[JFFS2] Handle dirents on the flash with embedded zero bytes in names.
[linux-2.6/openmoko-kernel/knife-kernel.git] / fs / exec.c
blobc21a8cc0627709db512597ff2af82ab7c094e67d
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/signalfd.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
59 #ifdef CONFIG_KMOD
60 #include <linux/kmod.h>
61 #endif
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
67 EXPORT_SYMBOL(suid_dumpable);
68 /* The maximal length of core_pattern is also specified in sysctl.c */
70 static struct linux_binfmt *formats;
71 static DEFINE_RWLOCK(binfmt_lock);
73 int register_binfmt(struct linux_binfmt * fmt)
75 struct linux_binfmt ** tmp = &formats;
77 if (!fmt)
78 return -EINVAL;
79 if (fmt->next)
80 return -EBUSY;
81 write_lock(&binfmt_lock);
82 while (*tmp) {
83 if (fmt == *tmp) {
84 write_unlock(&binfmt_lock);
85 return -EBUSY;
87 tmp = &(*tmp)->next;
89 fmt->next = formats;
90 formats = fmt;
91 write_unlock(&binfmt_lock);
92 return 0;
95 EXPORT_SYMBOL(register_binfmt);
97 int unregister_binfmt(struct linux_binfmt * fmt)
99 struct linux_binfmt ** tmp = &formats;
101 write_lock(&binfmt_lock);
102 while (*tmp) {
103 if (fmt == *tmp) {
104 *tmp = fmt->next;
105 fmt->next = NULL;
106 write_unlock(&binfmt_lock);
107 return 0;
109 tmp = &(*tmp)->next;
111 write_unlock(&binfmt_lock);
112 return -EINVAL;
115 EXPORT_SYMBOL(unregister_binfmt);
117 static inline void put_binfmt(struct linux_binfmt * fmt)
119 module_put(fmt->module);
123 * Note that a shared library must be both readable and executable due to
124 * security reasons.
126 * Also note that we take the address to load from from the file itself.
128 asmlinkage long sys_uselib(const char __user * library)
130 struct file * file;
131 struct nameidata nd;
132 int error;
134 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
135 if (error)
136 goto out;
138 error = -EACCES;
139 if (nd.mnt->mnt_flags & MNT_NOEXEC)
140 goto exit;
141 error = -EINVAL;
142 if (!S_ISREG(nd.dentry->d_inode->i_mode))
143 goto exit;
145 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
146 if (error)
147 goto exit;
149 file = nameidata_to_filp(&nd, O_RDONLY);
150 error = PTR_ERR(file);
151 if (IS_ERR(file))
152 goto out;
154 error = -ENOEXEC;
155 if(file->f_op) {
156 struct linux_binfmt * fmt;
158 read_lock(&binfmt_lock);
159 for (fmt = formats ; fmt ; fmt = fmt->next) {
160 if (!fmt->load_shlib)
161 continue;
162 if (!try_module_get(fmt->module))
163 continue;
164 read_unlock(&binfmt_lock);
165 error = fmt->load_shlib(file);
166 read_lock(&binfmt_lock);
167 put_binfmt(fmt);
168 if (error != -ENOEXEC)
169 break;
171 read_unlock(&binfmt_lock);
173 fput(file);
174 out:
175 return error;
176 exit:
177 release_open_intent(&nd);
178 path_release(&nd);
179 goto out;
182 #ifdef CONFIG_MMU
184 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
185 int write)
187 struct page *page;
188 int ret;
190 #ifdef CONFIG_STACK_GROWSUP
191 if (write) {
192 ret = expand_stack_downwards(bprm->vma, pos);
193 if (ret < 0)
194 return NULL;
196 #endif
197 ret = get_user_pages(current, bprm->mm, pos,
198 1, write, 1, &page, NULL);
199 if (ret <= 0)
200 return NULL;
202 if (write) {
203 struct rlimit *rlim = current->signal->rlim;
204 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
207 * Limit to 1/4-th the stack size for the argv+env strings.
208 * This ensures that:
209 * - the remaining binfmt code will not run out of stack space,
210 * - the program will have a reasonable amount of stack left
211 * to work from.
213 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
214 put_page(page);
215 return NULL;
219 return page;
222 static void put_arg_page(struct page *page)
224 put_page(page);
227 static void free_arg_page(struct linux_binprm *bprm, int i)
231 static void free_arg_pages(struct linux_binprm *bprm)
235 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
236 struct page *page)
238 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
241 static int __bprm_mm_init(struct linux_binprm *bprm)
243 int err = -ENOMEM;
244 struct vm_area_struct *vma = NULL;
245 struct mm_struct *mm = bprm->mm;
247 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
248 if (!vma)
249 goto err;
251 down_write(&mm->mmap_sem);
252 vma->vm_mm = mm;
255 * Place the stack at the largest stack address the architecture
256 * supports. Later, we'll move this to an appropriate place. We don't
257 * use STACK_TOP because that can depend on attributes which aren't
258 * configured yet.
260 vma->vm_end = STACK_TOP_MAX;
261 vma->vm_start = vma->vm_end - PAGE_SIZE;
263 vma->vm_flags = VM_STACK_FLAGS;
264 vma->vm_page_prot = protection_map[vma->vm_flags & 0x7];
265 err = insert_vm_struct(mm, vma);
266 if (err) {
267 up_write(&mm->mmap_sem);
268 goto err;
271 mm->stack_vm = mm->total_vm = 1;
272 up_write(&mm->mmap_sem);
274 bprm->p = vma->vm_end - sizeof(void *);
276 return 0;
278 err:
279 if (vma) {
280 bprm->vma = NULL;
281 kmem_cache_free(vm_area_cachep, vma);
284 return err;
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
289 return len <= MAX_ARG_STRLEN;
292 #else
294 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
295 int write)
297 struct page *page;
299 page = bprm->page[pos / PAGE_SIZE];
300 if (!page && write) {
301 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
302 if (!page)
303 return NULL;
304 bprm->page[pos / PAGE_SIZE] = page;
307 return page;
310 static void put_arg_page(struct page *page)
314 static void free_arg_page(struct linux_binprm *bprm, int i)
316 if (bprm->page[i]) {
317 __free_page(bprm->page[i]);
318 bprm->page[i] = NULL;
322 static void free_arg_pages(struct linux_binprm *bprm)
324 int i;
326 for (i = 0; i < MAX_ARG_PAGES; i++)
327 free_arg_page(bprm, i);
330 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
331 struct page *page)
335 static int __bprm_mm_init(struct linux_binprm *bprm)
337 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
338 return 0;
341 static bool valid_arg_len(struct linux_binprm *bprm, long len)
343 return len <= bprm->p;
346 #endif /* CONFIG_MMU */
349 * Create a new mm_struct and populate it with a temporary stack
350 * vm_area_struct. We don't have enough context at this point to set the stack
351 * flags, permissions, and offset, so we use temporary values. We'll update
352 * them later in setup_arg_pages().
354 int bprm_mm_init(struct linux_binprm *bprm)
356 int err;
357 struct mm_struct *mm = NULL;
359 bprm->mm = mm = mm_alloc();
360 err = -ENOMEM;
361 if (!mm)
362 goto err;
364 err = init_new_context(current, mm);
365 if (err)
366 goto err;
368 err = __bprm_mm_init(bprm);
369 if (err)
370 goto err;
372 return 0;
374 err:
375 if (mm) {
376 bprm->mm = NULL;
377 mmdrop(mm);
380 return err;
384 * count() counts the number of strings in array ARGV.
386 static int count(char __user * __user * argv, int max)
388 int i = 0;
390 if (argv != NULL) {
391 for (;;) {
392 char __user * p;
394 if (get_user(p, argv))
395 return -EFAULT;
396 if (!p)
397 break;
398 argv++;
399 if(++i > max)
400 return -E2BIG;
401 cond_resched();
404 return i;
408 * 'copy_strings()' copies argument/environment strings from the old
409 * processes's memory to the new process's stack. The call to get_user_pages()
410 * ensures the destination page is created and not swapped out.
412 static int copy_strings(int argc, char __user * __user * argv,
413 struct linux_binprm *bprm)
415 struct page *kmapped_page = NULL;
416 char *kaddr = NULL;
417 unsigned long kpos = 0;
418 int ret;
420 while (argc-- > 0) {
421 char __user *str;
422 int len;
423 unsigned long pos;
425 if (get_user(str, argv+argc) ||
426 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
427 ret = -EFAULT;
428 goto out;
431 if (!valid_arg_len(bprm, len)) {
432 ret = -E2BIG;
433 goto out;
436 /* We're going to work our way backwords. */
437 pos = bprm->p;
438 str += len;
439 bprm->p -= len;
441 while (len > 0) {
442 int offset, bytes_to_copy;
444 offset = pos % PAGE_SIZE;
445 if (offset == 0)
446 offset = PAGE_SIZE;
448 bytes_to_copy = offset;
449 if (bytes_to_copy > len)
450 bytes_to_copy = len;
452 offset -= bytes_to_copy;
453 pos -= bytes_to_copy;
454 str -= bytes_to_copy;
455 len -= bytes_to_copy;
457 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
458 struct page *page;
460 page = get_arg_page(bprm, pos, 1);
461 if (!page) {
462 ret = -E2BIG;
463 goto out;
466 if (kmapped_page) {
467 flush_kernel_dcache_page(kmapped_page);
468 kunmap(kmapped_page);
469 put_arg_page(kmapped_page);
471 kmapped_page = page;
472 kaddr = kmap(kmapped_page);
473 kpos = pos & PAGE_MASK;
474 flush_arg_page(bprm, kpos, kmapped_page);
476 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
477 ret = -EFAULT;
478 goto out;
482 ret = 0;
483 out:
484 if (kmapped_page) {
485 flush_kernel_dcache_page(kmapped_page);
486 kunmap(kmapped_page);
487 put_arg_page(kmapped_page);
489 return ret;
493 * Like copy_strings, but get argv and its values from kernel memory.
495 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
497 int r;
498 mm_segment_t oldfs = get_fs();
499 set_fs(KERNEL_DS);
500 r = copy_strings(argc, (char __user * __user *)argv, bprm);
501 set_fs(oldfs);
502 return r;
504 EXPORT_SYMBOL(copy_strings_kernel);
506 #ifdef CONFIG_MMU
509 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
510 * the binfmt code determines where the new stack should reside, we shift it to
511 * its final location. The process proceeds as follows:
513 * 1) Use shift to calculate the new vma endpoints.
514 * 2) Extend vma to cover both the old and new ranges. This ensures the
515 * arguments passed to subsequent functions are consistent.
516 * 3) Move vma's page tables to the new range.
517 * 4) Free up any cleared pgd range.
518 * 5) Shrink the vma to cover only the new range.
520 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
522 struct mm_struct *mm = vma->vm_mm;
523 unsigned long old_start = vma->vm_start;
524 unsigned long old_end = vma->vm_end;
525 unsigned long length = old_end - old_start;
526 unsigned long new_start = old_start - shift;
527 unsigned long new_end = old_end - shift;
528 struct mmu_gather *tlb;
530 BUG_ON(new_start > new_end);
533 * ensure there are no vmas between where we want to go
534 * and where we are
536 if (vma != find_vma(mm, new_start))
537 return -EFAULT;
540 * cover the whole range: [new_start, old_end)
542 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
545 * move the page tables downwards, on failure we rely on
546 * process cleanup to remove whatever mess we made.
548 if (length != move_page_tables(vma, old_start,
549 vma, new_start, length))
550 return -ENOMEM;
552 lru_add_drain();
553 tlb = tlb_gather_mmu(mm, 0);
554 if (new_end > old_start) {
556 * when the old and new regions overlap clear from new_end.
558 free_pgd_range(&tlb, new_end, old_end, new_end,
559 vma->vm_next ? vma->vm_next->vm_start : 0);
560 } else {
562 * otherwise, clean from old_start; this is done to not touch
563 * the address space in [new_end, old_start) some architectures
564 * have constraints on va-space that make this illegal (IA64) -
565 * for the others its just a little faster.
567 free_pgd_range(&tlb, old_start, old_end, new_end,
568 vma->vm_next ? vma->vm_next->vm_start : 0);
570 tlb_finish_mmu(tlb, new_end, old_end);
573 * shrink the vma to just the new range.
575 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
577 return 0;
580 #define EXTRA_STACK_VM_PAGES 20 /* random */
583 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
584 * the stack is optionally relocated, and some extra space is added.
586 int setup_arg_pages(struct linux_binprm *bprm,
587 unsigned long stack_top,
588 int executable_stack)
590 unsigned long ret;
591 unsigned long stack_shift;
592 struct mm_struct *mm = current->mm;
593 struct vm_area_struct *vma = bprm->vma;
594 struct vm_area_struct *prev = NULL;
595 unsigned long vm_flags;
596 unsigned long stack_base;
598 #ifdef CONFIG_STACK_GROWSUP
599 /* Limit stack size to 1GB */
600 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
601 if (stack_base > (1 << 30))
602 stack_base = 1 << 30;
604 /* Make sure we didn't let the argument array grow too large. */
605 if (vma->vm_end - vma->vm_start > stack_base)
606 return -ENOMEM;
608 stack_base = PAGE_ALIGN(stack_top - stack_base);
610 stack_shift = vma->vm_start - stack_base;
611 mm->arg_start = bprm->p - stack_shift;
612 bprm->p = vma->vm_end - stack_shift;
613 #else
614 stack_top = arch_align_stack(stack_top);
615 stack_top = PAGE_ALIGN(stack_top);
616 stack_shift = vma->vm_end - stack_top;
618 bprm->p -= stack_shift;
619 mm->arg_start = bprm->p;
620 #endif
622 if (bprm->loader)
623 bprm->loader -= stack_shift;
624 bprm->exec -= stack_shift;
626 down_write(&mm->mmap_sem);
627 vm_flags = vma->vm_flags;
630 * Adjust stack execute permissions; explicitly enable for
631 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
632 * (arch default) otherwise.
634 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
635 vm_flags |= VM_EXEC;
636 else if (executable_stack == EXSTACK_DISABLE_X)
637 vm_flags &= ~VM_EXEC;
638 vm_flags |= mm->def_flags;
640 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
641 vm_flags);
642 if (ret)
643 goto out_unlock;
644 BUG_ON(prev != vma);
646 /* Move stack pages down in memory. */
647 if (stack_shift) {
648 ret = shift_arg_pages(vma, stack_shift);
649 if (ret) {
650 up_write(&mm->mmap_sem);
651 return ret;
655 #ifdef CONFIG_STACK_GROWSUP
656 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
657 #else
658 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
659 #endif
660 ret = expand_stack(vma, stack_base);
661 if (ret)
662 ret = -EFAULT;
664 out_unlock:
665 up_write(&mm->mmap_sem);
666 return 0;
668 EXPORT_SYMBOL(setup_arg_pages);
670 #endif /* CONFIG_MMU */
672 struct file *open_exec(const char *name)
674 struct nameidata nd;
675 int err;
676 struct file *file;
678 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
679 file = ERR_PTR(err);
681 if (!err) {
682 struct inode *inode = nd.dentry->d_inode;
683 file = ERR_PTR(-EACCES);
684 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
685 S_ISREG(inode->i_mode)) {
686 int err = vfs_permission(&nd, MAY_EXEC);
687 file = ERR_PTR(err);
688 if (!err) {
689 file = nameidata_to_filp(&nd, O_RDONLY);
690 if (!IS_ERR(file)) {
691 err = deny_write_access(file);
692 if (err) {
693 fput(file);
694 file = ERR_PTR(err);
697 out:
698 return file;
701 release_open_intent(&nd);
702 path_release(&nd);
704 goto out;
707 EXPORT_SYMBOL(open_exec);
709 int kernel_read(struct file *file, unsigned long offset,
710 char *addr, unsigned long count)
712 mm_segment_t old_fs;
713 loff_t pos = offset;
714 int result;
716 old_fs = get_fs();
717 set_fs(get_ds());
718 /* The cast to a user pointer is valid due to the set_fs() */
719 result = vfs_read(file, (void __user *)addr, count, &pos);
720 set_fs(old_fs);
721 return result;
724 EXPORT_SYMBOL(kernel_read);
726 static int exec_mmap(struct mm_struct *mm)
728 struct task_struct *tsk;
729 struct mm_struct * old_mm, *active_mm;
731 /* Notify parent that we're no longer interested in the old VM */
732 tsk = current;
733 old_mm = current->mm;
734 mm_release(tsk, old_mm);
736 if (old_mm) {
738 * Make sure that if there is a core dump in progress
739 * for the old mm, we get out and die instead of going
740 * through with the exec. We must hold mmap_sem around
741 * checking core_waiters and changing tsk->mm. The
742 * core-inducing thread will increment core_waiters for
743 * each thread whose ->mm == old_mm.
745 down_read(&old_mm->mmap_sem);
746 if (unlikely(old_mm->core_waiters)) {
747 up_read(&old_mm->mmap_sem);
748 return -EINTR;
751 task_lock(tsk);
752 active_mm = tsk->active_mm;
753 tsk->mm = mm;
754 tsk->active_mm = mm;
755 activate_mm(active_mm, mm);
756 task_unlock(tsk);
757 arch_pick_mmap_layout(mm);
758 if (old_mm) {
759 up_read(&old_mm->mmap_sem);
760 BUG_ON(active_mm != old_mm);
761 mmput(old_mm);
762 return 0;
764 mmdrop(active_mm);
765 return 0;
769 * This function makes sure the current process has its own signal table,
770 * so that flush_signal_handlers can later reset the handlers without
771 * disturbing other processes. (Other processes might share the signal
772 * table via the CLONE_SIGHAND option to clone().)
774 static int de_thread(struct task_struct *tsk)
776 struct signal_struct *sig = tsk->signal;
777 struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
778 spinlock_t *lock = &oldsighand->siglock;
779 struct task_struct *leader = NULL;
780 int count;
783 * If we don't share sighandlers, then we aren't sharing anything
784 * and we can just re-use it all.
786 if (atomic_read(&oldsighand->count) <= 1) {
787 signalfd_detach(tsk);
788 exit_itimers(sig);
789 return 0;
792 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
793 if (!newsighand)
794 return -ENOMEM;
796 if (thread_group_empty(tsk))
797 goto no_thread_group;
800 * Kill all other threads in the thread group.
801 * We must hold tasklist_lock to call zap_other_threads.
803 read_lock(&tasklist_lock);
804 spin_lock_irq(lock);
805 if (sig->flags & SIGNAL_GROUP_EXIT) {
807 * Another group action in progress, just
808 * return so that the signal is processed.
810 spin_unlock_irq(lock);
811 read_unlock(&tasklist_lock);
812 kmem_cache_free(sighand_cachep, newsighand);
813 return -EAGAIN;
817 * child_reaper ignores SIGKILL, change it now.
818 * Reparenting needs write_lock on tasklist_lock,
819 * so it is safe to do it under read_lock.
821 if (unlikely(tsk->group_leader == child_reaper(tsk)))
822 tsk->nsproxy->pid_ns->child_reaper = tsk;
824 zap_other_threads(tsk);
825 read_unlock(&tasklist_lock);
828 * Account for the thread group leader hanging around:
830 count = 1;
831 if (!thread_group_leader(tsk)) {
832 count = 2;
834 * The SIGALRM timer survives the exec, but needs to point
835 * at us as the new group leader now. We have a race with
836 * a timer firing now getting the old leader, so we need to
837 * synchronize with any firing (by calling del_timer_sync)
838 * before we can safely let the old group leader die.
840 sig->tsk = tsk;
841 spin_unlock_irq(lock);
842 if (hrtimer_cancel(&sig->real_timer))
843 hrtimer_restart(&sig->real_timer);
844 spin_lock_irq(lock);
846 while (atomic_read(&sig->count) > count) {
847 sig->group_exit_task = tsk;
848 sig->notify_count = count;
849 __set_current_state(TASK_UNINTERRUPTIBLE);
850 spin_unlock_irq(lock);
851 schedule();
852 spin_lock_irq(lock);
854 sig->group_exit_task = NULL;
855 sig->notify_count = 0;
856 spin_unlock_irq(lock);
859 * At this point all other threads have exited, all we have to
860 * do is to wait for the thread group leader to become inactive,
861 * and to assume its PID:
863 if (!thread_group_leader(tsk)) {
865 * Wait for the thread group leader to be a zombie.
866 * It should already be zombie at this point, most
867 * of the time.
869 leader = tsk->group_leader;
870 while (leader->exit_state != EXIT_ZOMBIE)
871 yield();
874 * The only record we have of the real-time age of a
875 * process, regardless of execs it's done, is start_time.
876 * All the past CPU time is accumulated in signal_struct
877 * from sister threads now dead. But in this non-leader
878 * exec, nothing survives from the original leader thread,
879 * whose birth marks the true age of this process now.
880 * When we take on its identity by switching to its PID, we
881 * also take its birthdate (always earlier than our own).
883 tsk->start_time = leader->start_time;
885 write_lock_irq(&tasklist_lock);
887 BUG_ON(leader->tgid != tsk->tgid);
888 BUG_ON(tsk->pid == tsk->tgid);
890 * An exec() starts a new thread group with the
891 * TGID of the previous thread group. Rehash the
892 * two threads with a switched PID, and release
893 * the former thread group leader:
896 /* Become a process group leader with the old leader's pid.
897 * The old leader becomes a thread of the this thread group.
898 * Note: The old leader also uses this pid until release_task
899 * is called. Odd but simple and correct.
901 detach_pid(tsk, PIDTYPE_PID);
902 tsk->pid = leader->pid;
903 attach_pid(tsk, PIDTYPE_PID, find_pid(tsk->pid));
904 transfer_pid(leader, tsk, PIDTYPE_PGID);
905 transfer_pid(leader, tsk, PIDTYPE_SID);
906 list_replace_rcu(&leader->tasks, &tsk->tasks);
908 tsk->group_leader = tsk;
909 leader->group_leader = tsk;
911 tsk->exit_signal = SIGCHLD;
913 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
914 leader->exit_state = EXIT_DEAD;
916 write_unlock_irq(&tasklist_lock);
920 * There may be one thread left which is just exiting,
921 * but it's safe to stop telling the group to kill themselves.
923 sig->flags = 0;
925 no_thread_group:
926 signalfd_detach(tsk);
927 exit_itimers(sig);
928 if (leader)
929 release_task(leader);
931 if (atomic_read(&oldsighand->count) == 1) {
933 * Now that we nuked the rest of the thread group,
934 * it turns out we are not sharing sighand any more either.
935 * So we can just keep it.
937 kmem_cache_free(sighand_cachep, newsighand);
938 } else {
940 * Move our state over to newsighand and switch it in.
942 atomic_set(&newsighand->count, 1);
943 memcpy(newsighand->action, oldsighand->action,
944 sizeof(newsighand->action));
946 write_lock_irq(&tasklist_lock);
947 spin_lock(&oldsighand->siglock);
948 spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING);
950 rcu_assign_pointer(tsk->sighand, newsighand);
951 recalc_sigpending();
953 spin_unlock(&newsighand->siglock);
954 spin_unlock(&oldsighand->siglock);
955 write_unlock_irq(&tasklist_lock);
957 __cleanup_sighand(oldsighand);
960 BUG_ON(!thread_group_leader(tsk));
961 return 0;
965 * These functions flushes out all traces of the currently running executable
966 * so that a new one can be started
969 static void flush_old_files(struct files_struct * files)
971 long j = -1;
972 struct fdtable *fdt;
974 spin_lock(&files->file_lock);
975 for (;;) {
976 unsigned long set, i;
978 j++;
979 i = j * __NFDBITS;
980 fdt = files_fdtable(files);
981 if (i >= fdt->max_fds)
982 break;
983 set = fdt->close_on_exec->fds_bits[j];
984 if (!set)
985 continue;
986 fdt->close_on_exec->fds_bits[j] = 0;
987 spin_unlock(&files->file_lock);
988 for ( ; set ; i++,set >>= 1) {
989 if (set & 1) {
990 sys_close(i);
993 spin_lock(&files->file_lock);
996 spin_unlock(&files->file_lock);
999 void get_task_comm(char *buf, struct task_struct *tsk)
1001 /* buf must be at least sizeof(tsk->comm) in size */
1002 task_lock(tsk);
1003 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1004 task_unlock(tsk);
1007 void set_task_comm(struct task_struct *tsk, char *buf)
1009 task_lock(tsk);
1010 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1011 task_unlock(tsk);
1014 int flush_old_exec(struct linux_binprm * bprm)
1016 char * name;
1017 int i, ch, retval;
1018 struct files_struct *files;
1019 char tcomm[sizeof(current->comm)];
1022 * Make sure we have a private signal table and that
1023 * we are unassociated from the previous thread group.
1025 retval = de_thread(current);
1026 if (retval)
1027 goto out;
1030 * Make sure we have private file handles. Ask the
1031 * fork helper to do the work for us and the exit
1032 * helper to do the cleanup of the old one.
1034 files = current->files; /* refcounted so safe to hold */
1035 retval = unshare_files();
1036 if (retval)
1037 goto out;
1039 * Release all of the old mmap stuff
1041 retval = exec_mmap(bprm->mm);
1042 if (retval)
1043 goto mmap_failed;
1045 bprm->mm = NULL; /* We're using it now */
1047 /* This is the point of no return */
1048 put_files_struct(files);
1050 current->sas_ss_sp = current->sas_ss_size = 0;
1052 if (current->euid == current->uid && current->egid == current->gid)
1053 set_dumpable(current->mm, 1);
1054 else
1055 set_dumpable(current->mm, suid_dumpable);
1057 name = bprm->filename;
1059 /* Copies the binary name from after last slash */
1060 for (i=0; (ch = *(name++)) != '\0';) {
1061 if (ch == '/')
1062 i = 0; /* overwrite what we wrote */
1063 else
1064 if (i < (sizeof(tcomm) - 1))
1065 tcomm[i++] = ch;
1067 tcomm[i] = '\0';
1068 set_task_comm(current, tcomm);
1070 current->flags &= ~PF_RANDOMIZE;
1071 flush_thread();
1073 /* Set the new mm task size. We have to do that late because it may
1074 * depend on TIF_32BIT which is only updated in flush_thread() on
1075 * some architectures like powerpc
1077 current->mm->task_size = TASK_SIZE;
1079 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1080 suid_keys(current);
1081 set_dumpable(current->mm, suid_dumpable);
1082 current->pdeath_signal = 0;
1083 } else if (file_permission(bprm->file, MAY_READ) ||
1084 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1085 suid_keys(current);
1086 set_dumpable(current->mm, suid_dumpable);
1089 /* An exec changes our domain. We are no longer part of the thread
1090 group */
1092 current->self_exec_id++;
1094 flush_signal_handlers(current, 0);
1095 flush_old_files(current->files);
1097 return 0;
1099 mmap_failed:
1100 reset_files_struct(current, files);
1101 out:
1102 return retval;
1105 EXPORT_SYMBOL(flush_old_exec);
1108 * Fill the binprm structure from the inode.
1109 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1111 int prepare_binprm(struct linux_binprm *bprm)
1113 int mode;
1114 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1115 int retval;
1117 mode = inode->i_mode;
1118 if (bprm->file->f_op == NULL)
1119 return -EACCES;
1121 bprm->e_uid = current->euid;
1122 bprm->e_gid = current->egid;
1124 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1125 /* Set-uid? */
1126 if (mode & S_ISUID) {
1127 current->personality &= ~PER_CLEAR_ON_SETID;
1128 bprm->e_uid = inode->i_uid;
1131 /* Set-gid? */
1133 * If setgid is set but no group execute bit then this
1134 * is a candidate for mandatory locking, not a setgid
1135 * executable.
1137 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1138 current->personality &= ~PER_CLEAR_ON_SETID;
1139 bprm->e_gid = inode->i_gid;
1143 /* fill in binprm security blob */
1144 retval = security_bprm_set(bprm);
1145 if (retval)
1146 return retval;
1148 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1149 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1152 EXPORT_SYMBOL(prepare_binprm);
1154 static int unsafe_exec(struct task_struct *p)
1156 int unsafe = 0;
1157 if (p->ptrace & PT_PTRACED) {
1158 if (p->ptrace & PT_PTRACE_CAP)
1159 unsafe |= LSM_UNSAFE_PTRACE_CAP;
1160 else
1161 unsafe |= LSM_UNSAFE_PTRACE;
1163 if (atomic_read(&p->fs->count) > 1 ||
1164 atomic_read(&p->files->count) > 1 ||
1165 atomic_read(&p->sighand->count) > 1)
1166 unsafe |= LSM_UNSAFE_SHARE;
1168 return unsafe;
1171 void compute_creds(struct linux_binprm *bprm)
1173 int unsafe;
1175 if (bprm->e_uid != current->uid) {
1176 suid_keys(current);
1177 current->pdeath_signal = 0;
1179 exec_keys(current);
1181 task_lock(current);
1182 unsafe = unsafe_exec(current);
1183 security_bprm_apply_creds(bprm, unsafe);
1184 task_unlock(current);
1185 security_bprm_post_apply_creds(bprm);
1187 EXPORT_SYMBOL(compute_creds);
1190 * Arguments are '\0' separated strings found at the location bprm->p
1191 * points to; chop off the first by relocating brpm->p to right after
1192 * the first '\0' encountered.
1194 int remove_arg_zero(struct linux_binprm *bprm)
1196 int ret = 0;
1197 unsigned long offset;
1198 char *kaddr;
1199 struct page *page;
1201 if (!bprm->argc)
1202 return 0;
1204 do {
1205 offset = bprm->p & ~PAGE_MASK;
1206 page = get_arg_page(bprm, bprm->p, 0);
1207 if (!page) {
1208 ret = -EFAULT;
1209 goto out;
1211 kaddr = kmap_atomic(page, KM_USER0);
1213 for (; offset < PAGE_SIZE && kaddr[offset];
1214 offset++, bprm->p++)
1217 kunmap_atomic(kaddr, KM_USER0);
1218 put_arg_page(page);
1220 if (offset == PAGE_SIZE)
1221 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1222 } while (offset == PAGE_SIZE);
1224 bprm->p++;
1225 bprm->argc--;
1226 ret = 0;
1228 out:
1229 return ret;
1231 EXPORT_SYMBOL(remove_arg_zero);
1234 * cycle the list of binary formats handler, until one recognizes the image
1236 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1238 int try,retval;
1239 struct linux_binfmt *fmt;
1240 #ifdef __alpha__
1241 /* handle /sbin/loader.. */
1243 struct exec * eh = (struct exec *) bprm->buf;
1245 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1246 (eh->fh.f_flags & 0x3000) == 0x3000)
1248 struct file * file;
1249 unsigned long loader;
1251 allow_write_access(bprm->file);
1252 fput(bprm->file);
1253 bprm->file = NULL;
1255 loader = bprm->vma->vm_end - sizeof(void *);
1257 file = open_exec("/sbin/loader");
1258 retval = PTR_ERR(file);
1259 if (IS_ERR(file))
1260 return retval;
1262 /* Remember if the application is TASO. */
1263 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1265 bprm->file = file;
1266 bprm->loader = loader;
1267 retval = prepare_binprm(bprm);
1268 if (retval<0)
1269 return retval;
1270 /* should call search_binary_handler recursively here,
1271 but it does not matter */
1274 #endif
1275 retval = security_bprm_check(bprm);
1276 if (retval)
1277 return retval;
1279 /* kernel module loader fixup */
1280 /* so we don't try to load run modprobe in kernel space. */
1281 set_fs(USER_DS);
1283 retval = audit_bprm(bprm);
1284 if (retval)
1285 return retval;
1287 retval = -ENOENT;
1288 for (try=0; try<2; try++) {
1289 read_lock(&binfmt_lock);
1290 for (fmt = formats ; fmt ; fmt = fmt->next) {
1291 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1292 if (!fn)
1293 continue;
1294 if (!try_module_get(fmt->module))
1295 continue;
1296 read_unlock(&binfmt_lock);
1297 retval = fn(bprm, regs);
1298 if (retval >= 0) {
1299 put_binfmt(fmt);
1300 allow_write_access(bprm->file);
1301 if (bprm->file)
1302 fput(bprm->file);
1303 bprm->file = NULL;
1304 current->did_exec = 1;
1305 proc_exec_connector(current);
1306 return retval;
1308 read_lock(&binfmt_lock);
1309 put_binfmt(fmt);
1310 if (retval != -ENOEXEC || bprm->mm == NULL)
1311 break;
1312 if (!bprm->file) {
1313 read_unlock(&binfmt_lock);
1314 return retval;
1317 read_unlock(&binfmt_lock);
1318 if (retval != -ENOEXEC || bprm->mm == NULL) {
1319 break;
1320 #ifdef CONFIG_KMOD
1321 }else{
1322 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1323 if (printable(bprm->buf[0]) &&
1324 printable(bprm->buf[1]) &&
1325 printable(bprm->buf[2]) &&
1326 printable(bprm->buf[3]))
1327 break; /* -ENOEXEC */
1328 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1329 #endif
1332 return retval;
1335 EXPORT_SYMBOL(search_binary_handler);
1338 * sys_execve() executes a new program.
1340 int do_execve(char * filename,
1341 char __user *__user *argv,
1342 char __user *__user *envp,
1343 struct pt_regs * regs)
1345 struct linux_binprm *bprm;
1346 struct file *file;
1347 unsigned long env_p;
1348 int retval;
1350 retval = -ENOMEM;
1351 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1352 if (!bprm)
1353 goto out_ret;
1355 file = open_exec(filename);
1356 retval = PTR_ERR(file);
1357 if (IS_ERR(file))
1358 goto out_kfree;
1360 sched_exec();
1362 bprm->file = file;
1363 bprm->filename = filename;
1364 bprm->interp = filename;
1366 retval = bprm_mm_init(bprm);
1367 if (retval)
1368 goto out_file;
1370 bprm->argc = count(argv, MAX_ARG_STRINGS);
1371 if ((retval = bprm->argc) < 0)
1372 goto out_mm;
1374 bprm->envc = count(envp, MAX_ARG_STRINGS);
1375 if ((retval = bprm->envc) < 0)
1376 goto out_mm;
1378 retval = security_bprm_alloc(bprm);
1379 if (retval)
1380 goto out;
1382 retval = prepare_binprm(bprm);
1383 if (retval < 0)
1384 goto out;
1386 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1387 if (retval < 0)
1388 goto out;
1390 bprm->exec = bprm->p;
1391 retval = copy_strings(bprm->envc, envp, bprm);
1392 if (retval < 0)
1393 goto out;
1395 env_p = bprm->p;
1396 retval = copy_strings(bprm->argc, argv, bprm);
1397 if (retval < 0)
1398 goto out;
1399 bprm->argv_len = env_p - bprm->p;
1401 retval = search_binary_handler(bprm,regs);
1402 if (retval >= 0) {
1403 /* execve success */
1404 free_arg_pages(bprm);
1405 security_bprm_free(bprm);
1406 acct_update_integrals(current);
1407 kfree(bprm);
1408 return retval;
1411 out:
1412 free_arg_pages(bprm);
1413 if (bprm->security)
1414 security_bprm_free(bprm);
1416 out_mm:
1417 if (bprm->mm)
1418 mmput (bprm->mm);
1420 out_file:
1421 if (bprm->file) {
1422 allow_write_access(bprm->file);
1423 fput(bprm->file);
1425 out_kfree:
1426 kfree(bprm);
1428 out_ret:
1429 return retval;
1432 int set_binfmt(struct linux_binfmt *new)
1434 struct linux_binfmt *old = current->binfmt;
1436 if (new) {
1437 if (!try_module_get(new->module))
1438 return -1;
1440 current->binfmt = new;
1441 if (old)
1442 module_put(old->module);
1443 return 0;
1446 EXPORT_SYMBOL(set_binfmt);
1448 /* format_corename will inspect the pattern parameter, and output a
1449 * name into corename, which must have space for at least
1450 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1452 static int format_corename(char *corename, const char *pattern, long signr)
1454 const char *pat_ptr = pattern;
1455 char *out_ptr = corename;
1456 char *const out_end = corename + CORENAME_MAX_SIZE;
1457 int rc;
1458 int pid_in_pattern = 0;
1459 int ispipe = 0;
1461 if (*pattern == '|')
1462 ispipe = 1;
1464 /* Repeat as long as we have more pattern to process and more output
1465 space */
1466 while (*pat_ptr) {
1467 if (*pat_ptr != '%') {
1468 if (out_ptr == out_end)
1469 goto out;
1470 *out_ptr++ = *pat_ptr++;
1471 } else {
1472 switch (*++pat_ptr) {
1473 case 0:
1474 goto out;
1475 /* Double percent, output one percent */
1476 case '%':
1477 if (out_ptr == out_end)
1478 goto out;
1479 *out_ptr++ = '%';
1480 break;
1481 /* pid */
1482 case 'p':
1483 pid_in_pattern = 1;
1484 rc = snprintf(out_ptr, out_end - out_ptr,
1485 "%d", current->tgid);
1486 if (rc > out_end - out_ptr)
1487 goto out;
1488 out_ptr += rc;
1489 break;
1490 /* uid */
1491 case 'u':
1492 rc = snprintf(out_ptr, out_end - out_ptr,
1493 "%d", current->uid);
1494 if (rc > out_end - out_ptr)
1495 goto out;
1496 out_ptr += rc;
1497 break;
1498 /* gid */
1499 case 'g':
1500 rc = snprintf(out_ptr, out_end - out_ptr,
1501 "%d", current->gid);
1502 if (rc > out_end - out_ptr)
1503 goto out;
1504 out_ptr += rc;
1505 break;
1506 /* signal that caused the coredump */
1507 case 's':
1508 rc = snprintf(out_ptr, out_end - out_ptr,
1509 "%ld", signr);
1510 if (rc > out_end - out_ptr)
1511 goto out;
1512 out_ptr += rc;
1513 break;
1514 /* UNIX time of coredump */
1515 case 't': {
1516 struct timeval tv;
1517 do_gettimeofday(&tv);
1518 rc = snprintf(out_ptr, out_end - out_ptr,
1519 "%lu", tv.tv_sec);
1520 if (rc > out_end - out_ptr)
1521 goto out;
1522 out_ptr += rc;
1523 break;
1525 /* hostname */
1526 case 'h':
1527 down_read(&uts_sem);
1528 rc = snprintf(out_ptr, out_end - out_ptr,
1529 "%s", utsname()->nodename);
1530 up_read(&uts_sem);
1531 if (rc > out_end - out_ptr)
1532 goto out;
1533 out_ptr += rc;
1534 break;
1535 /* executable */
1536 case 'e':
1537 rc = snprintf(out_ptr, out_end - out_ptr,
1538 "%s", current->comm);
1539 if (rc > out_end - out_ptr)
1540 goto out;
1541 out_ptr += rc;
1542 break;
1543 default:
1544 break;
1546 ++pat_ptr;
1549 /* Backward compatibility with core_uses_pid:
1551 * If core_pattern does not include a %p (as is the default)
1552 * and core_uses_pid is set, then .%pid will be appended to
1553 * the filename. Do not do this for piped commands. */
1554 if (!ispipe && !pid_in_pattern
1555 && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1556 rc = snprintf(out_ptr, out_end - out_ptr,
1557 ".%d", current->tgid);
1558 if (rc > out_end - out_ptr)
1559 goto out;
1560 out_ptr += rc;
1562 out:
1563 *out_ptr = 0;
1564 return ispipe;
1567 static void zap_process(struct task_struct *start)
1569 struct task_struct *t;
1571 start->signal->flags = SIGNAL_GROUP_EXIT;
1572 start->signal->group_stop_count = 0;
1574 t = start;
1575 do {
1576 if (t != current && t->mm) {
1577 t->mm->core_waiters++;
1578 sigaddset(&t->pending.signal, SIGKILL);
1579 signal_wake_up(t, 1);
1581 } while ((t = next_thread(t)) != start);
1584 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1585 int exit_code)
1587 struct task_struct *g, *p;
1588 unsigned long flags;
1589 int err = -EAGAIN;
1591 spin_lock_irq(&tsk->sighand->siglock);
1592 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1593 tsk->signal->group_exit_code = exit_code;
1594 zap_process(tsk);
1595 err = 0;
1597 spin_unlock_irq(&tsk->sighand->siglock);
1598 if (err)
1599 return err;
1601 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1602 goto done;
1604 rcu_read_lock();
1605 for_each_process(g) {
1606 if (g == tsk->group_leader)
1607 continue;
1609 p = g;
1610 do {
1611 if (p->mm) {
1612 if (p->mm == mm) {
1614 * p->sighand can't disappear, but
1615 * may be changed by de_thread()
1617 lock_task_sighand(p, &flags);
1618 zap_process(p);
1619 unlock_task_sighand(p, &flags);
1621 break;
1623 } while ((p = next_thread(p)) != g);
1625 rcu_read_unlock();
1626 done:
1627 return mm->core_waiters;
1630 static int coredump_wait(int exit_code)
1632 struct task_struct *tsk = current;
1633 struct mm_struct *mm = tsk->mm;
1634 struct completion startup_done;
1635 struct completion *vfork_done;
1636 int core_waiters;
1638 init_completion(&mm->core_done);
1639 init_completion(&startup_done);
1640 mm->core_startup_done = &startup_done;
1642 core_waiters = zap_threads(tsk, mm, exit_code);
1643 up_write(&mm->mmap_sem);
1645 if (unlikely(core_waiters < 0))
1646 goto fail;
1649 * Make sure nobody is waiting for us to release the VM,
1650 * otherwise we can deadlock when we wait on each other
1652 vfork_done = tsk->vfork_done;
1653 if (vfork_done) {
1654 tsk->vfork_done = NULL;
1655 complete(vfork_done);
1658 if (core_waiters)
1659 wait_for_completion(&startup_done);
1660 fail:
1661 BUG_ON(mm->core_waiters);
1662 return core_waiters;
1666 * set_dumpable converts traditional three-value dumpable to two flags and
1667 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1668 * these bits are not changed atomically. So get_dumpable can observe the
1669 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1670 * return either old dumpable or new one by paying attention to the order of
1671 * modifying the bits.
1673 * dumpable | mm->flags (binary)
1674 * old new | initial interim final
1675 * ---------+-----------------------
1676 * 0 1 | 00 01 01
1677 * 0 2 | 00 10(*) 11
1678 * 1 0 | 01 00 00
1679 * 1 2 | 01 11 11
1680 * 2 0 | 11 10(*) 00
1681 * 2 1 | 11 11 01
1683 * (*) get_dumpable regards interim value of 10 as 11.
1685 void set_dumpable(struct mm_struct *mm, int value)
1687 switch (value) {
1688 case 0:
1689 clear_bit(MMF_DUMPABLE, &mm->flags);
1690 smp_wmb();
1691 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1692 break;
1693 case 1:
1694 set_bit(MMF_DUMPABLE, &mm->flags);
1695 smp_wmb();
1696 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1697 break;
1698 case 2:
1699 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1700 smp_wmb();
1701 set_bit(MMF_DUMPABLE, &mm->flags);
1702 break;
1705 EXPORT_SYMBOL_GPL(set_dumpable);
1707 int get_dumpable(struct mm_struct *mm)
1709 int ret;
1711 ret = mm->flags & 0x3;
1712 return (ret >= 2) ? 2 : ret;
1715 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1717 char corename[CORENAME_MAX_SIZE + 1];
1718 struct mm_struct *mm = current->mm;
1719 struct linux_binfmt * binfmt;
1720 struct inode * inode;
1721 struct file * file;
1722 int retval = 0;
1723 int fsuid = current->fsuid;
1724 int flag = 0;
1725 int ispipe = 0;
1727 audit_core_dumps(signr);
1729 binfmt = current->binfmt;
1730 if (!binfmt || !binfmt->core_dump)
1731 goto fail;
1732 down_write(&mm->mmap_sem);
1733 if (!get_dumpable(mm)) {
1734 up_write(&mm->mmap_sem);
1735 goto fail;
1739 * We cannot trust fsuid as being the "true" uid of the
1740 * process nor do we know its entire history. We only know it
1741 * was tainted so we dump it as root in mode 2.
1743 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1744 flag = O_EXCL; /* Stop rewrite attacks */
1745 current->fsuid = 0; /* Dump root private */
1747 set_dumpable(mm, 0);
1749 retval = coredump_wait(exit_code);
1750 if (retval < 0)
1751 goto fail;
1754 * Clear any false indication of pending signals that might
1755 * be seen by the filesystem code called to write the core file.
1757 clear_thread_flag(TIF_SIGPENDING);
1759 if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1760 goto fail_unlock;
1763 * lock_kernel() because format_corename() is controlled by sysctl, which
1764 * uses lock_kernel()
1766 lock_kernel();
1767 ispipe = format_corename(corename, core_pattern, signr);
1768 unlock_kernel();
1769 if (ispipe) {
1770 /* SIGPIPE can happen, but it's just never processed */
1771 if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) {
1772 printk(KERN_INFO "Core dump to %s pipe failed\n",
1773 corename);
1774 goto fail_unlock;
1776 } else
1777 file = filp_open(corename,
1778 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1779 0600);
1780 if (IS_ERR(file))
1781 goto fail_unlock;
1782 inode = file->f_path.dentry->d_inode;
1783 if (inode->i_nlink > 1)
1784 goto close_fail; /* multiple links - don't dump */
1785 if (!ispipe && d_unhashed(file->f_path.dentry))
1786 goto close_fail;
1788 /* AK: actually i see no reason to not allow this for named pipes etc.,
1789 but keep the previous behaviour for now. */
1790 if (!ispipe && !S_ISREG(inode->i_mode))
1791 goto close_fail;
1792 if (!file->f_op)
1793 goto close_fail;
1794 if (!file->f_op->write)
1795 goto close_fail;
1796 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1797 goto close_fail;
1799 retval = binfmt->core_dump(signr, regs, file);
1801 if (retval)
1802 current->signal->group_exit_code |= 0x80;
1803 close_fail:
1804 filp_close(file, NULL);
1805 fail_unlock:
1806 current->fsuid = fsuid;
1807 complete_all(&mm->core_done);
1808 fail:
1809 return retval;