proper prototype for signals_init()
[linux-2.6/openmoko-kernel/knife-kernel.git] / mm / page_alloc.c
blob37576b822f06c98c2d3342af1cdecbe0e5a8f25b
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/oom.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 #include <linux/stop_machine.h>
41 #include <linux/sort.h>
42 #include <linux/pfn.h>
43 #include <linux/backing-dev.h>
44 #include <linux/fault-inject.h>
45 #include <linux/page-isolation.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 #include "internal.h"
52 * Array of node states.
54 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
55 [N_POSSIBLE] = NODE_MASK_ALL,
56 [N_ONLINE] = { { [0] = 1UL } },
57 #ifndef CONFIG_NUMA
58 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
59 #ifdef CONFIG_HIGHMEM
60 [N_HIGH_MEMORY] = { { [0] = 1UL } },
61 #endif
62 [N_CPU] = { { [0] = 1UL } },
63 #endif /* NUMA */
65 EXPORT_SYMBOL(node_states);
67 unsigned long totalram_pages __read_mostly;
68 unsigned long totalreserve_pages __read_mostly;
69 long nr_swap_pages;
70 int percpu_pagelist_fraction;
72 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
73 int pageblock_order __read_mostly;
74 #endif
76 static void __free_pages_ok(struct page *page, unsigned int order);
79 * results with 256, 32 in the lowmem_reserve sysctl:
80 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
81 * 1G machine -> (16M dma, 784M normal, 224M high)
82 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
83 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
86 * TBD: should special case ZONE_DMA32 machines here - in those we normally
87 * don't need any ZONE_NORMAL reservation
89 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
90 #ifdef CONFIG_ZONE_DMA
91 256,
92 #endif
93 #ifdef CONFIG_ZONE_DMA32
94 256,
95 #endif
96 #ifdef CONFIG_HIGHMEM
97 32,
98 #endif
99 32,
102 EXPORT_SYMBOL(totalram_pages);
104 static char * const zone_names[MAX_NR_ZONES] = {
105 #ifdef CONFIG_ZONE_DMA
106 "DMA",
107 #endif
108 #ifdef CONFIG_ZONE_DMA32
109 "DMA32",
110 #endif
111 "Normal",
112 #ifdef CONFIG_HIGHMEM
113 "HighMem",
114 #endif
115 "Movable",
118 int min_free_kbytes = 1024;
120 unsigned long __meminitdata nr_kernel_pages;
121 unsigned long __meminitdata nr_all_pages;
122 static unsigned long __meminitdata dma_reserve;
124 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
126 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
127 * ranges of memory (RAM) that may be registered with add_active_range().
128 * Ranges passed to add_active_range() will be merged if possible
129 * so the number of times add_active_range() can be called is
130 * related to the number of nodes and the number of holes
132 #ifdef CONFIG_MAX_ACTIVE_REGIONS
133 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
134 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
135 #else
136 #if MAX_NUMNODES >= 32
137 /* If there can be many nodes, allow up to 50 holes per node */
138 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
139 #else
140 /* By default, allow up to 256 distinct regions */
141 #define MAX_ACTIVE_REGIONS 256
142 #endif
143 #endif
145 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
146 static int __meminitdata nr_nodemap_entries;
147 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
148 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
149 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
150 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
151 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
152 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
153 unsigned long __initdata required_kernelcore;
154 static unsigned long __initdata required_movablecore;
155 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
162 #if MAX_NUMNODES > 1
163 int nr_node_ids __read_mostly = MAX_NUMNODES;
164 EXPORT_SYMBOL(nr_node_ids);
165 #endif
167 int page_group_by_mobility_disabled __read_mostly;
169 static void set_pageblock_migratetype(struct page *page, int migratetype)
171 set_pageblock_flags_group(page, (unsigned long)migratetype,
172 PB_migrate, PB_migrate_end);
175 #ifdef CONFIG_DEBUG_VM
176 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
178 int ret = 0;
179 unsigned seq;
180 unsigned long pfn = page_to_pfn(page);
182 do {
183 seq = zone_span_seqbegin(zone);
184 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
185 ret = 1;
186 else if (pfn < zone->zone_start_pfn)
187 ret = 1;
188 } while (zone_span_seqretry(zone, seq));
190 return ret;
193 static int page_is_consistent(struct zone *zone, struct page *page)
195 if (!pfn_valid_within(page_to_pfn(page)))
196 return 0;
197 if (zone != page_zone(page))
198 return 0;
200 return 1;
203 * Temporary debugging check for pages not lying within a given zone.
205 static int bad_range(struct zone *zone, struct page *page)
207 if (page_outside_zone_boundaries(zone, page))
208 return 1;
209 if (!page_is_consistent(zone, page))
210 return 1;
212 return 0;
214 #else
215 static inline int bad_range(struct zone *zone, struct page *page)
217 return 0;
219 #endif
221 static void bad_page(struct page *page)
223 printk(KERN_EMERG "Bad page state in process '%s'\n"
224 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
225 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
226 KERN_EMERG "Backtrace:\n",
227 current->comm, page, (int)(2*sizeof(unsigned long)),
228 (unsigned long)page->flags, page->mapping,
229 page_mapcount(page), page_count(page));
230 dump_stack();
231 page->flags &= ~(1 << PG_lru |
232 1 << PG_private |
233 1 << PG_locked |
234 1 << PG_active |
235 1 << PG_dirty |
236 1 << PG_reclaim |
237 1 << PG_slab |
238 1 << PG_swapcache |
239 1 << PG_writeback |
240 1 << PG_buddy );
241 set_page_count(page, 0);
242 reset_page_mapcount(page);
243 page->mapping = NULL;
244 add_taint(TAINT_BAD_PAGE);
248 * Higher-order pages are called "compound pages". They are structured thusly:
250 * The first PAGE_SIZE page is called the "head page".
252 * The remaining PAGE_SIZE pages are called "tail pages".
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
262 static void free_compound_page(struct page *page)
264 __free_pages_ok(page, compound_order(page));
267 static void prep_compound_page(struct page *page, unsigned long order)
269 int i;
270 int nr_pages = 1 << order;
272 set_compound_page_dtor(page, free_compound_page);
273 set_compound_order(page, order);
274 __SetPageHead(page);
275 for (i = 1; i < nr_pages; i++) {
276 struct page *p = page + i;
278 __SetPageTail(p);
279 p->first_page = page;
283 static void destroy_compound_page(struct page *page, unsigned long order)
285 int i;
286 int nr_pages = 1 << order;
288 if (unlikely(compound_order(page) != order))
289 bad_page(page);
291 if (unlikely(!PageHead(page)))
292 bad_page(page);
293 __ClearPageHead(page);
294 for (i = 1; i < nr_pages; i++) {
295 struct page *p = page + i;
297 if (unlikely(!PageTail(p) |
298 (p->first_page != page)))
299 bad_page(page);
300 __ClearPageTail(p);
304 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
306 int i;
309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 * and __GFP_HIGHMEM from hard or soft interrupt context.
312 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313 for (i = 0; i < (1 << order); i++)
314 clear_highpage(page + i);
317 static inline void set_page_order(struct page *page, int order)
319 set_page_private(page, order);
320 __SetPageBuddy(page);
323 static inline void rmv_page_order(struct page *page)
325 __ClearPageBuddy(page);
326 set_page_private(page, 0);
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
335 * B2 = B1 ^ (1 << O)
336 * For example, if the starting buddy (buddy2) is #8 its order
337 * 1 buddy is #10:
338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
342 * P = B & ~(1 << O)
344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
346 static inline struct page *
347 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
349 unsigned long buddy_idx = page_idx ^ (1 << order);
351 return page + (buddy_idx - page_idx);
354 static inline unsigned long
355 __find_combined_index(unsigned long page_idx, unsigned int order)
357 return (page_idx & ~(1 << order));
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
363 * (a) the buddy is not in a hole &&
364 * (b) the buddy is in the buddy system &&
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
371 * For recording page's order, we use page_private(page).
373 static inline int page_is_buddy(struct page *page, struct page *buddy,
374 int order)
376 if (!pfn_valid_within(page_to_pfn(buddy)))
377 return 0;
379 if (page_zone_id(page) != page_zone_id(buddy))
380 return 0;
382 if (PageBuddy(buddy) && page_order(buddy) == order) {
383 BUG_ON(page_count(buddy) != 0);
384 return 1;
386 return 0;
390 * Freeing function for a buddy system allocator.
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403 * order is recorded in page_private(page) field.
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other. That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
410 * -- wli
413 static inline void __free_one_page(struct page *page,
414 struct zone *zone, unsigned int order)
416 unsigned long page_idx;
417 int order_size = 1 << order;
418 int migratetype = get_pageblock_migratetype(page);
420 if (unlikely(PageCompound(page)))
421 destroy_compound_page(page, order);
423 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
425 VM_BUG_ON(page_idx & (order_size - 1));
426 VM_BUG_ON(bad_range(zone, page));
428 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429 while (order < MAX_ORDER-1) {
430 unsigned long combined_idx;
431 struct page *buddy;
433 buddy = __page_find_buddy(page, page_idx, order);
434 if (!page_is_buddy(page, buddy, order))
435 break; /* Move the buddy up one level. */
437 list_del(&buddy->lru);
438 zone->free_area[order].nr_free--;
439 rmv_page_order(buddy);
440 combined_idx = __find_combined_index(page_idx, order);
441 page = page + (combined_idx - page_idx);
442 page_idx = combined_idx;
443 order++;
445 set_page_order(page, order);
446 list_add(&page->lru,
447 &zone->free_area[order].free_list[migratetype]);
448 zone->free_area[order].nr_free++;
451 static inline int free_pages_check(struct page *page)
453 if (unlikely(page_mapcount(page) |
454 (page->mapping != NULL) |
455 (page_count(page) != 0) |
456 (page->flags & (
457 1 << PG_lru |
458 1 << PG_private |
459 1 << PG_locked |
460 1 << PG_active |
461 1 << PG_slab |
462 1 << PG_swapcache |
463 1 << PG_writeback |
464 1 << PG_reserved |
465 1 << PG_buddy ))))
466 bad_page(page);
467 if (PageDirty(page))
468 __ClearPageDirty(page);
470 * For now, we report if PG_reserved was found set, but do not
471 * clear it, and do not free the page. But we shall soon need
472 * to do more, for when the ZERO_PAGE count wraps negative.
474 return PageReserved(page);
478 * Frees a list of pages.
479 * Assumes all pages on list are in same zone, and of same order.
480 * count is the number of pages to free.
482 * If the zone was previously in an "all pages pinned" state then look to
483 * see if this freeing clears that state.
485 * And clear the zone's pages_scanned counter, to hold off the "all pages are
486 * pinned" detection logic.
488 static void free_pages_bulk(struct zone *zone, int count,
489 struct list_head *list, int order)
491 spin_lock(&zone->lock);
492 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
493 zone->pages_scanned = 0;
494 while (count--) {
495 struct page *page;
497 VM_BUG_ON(list_empty(list));
498 page = list_entry(list->prev, struct page, lru);
499 /* have to delete it as __free_one_page list manipulates */
500 list_del(&page->lru);
501 __free_one_page(page, zone, order);
503 spin_unlock(&zone->lock);
506 static void free_one_page(struct zone *zone, struct page *page, int order)
508 spin_lock(&zone->lock);
509 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
510 zone->pages_scanned = 0;
511 __free_one_page(page, zone, order);
512 spin_unlock(&zone->lock);
515 static void __free_pages_ok(struct page *page, unsigned int order)
517 unsigned long flags;
518 int i;
519 int reserved = 0;
521 for (i = 0 ; i < (1 << order) ; ++i)
522 reserved += free_pages_check(page + i);
523 if (reserved)
524 return;
526 if (!PageHighMem(page))
527 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
528 arch_free_page(page, order);
529 kernel_map_pages(page, 1 << order, 0);
531 local_irq_save(flags);
532 __count_vm_events(PGFREE, 1 << order);
533 free_one_page(page_zone(page), page, order);
534 local_irq_restore(flags);
538 * permit the bootmem allocator to evade page validation on high-order frees
540 void __init __free_pages_bootmem(struct page *page, unsigned int order)
542 if (order == 0) {
543 __ClearPageReserved(page);
544 set_page_count(page, 0);
545 set_page_refcounted(page);
546 __free_page(page);
547 } else {
548 int loop;
550 prefetchw(page);
551 for (loop = 0; loop < BITS_PER_LONG; loop++) {
552 struct page *p = &page[loop];
554 if (loop + 1 < BITS_PER_LONG)
555 prefetchw(p + 1);
556 __ClearPageReserved(p);
557 set_page_count(p, 0);
560 set_page_refcounted(page);
561 __free_pages(page, order);
567 * The order of subdivision here is critical for the IO subsystem.
568 * Please do not alter this order without good reasons and regression
569 * testing. Specifically, as large blocks of memory are subdivided,
570 * the order in which smaller blocks are delivered depends on the order
571 * they're subdivided in this function. This is the primary factor
572 * influencing the order in which pages are delivered to the IO
573 * subsystem according to empirical testing, and this is also justified
574 * by considering the behavior of a buddy system containing a single
575 * large block of memory acted on by a series of small allocations.
576 * This behavior is a critical factor in sglist merging's success.
578 * -- wli
580 static inline void expand(struct zone *zone, struct page *page,
581 int low, int high, struct free_area *area,
582 int migratetype)
584 unsigned long size = 1 << high;
586 while (high > low) {
587 area--;
588 high--;
589 size >>= 1;
590 VM_BUG_ON(bad_range(zone, &page[size]));
591 list_add(&page[size].lru, &area->free_list[migratetype]);
592 area->nr_free++;
593 set_page_order(&page[size], high);
598 * This page is about to be returned from the page allocator
600 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
602 if (unlikely(page_mapcount(page) |
603 (page->mapping != NULL) |
604 (page_count(page) != 0) |
605 (page->flags & (
606 1 << PG_lru |
607 1 << PG_private |
608 1 << PG_locked |
609 1 << PG_active |
610 1 << PG_dirty |
611 1 << PG_slab |
612 1 << PG_swapcache |
613 1 << PG_writeback |
614 1 << PG_reserved |
615 1 << PG_buddy ))))
616 bad_page(page);
619 * For now, we report if PG_reserved was found set, but do not
620 * clear it, and do not allocate the page: as a safety net.
622 if (PageReserved(page))
623 return 1;
625 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
626 1 << PG_referenced | 1 << PG_arch_1 |
627 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
628 set_page_private(page, 0);
629 set_page_refcounted(page);
631 arch_alloc_page(page, order);
632 kernel_map_pages(page, 1 << order, 1);
634 if (gfp_flags & __GFP_ZERO)
635 prep_zero_page(page, order, gfp_flags);
637 if (order && (gfp_flags & __GFP_COMP))
638 prep_compound_page(page, order);
640 return 0;
644 * Go through the free lists for the given migratetype and remove
645 * the smallest available page from the freelists
647 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
648 int migratetype)
650 unsigned int current_order;
651 struct free_area * area;
652 struct page *page;
654 /* Find a page of the appropriate size in the preferred list */
655 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
656 area = &(zone->free_area[current_order]);
657 if (list_empty(&area->free_list[migratetype]))
658 continue;
660 page = list_entry(area->free_list[migratetype].next,
661 struct page, lru);
662 list_del(&page->lru);
663 rmv_page_order(page);
664 area->nr_free--;
665 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
666 expand(zone, page, order, current_order, area, migratetype);
667 return page;
670 return NULL;
675 * This array describes the order lists are fallen back to when
676 * the free lists for the desirable migrate type are depleted
678 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
679 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
680 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
681 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
682 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
686 * Move the free pages in a range to the free lists of the requested type.
687 * Note that start_page and end_pages are not aligned on a pageblock
688 * boundary. If alignment is required, use move_freepages_block()
690 int move_freepages(struct zone *zone,
691 struct page *start_page, struct page *end_page,
692 int migratetype)
694 struct page *page;
695 unsigned long order;
696 int pages_moved = 0;
698 #ifndef CONFIG_HOLES_IN_ZONE
700 * page_zone is not safe to call in this context when
701 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
702 * anyway as we check zone boundaries in move_freepages_block().
703 * Remove at a later date when no bug reports exist related to
704 * grouping pages by mobility
706 BUG_ON(page_zone(start_page) != page_zone(end_page));
707 #endif
709 for (page = start_page; page <= end_page;) {
710 if (!pfn_valid_within(page_to_pfn(page))) {
711 page++;
712 continue;
715 if (!PageBuddy(page)) {
716 page++;
717 continue;
720 order = page_order(page);
721 list_del(&page->lru);
722 list_add(&page->lru,
723 &zone->free_area[order].free_list[migratetype]);
724 page += 1 << order;
725 pages_moved += 1 << order;
728 return pages_moved;
731 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
733 unsigned long start_pfn, end_pfn;
734 struct page *start_page, *end_page;
736 start_pfn = page_to_pfn(page);
737 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
738 start_page = pfn_to_page(start_pfn);
739 end_page = start_page + pageblock_nr_pages - 1;
740 end_pfn = start_pfn + pageblock_nr_pages - 1;
742 /* Do not cross zone boundaries */
743 if (start_pfn < zone->zone_start_pfn)
744 start_page = page;
745 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
746 return 0;
748 return move_freepages(zone, start_page, end_page, migratetype);
751 /* Remove an element from the buddy allocator from the fallback list */
752 static struct page *__rmqueue_fallback(struct zone *zone, int order,
753 int start_migratetype)
755 struct free_area * area;
756 int current_order;
757 struct page *page;
758 int migratetype, i;
760 /* Find the largest possible block of pages in the other list */
761 for (current_order = MAX_ORDER-1; current_order >= order;
762 --current_order) {
763 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
764 migratetype = fallbacks[start_migratetype][i];
766 /* MIGRATE_RESERVE handled later if necessary */
767 if (migratetype == MIGRATE_RESERVE)
768 continue;
770 area = &(zone->free_area[current_order]);
771 if (list_empty(&area->free_list[migratetype]))
772 continue;
774 page = list_entry(area->free_list[migratetype].next,
775 struct page, lru);
776 area->nr_free--;
779 * If breaking a large block of pages, move all free
780 * pages to the preferred allocation list. If falling
781 * back for a reclaimable kernel allocation, be more
782 * agressive about taking ownership of free pages
784 if (unlikely(current_order >= (pageblock_order >> 1)) ||
785 start_migratetype == MIGRATE_RECLAIMABLE) {
786 unsigned long pages;
787 pages = move_freepages_block(zone, page,
788 start_migratetype);
790 /* Claim the whole block if over half of it is free */
791 if (pages >= (1 << (pageblock_order-1)))
792 set_pageblock_migratetype(page,
793 start_migratetype);
795 migratetype = start_migratetype;
798 /* Remove the page from the freelists */
799 list_del(&page->lru);
800 rmv_page_order(page);
801 __mod_zone_page_state(zone, NR_FREE_PAGES,
802 -(1UL << order));
804 if (current_order == pageblock_order)
805 set_pageblock_migratetype(page,
806 start_migratetype);
808 expand(zone, page, order, current_order, area, migratetype);
809 return page;
813 /* Use MIGRATE_RESERVE rather than fail an allocation */
814 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
818 * Do the hard work of removing an element from the buddy allocator.
819 * Call me with the zone->lock already held.
821 static struct page *__rmqueue(struct zone *zone, unsigned int order,
822 int migratetype)
824 struct page *page;
826 page = __rmqueue_smallest(zone, order, migratetype);
828 if (unlikely(!page))
829 page = __rmqueue_fallback(zone, order, migratetype);
831 return page;
835 * Obtain a specified number of elements from the buddy allocator, all under
836 * a single hold of the lock, for efficiency. Add them to the supplied list.
837 * Returns the number of new pages which were placed at *list.
839 static int rmqueue_bulk(struct zone *zone, unsigned int order,
840 unsigned long count, struct list_head *list,
841 int migratetype)
843 int i;
845 spin_lock(&zone->lock);
846 for (i = 0; i < count; ++i) {
847 struct page *page = __rmqueue(zone, order, migratetype);
848 if (unlikely(page == NULL))
849 break;
852 * Split buddy pages returned by expand() are received here
853 * in physical page order. The page is added to the callers and
854 * list and the list head then moves forward. From the callers
855 * perspective, the linked list is ordered by page number in
856 * some conditions. This is useful for IO devices that can
857 * merge IO requests if the physical pages are ordered
858 * properly.
860 list_add(&page->lru, list);
861 set_page_private(page, migratetype);
862 list = &page->lru;
864 spin_unlock(&zone->lock);
865 return i;
868 #ifdef CONFIG_NUMA
870 * Called from the vmstat counter updater to drain pagesets of this
871 * currently executing processor on remote nodes after they have
872 * expired.
874 * Note that this function must be called with the thread pinned to
875 * a single processor.
877 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
879 unsigned long flags;
880 int to_drain;
882 local_irq_save(flags);
883 if (pcp->count >= pcp->batch)
884 to_drain = pcp->batch;
885 else
886 to_drain = pcp->count;
887 free_pages_bulk(zone, to_drain, &pcp->list, 0);
888 pcp->count -= to_drain;
889 local_irq_restore(flags);
891 #endif
894 * Drain pages of the indicated processor.
896 * The processor must either be the current processor and the
897 * thread pinned to the current processor or a processor that
898 * is not online.
900 static void drain_pages(unsigned int cpu)
902 unsigned long flags;
903 struct zone *zone;
905 for_each_zone(zone) {
906 struct per_cpu_pageset *pset;
907 struct per_cpu_pages *pcp;
909 if (!populated_zone(zone))
910 continue;
912 pset = zone_pcp(zone, cpu);
914 pcp = &pset->pcp;
915 local_irq_save(flags);
916 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
917 pcp->count = 0;
918 local_irq_restore(flags);
923 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
925 void drain_local_pages(void *arg)
927 drain_pages(smp_processor_id());
931 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
933 void drain_all_pages(void)
935 on_each_cpu(drain_local_pages, NULL, 0, 1);
938 #ifdef CONFIG_HIBERNATION
940 void mark_free_pages(struct zone *zone)
942 unsigned long pfn, max_zone_pfn;
943 unsigned long flags;
944 int order, t;
945 struct list_head *curr;
947 if (!zone->spanned_pages)
948 return;
950 spin_lock_irqsave(&zone->lock, flags);
952 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
953 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
954 if (pfn_valid(pfn)) {
955 struct page *page = pfn_to_page(pfn);
957 if (!swsusp_page_is_forbidden(page))
958 swsusp_unset_page_free(page);
961 for_each_migratetype_order(order, t) {
962 list_for_each(curr, &zone->free_area[order].free_list[t]) {
963 unsigned long i;
965 pfn = page_to_pfn(list_entry(curr, struct page, lru));
966 for (i = 0; i < (1UL << order); i++)
967 swsusp_set_page_free(pfn_to_page(pfn + i));
970 spin_unlock_irqrestore(&zone->lock, flags);
972 #endif /* CONFIG_PM */
975 * Free a 0-order page
977 static void free_hot_cold_page(struct page *page, int cold)
979 struct zone *zone = page_zone(page);
980 struct per_cpu_pages *pcp;
981 unsigned long flags;
983 if (PageAnon(page))
984 page->mapping = NULL;
985 if (free_pages_check(page))
986 return;
988 if (!PageHighMem(page))
989 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
990 arch_free_page(page, 0);
991 kernel_map_pages(page, 1, 0);
993 pcp = &zone_pcp(zone, get_cpu())->pcp;
994 local_irq_save(flags);
995 __count_vm_event(PGFREE);
996 if (cold)
997 list_add_tail(&page->lru, &pcp->list);
998 else
999 list_add(&page->lru, &pcp->list);
1000 set_page_private(page, get_pageblock_migratetype(page));
1001 pcp->count++;
1002 if (pcp->count >= pcp->high) {
1003 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1004 pcp->count -= pcp->batch;
1006 local_irq_restore(flags);
1007 put_cpu();
1010 void free_hot_page(struct page *page)
1012 free_hot_cold_page(page, 0);
1015 void free_cold_page(struct page *page)
1017 free_hot_cold_page(page, 1);
1021 * split_page takes a non-compound higher-order page, and splits it into
1022 * n (1<<order) sub-pages: page[0..n]
1023 * Each sub-page must be freed individually.
1025 * Note: this is probably too low level an operation for use in drivers.
1026 * Please consult with lkml before using this in your driver.
1028 void split_page(struct page *page, unsigned int order)
1030 int i;
1032 VM_BUG_ON(PageCompound(page));
1033 VM_BUG_ON(!page_count(page));
1034 for (i = 1; i < (1 << order); i++)
1035 set_page_refcounted(page + i);
1039 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1040 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1041 * or two.
1043 static struct page *buffered_rmqueue(struct zonelist *zonelist,
1044 struct zone *zone, int order, gfp_t gfp_flags)
1046 unsigned long flags;
1047 struct page *page;
1048 int cold = !!(gfp_flags & __GFP_COLD);
1049 int cpu;
1050 int migratetype = allocflags_to_migratetype(gfp_flags);
1052 again:
1053 cpu = get_cpu();
1054 if (likely(order == 0)) {
1055 struct per_cpu_pages *pcp;
1057 pcp = &zone_pcp(zone, cpu)->pcp;
1058 local_irq_save(flags);
1059 if (!pcp->count) {
1060 pcp->count = rmqueue_bulk(zone, 0,
1061 pcp->batch, &pcp->list, migratetype);
1062 if (unlikely(!pcp->count))
1063 goto failed;
1066 /* Find a page of the appropriate migrate type */
1067 if (cold) {
1068 list_for_each_entry_reverse(page, &pcp->list, lru)
1069 if (page_private(page) == migratetype)
1070 break;
1071 } else {
1072 list_for_each_entry(page, &pcp->list, lru)
1073 if (page_private(page) == migratetype)
1074 break;
1077 /* Allocate more to the pcp list if necessary */
1078 if (unlikely(&page->lru == &pcp->list)) {
1079 pcp->count += rmqueue_bulk(zone, 0,
1080 pcp->batch, &pcp->list, migratetype);
1081 page = list_entry(pcp->list.next, struct page, lru);
1084 list_del(&page->lru);
1085 pcp->count--;
1086 } else {
1087 spin_lock_irqsave(&zone->lock, flags);
1088 page = __rmqueue(zone, order, migratetype);
1089 spin_unlock(&zone->lock);
1090 if (!page)
1091 goto failed;
1094 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1095 zone_statistics(zonelist, zone);
1096 local_irq_restore(flags);
1097 put_cpu();
1099 VM_BUG_ON(bad_range(zone, page));
1100 if (prep_new_page(page, order, gfp_flags))
1101 goto again;
1102 return page;
1104 failed:
1105 local_irq_restore(flags);
1106 put_cpu();
1107 return NULL;
1110 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1111 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1112 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1113 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1114 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1115 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1116 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1118 #ifdef CONFIG_FAIL_PAGE_ALLOC
1120 static struct fail_page_alloc_attr {
1121 struct fault_attr attr;
1123 u32 ignore_gfp_highmem;
1124 u32 ignore_gfp_wait;
1125 u32 min_order;
1127 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1129 struct dentry *ignore_gfp_highmem_file;
1130 struct dentry *ignore_gfp_wait_file;
1131 struct dentry *min_order_file;
1133 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1135 } fail_page_alloc = {
1136 .attr = FAULT_ATTR_INITIALIZER,
1137 .ignore_gfp_wait = 1,
1138 .ignore_gfp_highmem = 1,
1139 .min_order = 1,
1142 static int __init setup_fail_page_alloc(char *str)
1144 return setup_fault_attr(&fail_page_alloc.attr, str);
1146 __setup("fail_page_alloc=", setup_fail_page_alloc);
1148 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1150 if (order < fail_page_alloc.min_order)
1151 return 0;
1152 if (gfp_mask & __GFP_NOFAIL)
1153 return 0;
1154 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1155 return 0;
1156 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1157 return 0;
1159 return should_fail(&fail_page_alloc.attr, 1 << order);
1162 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1164 static int __init fail_page_alloc_debugfs(void)
1166 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1167 struct dentry *dir;
1168 int err;
1170 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1171 "fail_page_alloc");
1172 if (err)
1173 return err;
1174 dir = fail_page_alloc.attr.dentries.dir;
1176 fail_page_alloc.ignore_gfp_wait_file =
1177 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1178 &fail_page_alloc.ignore_gfp_wait);
1180 fail_page_alloc.ignore_gfp_highmem_file =
1181 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1182 &fail_page_alloc.ignore_gfp_highmem);
1183 fail_page_alloc.min_order_file =
1184 debugfs_create_u32("min-order", mode, dir,
1185 &fail_page_alloc.min_order);
1187 if (!fail_page_alloc.ignore_gfp_wait_file ||
1188 !fail_page_alloc.ignore_gfp_highmem_file ||
1189 !fail_page_alloc.min_order_file) {
1190 err = -ENOMEM;
1191 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1192 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1193 debugfs_remove(fail_page_alloc.min_order_file);
1194 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1197 return err;
1200 late_initcall(fail_page_alloc_debugfs);
1202 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1204 #else /* CONFIG_FAIL_PAGE_ALLOC */
1206 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1208 return 0;
1211 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1214 * Return 1 if free pages are above 'mark'. This takes into account the order
1215 * of the allocation.
1217 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1218 int classzone_idx, int alloc_flags)
1220 /* free_pages my go negative - that's OK */
1221 long min = mark;
1222 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1223 int o;
1225 if (alloc_flags & ALLOC_HIGH)
1226 min -= min / 2;
1227 if (alloc_flags & ALLOC_HARDER)
1228 min -= min / 4;
1230 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1231 return 0;
1232 for (o = 0; o < order; o++) {
1233 /* At the next order, this order's pages become unavailable */
1234 free_pages -= z->free_area[o].nr_free << o;
1236 /* Require fewer higher order pages to be free */
1237 min >>= 1;
1239 if (free_pages <= min)
1240 return 0;
1242 return 1;
1245 #ifdef CONFIG_NUMA
1247 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1248 * skip over zones that are not allowed by the cpuset, or that have
1249 * been recently (in last second) found to be nearly full. See further
1250 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1251 * that have to skip over a lot of full or unallowed zones.
1253 * If the zonelist cache is present in the passed in zonelist, then
1254 * returns a pointer to the allowed node mask (either the current
1255 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1257 * If the zonelist cache is not available for this zonelist, does
1258 * nothing and returns NULL.
1260 * If the fullzones BITMAP in the zonelist cache is stale (more than
1261 * a second since last zap'd) then we zap it out (clear its bits.)
1263 * We hold off even calling zlc_setup, until after we've checked the
1264 * first zone in the zonelist, on the theory that most allocations will
1265 * be satisfied from that first zone, so best to examine that zone as
1266 * quickly as we can.
1268 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1270 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1271 nodemask_t *allowednodes; /* zonelist_cache approximation */
1273 zlc = zonelist->zlcache_ptr;
1274 if (!zlc)
1275 return NULL;
1277 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1278 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1279 zlc->last_full_zap = jiffies;
1282 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1283 &cpuset_current_mems_allowed :
1284 &node_states[N_HIGH_MEMORY];
1285 return allowednodes;
1289 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1290 * if it is worth looking at further for free memory:
1291 * 1) Check that the zone isn't thought to be full (doesn't have its
1292 * bit set in the zonelist_cache fullzones BITMAP).
1293 * 2) Check that the zones node (obtained from the zonelist_cache
1294 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1295 * Return true (non-zero) if zone is worth looking at further, or
1296 * else return false (zero) if it is not.
1298 * This check -ignores- the distinction between various watermarks,
1299 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1300 * found to be full for any variation of these watermarks, it will
1301 * be considered full for up to one second by all requests, unless
1302 * we are so low on memory on all allowed nodes that we are forced
1303 * into the second scan of the zonelist.
1305 * In the second scan we ignore this zonelist cache and exactly
1306 * apply the watermarks to all zones, even it is slower to do so.
1307 * We are low on memory in the second scan, and should leave no stone
1308 * unturned looking for a free page.
1310 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1311 nodemask_t *allowednodes)
1313 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1314 int i; /* index of *z in zonelist zones */
1315 int n; /* node that zone *z is on */
1317 zlc = zonelist->zlcache_ptr;
1318 if (!zlc)
1319 return 1;
1321 i = z - zonelist->zones;
1322 n = zlc->z_to_n[i];
1324 /* This zone is worth trying if it is allowed but not full */
1325 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1329 * Given 'z' scanning a zonelist, set the corresponding bit in
1330 * zlc->fullzones, so that subsequent attempts to allocate a page
1331 * from that zone don't waste time re-examining it.
1333 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1335 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1336 int i; /* index of *z in zonelist zones */
1338 zlc = zonelist->zlcache_ptr;
1339 if (!zlc)
1340 return;
1342 i = z - zonelist->zones;
1344 set_bit(i, zlc->fullzones);
1347 #else /* CONFIG_NUMA */
1349 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1351 return NULL;
1354 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1355 nodemask_t *allowednodes)
1357 return 1;
1360 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1363 #endif /* CONFIG_NUMA */
1366 * get_page_from_freelist goes through the zonelist trying to allocate
1367 * a page.
1369 static struct page *
1370 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1371 struct zonelist *zonelist, int alloc_flags)
1373 struct zone **z;
1374 struct page *page = NULL;
1375 int classzone_idx = zone_idx(zonelist->zones[0]);
1376 struct zone *zone;
1377 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1378 int zlc_active = 0; /* set if using zonelist_cache */
1379 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1380 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1382 zonelist_scan:
1384 * Scan zonelist, looking for a zone with enough free.
1385 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1387 z = zonelist->zones;
1389 do {
1391 * In NUMA, this could be a policy zonelist which contains
1392 * zones that may not be allowed by the current gfp_mask.
1393 * Check the zone is allowed by the current flags
1395 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1396 if (highest_zoneidx == -1)
1397 highest_zoneidx = gfp_zone(gfp_mask);
1398 if (zone_idx(*z) > highest_zoneidx)
1399 continue;
1402 if (NUMA_BUILD && zlc_active &&
1403 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1404 continue;
1405 zone = *z;
1406 if ((alloc_flags & ALLOC_CPUSET) &&
1407 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1408 goto try_next_zone;
1410 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1411 unsigned long mark;
1412 if (alloc_flags & ALLOC_WMARK_MIN)
1413 mark = zone->pages_min;
1414 else if (alloc_flags & ALLOC_WMARK_LOW)
1415 mark = zone->pages_low;
1416 else
1417 mark = zone->pages_high;
1418 if (!zone_watermark_ok(zone, order, mark,
1419 classzone_idx, alloc_flags)) {
1420 if (!zone_reclaim_mode ||
1421 !zone_reclaim(zone, gfp_mask, order))
1422 goto this_zone_full;
1426 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1427 if (page)
1428 break;
1429 this_zone_full:
1430 if (NUMA_BUILD)
1431 zlc_mark_zone_full(zonelist, z);
1432 try_next_zone:
1433 if (NUMA_BUILD && !did_zlc_setup) {
1434 /* we do zlc_setup after the first zone is tried */
1435 allowednodes = zlc_setup(zonelist, alloc_flags);
1436 zlc_active = 1;
1437 did_zlc_setup = 1;
1439 } while (*(++z) != NULL);
1441 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1442 /* Disable zlc cache for second zonelist scan */
1443 zlc_active = 0;
1444 goto zonelist_scan;
1446 return page;
1450 * This is the 'heart' of the zoned buddy allocator.
1452 struct page * fastcall
1453 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1454 struct zonelist *zonelist)
1456 const gfp_t wait = gfp_mask & __GFP_WAIT;
1457 struct zone **z;
1458 struct page *page;
1459 struct reclaim_state reclaim_state;
1460 struct task_struct *p = current;
1461 int do_retry;
1462 int alloc_flags;
1463 int did_some_progress;
1465 might_sleep_if(wait);
1467 if (should_fail_alloc_page(gfp_mask, order))
1468 return NULL;
1470 restart:
1471 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1473 if (unlikely(*z == NULL)) {
1475 * Happens if we have an empty zonelist as a result of
1476 * GFP_THISNODE being used on a memoryless node
1478 return NULL;
1481 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1482 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1483 if (page)
1484 goto got_pg;
1487 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1488 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1489 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1490 * using a larger set of nodes after it has established that the
1491 * allowed per node queues are empty and that nodes are
1492 * over allocated.
1494 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1495 goto nopage;
1497 for (z = zonelist->zones; *z; z++)
1498 wakeup_kswapd(*z, order);
1501 * OK, we're below the kswapd watermark and have kicked background
1502 * reclaim. Now things get more complex, so set up alloc_flags according
1503 * to how we want to proceed.
1505 * The caller may dip into page reserves a bit more if the caller
1506 * cannot run direct reclaim, or if the caller has realtime scheduling
1507 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1508 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1510 alloc_flags = ALLOC_WMARK_MIN;
1511 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1512 alloc_flags |= ALLOC_HARDER;
1513 if (gfp_mask & __GFP_HIGH)
1514 alloc_flags |= ALLOC_HIGH;
1515 if (wait)
1516 alloc_flags |= ALLOC_CPUSET;
1519 * Go through the zonelist again. Let __GFP_HIGH and allocations
1520 * coming from realtime tasks go deeper into reserves.
1522 * This is the last chance, in general, before the goto nopage.
1523 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1524 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1526 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1527 if (page)
1528 goto got_pg;
1530 /* This allocation should allow future memory freeing. */
1532 rebalance:
1533 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1534 && !in_interrupt()) {
1535 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1536 nofail_alloc:
1537 /* go through the zonelist yet again, ignoring mins */
1538 page = get_page_from_freelist(gfp_mask, order,
1539 zonelist, ALLOC_NO_WATERMARKS);
1540 if (page)
1541 goto got_pg;
1542 if (gfp_mask & __GFP_NOFAIL) {
1543 congestion_wait(WRITE, HZ/50);
1544 goto nofail_alloc;
1547 goto nopage;
1550 /* Atomic allocations - we can't balance anything */
1551 if (!wait)
1552 goto nopage;
1554 cond_resched();
1556 /* We now go into synchronous reclaim */
1557 cpuset_memory_pressure_bump();
1558 p->flags |= PF_MEMALLOC;
1559 reclaim_state.reclaimed_slab = 0;
1560 p->reclaim_state = &reclaim_state;
1562 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1564 p->reclaim_state = NULL;
1565 p->flags &= ~PF_MEMALLOC;
1567 cond_resched();
1569 if (order != 0)
1570 drain_all_pages();
1572 if (likely(did_some_progress)) {
1573 page = get_page_from_freelist(gfp_mask, order,
1574 zonelist, alloc_flags);
1575 if (page)
1576 goto got_pg;
1577 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1578 if (!try_set_zone_oom(zonelist)) {
1579 schedule_timeout_uninterruptible(1);
1580 goto restart;
1584 * Go through the zonelist yet one more time, keep
1585 * very high watermark here, this is only to catch
1586 * a parallel oom killing, we must fail if we're still
1587 * under heavy pressure.
1589 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1590 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1591 if (page) {
1592 clear_zonelist_oom(zonelist);
1593 goto got_pg;
1596 /* The OOM killer will not help higher order allocs so fail */
1597 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1598 clear_zonelist_oom(zonelist);
1599 goto nopage;
1602 out_of_memory(zonelist, gfp_mask, order);
1603 clear_zonelist_oom(zonelist);
1604 goto restart;
1608 * Don't let big-order allocations loop unless the caller explicitly
1609 * requests that. Wait for some write requests to complete then retry.
1611 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1612 * <= 3, but that may not be true in other implementations.
1614 do_retry = 0;
1615 if (!(gfp_mask & __GFP_NORETRY)) {
1616 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1617 (gfp_mask & __GFP_REPEAT))
1618 do_retry = 1;
1619 if (gfp_mask & __GFP_NOFAIL)
1620 do_retry = 1;
1622 if (do_retry) {
1623 congestion_wait(WRITE, HZ/50);
1624 goto rebalance;
1627 nopage:
1628 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1629 printk(KERN_WARNING "%s: page allocation failure."
1630 " order:%d, mode:0x%x\n",
1631 p->comm, order, gfp_mask);
1632 dump_stack();
1633 show_mem();
1635 got_pg:
1636 return page;
1639 EXPORT_SYMBOL(__alloc_pages);
1642 * Common helper functions.
1644 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1646 struct page * page;
1647 page = alloc_pages(gfp_mask, order);
1648 if (!page)
1649 return 0;
1650 return (unsigned long) page_address(page);
1653 EXPORT_SYMBOL(__get_free_pages);
1655 unsigned long get_zeroed_page(gfp_t gfp_mask)
1657 struct page * page;
1660 * get_zeroed_page() returns a 32-bit address, which cannot represent
1661 * a highmem page
1663 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1665 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1666 if (page)
1667 return (unsigned long) page_address(page);
1668 return 0;
1671 EXPORT_SYMBOL(get_zeroed_page);
1673 void __pagevec_free(struct pagevec *pvec)
1675 int i = pagevec_count(pvec);
1677 while (--i >= 0)
1678 free_hot_cold_page(pvec->pages[i], pvec->cold);
1681 void __free_pages(struct page *page, unsigned int order)
1683 if (put_page_testzero(page)) {
1684 if (order == 0)
1685 free_hot_page(page);
1686 else
1687 __free_pages_ok(page, order);
1691 EXPORT_SYMBOL(__free_pages);
1693 void free_pages(unsigned long addr, unsigned int order)
1695 if (addr != 0) {
1696 VM_BUG_ON(!virt_addr_valid((void *)addr));
1697 __free_pages(virt_to_page((void *)addr), order);
1701 EXPORT_SYMBOL(free_pages);
1703 static unsigned int nr_free_zone_pages(int offset)
1705 /* Just pick one node, since fallback list is circular */
1706 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1707 unsigned int sum = 0;
1709 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1710 struct zone **zonep = zonelist->zones;
1711 struct zone *zone;
1713 for (zone = *zonep++; zone; zone = *zonep++) {
1714 unsigned long size = zone->present_pages;
1715 unsigned long high = zone->pages_high;
1716 if (size > high)
1717 sum += size - high;
1720 return sum;
1724 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1726 unsigned int nr_free_buffer_pages(void)
1728 return nr_free_zone_pages(gfp_zone(GFP_USER));
1730 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1733 * Amount of free RAM allocatable within all zones
1735 unsigned int nr_free_pagecache_pages(void)
1737 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1740 static inline void show_node(struct zone *zone)
1742 if (NUMA_BUILD)
1743 printk("Node %d ", zone_to_nid(zone));
1746 void si_meminfo(struct sysinfo *val)
1748 val->totalram = totalram_pages;
1749 val->sharedram = 0;
1750 val->freeram = global_page_state(NR_FREE_PAGES);
1751 val->bufferram = nr_blockdev_pages();
1752 val->totalhigh = totalhigh_pages;
1753 val->freehigh = nr_free_highpages();
1754 val->mem_unit = PAGE_SIZE;
1757 EXPORT_SYMBOL(si_meminfo);
1759 #ifdef CONFIG_NUMA
1760 void si_meminfo_node(struct sysinfo *val, int nid)
1762 pg_data_t *pgdat = NODE_DATA(nid);
1764 val->totalram = pgdat->node_present_pages;
1765 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1766 #ifdef CONFIG_HIGHMEM
1767 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1768 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1769 NR_FREE_PAGES);
1770 #else
1771 val->totalhigh = 0;
1772 val->freehigh = 0;
1773 #endif
1774 val->mem_unit = PAGE_SIZE;
1776 #endif
1778 #define K(x) ((x) << (PAGE_SHIFT-10))
1781 * Show free area list (used inside shift_scroll-lock stuff)
1782 * We also calculate the percentage fragmentation. We do this by counting the
1783 * memory on each free list with the exception of the first item on the list.
1785 void show_free_areas(void)
1787 int cpu;
1788 struct zone *zone;
1790 for_each_zone(zone) {
1791 if (!populated_zone(zone))
1792 continue;
1794 show_node(zone);
1795 printk("%s per-cpu:\n", zone->name);
1797 for_each_online_cpu(cpu) {
1798 struct per_cpu_pageset *pageset;
1800 pageset = zone_pcp(zone, cpu);
1802 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1803 cpu, pageset->pcp.high,
1804 pageset->pcp.batch, pageset->pcp.count);
1808 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1809 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1810 global_page_state(NR_ACTIVE),
1811 global_page_state(NR_INACTIVE),
1812 global_page_state(NR_FILE_DIRTY),
1813 global_page_state(NR_WRITEBACK),
1814 global_page_state(NR_UNSTABLE_NFS),
1815 global_page_state(NR_FREE_PAGES),
1816 global_page_state(NR_SLAB_RECLAIMABLE) +
1817 global_page_state(NR_SLAB_UNRECLAIMABLE),
1818 global_page_state(NR_FILE_MAPPED),
1819 global_page_state(NR_PAGETABLE),
1820 global_page_state(NR_BOUNCE));
1822 for_each_zone(zone) {
1823 int i;
1825 if (!populated_zone(zone))
1826 continue;
1828 show_node(zone);
1829 printk("%s"
1830 " free:%lukB"
1831 " min:%lukB"
1832 " low:%lukB"
1833 " high:%lukB"
1834 " active:%lukB"
1835 " inactive:%lukB"
1836 " present:%lukB"
1837 " pages_scanned:%lu"
1838 " all_unreclaimable? %s"
1839 "\n",
1840 zone->name,
1841 K(zone_page_state(zone, NR_FREE_PAGES)),
1842 K(zone->pages_min),
1843 K(zone->pages_low),
1844 K(zone->pages_high),
1845 K(zone_page_state(zone, NR_ACTIVE)),
1846 K(zone_page_state(zone, NR_INACTIVE)),
1847 K(zone->present_pages),
1848 zone->pages_scanned,
1849 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1851 printk("lowmem_reserve[]:");
1852 for (i = 0; i < MAX_NR_ZONES; i++)
1853 printk(" %lu", zone->lowmem_reserve[i]);
1854 printk("\n");
1857 for_each_zone(zone) {
1858 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1860 if (!populated_zone(zone))
1861 continue;
1863 show_node(zone);
1864 printk("%s: ", zone->name);
1866 spin_lock_irqsave(&zone->lock, flags);
1867 for (order = 0; order < MAX_ORDER; order++) {
1868 nr[order] = zone->free_area[order].nr_free;
1869 total += nr[order] << order;
1871 spin_unlock_irqrestore(&zone->lock, flags);
1872 for (order = 0; order < MAX_ORDER; order++)
1873 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1874 printk("= %lukB\n", K(total));
1877 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1879 show_swap_cache_info();
1883 * Builds allocation fallback zone lists.
1885 * Add all populated zones of a node to the zonelist.
1887 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1888 int nr_zones, enum zone_type zone_type)
1890 struct zone *zone;
1892 BUG_ON(zone_type >= MAX_NR_ZONES);
1893 zone_type++;
1895 do {
1896 zone_type--;
1897 zone = pgdat->node_zones + zone_type;
1898 if (populated_zone(zone)) {
1899 zonelist->zones[nr_zones++] = zone;
1900 check_highest_zone(zone_type);
1903 } while (zone_type);
1904 return nr_zones;
1909 * zonelist_order:
1910 * 0 = automatic detection of better ordering.
1911 * 1 = order by ([node] distance, -zonetype)
1912 * 2 = order by (-zonetype, [node] distance)
1914 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1915 * the same zonelist. So only NUMA can configure this param.
1917 #define ZONELIST_ORDER_DEFAULT 0
1918 #define ZONELIST_ORDER_NODE 1
1919 #define ZONELIST_ORDER_ZONE 2
1921 /* zonelist order in the kernel.
1922 * set_zonelist_order() will set this to NODE or ZONE.
1924 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1925 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1928 #ifdef CONFIG_NUMA
1929 /* The value user specified ....changed by config */
1930 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1931 /* string for sysctl */
1932 #define NUMA_ZONELIST_ORDER_LEN 16
1933 char numa_zonelist_order[16] = "default";
1936 * interface for configure zonelist ordering.
1937 * command line option "numa_zonelist_order"
1938 * = "[dD]efault - default, automatic configuration.
1939 * = "[nN]ode - order by node locality, then by zone within node
1940 * = "[zZ]one - order by zone, then by locality within zone
1943 static int __parse_numa_zonelist_order(char *s)
1945 if (*s == 'd' || *s == 'D') {
1946 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1947 } else if (*s == 'n' || *s == 'N') {
1948 user_zonelist_order = ZONELIST_ORDER_NODE;
1949 } else if (*s == 'z' || *s == 'Z') {
1950 user_zonelist_order = ZONELIST_ORDER_ZONE;
1951 } else {
1952 printk(KERN_WARNING
1953 "Ignoring invalid numa_zonelist_order value: "
1954 "%s\n", s);
1955 return -EINVAL;
1957 return 0;
1960 static __init int setup_numa_zonelist_order(char *s)
1962 if (s)
1963 return __parse_numa_zonelist_order(s);
1964 return 0;
1966 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1969 * sysctl handler for numa_zonelist_order
1971 int numa_zonelist_order_handler(ctl_table *table, int write,
1972 struct file *file, void __user *buffer, size_t *length,
1973 loff_t *ppos)
1975 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1976 int ret;
1978 if (write)
1979 strncpy(saved_string, (char*)table->data,
1980 NUMA_ZONELIST_ORDER_LEN);
1981 ret = proc_dostring(table, write, file, buffer, length, ppos);
1982 if (ret)
1983 return ret;
1984 if (write) {
1985 int oldval = user_zonelist_order;
1986 if (__parse_numa_zonelist_order((char*)table->data)) {
1988 * bogus value. restore saved string
1990 strncpy((char*)table->data, saved_string,
1991 NUMA_ZONELIST_ORDER_LEN);
1992 user_zonelist_order = oldval;
1993 } else if (oldval != user_zonelist_order)
1994 build_all_zonelists();
1996 return 0;
2000 #define MAX_NODE_LOAD (num_online_nodes())
2001 static int node_load[MAX_NUMNODES];
2004 * find_next_best_node - find the next node that should appear in a given node's fallback list
2005 * @node: node whose fallback list we're appending
2006 * @used_node_mask: nodemask_t of already used nodes
2008 * We use a number of factors to determine which is the next node that should
2009 * appear on a given node's fallback list. The node should not have appeared
2010 * already in @node's fallback list, and it should be the next closest node
2011 * according to the distance array (which contains arbitrary distance values
2012 * from each node to each node in the system), and should also prefer nodes
2013 * with no CPUs, since presumably they'll have very little allocation pressure
2014 * on them otherwise.
2015 * It returns -1 if no node is found.
2017 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2019 int n, val;
2020 int min_val = INT_MAX;
2021 int best_node = -1;
2023 /* Use the local node if we haven't already */
2024 if (!node_isset(node, *used_node_mask)) {
2025 node_set(node, *used_node_mask);
2026 return node;
2029 for_each_node_state(n, N_HIGH_MEMORY) {
2030 cpumask_t tmp;
2032 /* Don't want a node to appear more than once */
2033 if (node_isset(n, *used_node_mask))
2034 continue;
2036 /* Use the distance array to find the distance */
2037 val = node_distance(node, n);
2039 /* Penalize nodes under us ("prefer the next node") */
2040 val += (n < node);
2042 /* Give preference to headless and unused nodes */
2043 tmp = node_to_cpumask(n);
2044 if (!cpus_empty(tmp))
2045 val += PENALTY_FOR_NODE_WITH_CPUS;
2047 /* Slight preference for less loaded node */
2048 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2049 val += node_load[n];
2051 if (val < min_val) {
2052 min_val = val;
2053 best_node = n;
2057 if (best_node >= 0)
2058 node_set(best_node, *used_node_mask);
2060 return best_node;
2065 * Build zonelists ordered by node and zones within node.
2066 * This results in maximum locality--normal zone overflows into local
2067 * DMA zone, if any--but risks exhausting DMA zone.
2069 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2071 enum zone_type i;
2072 int j;
2073 struct zonelist *zonelist;
2075 for (i = 0; i < MAX_NR_ZONES; i++) {
2076 zonelist = pgdat->node_zonelists + i;
2077 for (j = 0; zonelist->zones[j] != NULL; j++)
2079 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2080 zonelist->zones[j] = NULL;
2085 * Build gfp_thisnode zonelists
2087 static void build_thisnode_zonelists(pg_data_t *pgdat)
2089 enum zone_type i;
2090 int j;
2091 struct zonelist *zonelist;
2093 for (i = 0; i < MAX_NR_ZONES; i++) {
2094 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2095 j = build_zonelists_node(pgdat, zonelist, 0, i);
2096 zonelist->zones[j] = NULL;
2101 * Build zonelists ordered by zone and nodes within zones.
2102 * This results in conserving DMA zone[s] until all Normal memory is
2103 * exhausted, but results in overflowing to remote node while memory
2104 * may still exist in local DMA zone.
2106 static int node_order[MAX_NUMNODES];
2108 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2110 enum zone_type i;
2111 int pos, j, node;
2112 int zone_type; /* needs to be signed */
2113 struct zone *z;
2114 struct zonelist *zonelist;
2116 for (i = 0; i < MAX_NR_ZONES; i++) {
2117 zonelist = pgdat->node_zonelists + i;
2118 pos = 0;
2119 for (zone_type = i; zone_type >= 0; zone_type--) {
2120 for (j = 0; j < nr_nodes; j++) {
2121 node = node_order[j];
2122 z = &NODE_DATA(node)->node_zones[zone_type];
2123 if (populated_zone(z)) {
2124 zonelist->zones[pos++] = z;
2125 check_highest_zone(zone_type);
2129 zonelist->zones[pos] = NULL;
2133 static int default_zonelist_order(void)
2135 int nid, zone_type;
2136 unsigned long low_kmem_size,total_size;
2137 struct zone *z;
2138 int average_size;
2140 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2141 * If they are really small and used heavily, the system can fall
2142 * into OOM very easily.
2143 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2145 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2146 low_kmem_size = 0;
2147 total_size = 0;
2148 for_each_online_node(nid) {
2149 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2150 z = &NODE_DATA(nid)->node_zones[zone_type];
2151 if (populated_zone(z)) {
2152 if (zone_type < ZONE_NORMAL)
2153 low_kmem_size += z->present_pages;
2154 total_size += z->present_pages;
2158 if (!low_kmem_size || /* there are no DMA area. */
2159 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2160 return ZONELIST_ORDER_NODE;
2162 * look into each node's config.
2163 * If there is a node whose DMA/DMA32 memory is very big area on
2164 * local memory, NODE_ORDER may be suitable.
2166 average_size = total_size /
2167 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2168 for_each_online_node(nid) {
2169 low_kmem_size = 0;
2170 total_size = 0;
2171 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2172 z = &NODE_DATA(nid)->node_zones[zone_type];
2173 if (populated_zone(z)) {
2174 if (zone_type < ZONE_NORMAL)
2175 low_kmem_size += z->present_pages;
2176 total_size += z->present_pages;
2179 if (low_kmem_size &&
2180 total_size > average_size && /* ignore small node */
2181 low_kmem_size > total_size * 70/100)
2182 return ZONELIST_ORDER_NODE;
2184 return ZONELIST_ORDER_ZONE;
2187 static void set_zonelist_order(void)
2189 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2190 current_zonelist_order = default_zonelist_order();
2191 else
2192 current_zonelist_order = user_zonelist_order;
2195 static void build_zonelists(pg_data_t *pgdat)
2197 int j, node, load;
2198 enum zone_type i;
2199 nodemask_t used_mask;
2200 int local_node, prev_node;
2201 struct zonelist *zonelist;
2202 int order = current_zonelist_order;
2204 /* initialize zonelists */
2205 for (i = 0; i < MAX_ZONELISTS; i++) {
2206 zonelist = pgdat->node_zonelists + i;
2207 zonelist->zones[0] = NULL;
2210 /* NUMA-aware ordering of nodes */
2211 local_node = pgdat->node_id;
2212 load = num_online_nodes();
2213 prev_node = local_node;
2214 nodes_clear(used_mask);
2216 memset(node_load, 0, sizeof(node_load));
2217 memset(node_order, 0, sizeof(node_order));
2218 j = 0;
2220 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2221 int distance = node_distance(local_node, node);
2224 * If another node is sufficiently far away then it is better
2225 * to reclaim pages in a zone before going off node.
2227 if (distance > RECLAIM_DISTANCE)
2228 zone_reclaim_mode = 1;
2231 * We don't want to pressure a particular node.
2232 * So adding penalty to the first node in same
2233 * distance group to make it round-robin.
2235 if (distance != node_distance(local_node, prev_node))
2236 node_load[node] = load;
2238 prev_node = node;
2239 load--;
2240 if (order == ZONELIST_ORDER_NODE)
2241 build_zonelists_in_node_order(pgdat, node);
2242 else
2243 node_order[j++] = node; /* remember order */
2246 if (order == ZONELIST_ORDER_ZONE) {
2247 /* calculate node order -- i.e., DMA last! */
2248 build_zonelists_in_zone_order(pgdat, j);
2251 build_thisnode_zonelists(pgdat);
2254 /* Construct the zonelist performance cache - see further mmzone.h */
2255 static void build_zonelist_cache(pg_data_t *pgdat)
2257 int i;
2259 for (i = 0; i < MAX_NR_ZONES; i++) {
2260 struct zonelist *zonelist;
2261 struct zonelist_cache *zlc;
2262 struct zone **z;
2264 zonelist = pgdat->node_zonelists + i;
2265 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2266 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2267 for (z = zonelist->zones; *z; z++)
2268 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2273 #else /* CONFIG_NUMA */
2275 static void set_zonelist_order(void)
2277 current_zonelist_order = ZONELIST_ORDER_ZONE;
2280 static void build_zonelists(pg_data_t *pgdat)
2282 int node, local_node;
2283 enum zone_type i,j;
2285 local_node = pgdat->node_id;
2286 for (i = 0; i < MAX_NR_ZONES; i++) {
2287 struct zonelist *zonelist;
2289 zonelist = pgdat->node_zonelists + i;
2291 j = build_zonelists_node(pgdat, zonelist, 0, i);
2293 * Now we build the zonelist so that it contains the zones
2294 * of all the other nodes.
2295 * We don't want to pressure a particular node, so when
2296 * building the zones for node N, we make sure that the
2297 * zones coming right after the local ones are those from
2298 * node N+1 (modulo N)
2300 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2301 if (!node_online(node))
2302 continue;
2303 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2305 for (node = 0; node < local_node; node++) {
2306 if (!node_online(node))
2307 continue;
2308 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2311 zonelist->zones[j] = NULL;
2315 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2316 static void build_zonelist_cache(pg_data_t *pgdat)
2318 int i;
2320 for (i = 0; i < MAX_NR_ZONES; i++)
2321 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2324 #endif /* CONFIG_NUMA */
2326 /* return values int ....just for stop_machine_run() */
2327 static int __build_all_zonelists(void *dummy)
2329 int nid;
2331 for_each_online_node(nid) {
2332 pg_data_t *pgdat = NODE_DATA(nid);
2334 build_zonelists(pgdat);
2335 build_zonelist_cache(pgdat);
2337 return 0;
2340 void build_all_zonelists(void)
2342 set_zonelist_order();
2344 if (system_state == SYSTEM_BOOTING) {
2345 __build_all_zonelists(NULL);
2346 cpuset_init_current_mems_allowed();
2347 } else {
2348 /* we have to stop all cpus to guarantee there is no user
2349 of zonelist */
2350 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2351 /* cpuset refresh routine should be here */
2353 vm_total_pages = nr_free_pagecache_pages();
2355 * Disable grouping by mobility if the number of pages in the
2356 * system is too low to allow the mechanism to work. It would be
2357 * more accurate, but expensive to check per-zone. This check is
2358 * made on memory-hotadd so a system can start with mobility
2359 * disabled and enable it later
2361 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2362 page_group_by_mobility_disabled = 1;
2363 else
2364 page_group_by_mobility_disabled = 0;
2366 printk("Built %i zonelists in %s order, mobility grouping %s. "
2367 "Total pages: %ld\n",
2368 num_online_nodes(),
2369 zonelist_order_name[current_zonelist_order],
2370 page_group_by_mobility_disabled ? "off" : "on",
2371 vm_total_pages);
2372 #ifdef CONFIG_NUMA
2373 printk("Policy zone: %s\n", zone_names[policy_zone]);
2374 #endif
2378 * Helper functions to size the waitqueue hash table.
2379 * Essentially these want to choose hash table sizes sufficiently
2380 * large so that collisions trying to wait on pages are rare.
2381 * But in fact, the number of active page waitqueues on typical
2382 * systems is ridiculously low, less than 200. So this is even
2383 * conservative, even though it seems large.
2385 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2386 * waitqueues, i.e. the size of the waitq table given the number of pages.
2388 #define PAGES_PER_WAITQUEUE 256
2390 #ifndef CONFIG_MEMORY_HOTPLUG
2391 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2393 unsigned long size = 1;
2395 pages /= PAGES_PER_WAITQUEUE;
2397 while (size < pages)
2398 size <<= 1;
2401 * Once we have dozens or even hundreds of threads sleeping
2402 * on IO we've got bigger problems than wait queue collision.
2403 * Limit the size of the wait table to a reasonable size.
2405 size = min(size, 4096UL);
2407 return max(size, 4UL);
2409 #else
2411 * A zone's size might be changed by hot-add, so it is not possible to determine
2412 * a suitable size for its wait_table. So we use the maximum size now.
2414 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2416 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2417 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2418 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2420 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2421 * or more by the traditional way. (See above). It equals:
2423 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2424 * ia64(16K page size) : = ( 8G + 4M)byte.
2425 * powerpc (64K page size) : = (32G +16M)byte.
2427 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2429 return 4096UL;
2431 #endif
2434 * This is an integer logarithm so that shifts can be used later
2435 * to extract the more random high bits from the multiplicative
2436 * hash function before the remainder is taken.
2438 static inline unsigned long wait_table_bits(unsigned long size)
2440 return ffz(~size);
2443 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2446 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2447 * of blocks reserved is based on zone->pages_min. The memory within the
2448 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2449 * higher will lead to a bigger reserve which will get freed as contiguous
2450 * blocks as reclaim kicks in
2452 static void setup_zone_migrate_reserve(struct zone *zone)
2454 unsigned long start_pfn, pfn, end_pfn;
2455 struct page *page;
2456 unsigned long reserve, block_migratetype;
2458 /* Get the start pfn, end pfn and the number of blocks to reserve */
2459 start_pfn = zone->zone_start_pfn;
2460 end_pfn = start_pfn + zone->spanned_pages;
2461 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2462 pageblock_order;
2464 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2465 if (!pfn_valid(pfn))
2466 continue;
2467 page = pfn_to_page(pfn);
2469 /* Blocks with reserved pages will never free, skip them. */
2470 if (PageReserved(page))
2471 continue;
2473 block_migratetype = get_pageblock_migratetype(page);
2475 /* If this block is reserved, account for it */
2476 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2477 reserve--;
2478 continue;
2481 /* Suitable for reserving if this block is movable */
2482 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2483 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2484 move_freepages_block(zone, page, MIGRATE_RESERVE);
2485 reserve--;
2486 continue;
2490 * If the reserve is met and this is a previous reserved block,
2491 * take it back
2493 if (block_migratetype == MIGRATE_RESERVE) {
2494 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2495 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2501 * Initially all pages are reserved - free ones are freed
2502 * up by free_all_bootmem() once the early boot process is
2503 * done. Non-atomic initialization, single-pass.
2505 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2506 unsigned long start_pfn, enum memmap_context context)
2508 struct page *page;
2509 unsigned long end_pfn = start_pfn + size;
2510 unsigned long pfn;
2512 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2514 * There can be holes in boot-time mem_map[]s
2515 * handed to this function. They do not
2516 * exist on hotplugged memory.
2518 if (context == MEMMAP_EARLY) {
2519 if (!early_pfn_valid(pfn))
2520 continue;
2521 if (!early_pfn_in_nid(pfn, nid))
2522 continue;
2524 page = pfn_to_page(pfn);
2525 set_page_links(page, zone, nid, pfn);
2526 init_page_count(page);
2527 reset_page_mapcount(page);
2528 SetPageReserved(page);
2531 * Mark the block movable so that blocks are reserved for
2532 * movable at startup. This will force kernel allocations
2533 * to reserve their blocks rather than leaking throughout
2534 * the address space during boot when many long-lived
2535 * kernel allocations are made. Later some blocks near
2536 * the start are marked MIGRATE_RESERVE by
2537 * setup_zone_migrate_reserve()
2539 if ((pfn & (pageblock_nr_pages-1)))
2540 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2542 INIT_LIST_HEAD(&page->lru);
2543 #ifdef WANT_PAGE_VIRTUAL
2544 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2545 if (!is_highmem_idx(zone))
2546 set_page_address(page, __va(pfn << PAGE_SHIFT));
2547 #endif
2551 static void __meminit zone_init_free_lists(struct zone *zone)
2553 int order, t;
2554 for_each_migratetype_order(order, t) {
2555 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2556 zone->free_area[order].nr_free = 0;
2560 #ifndef __HAVE_ARCH_MEMMAP_INIT
2561 #define memmap_init(size, nid, zone, start_pfn) \
2562 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2563 #endif
2565 static int zone_batchsize(struct zone *zone)
2567 int batch;
2570 * The per-cpu-pages pools are set to around 1000th of the
2571 * size of the zone. But no more than 1/2 of a meg.
2573 * OK, so we don't know how big the cache is. So guess.
2575 batch = zone->present_pages / 1024;
2576 if (batch * PAGE_SIZE > 512 * 1024)
2577 batch = (512 * 1024) / PAGE_SIZE;
2578 batch /= 4; /* We effectively *= 4 below */
2579 if (batch < 1)
2580 batch = 1;
2583 * Clamp the batch to a 2^n - 1 value. Having a power
2584 * of 2 value was found to be more likely to have
2585 * suboptimal cache aliasing properties in some cases.
2587 * For example if 2 tasks are alternately allocating
2588 * batches of pages, one task can end up with a lot
2589 * of pages of one half of the possible page colors
2590 * and the other with pages of the other colors.
2592 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2594 return batch;
2597 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2599 struct per_cpu_pages *pcp;
2601 memset(p, 0, sizeof(*p));
2603 pcp = &p->pcp;
2604 pcp->count = 0;
2605 pcp->high = 6 * batch;
2606 pcp->batch = max(1UL, 1 * batch);
2607 INIT_LIST_HEAD(&pcp->list);
2611 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2612 * to the value high for the pageset p.
2615 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2616 unsigned long high)
2618 struct per_cpu_pages *pcp;
2620 pcp = &p->pcp;
2621 pcp->high = high;
2622 pcp->batch = max(1UL, high/4);
2623 if ((high/4) > (PAGE_SHIFT * 8))
2624 pcp->batch = PAGE_SHIFT * 8;
2628 #ifdef CONFIG_NUMA
2630 * Boot pageset table. One per cpu which is going to be used for all
2631 * zones and all nodes. The parameters will be set in such a way
2632 * that an item put on a list will immediately be handed over to
2633 * the buddy list. This is safe since pageset manipulation is done
2634 * with interrupts disabled.
2636 * Some NUMA counter updates may also be caught by the boot pagesets.
2638 * The boot_pagesets must be kept even after bootup is complete for
2639 * unused processors and/or zones. They do play a role for bootstrapping
2640 * hotplugged processors.
2642 * zoneinfo_show() and maybe other functions do
2643 * not check if the processor is online before following the pageset pointer.
2644 * Other parts of the kernel may not check if the zone is available.
2646 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2649 * Dynamically allocate memory for the
2650 * per cpu pageset array in struct zone.
2652 static int __cpuinit process_zones(int cpu)
2654 struct zone *zone, *dzone;
2655 int node = cpu_to_node(cpu);
2657 node_set_state(node, N_CPU); /* this node has a cpu */
2659 for_each_zone(zone) {
2661 if (!populated_zone(zone))
2662 continue;
2664 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2665 GFP_KERNEL, node);
2666 if (!zone_pcp(zone, cpu))
2667 goto bad;
2669 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2671 if (percpu_pagelist_fraction)
2672 setup_pagelist_highmark(zone_pcp(zone, cpu),
2673 (zone->present_pages / percpu_pagelist_fraction));
2676 return 0;
2677 bad:
2678 for_each_zone(dzone) {
2679 if (!populated_zone(dzone))
2680 continue;
2681 if (dzone == zone)
2682 break;
2683 kfree(zone_pcp(dzone, cpu));
2684 zone_pcp(dzone, cpu) = NULL;
2686 return -ENOMEM;
2689 static inline void free_zone_pagesets(int cpu)
2691 struct zone *zone;
2693 for_each_zone(zone) {
2694 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2696 /* Free per_cpu_pageset if it is slab allocated */
2697 if (pset != &boot_pageset[cpu])
2698 kfree(pset);
2699 zone_pcp(zone, cpu) = NULL;
2703 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2704 unsigned long action,
2705 void *hcpu)
2707 int cpu = (long)hcpu;
2708 int ret = NOTIFY_OK;
2710 switch (action) {
2711 case CPU_UP_PREPARE:
2712 case CPU_UP_PREPARE_FROZEN:
2713 if (process_zones(cpu))
2714 ret = NOTIFY_BAD;
2715 break;
2716 case CPU_UP_CANCELED:
2717 case CPU_UP_CANCELED_FROZEN:
2718 case CPU_DEAD:
2719 case CPU_DEAD_FROZEN:
2720 free_zone_pagesets(cpu);
2721 break;
2722 default:
2723 break;
2725 return ret;
2728 static struct notifier_block __cpuinitdata pageset_notifier =
2729 { &pageset_cpuup_callback, NULL, 0 };
2731 void __init setup_per_cpu_pageset(void)
2733 int err;
2735 /* Initialize per_cpu_pageset for cpu 0.
2736 * A cpuup callback will do this for every cpu
2737 * as it comes online
2739 err = process_zones(smp_processor_id());
2740 BUG_ON(err);
2741 register_cpu_notifier(&pageset_notifier);
2744 #endif
2746 static noinline __init_refok
2747 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2749 int i;
2750 struct pglist_data *pgdat = zone->zone_pgdat;
2751 size_t alloc_size;
2754 * The per-page waitqueue mechanism uses hashed waitqueues
2755 * per zone.
2757 zone->wait_table_hash_nr_entries =
2758 wait_table_hash_nr_entries(zone_size_pages);
2759 zone->wait_table_bits =
2760 wait_table_bits(zone->wait_table_hash_nr_entries);
2761 alloc_size = zone->wait_table_hash_nr_entries
2762 * sizeof(wait_queue_head_t);
2764 if (system_state == SYSTEM_BOOTING) {
2765 zone->wait_table = (wait_queue_head_t *)
2766 alloc_bootmem_node(pgdat, alloc_size);
2767 } else {
2769 * This case means that a zone whose size was 0 gets new memory
2770 * via memory hot-add.
2771 * But it may be the case that a new node was hot-added. In
2772 * this case vmalloc() will not be able to use this new node's
2773 * memory - this wait_table must be initialized to use this new
2774 * node itself as well.
2775 * To use this new node's memory, further consideration will be
2776 * necessary.
2778 zone->wait_table = vmalloc(alloc_size);
2780 if (!zone->wait_table)
2781 return -ENOMEM;
2783 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2784 init_waitqueue_head(zone->wait_table + i);
2786 return 0;
2789 static __meminit void zone_pcp_init(struct zone *zone)
2791 int cpu;
2792 unsigned long batch = zone_batchsize(zone);
2794 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2795 #ifdef CONFIG_NUMA
2796 /* Early boot. Slab allocator not functional yet */
2797 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2798 setup_pageset(&boot_pageset[cpu],0);
2799 #else
2800 setup_pageset(zone_pcp(zone,cpu), batch);
2801 #endif
2803 if (zone->present_pages)
2804 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2805 zone->name, zone->present_pages, batch);
2808 __meminit int init_currently_empty_zone(struct zone *zone,
2809 unsigned long zone_start_pfn,
2810 unsigned long size,
2811 enum memmap_context context)
2813 struct pglist_data *pgdat = zone->zone_pgdat;
2814 int ret;
2815 ret = zone_wait_table_init(zone, size);
2816 if (ret)
2817 return ret;
2818 pgdat->nr_zones = zone_idx(zone) + 1;
2820 zone->zone_start_pfn = zone_start_pfn;
2822 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2824 zone_init_free_lists(zone);
2826 return 0;
2829 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2831 * Basic iterator support. Return the first range of PFNs for a node
2832 * Note: nid == MAX_NUMNODES returns first region regardless of node
2834 static int __meminit first_active_region_index_in_nid(int nid)
2836 int i;
2838 for (i = 0; i < nr_nodemap_entries; i++)
2839 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2840 return i;
2842 return -1;
2846 * Basic iterator support. Return the next active range of PFNs for a node
2847 * Note: nid == MAX_NUMNODES returns next region regardless of node
2849 static int __meminit next_active_region_index_in_nid(int index, int nid)
2851 for (index = index + 1; index < nr_nodemap_entries; index++)
2852 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2853 return index;
2855 return -1;
2858 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2860 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2861 * Architectures may implement their own version but if add_active_range()
2862 * was used and there are no special requirements, this is a convenient
2863 * alternative
2865 int __meminit early_pfn_to_nid(unsigned long pfn)
2867 int i;
2869 for (i = 0; i < nr_nodemap_entries; i++) {
2870 unsigned long start_pfn = early_node_map[i].start_pfn;
2871 unsigned long end_pfn = early_node_map[i].end_pfn;
2873 if (start_pfn <= pfn && pfn < end_pfn)
2874 return early_node_map[i].nid;
2877 return 0;
2879 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2881 /* Basic iterator support to walk early_node_map[] */
2882 #define for_each_active_range_index_in_nid(i, nid) \
2883 for (i = first_active_region_index_in_nid(nid); i != -1; \
2884 i = next_active_region_index_in_nid(i, nid))
2887 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2888 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2889 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2891 * If an architecture guarantees that all ranges registered with
2892 * add_active_ranges() contain no holes and may be freed, this
2893 * this function may be used instead of calling free_bootmem() manually.
2895 void __init free_bootmem_with_active_regions(int nid,
2896 unsigned long max_low_pfn)
2898 int i;
2900 for_each_active_range_index_in_nid(i, nid) {
2901 unsigned long size_pages = 0;
2902 unsigned long end_pfn = early_node_map[i].end_pfn;
2904 if (early_node_map[i].start_pfn >= max_low_pfn)
2905 continue;
2907 if (end_pfn > max_low_pfn)
2908 end_pfn = max_low_pfn;
2910 size_pages = end_pfn - early_node_map[i].start_pfn;
2911 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2912 PFN_PHYS(early_node_map[i].start_pfn),
2913 size_pages << PAGE_SHIFT);
2918 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2919 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2921 * If an architecture guarantees that all ranges registered with
2922 * add_active_ranges() contain no holes and may be freed, this
2923 * function may be used instead of calling memory_present() manually.
2925 void __init sparse_memory_present_with_active_regions(int nid)
2927 int i;
2929 for_each_active_range_index_in_nid(i, nid)
2930 memory_present(early_node_map[i].nid,
2931 early_node_map[i].start_pfn,
2932 early_node_map[i].end_pfn);
2936 * push_node_boundaries - Push node boundaries to at least the requested boundary
2937 * @nid: The nid of the node to push the boundary for
2938 * @start_pfn: The start pfn of the node
2939 * @end_pfn: The end pfn of the node
2941 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2942 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2943 * be hotplugged even though no physical memory exists. This function allows
2944 * an arch to push out the node boundaries so mem_map is allocated that can
2945 * be used later.
2947 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2948 void __init push_node_boundaries(unsigned int nid,
2949 unsigned long start_pfn, unsigned long end_pfn)
2951 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2952 nid, start_pfn, end_pfn);
2954 /* Initialise the boundary for this node if necessary */
2955 if (node_boundary_end_pfn[nid] == 0)
2956 node_boundary_start_pfn[nid] = -1UL;
2958 /* Update the boundaries */
2959 if (node_boundary_start_pfn[nid] > start_pfn)
2960 node_boundary_start_pfn[nid] = start_pfn;
2961 if (node_boundary_end_pfn[nid] < end_pfn)
2962 node_boundary_end_pfn[nid] = end_pfn;
2965 /* If necessary, push the node boundary out for reserve hotadd */
2966 static void __meminit account_node_boundary(unsigned int nid,
2967 unsigned long *start_pfn, unsigned long *end_pfn)
2969 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2970 nid, *start_pfn, *end_pfn);
2972 /* Return if boundary information has not been provided */
2973 if (node_boundary_end_pfn[nid] == 0)
2974 return;
2976 /* Check the boundaries and update if necessary */
2977 if (node_boundary_start_pfn[nid] < *start_pfn)
2978 *start_pfn = node_boundary_start_pfn[nid];
2979 if (node_boundary_end_pfn[nid] > *end_pfn)
2980 *end_pfn = node_boundary_end_pfn[nid];
2982 #else
2983 void __init push_node_boundaries(unsigned int nid,
2984 unsigned long start_pfn, unsigned long end_pfn) {}
2986 static void __meminit account_node_boundary(unsigned int nid,
2987 unsigned long *start_pfn, unsigned long *end_pfn) {}
2988 #endif
2992 * get_pfn_range_for_nid - Return the start and end page frames for a node
2993 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2994 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2995 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2997 * It returns the start and end page frame of a node based on information
2998 * provided by an arch calling add_active_range(). If called for a node
2999 * with no available memory, a warning is printed and the start and end
3000 * PFNs will be 0.
3002 void __meminit get_pfn_range_for_nid(unsigned int nid,
3003 unsigned long *start_pfn, unsigned long *end_pfn)
3005 int i;
3006 *start_pfn = -1UL;
3007 *end_pfn = 0;
3009 for_each_active_range_index_in_nid(i, nid) {
3010 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3011 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3014 if (*start_pfn == -1UL)
3015 *start_pfn = 0;
3017 /* Push the node boundaries out if requested */
3018 account_node_boundary(nid, start_pfn, end_pfn);
3022 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3023 * assumption is made that zones within a node are ordered in monotonic
3024 * increasing memory addresses so that the "highest" populated zone is used
3026 void __init find_usable_zone_for_movable(void)
3028 int zone_index;
3029 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3030 if (zone_index == ZONE_MOVABLE)
3031 continue;
3033 if (arch_zone_highest_possible_pfn[zone_index] >
3034 arch_zone_lowest_possible_pfn[zone_index])
3035 break;
3038 VM_BUG_ON(zone_index == -1);
3039 movable_zone = zone_index;
3043 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3044 * because it is sized independant of architecture. Unlike the other zones,
3045 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3046 * in each node depending on the size of each node and how evenly kernelcore
3047 * is distributed. This helper function adjusts the zone ranges
3048 * provided by the architecture for a given node by using the end of the
3049 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3050 * zones within a node are in order of monotonic increases memory addresses
3052 void __meminit adjust_zone_range_for_zone_movable(int nid,
3053 unsigned long zone_type,
3054 unsigned long node_start_pfn,
3055 unsigned long node_end_pfn,
3056 unsigned long *zone_start_pfn,
3057 unsigned long *zone_end_pfn)
3059 /* Only adjust if ZONE_MOVABLE is on this node */
3060 if (zone_movable_pfn[nid]) {
3061 /* Size ZONE_MOVABLE */
3062 if (zone_type == ZONE_MOVABLE) {
3063 *zone_start_pfn = zone_movable_pfn[nid];
3064 *zone_end_pfn = min(node_end_pfn,
3065 arch_zone_highest_possible_pfn[movable_zone]);
3067 /* Adjust for ZONE_MOVABLE starting within this range */
3068 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3069 *zone_end_pfn > zone_movable_pfn[nid]) {
3070 *zone_end_pfn = zone_movable_pfn[nid];
3072 /* Check if this whole range is within ZONE_MOVABLE */
3073 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3074 *zone_start_pfn = *zone_end_pfn;
3079 * Return the number of pages a zone spans in a node, including holes
3080 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3082 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3083 unsigned long zone_type,
3084 unsigned long *ignored)
3086 unsigned long node_start_pfn, node_end_pfn;
3087 unsigned long zone_start_pfn, zone_end_pfn;
3089 /* Get the start and end of the node and zone */
3090 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3091 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3092 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3093 adjust_zone_range_for_zone_movable(nid, zone_type,
3094 node_start_pfn, node_end_pfn,
3095 &zone_start_pfn, &zone_end_pfn);
3097 /* Check that this node has pages within the zone's required range */
3098 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3099 return 0;
3101 /* Move the zone boundaries inside the node if necessary */
3102 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3103 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3105 /* Return the spanned pages */
3106 return zone_end_pfn - zone_start_pfn;
3110 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3111 * then all holes in the requested range will be accounted for.
3113 unsigned long __meminit __absent_pages_in_range(int nid,
3114 unsigned long range_start_pfn,
3115 unsigned long range_end_pfn)
3117 int i = 0;
3118 unsigned long prev_end_pfn = 0, hole_pages = 0;
3119 unsigned long start_pfn;
3121 /* Find the end_pfn of the first active range of pfns in the node */
3122 i = first_active_region_index_in_nid(nid);
3123 if (i == -1)
3124 return 0;
3126 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3128 /* Account for ranges before physical memory on this node */
3129 if (early_node_map[i].start_pfn > range_start_pfn)
3130 hole_pages = prev_end_pfn - range_start_pfn;
3132 /* Find all holes for the zone within the node */
3133 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3135 /* No need to continue if prev_end_pfn is outside the zone */
3136 if (prev_end_pfn >= range_end_pfn)
3137 break;
3139 /* Make sure the end of the zone is not within the hole */
3140 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3141 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3143 /* Update the hole size cound and move on */
3144 if (start_pfn > range_start_pfn) {
3145 BUG_ON(prev_end_pfn > start_pfn);
3146 hole_pages += start_pfn - prev_end_pfn;
3148 prev_end_pfn = early_node_map[i].end_pfn;
3151 /* Account for ranges past physical memory on this node */
3152 if (range_end_pfn > prev_end_pfn)
3153 hole_pages += range_end_pfn -
3154 max(range_start_pfn, prev_end_pfn);
3156 return hole_pages;
3160 * absent_pages_in_range - Return number of page frames in holes within a range
3161 * @start_pfn: The start PFN to start searching for holes
3162 * @end_pfn: The end PFN to stop searching for holes
3164 * It returns the number of pages frames in memory holes within a range.
3166 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3167 unsigned long end_pfn)
3169 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3172 /* Return the number of page frames in holes in a zone on a node */
3173 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3174 unsigned long zone_type,
3175 unsigned long *ignored)
3177 unsigned long node_start_pfn, node_end_pfn;
3178 unsigned long zone_start_pfn, zone_end_pfn;
3180 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3181 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3182 node_start_pfn);
3183 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3184 node_end_pfn);
3186 adjust_zone_range_for_zone_movable(nid, zone_type,
3187 node_start_pfn, node_end_pfn,
3188 &zone_start_pfn, &zone_end_pfn);
3189 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3192 #else
3193 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3194 unsigned long zone_type,
3195 unsigned long *zones_size)
3197 return zones_size[zone_type];
3200 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3201 unsigned long zone_type,
3202 unsigned long *zholes_size)
3204 if (!zholes_size)
3205 return 0;
3207 return zholes_size[zone_type];
3210 #endif
3212 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3213 unsigned long *zones_size, unsigned long *zholes_size)
3215 unsigned long realtotalpages, totalpages = 0;
3216 enum zone_type i;
3218 for (i = 0; i < MAX_NR_ZONES; i++)
3219 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3220 zones_size);
3221 pgdat->node_spanned_pages = totalpages;
3223 realtotalpages = totalpages;
3224 for (i = 0; i < MAX_NR_ZONES; i++)
3225 realtotalpages -=
3226 zone_absent_pages_in_node(pgdat->node_id, i,
3227 zholes_size);
3228 pgdat->node_present_pages = realtotalpages;
3229 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3230 realtotalpages);
3233 #ifndef CONFIG_SPARSEMEM
3235 * Calculate the size of the zone->blockflags rounded to an unsigned long
3236 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3237 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3238 * round what is now in bits to nearest long in bits, then return it in
3239 * bytes.
3241 static unsigned long __init usemap_size(unsigned long zonesize)
3243 unsigned long usemapsize;
3245 usemapsize = roundup(zonesize, pageblock_nr_pages);
3246 usemapsize = usemapsize >> pageblock_order;
3247 usemapsize *= NR_PAGEBLOCK_BITS;
3248 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3250 return usemapsize / 8;
3253 static void __init setup_usemap(struct pglist_data *pgdat,
3254 struct zone *zone, unsigned long zonesize)
3256 unsigned long usemapsize = usemap_size(zonesize);
3257 zone->pageblock_flags = NULL;
3258 if (usemapsize) {
3259 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3260 memset(zone->pageblock_flags, 0, usemapsize);
3263 #else
3264 static void inline setup_usemap(struct pglist_data *pgdat,
3265 struct zone *zone, unsigned long zonesize) {}
3266 #endif /* CONFIG_SPARSEMEM */
3268 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3270 /* Return a sensible default order for the pageblock size. */
3271 static inline int pageblock_default_order(void)
3273 if (HPAGE_SHIFT > PAGE_SHIFT)
3274 return HUGETLB_PAGE_ORDER;
3276 return MAX_ORDER-1;
3279 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3280 static inline void __init set_pageblock_order(unsigned int order)
3282 /* Check that pageblock_nr_pages has not already been setup */
3283 if (pageblock_order)
3284 return;
3287 * Assume the largest contiguous order of interest is a huge page.
3288 * This value may be variable depending on boot parameters on IA64
3290 pageblock_order = order;
3292 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3295 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3296 * and pageblock_default_order() are unused as pageblock_order is set
3297 * at compile-time. See include/linux/pageblock-flags.h for the values of
3298 * pageblock_order based on the kernel config
3300 static inline int pageblock_default_order(unsigned int order)
3302 return MAX_ORDER-1;
3304 #define set_pageblock_order(x) do {} while (0)
3306 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3309 * Set up the zone data structures:
3310 * - mark all pages reserved
3311 * - mark all memory queues empty
3312 * - clear the memory bitmaps
3314 static void __meminit free_area_init_core(struct pglist_data *pgdat,
3315 unsigned long *zones_size, unsigned long *zholes_size)
3317 enum zone_type j;
3318 int nid = pgdat->node_id;
3319 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3320 int ret;
3322 pgdat_resize_init(pgdat);
3323 pgdat->nr_zones = 0;
3324 init_waitqueue_head(&pgdat->kswapd_wait);
3325 pgdat->kswapd_max_order = 0;
3327 for (j = 0; j < MAX_NR_ZONES; j++) {
3328 struct zone *zone = pgdat->node_zones + j;
3329 unsigned long size, realsize, memmap_pages;
3331 size = zone_spanned_pages_in_node(nid, j, zones_size);
3332 realsize = size - zone_absent_pages_in_node(nid, j,
3333 zholes_size);
3336 * Adjust realsize so that it accounts for how much memory
3337 * is used by this zone for memmap. This affects the watermark
3338 * and per-cpu initialisations
3340 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3341 if (realsize >= memmap_pages) {
3342 realsize -= memmap_pages;
3343 printk(KERN_DEBUG
3344 " %s zone: %lu pages used for memmap\n",
3345 zone_names[j], memmap_pages);
3346 } else
3347 printk(KERN_WARNING
3348 " %s zone: %lu pages exceeds realsize %lu\n",
3349 zone_names[j], memmap_pages, realsize);
3351 /* Account for reserved pages */
3352 if (j == 0 && realsize > dma_reserve) {
3353 realsize -= dma_reserve;
3354 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3355 zone_names[0], dma_reserve);
3358 if (!is_highmem_idx(j))
3359 nr_kernel_pages += realsize;
3360 nr_all_pages += realsize;
3362 zone->spanned_pages = size;
3363 zone->present_pages = realsize;
3364 #ifdef CONFIG_NUMA
3365 zone->node = nid;
3366 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3367 / 100;
3368 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3369 #endif
3370 zone->name = zone_names[j];
3371 spin_lock_init(&zone->lock);
3372 spin_lock_init(&zone->lru_lock);
3373 zone_seqlock_init(zone);
3374 zone->zone_pgdat = pgdat;
3376 zone->prev_priority = DEF_PRIORITY;
3378 zone_pcp_init(zone);
3379 INIT_LIST_HEAD(&zone->active_list);
3380 INIT_LIST_HEAD(&zone->inactive_list);
3381 zone->nr_scan_active = 0;
3382 zone->nr_scan_inactive = 0;
3383 zap_zone_vm_stats(zone);
3384 zone->flags = 0;
3385 if (!size)
3386 continue;
3388 set_pageblock_order(pageblock_default_order());
3389 setup_usemap(pgdat, zone, size);
3390 ret = init_currently_empty_zone(zone, zone_start_pfn,
3391 size, MEMMAP_EARLY);
3392 BUG_ON(ret);
3393 zone_start_pfn += size;
3397 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3399 /* Skip empty nodes */
3400 if (!pgdat->node_spanned_pages)
3401 return;
3403 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3404 /* ia64 gets its own node_mem_map, before this, without bootmem */
3405 if (!pgdat->node_mem_map) {
3406 unsigned long size, start, end;
3407 struct page *map;
3410 * The zone's endpoints aren't required to be MAX_ORDER
3411 * aligned but the node_mem_map endpoints must be in order
3412 * for the buddy allocator to function correctly.
3414 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3415 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3416 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3417 size = (end - start) * sizeof(struct page);
3418 map = alloc_remap(pgdat->node_id, size);
3419 if (!map)
3420 map = alloc_bootmem_node(pgdat, size);
3421 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3423 #ifndef CONFIG_NEED_MULTIPLE_NODES
3425 * With no DISCONTIG, the global mem_map is just set as node 0's
3427 if (pgdat == NODE_DATA(0)) {
3428 mem_map = NODE_DATA(0)->node_mem_map;
3429 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3430 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3431 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3432 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3434 #endif
3435 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3438 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3439 unsigned long *zones_size, unsigned long node_start_pfn,
3440 unsigned long *zholes_size)
3442 pgdat->node_id = nid;
3443 pgdat->node_start_pfn = node_start_pfn;
3444 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3446 alloc_node_mem_map(pgdat);
3448 free_area_init_core(pgdat, zones_size, zholes_size);
3451 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3453 #if MAX_NUMNODES > 1
3455 * Figure out the number of possible node ids.
3457 static void __init setup_nr_node_ids(void)
3459 unsigned int node;
3460 unsigned int highest = 0;
3462 for_each_node_mask(node, node_possible_map)
3463 highest = node;
3464 nr_node_ids = highest + 1;
3466 #else
3467 static inline void setup_nr_node_ids(void)
3470 #endif
3473 * add_active_range - Register a range of PFNs backed by physical memory
3474 * @nid: The node ID the range resides on
3475 * @start_pfn: The start PFN of the available physical memory
3476 * @end_pfn: The end PFN of the available physical memory
3478 * These ranges are stored in an early_node_map[] and later used by
3479 * free_area_init_nodes() to calculate zone sizes and holes. If the
3480 * range spans a memory hole, it is up to the architecture to ensure
3481 * the memory is not freed by the bootmem allocator. If possible
3482 * the range being registered will be merged with existing ranges.
3484 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3485 unsigned long end_pfn)
3487 int i;
3489 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3490 "%d entries of %d used\n",
3491 nid, start_pfn, end_pfn,
3492 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3494 /* Merge with existing active regions if possible */
3495 for (i = 0; i < nr_nodemap_entries; i++) {
3496 if (early_node_map[i].nid != nid)
3497 continue;
3499 /* Skip if an existing region covers this new one */
3500 if (start_pfn >= early_node_map[i].start_pfn &&
3501 end_pfn <= early_node_map[i].end_pfn)
3502 return;
3504 /* Merge forward if suitable */
3505 if (start_pfn <= early_node_map[i].end_pfn &&
3506 end_pfn > early_node_map[i].end_pfn) {
3507 early_node_map[i].end_pfn = end_pfn;
3508 return;
3511 /* Merge backward if suitable */
3512 if (start_pfn < early_node_map[i].end_pfn &&
3513 end_pfn >= early_node_map[i].start_pfn) {
3514 early_node_map[i].start_pfn = start_pfn;
3515 return;
3519 /* Check that early_node_map is large enough */
3520 if (i >= MAX_ACTIVE_REGIONS) {
3521 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3522 MAX_ACTIVE_REGIONS);
3523 return;
3526 early_node_map[i].nid = nid;
3527 early_node_map[i].start_pfn = start_pfn;
3528 early_node_map[i].end_pfn = end_pfn;
3529 nr_nodemap_entries = i + 1;
3533 * shrink_active_range - Shrink an existing registered range of PFNs
3534 * @nid: The node id the range is on that should be shrunk
3535 * @old_end_pfn: The old end PFN of the range
3536 * @new_end_pfn: The new PFN of the range
3538 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3539 * The map is kept at the end physical page range that has already been
3540 * registered with add_active_range(). This function allows an arch to shrink
3541 * an existing registered range.
3543 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3544 unsigned long new_end_pfn)
3546 int i;
3548 /* Find the old active region end and shrink */
3549 for_each_active_range_index_in_nid(i, nid)
3550 if (early_node_map[i].end_pfn == old_end_pfn) {
3551 early_node_map[i].end_pfn = new_end_pfn;
3552 break;
3557 * remove_all_active_ranges - Remove all currently registered regions
3559 * During discovery, it may be found that a table like SRAT is invalid
3560 * and an alternative discovery method must be used. This function removes
3561 * all currently registered regions.
3563 void __init remove_all_active_ranges(void)
3565 memset(early_node_map, 0, sizeof(early_node_map));
3566 nr_nodemap_entries = 0;
3567 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3568 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3569 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3570 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3573 /* Compare two active node_active_regions */
3574 static int __init cmp_node_active_region(const void *a, const void *b)
3576 struct node_active_region *arange = (struct node_active_region *)a;
3577 struct node_active_region *brange = (struct node_active_region *)b;
3579 /* Done this way to avoid overflows */
3580 if (arange->start_pfn > brange->start_pfn)
3581 return 1;
3582 if (arange->start_pfn < brange->start_pfn)
3583 return -1;
3585 return 0;
3588 /* sort the node_map by start_pfn */
3589 static void __init sort_node_map(void)
3591 sort(early_node_map, (size_t)nr_nodemap_entries,
3592 sizeof(struct node_active_region),
3593 cmp_node_active_region, NULL);
3596 /* Find the lowest pfn for a node */
3597 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3599 int i;
3600 unsigned long min_pfn = ULONG_MAX;
3602 /* Assuming a sorted map, the first range found has the starting pfn */
3603 for_each_active_range_index_in_nid(i, nid)
3604 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3606 if (min_pfn == ULONG_MAX) {
3607 printk(KERN_WARNING
3608 "Could not find start_pfn for node %lu\n", nid);
3609 return 0;
3612 return min_pfn;
3616 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3618 * It returns the minimum PFN based on information provided via
3619 * add_active_range().
3621 unsigned long __init find_min_pfn_with_active_regions(void)
3623 return find_min_pfn_for_node(MAX_NUMNODES);
3627 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3629 * It returns the maximum PFN based on information provided via
3630 * add_active_range().
3632 unsigned long __init find_max_pfn_with_active_regions(void)
3634 int i;
3635 unsigned long max_pfn = 0;
3637 for (i = 0; i < nr_nodemap_entries; i++)
3638 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3640 return max_pfn;
3644 * early_calculate_totalpages()
3645 * Sum pages in active regions for movable zone.
3646 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3648 static unsigned long __init early_calculate_totalpages(void)
3650 int i;
3651 unsigned long totalpages = 0;
3653 for (i = 0; i < nr_nodemap_entries; i++) {
3654 unsigned long pages = early_node_map[i].end_pfn -
3655 early_node_map[i].start_pfn;
3656 totalpages += pages;
3657 if (pages)
3658 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3660 return totalpages;
3664 * Find the PFN the Movable zone begins in each node. Kernel memory
3665 * is spread evenly between nodes as long as the nodes have enough
3666 * memory. When they don't, some nodes will have more kernelcore than
3667 * others
3669 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3671 int i, nid;
3672 unsigned long usable_startpfn;
3673 unsigned long kernelcore_node, kernelcore_remaining;
3674 unsigned long totalpages = early_calculate_totalpages();
3675 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3678 * If movablecore was specified, calculate what size of
3679 * kernelcore that corresponds so that memory usable for
3680 * any allocation type is evenly spread. If both kernelcore
3681 * and movablecore are specified, then the value of kernelcore
3682 * will be used for required_kernelcore if it's greater than
3683 * what movablecore would have allowed.
3685 if (required_movablecore) {
3686 unsigned long corepages;
3689 * Round-up so that ZONE_MOVABLE is at least as large as what
3690 * was requested by the user
3692 required_movablecore =
3693 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3694 corepages = totalpages - required_movablecore;
3696 required_kernelcore = max(required_kernelcore, corepages);
3699 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3700 if (!required_kernelcore)
3701 return;
3703 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3704 find_usable_zone_for_movable();
3705 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3707 restart:
3708 /* Spread kernelcore memory as evenly as possible throughout nodes */
3709 kernelcore_node = required_kernelcore / usable_nodes;
3710 for_each_node_state(nid, N_HIGH_MEMORY) {
3712 * Recalculate kernelcore_node if the division per node
3713 * now exceeds what is necessary to satisfy the requested
3714 * amount of memory for the kernel
3716 if (required_kernelcore < kernelcore_node)
3717 kernelcore_node = required_kernelcore / usable_nodes;
3720 * As the map is walked, we track how much memory is usable
3721 * by the kernel using kernelcore_remaining. When it is
3722 * 0, the rest of the node is usable by ZONE_MOVABLE
3724 kernelcore_remaining = kernelcore_node;
3726 /* Go through each range of PFNs within this node */
3727 for_each_active_range_index_in_nid(i, nid) {
3728 unsigned long start_pfn, end_pfn;
3729 unsigned long size_pages;
3731 start_pfn = max(early_node_map[i].start_pfn,
3732 zone_movable_pfn[nid]);
3733 end_pfn = early_node_map[i].end_pfn;
3734 if (start_pfn >= end_pfn)
3735 continue;
3737 /* Account for what is only usable for kernelcore */
3738 if (start_pfn < usable_startpfn) {
3739 unsigned long kernel_pages;
3740 kernel_pages = min(end_pfn, usable_startpfn)
3741 - start_pfn;
3743 kernelcore_remaining -= min(kernel_pages,
3744 kernelcore_remaining);
3745 required_kernelcore -= min(kernel_pages,
3746 required_kernelcore);
3748 /* Continue if range is now fully accounted */
3749 if (end_pfn <= usable_startpfn) {
3752 * Push zone_movable_pfn to the end so
3753 * that if we have to rebalance
3754 * kernelcore across nodes, we will
3755 * not double account here
3757 zone_movable_pfn[nid] = end_pfn;
3758 continue;
3760 start_pfn = usable_startpfn;
3764 * The usable PFN range for ZONE_MOVABLE is from
3765 * start_pfn->end_pfn. Calculate size_pages as the
3766 * number of pages used as kernelcore
3768 size_pages = end_pfn - start_pfn;
3769 if (size_pages > kernelcore_remaining)
3770 size_pages = kernelcore_remaining;
3771 zone_movable_pfn[nid] = start_pfn + size_pages;
3774 * Some kernelcore has been met, update counts and
3775 * break if the kernelcore for this node has been
3776 * satisified
3778 required_kernelcore -= min(required_kernelcore,
3779 size_pages);
3780 kernelcore_remaining -= size_pages;
3781 if (!kernelcore_remaining)
3782 break;
3787 * If there is still required_kernelcore, we do another pass with one
3788 * less node in the count. This will push zone_movable_pfn[nid] further
3789 * along on the nodes that still have memory until kernelcore is
3790 * satisified
3792 usable_nodes--;
3793 if (usable_nodes && required_kernelcore > usable_nodes)
3794 goto restart;
3796 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3797 for (nid = 0; nid < MAX_NUMNODES; nid++)
3798 zone_movable_pfn[nid] =
3799 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3802 /* Any regular memory on that node ? */
3803 static void check_for_regular_memory(pg_data_t *pgdat)
3805 #ifdef CONFIG_HIGHMEM
3806 enum zone_type zone_type;
3808 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3809 struct zone *zone = &pgdat->node_zones[zone_type];
3810 if (zone->present_pages)
3811 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3813 #endif
3817 * free_area_init_nodes - Initialise all pg_data_t and zone data
3818 * @max_zone_pfn: an array of max PFNs for each zone
3820 * This will call free_area_init_node() for each active node in the system.
3821 * Using the page ranges provided by add_active_range(), the size of each
3822 * zone in each node and their holes is calculated. If the maximum PFN
3823 * between two adjacent zones match, it is assumed that the zone is empty.
3824 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3825 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3826 * starts where the previous one ended. For example, ZONE_DMA32 starts
3827 * at arch_max_dma_pfn.
3829 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3831 unsigned long nid;
3832 enum zone_type i;
3834 /* Sort early_node_map as initialisation assumes it is sorted */
3835 sort_node_map();
3837 /* Record where the zone boundaries are */
3838 memset(arch_zone_lowest_possible_pfn, 0,
3839 sizeof(arch_zone_lowest_possible_pfn));
3840 memset(arch_zone_highest_possible_pfn, 0,
3841 sizeof(arch_zone_highest_possible_pfn));
3842 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3843 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3844 for (i = 1; i < MAX_NR_ZONES; i++) {
3845 if (i == ZONE_MOVABLE)
3846 continue;
3847 arch_zone_lowest_possible_pfn[i] =
3848 arch_zone_highest_possible_pfn[i-1];
3849 arch_zone_highest_possible_pfn[i] =
3850 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3852 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3853 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3855 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3856 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3857 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3859 /* Print out the zone ranges */
3860 printk("Zone PFN ranges:\n");
3861 for (i = 0; i < MAX_NR_ZONES; i++) {
3862 if (i == ZONE_MOVABLE)
3863 continue;
3864 printk(" %-8s %8lu -> %8lu\n",
3865 zone_names[i],
3866 arch_zone_lowest_possible_pfn[i],
3867 arch_zone_highest_possible_pfn[i]);
3870 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3871 printk("Movable zone start PFN for each node\n");
3872 for (i = 0; i < MAX_NUMNODES; i++) {
3873 if (zone_movable_pfn[i])
3874 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3877 /* Print out the early_node_map[] */
3878 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3879 for (i = 0; i < nr_nodemap_entries; i++)
3880 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3881 early_node_map[i].start_pfn,
3882 early_node_map[i].end_pfn);
3884 /* Initialise every node */
3885 setup_nr_node_ids();
3886 for_each_online_node(nid) {
3887 pg_data_t *pgdat = NODE_DATA(nid);
3888 free_area_init_node(nid, pgdat, NULL,
3889 find_min_pfn_for_node(nid), NULL);
3891 /* Any memory on that node */
3892 if (pgdat->node_present_pages)
3893 node_set_state(nid, N_HIGH_MEMORY);
3894 check_for_regular_memory(pgdat);
3898 static int __init cmdline_parse_core(char *p, unsigned long *core)
3900 unsigned long long coremem;
3901 if (!p)
3902 return -EINVAL;
3904 coremem = memparse(p, &p);
3905 *core = coremem >> PAGE_SHIFT;
3907 /* Paranoid check that UL is enough for the coremem value */
3908 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3910 return 0;
3914 * kernelcore=size sets the amount of memory for use for allocations that
3915 * cannot be reclaimed or migrated.
3917 static int __init cmdline_parse_kernelcore(char *p)
3919 return cmdline_parse_core(p, &required_kernelcore);
3923 * movablecore=size sets the amount of memory for use for allocations that
3924 * can be reclaimed or migrated.
3926 static int __init cmdline_parse_movablecore(char *p)
3928 return cmdline_parse_core(p, &required_movablecore);
3931 early_param("kernelcore", cmdline_parse_kernelcore);
3932 early_param("movablecore", cmdline_parse_movablecore);
3934 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3937 * set_dma_reserve - set the specified number of pages reserved in the first zone
3938 * @new_dma_reserve: The number of pages to mark reserved
3940 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3941 * In the DMA zone, a significant percentage may be consumed by kernel image
3942 * and other unfreeable allocations which can skew the watermarks badly. This
3943 * function may optionally be used to account for unfreeable pages in the
3944 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3945 * smaller per-cpu batchsize.
3947 void __init set_dma_reserve(unsigned long new_dma_reserve)
3949 dma_reserve = new_dma_reserve;
3952 #ifndef CONFIG_NEED_MULTIPLE_NODES
3953 static bootmem_data_t contig_bootmem_data;
3954 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3956 EXPORT_SYMBOL(contig_page_data);
3957 #endif
3959 void __init free_area_init(unsigned long *zones_size)
3961 free_area_init_node(0, NODE_DATA(0), zones_size,
3962 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3965 static int page_alloc_cpu_notify(struct notifier_block *self,
3966 unsigned long action, void *hcpu)
3968 int cpu = (unsigned long)hcpu;
3970 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3971 drain_pages(cpu);
3974 * Spill the event counters of the dead processor
3975 * into the current processors event counters.
3976 * This artificially elevates the count of the current
3977 * processor.
3979 vm_events_fold_cpu(cpu);
3982 * Zero the differential counters of the dead processor
3983 * so that the vm statistics are consistent.
3985 * This is only okay since the processor is dead and cannot
3986 * race with what we are doing.
3988 refresh_cpu_vm_stats(cpu);
3990 return NOTIFY_OK;
3993 void __init page_alloc_init(void)
3995 hotcpu_notifier(page_alloc_cpu_notify, 0);
3999 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4000 * or min_free_kbytes changes.
4002 static void calculate_totalreserve_pages(void)
4004 struct pglist_data *pgdat;
4005 unsigned long reserve_pages = 0;
4006 enum zone_type i, j;
4008 for_each_online_pgdat(pgdat) {
4009 for (i = 0; i < MAX_NR_ZONES; i++) {
4010 struct zone *zone = pgdat->node_zones + i;
4011 unsigned long max = 0;
4013 /* Find valid and maximum lowmem_reserve in the zone */
4014 for (j = i; j < MAX_NR_ZONES; j++) {
4015 if (zone->lowmem_reserve[j] > max)
4016 max = zone->lowmem_reserve[j];
4019 /* we treat pages_high as reserved pages. */
4020 max += zone->pages_high;
4022 if (max > zone->present_pages)
4023 max = zone->present_pages;
4024 reserve_pages += max;
4027 totalreserve_pages = reserve_pages;
4031 * setup_per_zone_lowmem_reserve - called whenever
4032 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4033 * has a correct pages reserved value, so an adequate number of
4034 * pages are left in the zone after a successful __alloc_pages().
4036 static void setup_per_zone_lowmem_reserve(void)
4038 struct pglist_data *pgdat;
4039 enum zone_type j, idx;
4041 for_each_online_pgdat(pgdat) {
4042 for (j = 0; j < MAX_NR_ZONES; j++) {
4043 struct zone *zone = pgdat->node_zones + j;
4044 unsigned long present_pages = zone->present_pages;
4046 zone->lowmem_reserve[j] = 0;
4048 idx = j;
4049 while (idx) {
4050 struct zone *lower_zone;
4052 idx--;
4054 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4055 sysctl_lowmem_reserve_ratio[idx] = 1;
4057 lower_zone = pgdat->node_zones + idx;
4058 lower_zone->lowmem_reserve[j] = present_pages /
4059 sysctl_lowmem_reserve_ratio[idx];
4060 present_pages += lower_zone->present_pages;
4065 /* update totalreserve_pages */
4066 calculate_totalreserve_pages();
4070 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4072 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4073 * with respect to min_free_kbytes.
4075 void setup_per_zone_pages_min(void)
4077 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4078 unsigned long lowmem_pages = 0;
4079 struct zone *zone;
4080 unsigned long flags;
4082 /* Calculate total number of !ZONE_HIGHMEM pages */
4083 for_each_zone(zone) {
4084 if (!is_highmem(zone))
4085 lowmem_pages += zone->present_pages;
4088 for_each_zone(zone) {
4089 u64 tmp;
4091 spin_lock_irqsave(&zone->lru_lock, flags);
4092 tmp = (u64)pages_min * zone->present_pages;
4093 do_div(tmp, lowmem_pages);
4094 if (is_highmem(zone)) {
4096 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4097 * need highmem pages, so cap pages_min to a small
4098 * value here.
4100 * The (pages_high-pages_low) and (pages_low-pages_min)
4101 * deltas controls asynch page reclaim, and so should
4102 * not be capped for highmem.
4104 int min_pages;
4106 min_pages = zone->present_pages / 1024;
4107 if (min_pages < SWAP_CLUSTER_MAX)
4108 min_pages = SWAP_CLUSTER_MAX;
4109 if (min_pages > 128)
4110 min_pages = 128;
4111 zone->pages_min = min_pages;
4112 } else {
4114 * If it's a lowmem zone, reserve a number of pages
4115 * proportionate to the zone's size.
4117 zone->pages_min = tmp;
4120 zone->pages_low = zone->pages_min + (tmp >> 2);
4121 zone->pages_high = zone->pages_min + (tmp >> 1);
4122 setup_zone_migrate_reserve(zone);
4123 spin_unlock_irqrestore(&zone->lru_lock, flags);
4126 /* update totalreserve_pages */
4127 calculate_totalreserve_pages();
4131 * Initialise min_free_kbytes.
4133 * For small machines we want it small (128k min). For large machines
4134 * we want it large (64MB max). But it is not linear, because network
4135 * bandwidth does not increase linearly with machine size. We use
4137 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4138 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4140 * which yields
4142 * 16MB: 512k
4143 * 32MB: 724k
4144 * 64MB: 1024k
4145 * 128MB: 1448k
4146 * 256MB: 2048k
4147 * 512MB: 2896k
4148 * 1024MB: 4096k
4149 * 2048MB: 5792k
4150 * 4096MB: 8192k
4151 * 8192MB: 11584k
4152 * 16384MB: 16384k
4154 static int __init init_per_zone_pages_min(void)
4156 unsigned long lowmem_kbytes;
4158 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4160 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4161 if (min_free_kbytes < 128)
4162 min_free_kbytes = 128;
4163 if (min_free_kbytes > 65536)
4164 min_free_kbytes = 65536;
4165 setup_per_zone_pages_min();
4166 setup_per_zone_lowmem_reserve();
4167 return 0;
4169 module_init(init_per_zone_pages_min)
4172 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4173 * that we can call two helper functions whenever min_free_kbytes
4174 * changes.
4176 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4177 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4179 proc_dointvec(table, write, file, buffer, length, ppos);
4180 if (write)
4181 setup_per_zone_pages_min();
4182 return 0;
4185 #ifdef CONFIG_NUMA
4186 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4187 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4189 struct zone *zone;
4190 int rc;
4192 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4193 if (rc)
4194 return rc;
4196 for_each_zone(zone)
4197 zone->min_unmapped_pages = (zone->present_pages *
4198 sysctl_min_unmapped_ratio) / 100;
4199 return 0;
4202 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4203 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4205 struct zone *zone;
4206 int rc;
4208 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4209 if (rc)
4210 return rc;
4212 for_each_zone(zone)
4213 zone->min_slab_pages = (zone->present_pages *
4214 sysctl_min_slab_ratio) / 100;
4215 return 0;
4217 #endif
4220 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4221 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4222 * whenever sysctl_lowmem_reserve_ratio changes.
4224 * The reserve ratio obviously has absolutely no relation with the
4225 * pages_min watermarks. The lowmem reserve ratio can only make sense
4226 * if in function of the boot time zone sizes.
4228 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4229 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4231 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4232 setup_per_zone_lowmem_reserve();
4233 return 0;
4237 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4238 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4239 * can have before it gets flushed back to buddy allocator.
4242 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4243 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4245 struct zone *zone;
4246 unsigned int cpu;
4247 int ret;
4249 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4250 if (!write || (ret == -EINVAL))
4251 return ret;
4252 for_each_zone(zone) {
4253 for_each_online_cpu(cpu) {
4254 unsigned long high;
4255 high = zone->present_pages / percpu_pagelist_fraction;
4256 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4259 return 0;
4262 int hashdist = HASHDIST_DEFAULT;
4264 #ifdef CONFIG_NUMA
4265 static int __init set_hashdist(char *str)
4267 if (!str)
4268 return 0;
4269 hashdist = simple_strtoul(str, &str, 0);
4270 return 1;
4272 __setup("hashdist=", set_hashdist);
4273 #endif
4276 * allocate a large system hash table from bootmem
4277 * - it is assumed that the hash table must contain an exact power-of-2
4278 * quantity of entries
4279 * - limit is the number of hash buckets, not the total allocation size
4281 void *__init alloc_large_system_hash(const char *tablename,
4282 unsigned long bucketsize,
4283 unsigned long numentries,
4284 int scale,
4285 int flags,
4286 unsigned int *_hash_shift,
4287 unsigned int *_hash_mask,
4288 unsigned long limit)
4290 unsigned long long max = limit;
4291 unsigned long log2qty, size;
4292 void *table = NULL;
4294 /* allow the kernel cmdline to have a say */
4295 if (!numentries) {
4296 /* round applicable memory size up to nearest megabyte */
4297 numentries = nr_kernel_pages;
4298 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4299 numentries >>= 20 - PAGE_SHIFT;
4300 numentries <<= 20 - PAGE_SHIFT;
4302 /* limit to 1 bucket per 2^scale bytes of low memory */
4303 if (scale > PAGE_SHIFT)
4304 numentries >>= (scale - PAGE_SHIFT);
4305 else
4306 numentries <<= (PAGE_SHIFT - scale);
4308 /* Make sure we've got at least a 0-order allocation.. */
4309 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4310 numentries = PAGE_SIZE / bucketsize;
4312 numentries = roundup_pow_of_two(numentries);
4314 /* limit allocation size to 1/16 total memory by default */
4315 if (max == 0) {
4316 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4317 do_div(max, bucketsize);
4320 if (numentries > max)
4321 numentries = max;
4323 log2qty = ilog2(numentries);
4325 do {
4326 size = bucketsize << log2qty;
4327 if (flags & HASH_EARLY)
4328 table = alloc_bootmem(size);
4329 else if (hashdist)
4330 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4331 else {
4332 unsigned long order;
4333 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4335 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4337 * If bucketsize is not a power-of-two, we may free
4338 * some pages at the end of hash table.
4340 if (table) {
4341 unsigned long alloc_end = (unsigned long)table +
4342 (PAGE_SIZE << order);
4343 unsigned long used = (unsigned long)table +
4344 PAGE_ALIGN(size);
4345 split_page(virt_to_page(table), order);
4346 while (used < alloc_end) {
4347 free_page(used);
4348 used += PAGE_SIZE;
4352 } while (!table && size > PAGE_SIZE && --log2qty);
4354 if (!table)
4355 panic("Failed to allocate %s hash table\n", tablename);
4357 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4358 tablename,
4359 (1U << log2qty),
4360 ilog2(size) - PAGE_SHIFT,
4361 size);
4363 if (_hash_shift)
4364 *_hash_shift = log2qty;
4365 if (_hash_mask)
4366 *_hash_mask = (1 << log2qty) - 1;
4368 return table;
4371 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4372 struct page *pfn_to_page(unsigned long pfn)
4374 return __pfn_to_page(pfn);
4376 unsigned long page_to_pfn(struct page *page)
4378 return __page_to_pfn(page);
4380 EXPORT_SYMBOL(pfn_to_page);
4381 EXPORT_SYMBOL(page_to_pfn);
4382 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4384 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4385 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4386 unsigned long pfn)
4388 #ifdef CONFIG_SPARSEMEM
4389 return __pfn_to_section(pfn)->pageblock_flags;
4390 #else
4391 return zone->pageblock_flags;
4392 #endif /* CONFIG_SPARSEMEM */
4395 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4397 #ifdef CONFIG_SPARSEMEM
4398 pfn &= (PAGES_PER_SECTION-1);
4399 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4400 #else
4401 pfn = pfn - zone->zone_start_pfn;
4402 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4403 #endif /* CONFIG_SPARSEMEM */
4407 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4408 * @page: The page within the block of interest
4409 * @start_bitidx: The first bit of interest to retrieve
4410 * @end_bitidx: The last bit of interest
4411 * returns pageblock_bits flags
4413 unsigned long get_pageblock_flags_group(struct page *page,
4414 int start_bitidx, int end_bitidx)
4416 struct zone *zone;
4417 unsigned long *bitmap;
4418 unsigned long pfn, bitidx;
4419 unsigned long flags = 0;
4420 unsigned long value = 1;
4422 zone = page_zone(page);
4423 pfn = page_to_pfn(page);
4424 bitmap = get_pageblock_bitmap(zone, pfn);
4425 bitidx = pfn_to_bitidx(zone, pfn);
4427 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4428 if (test_bit(bitidx + start_bitidx, bitmap))
4429 flags |= value;
4431 return flags;
4435 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4436 * @page: The page within the block of interest
4437 * @start_bitidx: The first bit of interest
4438 * @end_bitidx: The last bit of interest
4439 * @flags: The flags to set
4441 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4442 int start_bitidx, int end_bitidx)
4444 struct zone *zone;
4445 unsigned long *bitmap;
4446 unsigned long pfn, bitidx;
4447 unsigned long value = 1;
4449 zone = page_zone(page);
4450 pfn = page_to_pfn(page);
4451 bitmap = get_pageblock_bitmap(zone, pfn);
4452 bitidx = pfn_to_bitidx(zone, pfn);
4454 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4455 if (flags & value)
4456 __set_bit(bitidx + start_bitidx, bitmap);
4457 else
4458 __clear_bit(bitidx + start_bitidx, bitmap);
4462 * This is designed as sub function...plz see page_isolation.c also.
4463 * set/clear page block's type to be ISOLATE.
4464 * page allocater never alloc memory from ISOLATE block.
4467 int set_migratetype_isolate(struct page *page)
4469 struct zone *zone;
4470 unsigned long flags;
4471 int ret = -EBUSY;
4473 zone = page_zone(page);
4474 spin_lock_irqsave(&zone->lock, flags);
4476 * In future, more migrate types will be able to be isolation target.
4478 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4479 goto out;
4480 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4481 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4482 ret = 0;
4483 out:
4484 spin_unlock_irqrestore(&zone->lock, flags);
4485 if (!ret)
4486 drain_all_pages();
4487 return ret;
4490 void unset_migratetype_isolate(struct page *page)
4492 struct zone *zone;
4493 unsigned long flags;
4494 zone = page_zone(page);
4495 spin_lock_irqsave(&zone->lock, flags);
4496 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4497 goto out;
4498 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4499 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4500 out:
4501 spin_unlock_irqrestore(&zone->lock, flags);
4504 #ifdef CONFIG_MEMORY_HOTREMOVE
4506 * All pages in the range must be isolated before calling this.
4508 void
4509 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4511 struct page *page;
4512 struct zone *zone;
4513 int order, i;
4514 unsigned long pfn;
4515 unsigned long flags;
4516 /* find the first valid pfn */
4517 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4518 if (pfn_valid(pfn))
4519 break;
4520 if (pfn == end_pfn)
4521 return;
4522 zone = page_zone(pfn_to_page(pfn));
4523 spin_lock_irqsave(&zone->lock, flags);
4524 pfn = start_pfn;
4525 while (pfn < end_pfn) {
4526 if (!pfn_valid(pfn)) {
4527 pfn++;
4528 continue;
4530 page = pfn_to_page(pfn);
4531 BUG_ON(page_count(page));
4532 BUG_ON(!PageBuddy(page));
4533 order = page_order(page);
4534 #ifdef CONFIG_DEBUG_VM
4535 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4536 pfn, 1 << order, end_pfn);
4537 #endif
4538 list_del(&page->lru);
4539 rmv_page_order(page);
4540 zone->free_area[order].nr_free--;
4541 __mod_zone_page_state(zone, NR_FREE_PAGES,
4542 - (1UL << order));
4543 for (i = 0; i < (1 << order); i++)
4544 SetPageReserved((page+i));
4545 pfn += (1 << order);
4547 spin_unlock_irqrestore(&zone->lock, flags);
4549 #endif