4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/signalfd.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
60 #include <linux/kmod.h>
64 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
65 int suid_dumpable
= 0;
67 EXPORT_SYMBOL(suid_dumpable
);
68 /* The maximal length of core_pattern is also specified in sysctl.c */
70 static struct linux_binfmt
*formats
;
71 static DEFINE_RWLOCK(binfmt_lock
);
73 int register_binfmt(struct linux_binfmt
* fmt
)
75 struct linux_binfmt
** tmp
= &formats
;
81 write_lock(&binfmt_lock
);
84 write_unlock(&binfmt_lock
);
91 write_unlock(&binfmt_lock
);
95 EXPORT_SYMBOL(register_binfmt
);
97 int unregister_binfmt(struct linux_binfmt
* fmt
)
99 struct linux_binfmt
** tmp
= &formats
;
101 write_lock(&binfmt_lock
);
106 write_unlock(&binfmt_lock
);
111 write_unlock(&binfmt_lock
);
115 EXPORT_SYMBOL(unregister_binfmt
);
117 static inline void put_binfmt(struct linux_binfmt
* fmt
)
119 module_put(fmt
->module
);
123 * Note that a shared library must be both readable and executable due to
126 * Also note that we take the address to load from from the file itself.
128 asmlinkage
long sys_uselib(const char __user
* library
)
134 error
= __user_path_lookup_open(library
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
139 if (nd
.mnt
->mnt_flags
& MNT_NOEXEC
)
142 if (!S_ISREG(nd
.dentry
->d_inode
->i_mode
))
145 error
= vfs_permission(&nd
, MAY_READ
| MAY_EXEC
);
149 file
= nameidata_to_filp(&nd
, O_RDONLY
);
150 error
= PTR_ERR(file
);
156 struct linux_binfmt
* fmt
;
158 read_lock(&binfmt_lock
);
159 for (fmt
= formats
; fmt
; fmt
= fmt
->next
) {
160 if (!fmt
->load_shlib
)
162 if (!try_module_get(fmt
->module
))
164 read_unlock(&binfmt_lock
);
165 error
= fmt
->load_shlib(file
);
166 read_lock(&binfmt_lock
);
168 if (error
!= -ENOEXEC
)
171 read_unlock(&binfmt_lock
);
177 release_open_intent(&nd
);
184 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
190 #ifdef CONFIG_STACK_GROWSUP
192 ret
= expand_stack_downwards(bprm
->vma
, pos
);
197 ret
= get_user_pages(current
, bprm
->mm
, pos
,
198 1, write
, 1, &page
, NULL
);
203 struct rlimit
*rlim
= current
->signal
->rlim
;
204 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
207 * Limit to 1/4-th the stack size for the argv+env strings.
209 * - the remaining binfmt code will not run out of stack space,
210 * - the program will have a reasonable amount of stack left
213 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
/ 4) {
222 static void put_arg_page(struct page
*page
)
227 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
231 static void free_arg_pages(struct linux_binprm
*bprm
)
235 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
238 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
241 static int __bprm_mm_init(struct linux_binprm
*bprm
)
244 struct vm_area_struct
*vma
= NULL
;
245 struct mm_struct
*mm
= bprm
->mm
;
247 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
251 down_write(&mm
->mmap_sem
);
255 * Place the stack at the largest stack address the architecture
256 * supports. Later, we'll move this to an appropriate place. We don't
257 * use STACK_TOP because that can depend on attributes which aren't
260 vma
->vm_end
= STACK_TOP_MAX
;
261 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
263 vma
->vm_flags
= VM_STACK_FLAGS
;
264 vma
->vm_page_prot
= protection_map
[vma
->vm_flags
& 0x7];
265 err
= insert_vm_struct(mm
, vma
);
267 up_write(&mm
->mmap_sem
);
271 mm
->stack_vm
= mm
->total_vm
= 1;
272 up_write(&mm
->mmap_sem
);
274 bprm
->p
= vma
->vm_end
- sizeof(void *);
281 kmem_cache_free(vm_area_cachep
, vma
);
287 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
289 return len
<= MAX_ARG_STRLEN
;
294 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
299 page
= bprm
->page
[pos
/ PAGE_SIZE
];
300 if (!page
&& write
) {
301 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
304 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
310 static void put_arg_page(struct page
*page
)
314 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
317 __free_page(bprm
->page
[i
]);
318 bprm
->page
[i
] = NULL
;
322 static void free_arg_pages(struct linux_binprm
*bprm
)
326 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
327 free_arg_page(bprm
, i
);
330 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
335 static int __bprm_mm_init(struct linux_binprm
*bprm
)
337 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
341 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
343 return len
<= bprm
->p
;
346 #endif /* CONFIG_MMU */
349 * Create a new mm_struct and populate it with a temporary stack
350 * vm_area_struct. We don't have enough context at this point to set the stack
351 * flags, permissions, and offset, so we use temporary values. We'll update
352 * them later in setup_arg_pages().
354 int bprm_mm_init(struct linux_binprm
*bprm
)
357 struct mm_struct
*mm
= NULL
;
359 bprm
->mm
= mm
= mm_alloc();
364 err
= init_new_context(current
, mm
);
368 err
= __bprm_mm_init(bprm
);
384 * count() counts the number of strings in array ARGV.
386 static int count(char __user
* __user
* argv
, int max
)
394 if (get_user(p
, argv
))
408 * 'copy_strings()' copies argument/environment strings from the old
409 * processes's memory to the new process's stack. The call to get_user_pages()
410 * ensures the destination page is created and not swapped out.
412 static int copy_strings(int argc
, char __user
* __user
* argv
,
413 struct linux_binprm
*bprm
)
415 struct page
*kmapped_page
= NULL
;
417 unsigned long kpos
= 0;
425 if (get_user(str
, argv
+argc
) ||
426 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
431 if (!valid_arg_len(bprm
, len
)) {
436 /* We're going to work our way backwords. */
442 int offset
, bytes_to_copy
;
444 offset
= pos
% PAGE_SIZE
;
448 bytes_to_copy
= offset
;
449 if (bytes_to_copy
> len
)
452 offset
-= bytes_to_copy
;
453 pos
-= bytes_to_copy
;
454 str
-= bytes_to_copy
;
455 len
-= bytes_to_copy
;
457 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
460 page
= get_arg_page(bprm
, pos
, 1);
467 flush_kernel_dcache_page(kmapped_page
);
468 kunmap(kmapped_page
);
469 put_arg_page(kmapped_page
);
472 kaddr
= kmap(kmapped_page
);
473 kpos
= pos
& PAGE_MASK
;
474 flush_arg_page(bprm
, kpos
, kmapped_page
);
476 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
485 flush_kernel_dcache_page(kmapped_page
);
486 kunmap(kmapped_page
);
487 put_arg_page(kmapped_page
);
493 * Like copy_strings, but get argv and its values from kernel memory.
495 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
498 mm_segment_t oldfs
= get_fs();
500 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
504 EXPORT_SYMBOL(copy_strings_kernel
);
509 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
510 * the binfmt code determines where the new stack should reside, we shift it to
511 * its final location. The process proceeds as follows:
513 * 1) Use shift to calculate the new vma endpoints.
514 * 2) Extend vma to cover both the old and new ranges. This ensures the
515 * arguments passed to subsequent functions are consistent.
516 * 3) Move vma's page tables to the new range.
517 * 4) Free up any cleared pgd range.
518 * 5) Shrink the vma to cover only the new range.
520 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
522 struct mm_struct
*mm
= vma
->vm_mm
;
523 unsigned long old_start
= vma
->vm_start
;
524 unsigned long old_end
= vma
->vm_end
;
525 unsigned long length
= old_end
- old_start
;
526 unsigned long new_start
= old_start
- shift
;
527 unsigned long new_end
= old_end
- shift
;
528 struct mmu_gather
*tlb
;
530 BUG_ON(new_start
> new_end
);
533 * ensure there are no vmas between where we want to go
536 if (vma
!= find_vma(mm
, new_start
))
540 * cover the whole range: [new_start, old_end)
542 vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
);
545 * move the page tables downwards, on failure we rely on
546 * process cleanup to remove whatever mess we made.
548 if (length
!= move_page_tables(vma
, old_start
,
549 vma
, new_start
, length
))
553 tlb
= tlb_gather_mmu(mm
, 0);
554 if (new_end
> old_start
) {
556 * when the old and new regions overlap clear from new_end.
558 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
559 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
562 * otherwise, clean from old_start; this is done to not touch
563 * the address space in [new_end, old_start) some architectures
564 * have constraints on va-space that make this illegal (IA64) -
565 * for the others its just a little faster.
567 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
568 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
570 tlb_finish_mmu(tlb
, new_end
, old_end
);
573 * shrink the vma to just the new range.
575 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
580 #define EXTRA_STACK_VM_PAGES 20 /* random */
583 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
584 * the stack is optionally relocated, and some extra space is added.
586 int setup_arg_pages(struct linux_binprm
*bprm
,
587 unsigned long stack_top
,
588 int executable_stack
)
591 unsigned long stack_shift
;
592 struct mm_struct
*mm
= current
->mm
;
593 struct vm_area_struct
*vma
= bprm
->vma
;
594 struct vm_area_struct
*prev
= NULL
;
595 unsigned long vm_flags
;
596 unsigned long stack_base
;
598 #ifdef CONFIG_STACK_GROWSUP
599 /* Limit stack size to 1GB */
600 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
601 if (stack_base
> (1 << 30))
602 stack_base
= 1 << 30;
604 /* Make sure we didn't let the argument array grow too large. */
605 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
608 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
610 stack_shift
= vma
->vm_start
- stack_base
;
611 mm
->arg_start
= bprm
->p
- stack_shift
;
612 bprm
->p
= vma
->vm_end
- stack_shift
;
614 stack_top
= arch_align_stack(stack_top
);
615 stack_top
= PAGE_ALIGN(stack_top
);
616 stack_shift
= vma
->vm_end
- stack_top
;
618 bprm
->p
-= stack_shift
;
619 mm
->arg_start
= bprm
->p
;
623 bprm
->loader
-= stack_shift
;
624 bprm
->exec
-= stack_shift
;
626 down_write(&mm
->mmap_sem
);
627 vm_flags
= vma
->vm_flags
;
630 * Adjust stack execute permissions; explicitly enable for
631 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
632 * (arch default) otherwise.
634 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
636 else if (executable_stack
== EXSTACK_DISABLE_X
)
637 vm_flags
&= ~VM_EXEC
;
638 vm_flags
|= mm
->def_flags
;
640 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
646 /* Move stack pages down in memory. */
648 ret
= shift_arg_pages(vma
, stack_shift
);
650 up_write(&mm
->mmap_sem
);
655 #ifdef CONFIG_STACK_GROWSUP
656 stack_base
= vma
->vm_end
+ EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
658 stack_base
= vma
->vm_start
- EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
660 ret
= expand_stack(vma
, stack_base
);
665 up_write(&mm
->mmap_sem
);
668 EXPORT_SYMBOL(setup_arg_pages
);
670 #endif /* CONFIG_MMU */
672 struct file
*open_exec(const char *name
)
678 err
= path_lookup_open(AT_FDCWD
, name
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
682 struct inode
*inode
= nd
.dentry
->d_inode
;
683 file
= ERR_PTR(-EACCES
);
684 if (!(nd
.mnt
->mnt_flags
& MNT_NOEXEC
) &&
685 S_ISREG(inode
->i_mode
)) {
686 int err
= vfs_permission(&nd
, MAY_EXEC
);
689 file
= nameidata_to_filp(&nd
, O_RDONLY
);
691 err
= deny_write_access(file
);
701 release_open_intent(&nd
);
707 EXPORT_SYMBOL(open_exec
);
709 int kernel_read(struct file
*file
, unsigned long offset
,
710 char *addr
, unsigned long count
)
718 /* The cast to a user pointer is valid due to the set_fs() */
719 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
724 EXPORT_SYMBOL(kernel_read
);
726 static int exec_mmap(struct mm_struct
*mm
)
728 struct task_struct
*tsk
;
729 struct mm_struct
* old_mm
, *active_mm
;
731 /* Notify parent that we're no longer interested in the old VM */
733 old_mm
= current
->mm
;
734 mm_release(tsk
, old_mm
);
738 * Make sure that if there is a core dump in progress
739 * for the old mm, we get out and die instead of going
740 * through with the exec. We must hold mmap_sem around
741 * checking core_waiters and changing tsk->mm. The
742 * core-inducing thread will increment core_waiters for
743 * each thread whose ->mm == old_mm.
745 down_read(&old_mm
->mmap_sem
);
746 if (unlikely(old_mm
->core_waiters
)) {
747 up_read(&old_mm
->mmap_sem
);
752 active_mm
= tsk
->active_mm
;
755 activate_mm(active_mm
, mm
);
757 arch_pick_mmap_layout(mm
);
759 up_read(&old_mm
->mmap_sem
);
760 BUG_ON(active_mm
!= old_mm
);
769 * This function makes sure the current process has its own signal table,
770 * so that flush_signal_handlers can later reset the handlers without
771 * disturbing other processes. (Other processes might share the signal
772 * table via the CLONE_SIGHAND option to clone().)
774 static int de_thread(struct task_struct
*tsk
)
776 struct signal_struct
*sig
= tsk
->signal
;
777 struct sighand_struct
*newsighand
, *oldsighand
= tsk
->sighand
;
778 spinlock_t
*lock
= &oldsighand
->siglock
;
779 struct task_struct
*leader
= NULL
;
783 * If we don't share sighandlers, then we aren't sharing anything
784 * and we can just re-use it all.
786 if (atomic_read(&oldsighand
->count
) <= 1) {
787 signalfd_detach(tsk
);
792 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
796 if (thread_group_empty(tsk
))
797 goto no_thread_group
;
800 * Kill all other threads in the thread group.
801 * We must hold tasklist_lock to call zap_other_threads.
803 read_lock(&tasklist_lock
);
805 if (sig
->flags
& SIGNAL_GROUP_EXIT
) {
807 * Another group action in progress, just
808 * return so that the signal is processed.
810 spin_unlock_irq(lock
);
811 read_unlock(&tasklist_lock
);
812 kmem_cache_free(sighand_cachep
, newsighand
);
817 * child_reaper ignores SIGKILL, change it now.
818 * Reparenting needs write_lock on tasklist_lock,
819 * so it is safe to do it under read_lock.
821 if (unlikely(tsk
->group_leader
== child_reaper(tsk
)))
822 tsk
->nsproxy
->pid_ns
->child_reaper
= tsk
;
824 zap_other_threads(tsk
);
825 read_unlock(&tasklist_lock
);
828 * Account for the thread group leader hanging around:
831 if (!thread_group_leader(tsk
)) {
834 * The SIGALRM timer survives the exec, but needs to point
835 * at us as the new group leader now. We have a race with
836 * a timer firing now getting the old leader, so we need to
837 * synchronize with any firing (by calling del_timer_sync)
838 * before we can safely let the old group leader die.
841 spin_unlock_irq(lock
);
842 if (hrtimer_cancel(&sig
->real_timer
))
843 hrtimer_restart(&sig
->real_timer
);
846 while (atomic_read(&sig
->count
) > count
) {
847 sig
->group_exit_task
= tsk
;
848 sig
->notify_count
= count
;
849 __set_current_state(TASK_UNINTERRUPTIBLE
);
850 spin_unlock_irq(lock
);
854 sig
->group_exit_task
= NULL
;
855 sig
->notify_count
= 0;
856 spin_unlock_irq(lock
);
859 * At this point all other threads have exited, all we have to
860 * do is to wait for the thread group leader to become inactive,
861 * and to assume its PID:
863 if (!thread_group_leader(tsk
)) {
865 * Wait for the thread group leader to be a zombie.
866 * It should already be zombie at this point, most
869 leader
= tsk
->group_leader
;
870 while (leader
->exit_state
!= EXIT_ZOMBIE
)
874 * The only record we have of the real-time age of a
875 * process, regardless of execs it's done, is start_time.
876 * All the past CPU time is accumulated in signal_struct
877 * from sister threads now dead. But in this non-leader
878 * exec, nothing survives from the original leader thread,
879 * whose birth marks the true age of this process now.
880 * When we take on its identity by switching to its PID, we
881 * also take its birthdate (always earlier than our own).
883 tsk
->start_time
= leader
->start_time
;
885 write_lock_irq(&tasklist_lock
);
887 BUG_ON(leader
->tgid
!= tsk
->tgid
);
888 BUG_ON(tsk
->pid
== tsk
->tgid
);
890 * An exec() starts a new thread group with the
891 * TGID of the previous thread group. Rehash the
892 * two threads with a switched PID, and release
893 * the former thread group leader:
896 /* Become a process group leader with the old leader's pid.
897 * The old leader becomes a thread of the this thread group.
898 * Note: The old leader also uses this pid until release_task
899 * is called. Odd but simple and correct.
901 detach_pid(tsk
, PIDTYPE_PID
);
902 tsk
->pid
= leader
->pid
;
903 attach_pid(tsk
, PIDTYPE_PID
, find_pid(tsk
->pid
));
904 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
905 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
906 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
908 tsk
->group_leader
= tsk
;
909 leader
->group_leader
= tsk
;
911 tsk
->exit_signal
= SIGCHLD
;
913 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
914 leader
->exit_state
= EXIT_DEAD
;
916 write_unlock_irq(&tasklist_lock
);
920 * There may be one thread left which is just exiting,
921 * but it's safe to stop telling the group to kill themselves.
926 signalfd_detach(tsk
);
929 release_task(leader
);
931 if (atomic_read(&oldsighand
->count
) == 1) {
933 * Now that we nuked the rest of the thread group,
934 * it turns out we are not sharing sighand any more either.
935 * So we can just keep it.
937 kmem_cache_free(sighand_cachep
, newsighand
);
940 * Move our state over to newsighand and switch it in.
942 atomic_set(&newsighand
->count
, 1);
943 memcpy(newsighand
->action
, oldsighand
->action
,
944 sizeof(newsighand
->action
));
946 write_lock_irq(&tasklist_lock
);
947 spin_lock(&oldsighand
->siglock
);
948 spin_lock_nested(&newsighand
->siglock
, SINGLE_DEPTH_NESTING
);
950 rcu_assign_pointer(tsk
->sighand
, newsighand
);
953 spin_unlock(&newsighand
->siglock
);
954 spin_unlock(&oldsighand
->siglock
);
955 write_unlock_irq(&tasklist_lock
);
957 __cleanup_sighand(oldsighand
);
960 BUG_ON(!thread_group_leader(tsk
));
965 * These functions flushes out all traces of the currently running executable
966 * so that a new one can be started
969 static void flush_old_files(struct files_struct
* files
)
974 spin_lock(&files
->file_lock
);
976 unsigned long set
, i
;
980 fdt
= files_fdtable(files
);
981 if (i
>= fdt
->max_fds
)
983 set
= fdt
->close_on_exec
->fds_bits
[j
];
986 fdt
->close_on_exec
->fds_bits
[j
] = 0;
987 spin_unlock(&files
->file_lock
);
988 for ( ; set
; i
++,set
>>= 1) {
993 spin_lock(&files
->file_lock
);
996 spin_unlock(&files
->file_lock
);
999 void get_task_comm(char *buf
, struct task_struct
*tsk
)
1001 /* buf must be at least sizeof(tsk->comm) in size */
1003 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
1007 void set_task_comm(struct task_struct
*tsk
, char *buf
)
1010 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1014 int flush_old_exec(struct linux_binprm
* bprm
)
1018 struct files_struct
*files
;
1019 char tcomm
[sizeof(current
->comm
)];
1022 * Make sure we have a private signal table and that
1023 * we are unassociated from the previous thread group.
1025 retval
= de_thread(current
);
1030 * Make sure we have private file handles. Ask the
1031 * fork helper to do the work for us and the exit
1032 * helper to do the cleanup of the old one.
1034 files
= current
->files
; /* refcounted so safe to hold */
1035 retval
= unshare_files();
1039 * Release all of the old mmap stuff
1041 retval
= exec_mmap(bprm
->mm
);
1045 bprm
->mm
= NULL
; /* We're using it now */
1047 /* This is the point of no return */
1048 put_files_struct(files
);
1050 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1052 if (current
->euid
== current
->uid
&& current
->egid
== current
->gid
)
1053 set_dumpable(current
->mm
, 1);
1055 set_dumpable(current
->mm
, suid_dumpable
);
1057 name
= bprm
->filename
;
1059 /* Copies the binary name from after last slash */
1060 for (i
=0; (ch
= *(name
++)) != '\0';) {
1062 i
= 0; /* overwrite what we wrote */
1064 if (i
< (sizeof(tcomm
) - 1))
1068 set_task_comm(current
, tcomm
);
1070 current
->flags
&= ~PF_RANDOMIZE
;
1073 /* Set the new mm task size. We have to do that late because it may
1074 * depend on TIF_32BIT which is only updated in flush_thread() on
1075 * some architectures like powerpc
1077 current
->mm
->task_size
= TASK_SIZE
;
1079 if (bprm
->e_uid
!= current
->euid
|| bprm
->e_gid
!= current
->egid
) {
1081 set_dumpable(current
->mm
, suid_dumpable
);
1082 current
->pdeath_signal
= 0;
1083 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1084 (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)) {
1086 set_dumpable(current
->mm
, suid_dumpable
);
1089 /* An exec changes our domain. We are no longer part of the thread
1092 current
->self_exec_id
++;
1094 flush_signal_handlers(current
, 0);
1095 flush_old_files(current
->files
);
1100 reset_files_struct(current
, files
);
1105 EXPORT_SYMBOL(flush_old_exec
);
1108 * Fill the binprm structure from the inode.
1109 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1111 int prepare_binprm(struct linux_binprm
*bprm
)
1114 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1117 mode
= inode
->i_mode
;
1118 if (bprm
->file
->f_op
== NULL
)
1121 bprm
->e_uid
= current
->euid
;
1122 bprm
->e_gid
= current
->egid
;
1124 if(!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1126 if (mode
& S_ISUID
) {
1127 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1128 bprm
->e_uid
= inode
->i_uid
;
1133 * If setgid is set but no group execute bit then this
1134 * is a candidate for mandatory locking, not a setgid
1137 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1138 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1139 bprm
->e_gid
= inode
->i_gid
;
1143 /* fill in binprm security blob */
1144 retval
= security_bprm_set(bprm
);
1148 memset(bprm
->buf
,0,BINPRM_BUF_SIZE
);
1149 return kernel_read(bprm
->file
,0,bprm
->buf
,BINPRM_BUF_SIZE
);
1152 EXPORT_SYMBOL(prepare_binprm
);
1154 static int unsafe_exec(struct task_struct
*p
)
1157 if (p
->ptrace
& PT_PTRACED
) {
1158 if (p
->ptrace
& PT_PTRACE_CAP
)
1159 unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1161 unsafe
|= LSM_UNSAFE_PTRACE
;
1163 if (atomic_read(&p
->fs
->count
) > 1 ||
1164 atomic_read(&p
->files
->count
) > 1 ||
1165 atomic_read(&p
->sighand
->count
) > 1)
1166 unsafe
|= LSM_UNSAFE_SHARE
;
1171 void compute_creds(struct linux_binprm
*bprm
)
1175 if (bprm
->e_uid
!= current
->uid
) {
1177 current
->pdeath_signal
= 0;
1182 unsafe
= unsafe_exec(current
);
1183 security_bprm_apply_creds(bprm
, unsafe
);
1184 task_unlock(current
);
1185 security_bprm_post_apply_creds(bprm
);
1187 EXPORT_SYMBOL(compute_creds
);
1190 * Arguments are '\0' separated strings found at the location bprm->p
1191 * points to; chop off the first by relocating brpm->p to right after
1192 * the first '\0' encountered.
1194 int remove_arg_zero(struct linux_binprm
*bprm
)
1197 unsigned long offset
;
1205 offset
= bprm
->p
& ~PAGE_MASK
;
1206 page
= get_arg_page(bprm
, bprm
->p
, 0);
1211 kaddr
= kmap_atomic(page
, KM_USER0
);
1213 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1214 offset
++, bprm
->p
++)
1217 kunmap_atomic(kaddr
, KM_USER0
);
1220 if (offset
== PAGE_SIZE
)
1221 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1222 } while (offset
== PAGE_SIZE
);
1231 EXPORT_SYMBOL(remove_arg_zero
);
1234 * cycle the list of binary formats handler, until one recognizes the image
1236 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1239 struct linux_binfmt
*fmt
;
1241 /* handle /sbin/loader.. */
1243 struct exec
* eh
= (struct exec
*) bprm
->buf
;
1245 if (!bprm
->loader
&& eh
->fh
.f_magic
== 0x183 &&
1246 (eh
->fh
.f_flags
& 0x3000) == 0x3000)
1249 unsigned long loader
;
1251 allow_write_access(bprm
->file
);
1255 loader
= bprm
->vma
->vm_end
- sizeof(void *);
1257 file
= open_exec("/sbin/loader");
1258 retval
= PTR_ERR(file
);
1262 /* Remember if the application is TASO. */
1263 bprm
->sh_bang
= eh
->ah
.entry
< 0x100000000UL
;
1266 bprm
->loader
= loader
;
1267 retval
= prepare_binprm(bprm
);
1270 /* should call search_binary_handler recursively here,
1271 but it does not matter */
1275 retval
= security_bprm_check(bprm
);
1279 /* kernel module loader fixup */
1280 /* so we don't try to load run modprobe in kernel space. */
1283 retval
= audit_bprm(bprm
);
1288 for (try=0; try<2; try++) {
1289 read_lock(&binfmt_lock
);
1290 for (fmt
= formats
; fmt
; fmt
= fmt
->next
) {
1291 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1294 if (!try_module_get(fmt
->module
))
1296 read_unlock(&binfmt_lock
);
1297 retval
= fn(bprm
, regs
);
1300 allow_write_access(bprm
->file
);
1304 current
->did_exec
= 1;
1305 proc_exec_connector(current
);
1308 read_lock(&binfmt_lock
);
1310 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1313 read_unlock(&binfmt_lock
);
1317 read_unlock(&binfmt_lock
);
1318 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1322 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1323 if (printable(bprm
->buf
[0]) &&
1324 printable(bprm
->buf
[1]) &&
1325 printable(bprm
->buf
[2]) &&
1326 printable(bprm
->buf
[3]))
1327 break; /* -ENOEXEC */
1328 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1335 EXPORT_SYMBOL(search_binary_handler
);
1338 * sys_execve() executes a new program.
1340 int do_execve(char * filename
,
1341 char __user
*__user
*argv
,
1342 char __user
*__user
*envp
,
1343 struct pt_regs
* regs
)
1345 struct linux_binprm
*bprm
;
1347 unsigned long env_p
;
1351 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1355 file
= open_exec(filename
);
1356 retval
= PTR_ERR(file
);
1363 bprm
->filename
= filename
;
1364 bprm
->interp
= filename
;
1366 retval
= bprm_mm_init(bprm
);
1370 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1371 if ((retval
= bprm
->argc
) < 0)
1374 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1375 if ((retval
= bprm
->envc
) < 0)
1378 retval
= security_bprm_alloc(bprm
);
1382 retval
= prepare_binprm(bprm
);
1386 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1390 bprm
->exec
= bprm
->p
;
1391 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1396 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1399 bprm
->argv_len
= env_p
- bprm
->p
;
1401 retval
= search_binary_handler(bprm
,regs
);
1403 /* execve success */
1404 free_arg_pages(bprm
);
1405 security_bprm_free(bprm
);
1406 acct_update_integrals(current
);
1412 free_arg_pages(bprm
);
1414 security_bprm_free(bprm
);
1422 allow_write_access(bprm
->file
);
1432 int set_binfmt(struct linux_binfmt
*new)
1434 struct linux_binfmt
*old
= current
->binfmt
;
1437 if (!try_module_get(new->module
))
1440 current
->binfmt
= new;
1442 module_put(old
->module
);
1446 EXPORT_SYMBOL(set_binfmt
);
1448 /* format_corename will inspect the pattern parameter, and output a
1449 * name into corename, which must have space for at least
1450 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1452 static int format_corename(char *corename
, const char *pattern
, long signr
)
1454 const char *pat_ptr
= pattern
;
1455 char *out_ptr
= corename
;
1456 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1458 int pid_in_pattern
= 0;
1461 if (*pattern
== '|')
1464 /* Repeat as long as we have more pattern to process and more output
1467 if (*pat_ptr
!= '%') {
1468 if (out_ptr
== out_end
)
1470 *out_ptr
++ = *pat_ptr
++;
1472 switch (*++pat_ptr
) {
1475 /* Double percent, output one percent */
1477 if (out_ptr
== out_end
)
1484 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1485 "%d", current
->tgid
);
1486 if (rc
> out_end
- out_ptr
)
1492 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1493 "%d", current
->uid
);
1494 if (rc
> out_end
- out_ptr
)
1500 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1501 "%d", current
->gid
);
1502 if (rc
> out_end
- out_ptr
)
1506 /* signal that caused the coredump */
1508 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1510 if (rc
> out_end
- out_ptr
)
1514 /* UNIX time of coredump */
1517 do_gettimeofday(&tv
);
1518 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1520 if (rc
> out_end
- out_ptr
)
1527 down_read(&uts_sem
);
1528 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1529 "%s", utsname()->nodename
);
1531 if (rc
> out_end
- out_ptr
)
1537 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1538 "%s", current
->comm
);
1539 if (rc
> out_end
- out_ptr
)
1549 /* Backward compatibility with core_uses_pid:
1551 * If core_pattern does not include a %p (as is the default)
1552 * and core_uses_pid is set, then .%pid will be appended to
1553 * the filename. Do not do this for piped commands. */
1554 if (!ispipe
&& !pid_in_pattern
1555 && (core_uses_pid
|| atomic_read(¤t
->mm
->mm_users
) != 1)) {
1556 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1557 ".%d", current
->tgid
);
1558 if (rc
> out_end
- out_ptr
)
1567 static void zap_process(struct task_struct
*start
)
1569 struct task_struct
*t
;
1571 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1572 start
->signal
->group_stop_count
= 0;
1576 if (t
!= current
&& t
->mm
) {
1577 t
->mm
->core_waiters
++;
1578 sigaddset(&t
->pending
.signal
, SIGKILL
);
1579 signal_wake_up(t
, 1);
1581 } while ((t
= next_thread(t
)) != start
);
1584 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1587 struct task_struct
*g
, *p
;
1588 unsigned long flags
;
1591 spin_lock_irq(&tsk
->sighand
->siglock
);
1592 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_EXIT
)) {
1593 tsk
->signal
->group_exit_code
= exit_code
;
1597 spin_unlock_irq(&tsk
->sighand
->siglock
);
1601 if (atomic_read(&mm
->mm_users
) == mm
->core_waiters
+ 1)
1605 for_each_process(g
) {
1606 if (g
== tsk
->group_leader
)
1614 * p->sighand can't disappear, but
1615 * may be changed by de_thread()
1617 lock_task_sighand(p
, &flags
);
1619 unlock_task_sighand(p
, &flags
);
1623 } while ((p
= next_thread(p
)) != g
);
1627 return mm
->core_waiters
;
1630 static int coredump_wait(int exit_code
)
1632 struct task_struct
*tsk
= current
;
1633 struct mm_struct
*mm
= tsk
->mm
;
1634 struct completion startup_done
;
1635 struct completion
*vfork_done
;
1638 init_completion(&mm
->core_done
);
1639 init_completion(&startup_done
);
1640 mm
->core_startup_done
= &startup_done
;
1642 core_waiters
= zap_threads(tsk
, mm
, exit_code
);
1643 up_write(&mm
->mmap_sem
);
1645 if (unlikely(core_waiters
< 0))
1649 * Make sure nobody is waiting for us to release the VM,
1650 * otherwise we can deadlock when we wait on each other
1652 vfork_done
= tsk
->vfork_done
;
1654 tsk
->vfork_done
= NULL
;
1655 complete(vfork_done
);
1659 wait_for_completion(&startup_done
);
1661 BUG_ON(mm
->core_waiters
);
1662 return core_waiters
;
1666 * set_dumpable converts traditional three-value dumpable to two flags and
1667 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1668 * these bits are not changed atomically. So get_dumpable can observe the
1669 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1670 * return either old dumpable or new one by paying attention to the order of
1671 * modifying the bits.
1673 * dumpable | mm->flags (binary)
1674 * old new | initial interim final
1675 * ---------+-----------------------
1683 * (*) get_dumpable regards interim value of 10 as 11.
1685 void set_dumpable(struct mm_struct
*mm
, int value
)
1689 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1691 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1694 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1696 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1699 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1701 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1705 EXPORT_SYMBOL_GPL(set_dumpable
);
1707 int get_dumpable(struct mm_struct
*mm
)
1711 ret
= mm
->flags
& 0x3;
1712 return (ret
>= 2) ? 2 : ret
;
1715 int do_coredump(long signr
, int exit_code
, struct pt_regs
* regs
)
1717 char corename
[CORENAME_MAX_SIZE
+ 1];
1718 struct mm_struct
*mm
= current
->mm
;
1719 struct linux_binfmt
* binfmt
;
1720 struct inode
* inode
;
1723 int fsuid
= current
->fsuid
;
1727 audit_core_dumps(signr
);
1729 binfmt
= current
->binfmt
;
1730 if (!binfmt
|| !binfmt
->core_dump
)
1732 down_write(&mm
->mmap_sem
);
1733 if (!get_dumpable(mm
)) {
1734 up_write(&mm
->mmap_sem
);
1739 * We cannot trust fsuid as being the "true" uid of the
1740 * process nor do we know its entire history. We only know it
1741 * was tainted so we dump it as root in mode 2.
1743 if (get_dumpable(mm
) == 2) { /* Setuid core dump mode */
1744 flag
= O_EXCL
; /* Stop rewrite attacks */
1745 current
->fsuid
= 0; /* Dump root private */
1747 set_dumpable(mm
, 0);
1749 retval
= coredump_wait(exit_code
);
1754 * Clear any false indication of pending signals that might
1755 * be seen by the filesystem code called to write the core file.
1757 clear_thread_flag(TIF_SIGPENDING
);
1759 if (current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
< binfmt
->min_coredump
)
1763 * lock_kernel() because format_corename() is controlled by sysctl, which
1764 * uses lock_kernel()
1767 ispipe
= format_corename(corename
, core_pattern
, signr
);
1770 /* SIGPIPE can happen, but it's just never processed */
1771 if(call_usermodehelper_pipe(corename
+1, NULL
, NULL
, &file
)) {
1772 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1777 file
= filp_open(corename
,
1778 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1782 inode
= file
->f_path
.dentry
->d_inode
;
1783 if (inode
->i_nlink
> 1)
1784 goto close_fail
; /* multiple links - don't dump */
1785 if (!ispipe
&& d_unhashed(file
->f_path
.dentry
))
1788 /* AK: actually i see no reason to not allow this for named pipes etc.,
1789 but keep the previous behaviour for now. */
1790 if (!ispipe
&& !S_ISREG(inode
->i_mode
))
1794 if (!file
->f_op
->write
)
1796 if (!ispipe
&& do_truncate(file
->f_path
.dentry
, 0, 0, file
) != 0)
1799 retval
= binfmt
->core_dump(signr
, regs
, file
);
1802 current
->signal
->group_exit_code
|= 0x80;
1804 filp_close(file
, NULL
);
1806 current
->fsuid
= fsuid
;
1807 complete_all(&mm
->core_done
);