_RCX
],
2667 (u32
)vcpu
->arch
.regs
[VCPU_REGS_RDX
], handler
);
2669 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
2672 * Check if userspace requested an interrupt window, and that the
2673 * interrupt window is open.
2675 * No need to exit to userspace if we already have an interrupt queued.
2677 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
2678 struct kvm_run
*kvm_run
)
2680 return (!vcpu
->arch
.irq_summary
&&
2681 kvm_run
->request_interrupt_window
&&
2682 vcpu
->arch
.interrupt_window_open
&&
2683 (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
));
2686 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
2687 struct kvm_run
*kvm_run
)
2689 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
2690 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
2691 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
2692 if (irqchip_in_kernel(vcpu
->kvm
))
2693 kvm_run
->ready_for_interrupt_injection
= 1;
2695 kvm_run
->ready_for_interrupt_injection
=
2696 (vcpu
->arch
.interrupt_window_open
&&
2697 vcpu
->arch
.irq_summary
== 0);
2700 static void vapic_enter(struct kvm_vcpu
*vcpu
)
2702 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2705 if (!apic
|| !apic
->vapic_addr
)
2708 down_read(¤t
->mm
->mmap_sem
);
2709 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
2710 up_read(¤t
->mm
->mmap_sem
);
2712 vcpu
->arch
.apic
->vapic_page
= page
;
2715 static void vapic_exit(struct kvm_vcpu
*vcpu
)
2717 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2719 if (!apic
|| !apic
->vapic_addr
)
2722 kvm_release_page_dirty(apic
->vapic_page
);
2723 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
2726 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2730 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
2731 pr_debug("vcpu %d received sipi with vector # %x\n",
2732 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
2733 kvm_lapic_reset(vcpu
);
2734 r
= kvm_x86_ops
->vcpu_reset(vcpu
);
2737 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
2740 down_read(&vcpu
->kvm
->slots_lock
);
2744 if (vcpu
->guest_debug
.enabled
)
2745 kvm_x86_ops
->guest_debug_pre(vcpu
);
2749 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD
, &vcpu
->requests
))
2750 kvm_mmu_unload(vcpu
);
2752 r
= kvm_mmu_reload(vcpu
);
2756 if (vcpu
->requests
) {
2757 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
))
2758 __kvm_migrate_apic_timer(vcpu
);
2759 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS
,
2761 kvm_run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
2765 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
)) {
2766 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
2772 kvm_inject_pending_timer_irqs(vcpu
);
2776 kvm_x86_ops
->prepare_guest_switch(vcpu
);
2777 kvm_load_guest_fpu(vcpu
);
2779 local_irq_disable();
2781 if (need_resched()) {
2789 if (test_bit(KVM_REQ_MMU_RELOAD
, &vcpu
->requests
)) {
2796 if (signal_pending(current
)) {
2800 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2801 ++vcpu
->stat
.signal_exits
;
2805 vcpu
->guest_mode
= 1;
2807 * Make sure that guest_mode assignment won't happen after
2808 * testing the pending IRQ vector bitmap.
2812 if (vcpu
->arch
.exception
.pending
)
2813 __queue_exception(vcpu
);
2814 else if (irqchip_in_kernel(vcpu
->kvm
))
2815 kvm_x86_ops
->inject_pending_irq(vcpu
);
2817 kvm_x86_ops
->inject_pending_vectors(vcpu
, kvm_run
);
2819 kvm_lapic_sync_to_vapic(vcpu
);
2821 up_read(&vcpu
->kvm
->slots_lock
);
2826 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
))
2827 kvm_x86_ops
->tlb_flush(vcpu
);
2829 KVMTRACE_0D(VMENTRY
, vcpu
, entryexit
);
2830 kvm_x86_ops
->run(vcpu
, kvm_run
);
2832 vcpu
->guest_mode
= 0;
2838 * We must have an instruction between local_irq_enable() and
2839 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2840 * the interrupt shadow. The stat.exits increment will do nicely.
2841 * But we need to prevent reordering, hence this barrier():
2849 down_read(&vcpu
->kvm
->slots_lock
);
2852 * Profile KVM exit RIPs:
2854 if (unlikely(prof_on
== KVM_PROFILING
)) {
2855 kvm_x86_ops
->cache_regs(vcpu
);
2856 profile_hit(KVM_PROFILING
, (void *)vcpu
->arch
.rip
);
2859 if (vcpu
->arch
.exception
.pending
&& kvm_x86_ops
->exception_injected(vcpu
))
2860 vcpu
->arch
.exception
.pending
= false;
2862 kvm_lapic_sync_from_vapic(vcpu
);
2864 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
2867 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
2869 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2870 ++vcpu
->stat
.request_irq_exits
;
2873 if (!need_resched())
2878 up_read(&vcpu
->kvm
->slots_lock
);
2881 down_read(&vcpu
->kvm
->slots_lock
);
2885 post_kvm_run_save(vcpu
, kvm_run
);
2887 down_read(&vcpu
->kvm
->slots_lock
);
2889 up_read(&vcpu
->kvm
->slots_lock
);
2894 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2901 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
2902 kvm_vcpu_block(vcpu
);
2907 if (vcpu
->sigset_active
)
2908 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
2910 /* re-sync apic's tpr */
2911 if (!irqchip_in_kernel(vcpu
->kvm
))
2912 kvm_set_cr8(vcpu
, kvm_run
->cr8
);
2914 if (vcpu
->arch
.pio
.cur_count
) {
2915 r
= complete_pio(vcpu
);
2919 #if CONFIG_HAS_IOMEM
2920 if (vcpu
->mmio_needed
) {
2921 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
2922 vcpu
->mmio_read_completed
= 1;
2923 vcpu
->mmio_needed
= 0;
2925 down_read(&vcpu
->kvm
->slots_lock
);
2926 r
= emulate_instruction(vcpu
, kvm_run
,
2927 vcpu
->arch
.mmio_fault_cr2
, 0,
2928 EMULTYPE_NO_DECODE
);
2929 up_read(&vcpu
->kvm
->slots_lock
);
2930 if (r
== EMULATE_DO_MMIO
) {
2932 * Read-modify-write. Back to userspace.
2939 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
) {
2940 kvm_x86_ops
->cache_regs(vcpu
);
2941 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = kvm_run
->hypercall
.ret
;
2942 kvm_x86_ops
->decache_regs(vcpu
);
2945 r
= __vcpu_run(vcpu
, kvm_run
);
2948 if (vcpu
->sigset_active
)
2949 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
2955 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
2959 kvm_x86_ops
->cache_regs(vcpu
);
2961 regs
->rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
2962 regs
->rbx
= vcpu
->arch
.regs
[VCPU_REGS_RBX
];
2963 regs
->rcx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2964 regs
->rdx
= vcpu
->arch
.regs
[VCPU_REGS_RDX
];
2965 regs
->rsi
= vcpu
->arch
.regs
[VCPU_REGS_RSI
];
2966 regs
->rdi
= vcpu
->arch
.regs
[VCPU_REGS_RDI
];
2967 regs
->rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
2968 regs
->rbp
= vcpu
->arch
.regs
[VCPU_REGS_RBP
];
2969 #ifdef CONFIG_X86_64
2970 regs
->r8
= vcpu
->arch
.regs
[VCPU_REGS_R8
];
2971 regs
->r9
= vcpu
->arch
.regs
[VCPU_REGS_R9
];
2972 regs
->r10
= vcpu
->arch
.regs
[VCPU_REGS_R10
];
2973 regs
->r11
= vcpu
->arch
.regs
[VCPU_REGS_R11
];
2974 regs
->r12
= vcpu
->arch
.regs
[VCPU_REGS_R12
];
2975 regs
->r13
= vcpu
->arch
.regs
[VCPU_REGS_R13
];
2976 regs
->r14
= vcpu
->arch
.regs
[VCPU_REGS_R14
];
2977 regs
->r15
= vcpu
->arch
.regs
[VCPU_REGS_R15
];
2980 regs
->rip
= vcpu
->arch
.rip
;
2981 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2984 * Don't leak debug flags in case they were set for guest debugging
2986 if (vcpu
->guest_debug
.enabled
&& vcpu
->guest_debug
.singlestep
)
2987 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
2994 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
2998 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = regs
->rax
;
2999 vcpu
->arch
.regs
[VCPU_REGS_RBX
] = regs
->rbx
;
3000 vcpu
->arch
.regs
[VCPU_REGS_RCX
] = regs
->rcx
;
3001 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = regs
->rdx
;
3002 vcpu
->arch
.regs
[VCPU_REGS_RSI
] = regs
->rsi
;
3003 vcpu
->arch
.regs
[VCPU_REGS_RDI
] = regs
->rdi
;
3004 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = regs
->rsp
;
3005 vcpu
->arch
.regs
[VCPU_REGS_RBP
] = regs
->rbp
;
3006 #ifdef CONFIG_X86_64
3007 vcpu
->arch
.regs
[VCPU_REGS_R8
] = regs
->r8
;
3008 vcpu
->arch
.regs
[VCPU_REGS_R9
] = regs
->r9
;
3009 vcpu
->arch
.regs
[VCPU_REGS_R10
] = regs
->r10
;
3010 vcpu
->arch
.regs
[VCPU_REGS_R11
] = regs
->r11
;
3011 vcpu
->arch
.regs
[VCPU_REGS_R12
] = regs
->r12
;
3012 vcpu
->arch
.regs
[VCPU_REGS_R13
] = regs
->r13
;
3013 vcpu
->arch
.regs
[VCPU_REGS_R14
] = regs
->r14
;
3014 vcpu
->arch
.regs
[VCPU_REGS_R15
] = regs
->r15
;
3017 vcpu
->arch
.rip
= regs
->rip
;
3018 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
3020 kvm_x86_ops
->decache_regs(vcpu
);
3027 static void get_segment(struct kvm_vcpu
*vcpu
,
3028 struct kvm_segment
*var
, int seg
)
3030 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3033 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3035 struct kvm_segment cs
;
3037 get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3041 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
3043 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
3044 struct kvm_sregs
*sregs
)
3046 struct descriptor_table dt
;
3051 get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3052 get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3053 get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3054 get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3055 get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3056 get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3058 get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3059 get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3061 kvm_x86_ops
->get_idt(vcpu
, &dt
);
3062 sregs
->idt
.limit
= dt
.limit
;
3063 sregs
->idt
.base
= dt
.base
;
3064 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
3065 sregs
->gdt
.limit
= dt
.limit
;
3066 sregs
->gdt
.base
= dt
.base
;
3068 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3069 sregs
->cr0
= vcpu
->arch
.cr0
;
3070 sregs
->cr2
= vcpu
->arch
.cr2
;
3071 sregs
->cr3
= vcpu
->arch
.cr3
;
3072 sregs
->cr4
= vcpu
->arch
.cr4
;
3073 sregs
->cr8
= kvm_get_cr8(vcpu
);
3074 sregs
->efer
= vcpu
->arch
.shadow_efer
;
3075 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
3077 if (irqchip_in_kernel(vcpu
->kvm
)) {
3078 memset(sregs
->interrupt_bitmap
, 0,
3079 sizeof sregs
->interrupt_bitmap
);
3080 pending_vec
= kvm_x86_ops
->get_irq(vcpu
);
3081 if (pending_vec
>= 0)
3082 set_bit(pending_vec
,
3083 (unsigned long *)sregs
->interrupt_bitmap
);
3085 memcpy(sregs
->interrupt_bitmap
, vcpu
->arch
.irq_pending
,
3086 sizeof sregs
->interrupt_bitmap
);
3093 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
3094 struct kvm_mp_state
*mp_state
)
3097 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
3102 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
3103 struct kvm_mp_state
*mp_state
)
3106 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
3111 static void set_segment(struct kvm_vcpu
*vcpu
,
3112 struct kvm_segment
*var
, int seg
)
3114 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3117 static void seg_desct_to_kvm_desct(struct desc_struct
*seg_desc
, u16 selector
,
3118 struct kvm_segment
*kvm_desct
)
3120 kvm_desct
->base
= seg_desc
->base0
;
3121 kvm_desct
->base
|= seg_desc
->base1
<< 16;
3122 kvm_desct
->base
|= seg_desc
->base2
<< 24;
3123 kvm_desct
->limit
= seg_desc
->limit0
;
3124 kvm_desct
->limit
|= seg_desc
->limit
<< 16;
3125 kvm_desct
->selector
= selector
;
3126 kvm_desct
->type
= seg_desc
->type
;
3127 kvm_desct
->present
= seg_desc
->p
;
3128 kvm_desct
->dpl
= seg_desc
->dpl
;
3129 kvm_desct
->db
= seg_desc
->d
;
3130 kvm_desct
->s
= seg_desc
->s
;
3131 kvm_desct
->l
= seg_desc
->l
;
3132 kvm_desct
->g
= seg_desc
->g
;
3133 kvm_desct
->avl
= seg_desc
->avl
;
3135 kvm_desct
->unusable
= 1;
3137 kvm_desct
->unusable
= 0;
3138 kvm_desct
->padding
= 0;
3141 static void get_segment_descritptor_dtable(struct kvm_vcpu
*vcpu
,
3143 struct descriptor_table
*dtable
)
3145 if (selector
& 1 << 2) {
3146 struct kvm_segment kvm_seg
;
3148 get_segment(vcpu
, &kvm_seg
, VCPU_SREG_LDTR
);
3150 if (kvm_seg
.unusable
)
3153 dtable
->limit
= kvm_seg
.limit
;
3154 dtable
->base
= kvm_seg
.base
;
3157 kvm_x86_ops
->get_gdt(vcpu
, dtable
);
3160 /* allowed just for 8 bytes segments */
3161 static int load_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3162 struct desc_struct
*seg_desc
)
3164 struct descriptor_table dtable
;
3165 u16 index
= selector
>> 3;
3167 get_segment_descritptor_dtable(vcpu
, selector
, &dtable
);
3169 if (dtable
.limit
< index
* 8 + 7) {
3170 kvm_queue_exception_e(vcpu
, GP_VECTOR
, selector
& 0xfffc);
3173 return kvm_read_guest(vcpu
->kvm
, dtable
.base
+ index
* 8, seg_desc
, 8);
3176 /* allowed just for 8 bytes segments */
3177 static int save_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3178 struct desc_struct
*seg_desc
)
3180 struct descriptor_table dtable
;
3181 u16 index
= selector
>> 3;
3183 get_segment_descritptor_dtable(vcpu
, selector
, &dtable
);
3185 if (dtable
.limit
< index
* 8 + 7)
3187 return kvm_write_guest(vcpu
->kvm
, dtable
.base
+ index
* 8, seg_desc
, 8);
3190 static u32
get_tss_base_addr(struct kvm_vcpu
*vcpu
,
3191 struct desc_struct
*seg_desc
)
3195 base_addr
= seg_desc
->base0
;
3196 base_addr
|= (seg_desc
->base1
<< 16);
3197 base_addr
|= (seg_desc
->base2
<< 24);
3202 static int load_tss_segment32(struct kvm_vcpu
*vcpu
,
3203 struct desc_struct
*seg_desc
,
3204 struct tss_segment_32
*tss
)
3208 base_addr
= get_tss_base_addr(vcpu
, seg_desc
);
3210 return kvm_read_guest(vcpu
->kvm
, base_addr
, tss
,
3211 sizeof(struct tss_segment_32
));
3214 static int save_tss_segment32(struct kvm_vcpu
*vcpu
,
3215 struct desc_struct
*seg_desc
,
3216 struct tss_segment_32
*tss
)
3220 base_addr
= get_tss_base_addr(vcpu
, seg_desc
);
3222 return kvm_write_guest(vcpu
->kvm
, base_addr
, tss
,
3223 sizeof(struct tss_segment_32
));
3226 static int load_tss_segment16(struct kvm_vcpu
*vcpu
,
3227 struct desc_struct
*seg_desc
,
3228 struct tss_segment_16
*tss
)
3232 base_addr
= get_tss_base_addr(vcpu
, seg_desc
);
3234 return kvm_read_guest(vcpu
->kvm
, base_addr
, tss
,
3235 sizeof(struct tss_segment_16
));
3238 static int save_tss_segment16(struct kvm_vcpu
*vcpu
,
3239 struct desc_struct
*seg_desc
,
3240 struct tss_segment_16
*tss
)
3244 base_addr
= get_tss_base_addr(vcpu
, seg_desc
);
3246 return kvm_write_guest(vcpu
->kvm
, base_addr
, tss
,
3247 sizeof(struct tss_segment_16
));
3250 static u16
get_segment_selector(struct kvm_vcpu
*vcpu
, int seg
)
3252 struct kvm_segment kvm_seg
;
3254 get_segment(vcpu
, &kvm_seg
, seg
);
3255 return kvm_seg
.selector
;
3258 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu
*vcpu
,
3260 struct kvm_segment
*kvm_seg
)
3262 struct desc_struct seg_desc
;
3264 if (load_guest_segment_descriptor(vcpu
, selector
, &seg_desc
))
3266 seg_desct_to_kvm_desct(&seg_desc
, selector
, kvm_seg
);
3270 static int load_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3271 int type_bits
, int seg
)
3273 struct kvm_segment kvm_seg
;
3275 if (load_segment_descriptor_to_kvm_desct(vcpu
, selector
, &kvm_seg
))
3277 kvm_seg
.type
|= type_bits
;
3279 if (seg
!= VCPU_SREG_SS
&& seg
!= VCPU_SREG_CS
&&
3280 seg
!= VCPU_SREG_LDTR
)
3282 kvm_seg
.unusable
= 1;
3284 set_segment(vcpu
, &kvm_seg
, seg
);
3288 static void save_state_to_tss32(struct kvm_vcpu
*vcpu
,
3289 struct tss_segment_32
*tss
)
3291 tss
->cr3
= vcpu
->arch
.cr3
;
3292 tss
->eip
= vcpu
->arch
.rip
;
3293 tss
->eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3294 tss
->eax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
3295 tss
->ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
3296 tss
->edx
= vcpu
->arch
.regs
[VCPU_REGS_RDX
];
3297 tss
->ebx
= vcpu
->arch
.regs
[VCPU_REGS_RBX
];
3298 tss
->esp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
3299 tss
->ebp
= vcpu
->arch
.regs
[VCPU_REGS_RBP
];
3300 tss
->esi
= vcpu
->arch
.regs
[VCPU_REGS_RSI
];
3301 tss
->edi
= vcpu
->arch
.regs
[VCPU_REGS_RDI
];
3303 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
3304 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
3305 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
3306 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
3307 tss
->fs
= get_segment_selector(vcpu
, VCPU_SREG_FS
);
3308 tss
->gs
= get_segment_selector(vcpu
, VCPU_SREG_GS
);
3309 tss
->ldt_selector
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
3310 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3313 static int load_state_from_tss32(struct kvm_vcpu
*vcpu
,
3314 struct tss_segment_32
*tss
)
3316 kvm_set_cr3(vcpu
, tss
->cr3
);
3318 vcpu
->arch
.rip
= tss
->eip
;
3319 kvm_x86_ops
->set_rflags(vcpu
, tss
->eflags
| 2);
3321 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = tss
->eax
;
3322 vcpu
->arch
.regs
[VCPU_REGS_RCX
] = tss
->ecx
;
3323 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = tss
->edx
;
3324 vcpu
->arch
.regs
[VCPU_REGS_RBX
] = tss
->ebx
;
3325 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = tss
->esp
;
3326 vcpu
->arch
.regs
[VCPU_REGS_RBP
] = tss
->ebp
;
3327 vcpu
->arch
.regs
[VCPU_REGS_RSI
] = tss
->esi
;
3328 vcpu
->arch
.regs
[VCPU_REGS_RDI
] = tss
->edi
;
3330 if (load_segment_descriptor(vcpu
, tss
->ldt_selector
, 0, VCPU_SREG_LDTR
))
3333 if (load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
3336 if (load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
3339 if (load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
3342 if (load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
3345 if (load_segment_descriptor(vcpu
, tss
->fs
, 1, VCPU_SREG_FS
))
3348 if (load_segment_descriptor(vcpu
, tss
->gs
, 1, VCPU_SREG_GS
))
3353 static void save_state_to_tss16(struct kvm_vcpu
*vcpu
,
3354 struct tss_segment_16
*tss
)
3356 tss
->ip
= vcpu
->arch
.rip
;
3357 tss
->flag
= kvm_x86_ops
->get_rflags(vcpu
);
3358 tss
->ax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
3359 tss
->cx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
3360 tss
->dx
= vcpu
->arch
.regs
[VCPU_REGS_RDX
];
3361 tss
->bx
= vcpu
->arch
.regs
[VCPU_REGS_RBX
];
3362 tss
->sp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
3363 tss
->bp
= vcpu
->arch
.regs
[VCPU_REGS_RBP
];
3364 tss
->si
= vcpu
->arch
.regs
[VCPU_REGS_RSI
];
3365 tss
->di
= vcpu
->arch
.regs
[VCPU_REGS_RDI
];
3367 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
3368 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
3369 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
3370 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
3371 tss
->ldt
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
3372 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3375 static int load_state_from_tss16(struct kvm_vcpu
*vcpu
,
3376 struct tss_segment_16
*tss
)
3378 vcpu
->arch
.rip
= tss
->ip
;
3379 kvm_x86_ops
->set_rflags(vcpu
, tss
->flag
| 2);
3380 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = tss
->ax
;
3381 vcpu
->arch
.regs
[VCPU_REGS_RCX
] = tss
->cx
;
3382 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = tss
->dx
;
3383 vcpu
->arch
.regs
[VCPU_REGS_RBX
] = tss
->bx
;
3384 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = tss
->sp
;
3385 vcpu
->arch
.regs
[VCPU_REGS_RBP
] = tss
->bp
;
3386 vcpu
->arch
.regs
[VCPU_REGS_RSI
] = tss
->si
;
3387 vcpu
->arch
.regs
[VCPU_REGS_RDI
] = tss
->di
;
3389 if (load_segment_descriptor(vcpu
, tss
->ldt
, 0, VCPU_SREG_LDTR
))
3392 if (load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
3395 if (load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
3398 if (load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
3401 if (load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
3406 int kvm_task_switch_16(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
3407 struct desc_struct
*cseg_desc
,
3408 struct desc_struct
*nseg_desc
)
3410 struct tss_segment_16 tss_segment_16
;
3413 if (load_tss_segment16(vcpu
, cseg_desc
, &tss_segment_16
))
3416 save_state_to_tss16(vcpu
, &tss_segment_16
);
3417 save_tss_segment16(vcpu
, cseg_desc
, &tss_segment_16
);
3419 if (load_tss_segment16(vcpu
, nseg_desc
, &tss_segment_16
))
3421 if (load_state_from_tss16(vcpu
, &tss_segment_16
))
3429 int kvm_task_switch_32(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
3430 struct desc_struct
*cseg_desc
,
3431 struct desc_struct
*nseg_desc
)
3433 struct tss_segment_32 tss_segment_32
;
3436 if (load_tss_segment32(vcpu
, cseg_desc
, &tss_segment_32
))
3439 save_state_to_tss32(vcpu
, &tss_segment_32
);
3440 save_tss_segment32(vcpu
, cseg_desc
, &tss_segment_32
);
3442 if (load_tss_segment32(vcpu
, nseg_desc
, &tss_segment_32
))
3444 if (load_state_from_tss32(vcpu
, &tss_segment_32
))
3452 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
)
3454 struct kvm_segment tr_seg
;
3455 struct desc_struct cseg_desc
;
3456 struct desc_struct nseg_desc
;
3459 get_segment(vcpu
, &tr_seg
, VCPU_SREG_TR
);
3461 if (load_guest_segment_descriptor(vcpu
, tss_selector
, &nseg_desc
))
3464 if (load_guest_segment_descriptor(vcpu
, tr_seg
.selector
, &cseg_desc
))
3468 if (reason
!= TASK_SWITCH_IRET
) {
3471 cpl
= kvm_x86_ops
->get_cpl(vcpu
);
3472 if ((tss_selector
& 3) > nseg_desc
.dpl
|| cpl
> nseg_desc
.dpl
) {
3473 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
3478 if (!nseg_desc
.p
|| (nseg_desc
.limit0
| nseg_desc
.limit
<< 16) < 0x67) {
3479 kvm_queue_exception_e(vcpu
, TS_VECTOR
, tss_selector
& 0xfffc);
3483 if (reason
== TASK_SWITCH_IRET
|| reason
== TASK_SWITCH_JMP
) {
3484 cseg_desc
.type
&= ~(1 << 8); //clear the B flag
3485 save_guest_segment_descriptor(vcpu
, tr_seg
.selector
,
3489 if (reason
== TASK_SWITCH_IRET
) {
3490 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3491 kvm_x86_ops
->set_rflags(vcpu
, eflags
& ~X86_EFLAGS_NT
);
3494 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3495 kvm_x86_ops
->cache_regs(vcpu
);
3497 if (nseg_desc
.type
& 8)
3498 ret
= kvm_task_switch_32(vcpu
, tss_selector
, &cseg_desc
,
3501 ret
= kvm_task_switch_16(vcpu
, tss_selector
, &cseg_desc
,
3504 if (reason
== TASK_SWITCH_CALL
|| reason
== TASK_SWITCH_GATE
) {
3505 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3506 kvm_x86_ops
->set_rflags(vcpu
, eflags
| X86_EFLAGS_NT
);
3509 if (reason
!= TASK_SWITCH_IRET
) {
3510 nseg_desc
.type
|= (1 << 8);
3511 save_guest_segment_descriptor(vcpu
, tss_selector
,
3515 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
| X86_CR0_TS
);
3516 seg_desct_to_kvm_desct(&nseg_desc
, tss_selector
, &tr_seg
);
3518 set_segment(vcpu
, &tr_seg
, VCPU_SREG_TR
);
3520 kvm_x86_ops
->decache_regs(vcpu
);
3523 EXPORT_SYMBOL_GPL(kvm_task_switch
);
3525 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
3526 struct kvm_sregs
*sregs
)
3528 int mmu_reset_needed
= 0;
3529 int i
, pending_vec
, max_bits
;
3530 struct descriptor_table dt
;
3534 dt
.limit
= sregs
->idt
.limit
;
3535 dt
.base
= sregs
->idt
.base
;
3536 kvm_x86_ops
->set_idt(vcpu
, &dt
);
3537 dt
.limit
= sregs
->gdt
.limit
;
3538 dt
.base
= sregs
->gdt
.base
;
3539 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
3541 vcpu
->arch
.cr2
= sregs
->cr2
;
3542 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
3543 vcpu
->arch
.cr3
= sregs
->cr3
;
3545 kvm_set_cr8(vcpu
, sregs
->cr8
);
3547 mmu_reset_needed
|= vcpu
->arch
.shadow_efer
!= sregs
->efer
;
3548 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
3549 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
3551 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3553 mmu_reset_needed
|= vcpu
->arch
.cr0
!= sregs
->cr0
;
3554 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
3555 vcpu
->arch
.cr0
= sregs
->cr0
;
3557 mmu_reset_needed
|= vcpu
->arch
.cr4
!= sregs
->cr4
;
3558 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
3559 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
3560 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
3562 if (mmu_reset_needed
)
3563 kvm_mmu_reset_context(vcpu
);
3565 if (!irqchip_in_kernel(vcpu
->kvm
)) {
3566 memcpy(vcpu
->arch
.irq_pending
, sregs
->interrupt_bitmap
,
3567 sizeof vcpu
->arch
.irq_pending
);
3568 vcpu
->arch
.irq_summary
= 0;
3569 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.irq_pending
); ++i
)
3570 if (vcpu
->arch
.irq_pending
[i
])
3571 __set_bit(i
, &vcpu
->arch
.irq_summary
);
3573 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
3574 pending_vec
= find_first_bit(
3575 (const unsigned long *)sregs
->interrupt_bitmap
,
3577 /* Only pending external irq is handled here */
3578 if (pending_vec
< max_bits
) {
3579 kvm_x86_ops
->set_irq(vcpu
, pending_vec
);
3580 pr_debug("Set back pending irq %d\n",
3585 set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3586 set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3587 set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3588 set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3589 set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3590 set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3592 set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3593 set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3600 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu
*vcpu
,
3601 struct kvm_debug_guest
*dbg
)
3607 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
3615 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3616 * we have asm/x86/processor.h
3627 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3628 #ifdef CONFIG_X86_64
3629 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3631 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3636 * Translate a guest virtual address to a guest physical address.
3638 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
3639 struct kvm_translation
*tr
)
3641 unsigned long vaddr
= tr
->linear_address
;
3645 down_read(&vcpu
->kvm
->slots_lock
);
3646 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, vaddr
);
3647 up_read(&vcpu
->kvm
->slots_lock
);
3648 tr
->physical_address
= gpa
;
3649 tr
->valid
= gpa
!= UNMAPPED_GVA
;
3657 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
3659 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
3663 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
3664 fpu
->fcw
= fxsave
->cwd
;
3665 fpu
->fsw
= fxsave
->swd
;
3666 fpu
->ftwx
= fxsave
->twd
;
3667 fpu
->last_opcode
= fxsave
->fop
;
3668 fpu
->last_ip
= fxsave
->rip
;
3669 fpu
->last_dp
= fxsave
->rdp
;
3670 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
3677 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
3679 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
3683 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
3684 fxsave
->cwd
= fpu
->fcw
;
3685 fxsave
->swd
= fpu
->fsw
;
3686 fxsave
->twd
= fpu
->ftwx
;
3687 fxsave
->fop
= fpu
->last_opcode
;
3688 fxsave
->rip
= fpu
->last_ip
;
3689 fxsave
->rdp
= fpu
->last_dp
;
3690 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
3697 void fx_init(struct kvm_vcpu
*vcpu
)
3699 unsigned after_mxcsr_mask
;
3701 /* Initialize guest FPU by resetting ours and saving into guest's */
3703 fx_save(&vcpu
->arch
.host_fx_image
);
3705 fx_save(&vcpu
->arch
.guest_fx_image
);
3706 fx_restore(&vcpu
->arch
.host_fx_image
);
3709 vcpu
->arch
.cr0
|= X86_CR0_ET
;
3710 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
3711 vcpu
->arch
.guest_fx_image
.mxcsr
= 0x1f80;
3712 memset((void *)&vcpu
->arch
.guest_fx_image
+ after_mxcsr_mask
,
3713 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
3715 EXPORT_SYMBOL_GPL(fx_init
);
3717 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
3719 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
3722 vcpu
->guest_fpu_loaded
= 1;
3723 fx_save(&vcpu
->arch
.host_fx_image
);
3724 fx_restore(&vcpu
->arch
.guest_fx_image
);
3726 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
3728 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
3730 if (!vcpu
->guest_fpu_loaded
)
3733 vcpu
->guest_fpu_loaded
= 0;
3734 fx_save(&vcpu
->arch
.guest_fx_image
);
3735 fx_restore(&vcpu
->arch
.host_fx_image
);
3736 ++vcpu
->stat
.fpu_reload
;
3738 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
3740 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
3742 kvm_x86_ops
->vcpu_free(vcpu
);
3745 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
3748 return kvm_x86_ops
->vcpu_create(kvm
, id
);
3751 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
3755 /* We do fxsave: this must be aligned. */
3756 BUG_ON((unsigned long)&vcpu
->arch
.host_fx_image
& 0xF);
3759 r
= kvm_arch_vcpu_reset(vcpu
);
3761 r
= kvm_mmu_setup(vcpu
);
3768 kvm_x86_ops
->vcpu_free(vcpu
);
3772 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
3775 kvm_mmu_unload(vcpu
);
3778 kvm_x86_ops
->vcpu_free(vcpu
);
3781 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
3783 return kvm_x86_ops
->vcpu_reset(vcpu
);
3786 void kvm_arch_hardware_enable(void *garbage
)
3788 kvm_x86_ops
->hardware_enable(garbage
);
3791 void kvm_arch_hardware_disable(void *garbage
)
3793 kvm_x86_ops
->hardware_disable(garbage
);
3796 int kvm_arch_hardware_setup(void)
3798 return kvm_x86_ops
->hardware_setup();
3801 void kvm_arch_hardware_unsetup(void)
3803 kvm_x86_ops
->hardware_unsetup();
3806 void kvm_arch_check_processor_compat(void *rtn
)
3808 kvm_x86_ops
->check_processor_compatibility(rtn
);
3811 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
3817 BUG_ON(vcpu
->kvm
== NULL
);
3820 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
3821 if (!irqchip_in_kernel(kvm
) || vcpu
->vcpu_id
== 0)
3822 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3824 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
3826 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
3831 vcpu
->arch
.pio_data
= page_address(page
);
3833 r
= kvm_mmu_create(vcpu
);
3835 goto fail_free_pio_data
;
3837 if (irqchip_in_kernel(kvm
)) {
3838 r
= kvm_create_lapic(vcpu
);
3840 goto fail_mmu_destroy
;
3846 kvm_mmu_destroy(vcpu
);
3848 free_page((unsigned long)vcpu
->arch
.pio_data
);
3853 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
3855 kvm_free_lapic(vcpu
);
3856 down_read(&vcpu
->kvm
->slots_lock
);
3857 kvm_mmu_destroy(vcpu
);
3858 up_read(&vcpu
->kvm
->slots_lock
);
3859 free_page((unsigned long)vcpu
->arch
.pio_data
);
3862 struct kvm
*kvm_arch_create_vm(void)
3864 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
3867 return ERR_PTR(-ENOMEM
);
3869 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
3874 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
3877 kvm_mmu_unload(vcpu
);
3881 static void kvm_free_vcpus(struct kvm
*kvm
)
3886 * Unpin any mmu pages first.
3888 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
3890 kvm_unload_vcpu_mmu(kvm
->vcpus
[i
]);
3891 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
3892 if (kvm
->vcpus
[i
]) {
3893 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
3894 kvm
->vcpus
[i
] = NULL
;
3900 void kvm_arch_destroy_vm(struct kvm
*kvm
)
3903 kfree(kvm
->arch
.vpic
);
3904 kfree(kvm
->arch
.vioapic
);
3905 kvm_free_vcpus(kvm
);
3906 kvm_free_physmem(kvm
);
3907 if (kvm
->arch
.apic_access_page
)
3908 put_page(kvm
->arch
.apic_access_page
);
3912 int kvm_arch_set_memory_region(struct kvm
*kvm
,
3913 struct kvm_userspace_memory_region
*mem
,
3914 struct kvm_memory_slot old
,
3917 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
3918 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[mem
->slot
];
3920 /*To keep backward compatibility with older userspace,
3921 *x86 needs to hanlde !user_alloc case.
3924 if (npages
&& !old
.rmap
) {
3925 down_write(¤t
->mm
->mmap_sem
);
3926 memslot
->userspace_addr
= do_mmap(NULL
, 0,
3928 PROT_READ
| PROT_WRITE
,
3929 MAP_SHARED
| MAP_ANONYMOUS
,
3931 up_write(¤t
->mm
->mmap_sem
);
3933 if (IS_ERR((void *)memslot
->userspace_addr
))
3934 return PTR_ERR((void *)memslot
->userspace_addr
);
3936 if (!old
.user_alloc
&& old
.rmap
) {
3939 down_write(¤t
->mm
->mmap_sem
);
3940 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
3941 old
.npages
* PAGE_SIZE
);
3942 up_write(¤t
->mm
->mmap_sem
);
3945 "kvm_vm_ioctl_set_memory_region: "
3946 "failed to munmap memory\n");
3951 if (!kvm
->arch
.n_requested_mmu_pages
) {
3952 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
3953 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
3956 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
3957 kvm_flush_remote_tlbs(kvm
);
3962 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
3964 return vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
3965 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
;
3968 static void vcpu_kick_intr(void *info
)
3971 struct kvm_vcpu
*vcpu
= (struct kvm_vcpu
*)info
;
3972 printk(KERN_DEBUG
"vcpu_kick_intr %p \n", vcpu
);
3976 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
3978 int ipi_pcpu
= vcpu
->cpu
;
3979 int cpu
= get_cpu();
3981 if (waitqueue_active(&vcpu
->wq
)) {
3982 wake_up_interruptible(&vcpu
->wq
);
3983 ++vcpu
->stat
.halt_wakeup
;
3986 * We may be called synchronously with irqs disabled in guest mode,
3987 * So need not to call smp_call_function_single() in that case.
3989 if (vcpu
->guest_mode
&& vcpu
->cpu
!= cpu
)
3990 smp_call_function_single(ipi_pcpu
, vcpu_kick_intr
, vcpu
, 0, 0);