[PATCH] x86_64 early quirks: fix early_qrk[] section tag
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / char / istallion.c
blob7b279d1de4a2eac8d6781269eb4b52f738d5cc5a
1 /*****************************************************************************/
3 /*
4 * istallion.c -- stallion intelligent multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 /*****************************************************************************/
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/tty.h>
25 #include <linux/tty_flip.h>
26 #include <linux/serial.h>
27 #include <linux/cdk.h>
28 #include <linux/comstats.h>
29 #include <linux/istallion.h>
30 #include <linux/ioport.h>
31 #include <linux/delay.h>
32 #include <linux/init.h>
33 #include <linux/device.h>
34 #include <linux/wait.h>
35 #include <linux/eisa.h>
36 #include <linux/ctype.h>
38 #include <asm/io.h>
39 #include <asm/uaccess.h>
41 #include <linux/pci.h>
43 /*****************************************************************************/
46 * Define different board types. Not all of the following board types
47 * are supported by this driver. But I will use the standard "assigned"
48 * board numbers. Currently supported boards are abbreviated as:
49 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
50 * STAL = Stallion.
52 #define BRD_UNKNOWN 0
53 #define BRD_STALLION 1
54 #define BRD_BRUMBY4 2
55 #define BRD_ONBOARD2 3
56 #define BRD_ONBOARD 4
57 #define BRD_ONBOARDE 7
58 #define BRD_ECP 23
59 #define BRD_ECPE 24
60 #define BRD_ECPMC 25
61 #define BRD_ECPPCI 29
63 #define BRD_BRUMBY BRD_BRUMBY4
66 * Define a configuration structure to hold the board configuration.
67 * Need to set this up in the code (for now) with the boards that are
68 * to be configured into the system. This is what needs to be modified
69 * when adding/removing/modifying boards. Each line entry in the
70 * stli_brdconf[] array is a board. Each line contains io/irq/memory
71 * ranges for that board (as well as what type of board it is).
72 * Some examples:
73 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
74 * This line will configure an EasyConnection 8/64 at io address 2a0,
75 * and shared memory address of cc000. Multiple EasyConnection 8/64
76 * boards can share the same shared memory address space. No interrupt
77 * is required for this board type.
78 * Another example:
79 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
80 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
81 * shared memory address of 0x80000000 (2 GByte). Multiple
82 * EasyConnection 8/64 EISA boards can share the same shared memory
83 * address space. No interrupt is required for this board type.
84 * Another example:
85 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
86 * This line will configure an ONboard (ISA type) at io address 240,
87 * and shared memory address of d0000. Multiple ONboards can share
88 * the same shared memory address space. No interrupt required.
89 * Another example:
90 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
91 * This line will configure a Brumby board (any number of ports!) at
92 * io address 360 and shared memory address of c8000. All Brumby boards
93 * configured into a system must have their own separate io and memory
94 * addresses. No interrupt is required.
95 * Another example:
96 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
97 * This line will configure an original Stallion board at io address 330
98 * and shared memory address d0000 (this would only be valid for a "V4.0"
99 * or Rev.O Stallion board). All Stallion boards configured into the
100 * system must have their own separate io and memory addresses. No
101 * interrupt is required.
104 struct stlconf {
105 int brdtype;
106 int ioaddr1;
107 int ioaddr2;
108 unsigned long memaddr;
109 int irq;
110 int irqtype;
113 static unsigned int stli_nrbrds;
115 /* stli_lock must NOT be taken holding brd_lock */
116 static spinlock_t stli_lock; /* TTY logic lock */
117 static spinlock_t brd_lock; /* Board logic lock */
120 * There is some experimental EISA board detection code in this driver.
121 * By default it is disabled, but for those that want to try it out,
122 * then set the define below to be 1.
124 #define STLI_EISAPROBE 0
126 /*****************************************************************************/
129 * Define some important driver characteristics. Device major numbers
130 * allocated as per Linux Device Registry.
132 #ifndef STL_SIOMEMMAJOR
133 #define STL_SIOMEMMAJOR 28
134 #endif
135 #ifndef STL_SERIALMAJOR
136 #define STL_SERIALMAJOR 24
137 #endif
138 #ifndef STL_CALLOUTMAJOR
139 #define STL_CALLOUTMAJOR 25
140 #endif
142 /*****************************************************************************/
145 * Define our local driver identity first. Set up stuff to deal with
146 * all the local structures required by a serial tty driver.
148 static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
149 static char *stli_drvname = "istallion";
150 static char *stli_drvversion = "5.6.0";
151 static char *stli_serialname = "ttyE";
153 static struct tty_driver *stli_serial;
156 #define STLI_TXBUFSIZE 4096
159 * Use a fast local buffer for cooked characters. Typically a whole
160 * bunch of cooked characters come in for a port, 1 at a time. So we
161 * save those up into a local buffer, then write out the whole lot
162 * with a large memcpy. Just use 1 buffer for all ports, since its
163 * use it is only need for short periods of time by each port.
165 static char *stli_txcookbuf;
166 static int stli_txcooksize;
167 static int stli_txcookrealsize;
168 static struct tty_struct *stli_txcooktty;
171 * Define a local default termios struct. All ports will be created
172 * with this termios initially. Basically all it defines is a raw port
173 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
175 static struct ktermios stli_deftermios = {
176 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
177 .c_cc = INIT_C_CC,
178 .c_ispeed = 9600,
179 .c_ospeed = 9600,
183 * Define global stats structures. Not used often, and can be
184 * re-used for each stats call.
186 static comstats_t stli_comstats;
187 static combrd_t stli_brdstats;
188 static struct asystats stli_cdkstats;
190 /*****************************************************************************/
192 static DEFINE_MUTEX(stli_brdslock);
193 static struct stlibrd *stli_brds[STL_MAXBRDS];
195 static int stli_shared;
198 * Per board state flags. Used with the state field of the board struct.
199 * Not really much here... All we need to do is keep track of whether
200 * the board has been detected, and whether it is actually running a slave
201 * or not.
203 #define BST_FOUND 0x1
204 #define BST_STARTED 0x2
205 #define BST_PROBED 0x4
208 * Define the set of port state flags. These are marked for internal
209 * state purposes only, usually to do with the state of communications
210 * with the slave. Most of them need to be updated atomically, so always
211 * use the bit setting operations (unless protected by cli/sti).
213 #define ST_INITIALIZING 1
214 #define ST_OPENING 2
215 #define ST_CLOSING 3
216 #define ST_CMDING 4
217 #define ST_TXBUSY 5
218 #define ST_RXING 6
219 #define ST_DOFLUSHRX 7
220 #define ST_DOFLUSHTX 8
221 #define ST_DOSIGS 9
222 #define ST_RXSTOP 10
223 #define ST_GETSIGS 11
226 * Define an array of board names as printable strings. Handy for
227 * referencing boards when printing trace and stuff.
229 static char *stli_brdnames[] = {
230 "Unknown",
231 "Stallion",
232 "Brumby",
233 "ONboard-MC",
234 "ONboard",
235 "Brumby",
236 "Brumby",
237 "ONboard-EI",
238 NULL,
239 "ONboard",
240 "ONboard-MC",
241 "ONboard-MC",
242 NULL,
243 NULL,
244 NULL,
245 NULL,
246 NULL,
247 NULL,
248 NULL,
249 NULL,
250 "EasyIO",
251 "EC8/32-AT",
252 "EC8/32-MC",
253 "EC8/64-AT",
254 "EC8/64-EI",
255 "EC8/64-MC",
256 "EC8/32-PCI",
257 "EC8/64-PCI",
258 "EasyIO-PCI",
259 "EC/RA-PCI",
262 /*****************************************************************************/
265 * Define some string labels for arguments passed from the module
266 * load line. These allow for easy board definitions, and easy
267 * modification of the io, memory and irq resoucres.
270 static char *board0[8];
271 static char *board1[8];
272 static char *board2[8];
273 static char *board3[8];
275 static char **stli_brdsp[] = {
276 (char **) &board0,
277 (char **) &board1,
278 (char **) &board2,
279 (char **) &board3
283 * Define a set of common board names, and types. This is used to
284 * parse any module arguments.
287 static struct stlibrdtype {
288 char *name;
289 int type;
290 } stli_brdstr[] = {
291 { "stallion", BRD_STALLION },
292 { "1", BRD_STALLION },
293 { "brumby", BRD_BRUMBY },
294 { "brumby4", BRD_BRUMBY },
295 { "brumby/4", BRD_BRUMBY },
296 { "brumby-4", BRD_BRUMBY },
297 { "brumby8", BRD_BRUMBY },
298 { "brumby/8", BRD_BRUMBY },
299 { "brumby-8", BRD_BRUMBY },
300 { "brumby16", BRD_BRUMBY },
301 { "brumby/16", BRD_BRUMBY },
302 { "brumby-16", BRD_BRUMBY },
303 { "2", BRD_BRUMBY },
304 { "onboard2", BRD_ONBOARD2 },
305 { "onboard-2", BRD_ONBOARD2 },
306 { "onboard/2", BRD_ONBOARD2 },
307 { "onboard-mc", BRD_ONBOARD2 },
308 { "onboard/mc", BRD_ONBOARD2 },
309 { "onboard-mca", BRD_ONBOARD2 },
310 { "onboard/mca", BRD_ONBOARD2 },
311 { "3", BRD_ONBOARD2 },
312 { "onboard", BRD_ONBOARD },
313 { "onboardat", BRD_ONBOARD },
314 { "4", BRD_ONBOARD },
315 { "onboarde", BRD_ONBOARDE },
316 { "onboard-e", BRD_ONBOARDE },
317 { "onboard/e", BRD_ONBOARDE },
318 { "onboard-ei", BRD_ONBOARDE },
319 { "onboard/ei", BRD_ONBOARDE },
320 { "7", BRD_ONBOARDE },
321 { "ecp", BRD_ECP },
322 { "ecpat", BRD_ECP },
323 { "ec8/64", BRD_ECP },
324 { "ec8/64-at", BRD_ECP },
325 { "ec8/64-isa", BRD_ECP },
326 { "23", BRD_ECP },
327 { "ecpe", BRD_ECPE },
328 { "ecpei", BRD_ECPE },
329 { "ec8/64-e", BRD_ECPE },
330 { "ec8/64-ei", BRD_ECPE },
331 { "24", BRD_ECPE },
332 { "ecpmc", BRD_ECPMC },
333 { "ec8/64-mc", BRD_ECPMC },
334 { "ec8/64-mca", BRD_ECPMC },
335 { "25", BRD_ECPMC },
336 { "ecppci", BRD_ECPPCI },
337 { "ec/ra", BRD_ECPPCI },
338 { "ec/ra-pc", BRD_ECPPCI },
339 { "ec/ra-pci", BRD_ECPPCI },
340 { "29", BRD_ECPPCI },
344 * Define the module agruments.
346 MODULE_AUTHOR("Greg Ungerer");
347 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
348 MODULE_LICENSE("GPL");
351 module_param_array(board0, charp, NULL, 0);
352 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
353 module_param_array(board1, charp, NULL, 0);
354 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
355 module_param_array(board2, charp, NULL, 0);
356 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
357 module_param_array(board3, charp, NULL, 0);
358 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
360 #if STLI_EISAPROBE != 0
362 * Set up a default memory address table for EISA board probing.
363 * The default addresses are all bellow 1Mbyte, which has to be the
364 * case anyway. They should be safe, since we only read values from
365 * them, and interrupts are disabled while we do it. If the higher
366 * memory support is compiled in then we also try probing around
367 * the 1Gb, 2Gb and 3Gb areas as well...
369 static unsigned long stli_eisamemprobeaddrs[] = {
370 0xc0000, 0xd0000, 0xe0000, 0xf0000,
371 0x80000000, 0x80010000, 0x80020000, 0x80030000,
372 0x40000000, 0x40010000, 0x40020000, 0x40030000,
373 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
374 0xff000000, 0xff010000, 0xff020000, 0xff030000,
377 static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
378 #endif
381 * Define the Stallion PCI vendor and device IDs.
383 #ifndef PCI_DEVICE_ID_ECRA
384 #define PCI_DEVICE_ID_ECRA 0x0004
385 #endif
387 static struct pci_device_id istallion_pci_tbl[] = {
388 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
389 { 0 }
391 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
393 static struct pci_driver stli_pcidriver;
395 /*****************************************************************************/
398 * Hardware configuration info for ECP boards. These defines apply
399 * to the directly accessible io ports of the ECP. There is a set of
400 * defines for each ECP board type, ISA, EISA, MCA and PCI.
402 #define ECP_IOSIZE 4
404 #define ECP_MEMSIZE (128 * 1024)
405 #define ECP_PCIMEMSIZE (256 * 1024)
407 #define ECP_ATPAGESIZE (4 * 1024)
408 #define ECP_MCPAGESIZE (4 * 1024)
409 #define ECP_EIPAGESIZE (64 * 1024)
410 #define ECP_PCIPAGESIZE (64 * 1024)
412 #define STL_EISAID 0x8c4e
415 * Important defines for the ISA class of ECP board.
417 #define ECP_ATIREG 0
418 #define ECP_ATCONFR 1
419 #define ECP_ATMEMAR 2
420 #define ECP_ATMEMPR 3
421 #define ECP_ATSTOP 0x1
422 #define ECP_ATINTENAB 0x10
423 #define ECP_ATENABLE 0x20
424 #define ECP_ATDISABLE 0x00
425 #define ECP_ATADDRMASK 0x3f000
426 #define ECP_ATADDRSHFT 12
429 * Important defines for the EISA class of ECP board.
431 #define ECP_EIIREG 0
432 #define ECP_EIMEMARL 1
433 #define ECP_EICONFR 2
434 #define ECP_EIMEMARH 3
435 #define ECP_EIENABLE 0x1
436 #define ECP_EIDISABLE 0x0
437 #define ECP_EISTOP 0x4
438 #define ECP_EIEDGE 0x00
439 #define ECP_EILEVEL 0x80
440 #define ECP_EIADDRMASKL 0x00ff0000
441 #define ECP_EIADDRSHFTL 16
442 #define ECP_EIADDRMASKH 0xff000000
443 #define ECP_EIADDRSHFTH 24
444 #define ECP_EIBRDENAB 0xc84
446 #define ECP_EISAID 0x4
449 * Important defines for the Micro-channel class of ECP board.
450 * (It has a lot in common with the ISA boards.)
452 #define ECP_MCIREG 0
453 #define ECP_MCCONFR 1
454 #define ECP_MCSTOP 0x20
455 #define ECP_MCENABLE 0x80
456 #define ECP_MCDISABLE 0x00
459 * Important defines for the PCI class of ECP board.
460 * (It has a lot in common with the other ECP boards.)
462 #define ECP_PCIIREG 0
463 #define ECP_PCICONFR 1
464 #define ECP_PCISTOP 0x01
467 * Hardware configuration info for ONboard and Brumby boards. These
468 * defines apply to the directly accessible io ports of these boards.
470 #define ONB_IOSIZE 16
471 #define ONB_MEMSIZE (64 * 1024)
472 #define ONB_ATPAGESIZE (64 * 1024)
473 #define ONB_MCPAGESIZE (64 * 1024)
474 #define ONB_EIMEMSIZE (128 * 1024)
475 #define ONB_EIPAGESIZE (64 * 1024)
478 * Important defines for the ISA class of ONboard board.
480 #define ONB_ATIREG 0
481 #define ONB_ATMEMAR 1
482 #define ONB_ATCONFR 2
483 #define ONB_ATSTOP 0x4
484 #define ONB_ATENABLE 0x01
485 #define ONB_ATDISABLE 0x00
486 #define ONB_ATADDRMASK 0xff0000
487 #define ONB_ATADDRSHFT 16
489 #define ONB_MEMENABLO 0
490 #define ONB_MEMENABHI 0x02
493 * Important defines for the EISA class of ONboard board.
495 #define ONB_EIIREG 0
496 #define ONB_EIMEMARL 1
497 #define ONB_EICONFR 2
498 #define ONB_EIMEMARH 3
499 #define ONB_EIENABLE 0x1
500 #define ONB_EIDISABLE 0x0
501 #define ONB_EISTOP 0x4
502 #define ONB_EIEDGE 0x00
503 #define ONB_EILEVEL 0x80
504 #define ONB_EIADDRMASKL 0x00ff0000
505 #define ONB_EIADDRSHFTL 16
506 #define ONB_EIADDRMASKH 0xff000000
507 #define ONB_EIADDRSHFTH 24
508 #define ONB_EIBRDENAB 0xc84
510 #define ONB_EISAID 0x1
513 * Important defines for the Brumby boards. They are pretty simple,
514 * there is not much that is programmably configurable.
516 #define BBY_IOSIZE 16
517 #define BBY_MEMSIZE (64 * 1024)
518 #define BBY_PAGESIZE (16 * 1024)
520 #define BBY_ATIREG 0
521 #define BBY_ATCONFR 1
522 #define BBY_ATSTOP 0x4
525 * Important defines for the Stallion boards. They are pretty simple,
526 * there is not much that is programmably configurable.
528 #define STAL_IOSIZE 16
529 #define STAL_MEMSIZE (64 * 1024)
530 #define STAL_PAGESIZE (64 * 1024)
533 * Define the set of status register values for EasyConnection panels.
534 * The signature will return with the status value for each panel. From
535 * this we can determine what is attached to the board - before we have
536 * actually down loaded any code to it.
538 #define ECH_PNLSTATUS 2
539 #define ECH_PNL16PORT 0x20
540 #define ECH_PNLIDMASK 0x07
541 #define ECH_PNLXPID 0x40
542 #define ECH_PNLINTRPEND 0x80
545 * Define some macros to do things to the board. Even those these boards
546 * are somewhat related there is often significantly different ways of
547 * doing some operation on it (like enable, paging, reset, etc). So each
548 * board class has a set of functions which do the commonly required
549 * operations. The macros below basically just call these functions,
550 * generally checking for a NULL function - which means that the board
551 * needs nothing done to it to achieve this operation!
553 #define EBRDINIT(brdp) \
554 if (brdp->init != NULL) \
555 (* brdp->init)(brdp)
557 #define EBRDENABLE(brdp) \
558 if (brdp->enable != NULL) \
559 (* brdp->enable)(brdp);
561 #define EBRDDISABLE(brdp) \
562 if (brdp->disable != NULL) \
563 (* brdp->disable)(brdp);
565 #define EBRDINTR(brdp) \
566 if (brdp->intr != NULL) \
567 (* brdp->intr)(brdp);
569 #define EBRDRESET(brdp) \
570 if (brdp->reset != NULL) \
571 (* brdp->reset)(brdp);
573 #define EBRDGETMEMPTR(brdp,offset) \
574 (* brdp->getmemptr)(brdp, offset, __LINE__)
577 * Define the maximal baud rate, and the default baud base for ports.
579 #define STL_MAXBAUD 460800
580 #define STL_BAUDBASE 115200
581 #define STL_CLOSEDELAY (5 * HZ / 10)
583 /*****************************************************************************/
586 * Define macros to extract a brd or port number from a minor number.
588 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
589 #define MINOR2PORT(min) ((min) & 0x3f)
591 /*****************************************************************************/
594 * Prototype all functions in this driver!
597 static int stli_parsebrd(struct stlconf *confp, char **argp);
598 static int stli_open(struct tty_struct *tty, struct file *filp);
599 static void stli_close(struct tty_struct *tty, struct file *filp);
600 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
601 static void stli_putchar(struct tty_struct *tty, unsigned char ch);
602 static void stli_flushchars(struct tty_struct *tty);
603 static int stli_writeroom(struct tty_struct *tty);
604 static int stli_charsinbuffer(struct tty_struct *tty);
605 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
606 static void stli_settermios(struct tty_struct *tty, struct ktermios *old);
607 static void stli_throttle(struct tty_struct *tty);
608 static void stli_unthrottle(struct tty_struct *tty);
609 static void stli_stop(struct tty_struct *tty);
610 static void stli_start(struct tty_struct *tty);
611 static void stli_flushbuffer(struct tty_struct *tty);
612 static void stli_breakctl(struct tty_struct *tty, int state);
613 static void stli_waituntilsent(struct tty_struct *tty, int timeout);
614 static void stli_sendxchar(struct tty_struct *tty, char ch);
615 static void stli_hangup(struct tty_struct *tty);
616 static int stli_portinfo(struct stlibrd *brdp, struct stliport *portp, int portnr, char *pos);
618 static int stli_brdinit(struct stlibrd *brdp);
619 static int stli_startbrd(struct stlibrd *brdp);
620 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
621 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
622 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
623 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp);
624 static void stli_poll(unsigned long arg);
625 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp);
626 static int stli_initopen(struct stlibrd *brdp, struct stliport *portp);
627 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
628 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
629 static int stli_waitcarrier(struct stlibrd *brdp, struct stliport *portp, struct file *filp);
630 static void stli_dohangup(struct work_struct *);
631 static int stli_setport(struct stliport *portp);
632 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
633 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
634 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
635 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp);
636 static void stli_mkasyport(struct stliport *portp, asyport_t *pp, struct ktermios *tiosp);
637 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
638 static long stli_mktiocm(unsigned long sigvalue);
639 static void stli_read(struct stlibrd *brdp, struct stliport *portp);
640 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp);
641 static int stli_setserial(struct stliport *portp, struct serial_struct __user *sp);
642 static int stli_getbrdstats(combrd_t __user *bp);
643 static int stli_getportstats(struct stliport *portp, comstats_t __user *cp);
644 static int stli_portcmdstats(struct stliport *portp);
645 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp);
646 static int stli_getportstruct(struct stliport __user *arg);
647 static int stli_getbrdstruct(struct stlibrd __user *arg);
648 static struct stlibrd *stli_allocbrd(void);
650 static void stli_ecpinit(struct stlibrd *brdp);
651 static void stli_ecpenable(struct stlibrd *brdp);
652 static void stli_ecpdisable(struct stlibrd *brdp);
653 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
654 static void stli_ecpreset(struct stlibrd *brdp);
655 static void stli_ecpintr(struct stlibrd *brdp);
656 static void stli_ecpeiinit(struct stlibrd *brdp);
657 static void stli_ecpeienable(struct stlibrd *brdp);
658 static void stli_ecpeidisable(struct stlibrd *brdp);
659 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
660 static void stli_ecpeireset(struct stlibrd *brdp);
661 static void stli_ecpmcenable(struct stlibrd *brdp);
662 static void stli_ecpmcdisable(struct stlibrd *brdp);
663 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
664 static void stli_ecpmcreset(struct stlibrd *brdp);
665 static void stli_ecppciinit(struct stlibrd *brdp);
666 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
667 static void stli_ecppcireset(struct stlibrd *brdp);
669 static void stli_onbinit(struct stlibrd *brdp);
670 static void stli_onbenable(struct stlibrd *brdp);
671 static void stli_onbdisable(struct stlibrd *brdp);
672 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
673 static void stli_onbreset(struct stlibrd *brdp);
674 static void stli_onbeinit(struct stlibrd *brdp);
675 static void stli_onbeenable(struct stlibrd *brdp);
676 static void stli_onbedisable(struct stlibrd *brdp);
677 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
678 static void stli_onbereset(struct stlibrd *brdp);
679 static void stli_bbyinit(struct stlibrd *brdp);
680 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
681 static void stli_bbyreset(struct stlibrd *brdp);
682 static void stli_stalinit(struct stlibrd *brdp);
683 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
684 static void stli_stalreset(struct stlibrd *brdp);
686 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr, unsigned int portnr);
688 static int stli_initecp(struct stlibrd *brdp);
689 static int stli_initonb(struct stlibrd *brdp);
690 #if STLI_EISAPROBE != 0
691 static int stli_eisamemprobe(struct stlibrd *brdp);
692 #endif
693 static int stli_initports(struct stlibrd *brdp);
695 /*****************************************************************************/
698 * Define the driver info for a user level shared memory device. This
699 * device will work sort of like the /dev/kmem device - except that it
700 * will give access to the shared memory on the Stallion intelligent
701 * board. This is also a very useful debugging tool.
703 static const struct file_operations stli_fsiomem = {
704 .owner = THIS_MODULE,
705 .read = stli_memread,
706 .write = stli_memwrite,
707 .ioctl = stli_memioctl,
710 /*****************************************************************************/
713 * Define a timer_list entry for our poll routine. The slave board
714 * is polled every so often to see if anything needs doing. This is
715 * much cheaper on host cpu than using interrupts. It turns out to
716 * not increase character latency by much either...
718 static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
720 static int stli_timeron;
723 * Define the calculation for the timeout routine.
725 #define STLI_TIMEOUT (jiffies + 1)
727 /*****************************************************************************/
729 static struct class *istallion_class;
731 static void stli_cleanup_ports(struct stlibrd *brdp)
733 struct stliport *portp;
734 unsigned int j;
736 for (j = 0; j < STL_MAXPORTS; j++) {
737 portp = brdp->ports[j];
738 if (portp != NULL) {
739 if (portp->tty != NULL)
740 tty_hangup(portp->tty);
741 kfree(portp);
746 /*****************************************************************************/
749 * Parse the supplied argument string, into the board conf struct.
752 static int stli_parsebrd(struct stlconf *confp, char **argp)
754 unsigned int i;
755 char *sp;
757 if (argp[0] == NULL || *argp[0] == 0)
758 return 0;
760 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
761 *sp = tolower(*sp);
763 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
764 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
765 break;
767 if (i == ARRAY_SIZE(stli_brdstr)) {
768 printk("STALLION: unknown board name, %s?\n", argp[0]);
769 return 0;
772 confp->brdtype = stli_brdstr[i].type;
773 if (argp[1] != NULL && *argp[1] != 0)
774 confp->ioaddr1 = simple_strtoul(argp[1], NULL, 0);
775 if (argp[2] != NULL && *argp[2] != 0)
776 confp->memaddr = simple_strtoul(argp[2], NULL, 0);
777 return(1);
780 /*****************************************************************************/
782 static int stli_open(struct tty_struct *tty, struct file *filp)
784 struct stlibrd *brdp;
785 struct stliport *portp;
786 unsigned int minordev, brdnr, portnr;
787 int rc;
789 minordev = tty->index;
790 brdnr = MINOR2BRD(minordev);
791 if (brdnr >= stli_nrbrds)
792 return -ENODEV;
793 brdp = stli_brds[brdnr];
794 if (brdp == NULL)
795 return -ENODEV;
796 if ((brdp->state & BST_STARTED) == 0)
797 return -ENODEV;
798 portnr = MINOR2PORT(minordev);
799 if (portnr > brdp->nrports)
800 return -ENODEV;
802 portp = brdp->ports[portnr];
803 if (portp == NULL)
804 return -ENODEV;
805 if (portp->devnr < 1)
806 return -ENODEV;
810 * Check if this port is in the middle of closing. If so then wait
811 * until it is closed then return error status based on flag settings.
812 * The sleep here does not need interrupt protection since the wakeup
813 * for it is done with the same context.
815 if (portp->flags & ASYNC_CLOSING) {
816 interruptible_sleep_on(&portp->close_wait);
817 if (portp->flags & ASYNC_HUP_NOTIFY)
818 return -EAGAIN;
819 return -ERESTARTSYS;
823 * On the first open of the device setup the port hardware, and
824 * initialize the per port data structure. Since initializing the port
825 * requires several commands to the board we will need to wait for any
826 * other open that is already initializing the port.
828 portp->tty = tty;
829 tty->driver_data = portp;
830 portp->refcount++;
832 wait_event_interruptible(portp->raw_wait,
833 !test_bit(ST_INITIALIZING, &portp->state));
834 if (signal_pending(current))
835 return -ERESTARTSYS;
837 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
838 set_bit(ST_INITIALIZING, &portp->state);
839 if ((rc = stli_initopen(brdp, portp)) >= 0) {
840 portp->flags |= ASYNC_INITIALIZED;
841 clear_bit(TTY_IO_ERROR, &tty->flags);
843 clear_bit(ST_INITIALIZING, &portp->state);
844 wake_up_interruptible(&portp->raw_wait);
845 if (rc < 0)
846 return rc;
850 * Check if this port is in the middle of closing. If so then wait
851 * until it is closed then return error status, based on flag settings.
852 * The sleep here does not need interrupt protection since the wakeup
853 * for it is done with the same context.
855 if (portp->flags & ASYNC_CLOSING) {
856 interruptible_sleep_on(&portp->close_wait);
857 if (portp->flags & ASYNC_HUP_NOTIFY)
858 return -EAGAIN;
859 return -ERESTARTSYS;
863 * Based on type of open being done check if it can overlap with any
864 * previous opens still in effect. If we are a normal serial device
865 * then also we might have to wait for carrier.
867 if (!(filp->f_flags & O_NONBLOCK)) {
868 if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
869 return rc;
871 portp->flags |= ASYNC_NORMAL_ACTIVE;
872 return 0;
875 /*****************************************************************************/
877 static void stli_close(struct tty_struct *tty, struct file *filp)
879 struct stlibrd *brdp;
880 struct stliport *portp;
881 unsigned long flags;
883 portp = tty->driver_data;
884 if (portp == NULL)
885 return;
887 spin_lock_irqsave(&stli_lock, flags);
888 if (tty_hung_up_p(filp)) {
889 spin_unlock_irqrestore(&stli_lock, flags);
890 return;
892 if ((tty->count == 1) && (portp->refcount != 1))
893 portp->refcount = 1;
894 if (portp->refcount-- > 1) {
895 spin_unlock_irqrestore(&stli_lock, flags);
896 return;
899 portp->flags |= ASYNC_CLOSING;
902 * May want to wait for data to drain before closing. The BUSY flag
903 * keeps track of whether we are still transmitting or not. It is
904 * updated by messages from the slave - indicating when all chars
905 * really have drained.
907 if (tty == stli_txcooktty)
908 stli_flushchars(tty);
909 tty->closing = 1;
910 spin_unlock_irqrestore(&stli_lock, flags);
912 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
913 tty_wait_until_sent(tty, portp->closing_wait);
915 portp->flags &= ~ASYNC_INITIALIZED;
916 brdp = stli_brds[portp->brdnr];
917 stli_rawclose(brdp, portp, 0, 0);
918 if (tty->termios->c_cflag & HUPCL) {
919 stli_mkasysigs(&portp->asig, 0, 0);
920 if (test_bit(ST_CMDING, &portp->state))
921 set_bit(ST_DOSIGS, &portp->state);
922 else
923 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
924 sizeof(asysigs_t), 0);
926 clear_bit(ST_TXBUSY, &portp->state);
927 clear_bit(ST_RXSTOP, &portp->state);
928 set_bit(TTY_IO_ERROR, &tty->flags);
929 if (tty->ldisc.flush_buffer)
930 (tty->ldisc.flush_buffer)(tty);
931 set_bit(ST_DOFLUSHRX, &portp->state);
932 stli_flushbuffer(tty);
934 tty->closing = 0;
935 portp->tty = NULL;
937 if (portp->openwaitcnt) {
938 if (portp->close_delay)
939 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
940 wake_up_interruptible(&portp->open_wait);
943 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
944 wake_up_interruptible(&portp->close_wait);
947 /*****************************************************************************/
950 * Carry out first open operations on a port. This involves a number of
951 * commands to be sent to the slave. We need to open the port, set the
952 * notification events, set the initial port settings, get and set the
953 * initial signal values. We sleep and wait in between each one. But
954 * this still all happens pretty quickly.
957 static int stli_initopen(struct stlibrd *brdp, struct stliport *portp)
959 struct tty_struct *tty;
960 asynotify_t nt;
961 asyport_t aport;
962 int rc;
964 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
965 return rc;
967 memset(&nt, 0, sizeof(asynotify_t));
968 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
969 nt.signal = SG_DCD;
970 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
971 sizeof(asynotify_t), 0)) < 0)
972 return rc;
974 tty = portp->tty;
975 if (tty == NULL)
976 return -ENODEV;
977 stli_mkasyport(portp, &aport, tty->termios);
978 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
979 sizeof(asyport_t), 0)) < 0)
980 return rc;
982 set_bit(ST_GETSIGS, &portp->state);
983 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
984 sizeof(asysigs_t), 1)) < 0)
985 return rc;
986 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
987 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
988 stli_mkasysigs(&portp->asig, 1, 1);
989 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
990 sizeof(asysigs_t), 0)) < 0)
991 return rc;
993 return 0;
996 /*****************************************************************************/
999 * Send an open message to the slave. This will sleep waiting for the
1000 * acknowledgement, so must have user context. We need to co-ordinate
1001 * with close events here, since we don't want open and close events
1002 * to overlap.
1005 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1007 cdkhdr_t __iomem *hdrp;
1008 cdkctrl_t __iomem *cp;
1009 unsigned char __iomem *bits;
1010 unsigned long flags;
1011 int rc;
1014 * Send a message to the slave to open this port.
1018 * Slave is already closing this port. This can happen if a hangup
1019 * occurs on this port. So we must wait until it is complete. The
1020 * order of opens and closes may not be preserved across shared
1021 * memory, so we must wait until it is complete.
1023 wait_event_interruptible(portp->raw_wait,
1024 !test_bit(ST_CLOSING, &portp->state));
1025 if (signal_pending(current)) {
1026 return -ERESTARTSYS;
1030 * Everything is ready now, so write the open message into shared
1031 * memory. Once the message is in set the service bits to say that
1032 * this port wants service.
1034 spin_lock_irqsave(&brd_lock, flags);
1035 EBRDENABLE(brdp);
1036 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1037 writel(arg, &cp->openarg);
1038 writeb(1, &cp->open);
1039 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1040 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1041 portp->portidx;
1042 writeb(readb(bits) | portp->portbit, bits);
1043 EBRDDISABLE(brdp);
1045 if (wait == 0) {
1046 spin_unlock_irqrestore(&brd_lock, flags);
1047 return 0;
1051 * Slave is in action, so now we must wait for the open acknowledgment
1052 * to come back.
1054 rc = 0;
1055 set_bit(ST_OPENING, &portp->state);
1056 spin_unlock_irqrestore(&brd_lock, flags);
1058 wait_event_interruptible(portp->raw_wait,
1059 !test_bit(ST_OPENING, &portp->state));
1060 if (signal_pending(current))
1061 rc = -ERESTARTSYS;
1063 if ((rc == 0) && (portp->rc != 0))
1064 rc = -EIO;
1065 return rc;
1068 /*****************************************************************************/
1071 * Send a close message to the slave. Normally this will sleep waiting
1072 * for the acknowledgement, but if wait parameter is 0 it will not. If
1073 * wait is true then must have user context (to sleep).
1076 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1078 cdkhdr_t __iomem *hdrp;
1079 cdkctrl_t __iomem *cp;
1080 unsigned char __iomem *bits;
1081 unsigned long flags;
1082 int rc;
1085 * Slave is already closing this port. This can happen if a hangup
1086 * occurs on this port.
1088 if (wait) {
1089 wait_event_interruptible(portp->raw_wait,
1090 !test_bit(ST_CLOSING, &portp->state));
1091 if (signal_pending(current)) {
1092 return -ERESTARTSYS;
1097 * Write the close command into shared memory.
1099 spin_lock_irqsave(&brd_lock, flags);
1100 EBRDENABLE(brdp);
1101 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1102 writel(arg, &cp->closearg);
1103 writeb(1, &cp->close);
1104 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1105 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1106 portp->portidx;
1107 writeb(readb(bits) |portp->portbit, bits);
1108 EBRDDISABLE(brdp);
1110 set_bit(ST_CLOSING, &portp->state);
1111 spin_unlock_irqrestore(&brd_lock, flags);
1113 if (wait == 0)
1114 return 0;
1117 * Slave is in action, so now we must wait for the open acknowledgment
1118 * to come back.
1120 rc = 0;
1121 wait_event_interruptible(portp->raw_wait,
1122 !test_bit(ST_CLOSING, &portp->state));
1123 if (signal_pending(current))
1124 rc = -ERESTARTSYS;
1126 if ((rc == 0) && (portp->rc != 0))
1127 rc = -EIO;
1128 return rc;
1131 /*****************************************************************************/
1134 * Send a command to the slave and wait for the response. This must
1135 * have user context (it sleeps). This routine is generic in that it
1136 * can send any type of command. Its purpose is to wait for that command
1137 * to complete (as opposed to initiating the command then returning).
1140 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1142 wait_event_interruptible(portp->raw_wait,
1143 !test_bit(ST_CMDING, &portp->state));
1144 if (signal_pending(current))
1145 return -ERESTARTSYS;
1147 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1149 wait_event_interruptible(portp->raw_wait,
1150 !test_bit(ST_CMDING, &portp->state));
1151 if (signal_pending(current))
1152 return -ERESTARTSYS;
1154 if (portp->rc != 0)
1155 return -EIO;
1156 return 0;
1159 /*****************************************************************************/
1162 * Send the termios settings for this port to the slave. This sleeps
1163 * waiting for the command to complete - so must have user context.
1166 static int stli_setport(struct stliport *portp)
1168 struct stlibrd *brdp;
1169 asyport_t aport;
1171 if (portp == NULL)
1172 return -ENODEV;
1173 if (portp->tty == NULL)
1174 return -ENODEV;
1175 if (portp->brdnr >= stli_nrbrds)
1176 return -ENODEV;
1177 brdp = stli_brds[portp->brdnr];
1178 if (brdp == NULL)
1179 return -ENODEV;
1181 stli_mkasyport(portp, &aport, portp->tty->termios);
1182 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1185 /*****************************************************************************/
1188 * Possibly need to wait for carrier (DCD signal) to come high. Say
1189 * maybe because if we are clocal then we don't need to wait...
1192 static int stli_waitcarrier(struct stlibrd *brdp, struct stliport *portp, struct file *filp)
1194 unsigned long flags;
1195 int rc, doclocal;
1197 rc = 0;
1198 doclocal = 0;
1200 if (portp->tty->termios->c_cflag & CLOCAL)
1201 doclocal++;
1203 spin_lock_irqsave(&stli_lock, flags);
1204 portp->openwaitcnt++;
1205 if (! tty_hung_up_p(filp))
1206 portp->refcount--;
1207 spin_unlock_irqrestore(&stli_lock, flags);
1209 for (;;) {
1210 stli_mkasysigs(&portp->asig, 1, 1);
1211 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1212 &portp->asig, sizeof(asysigs_t), 0)) < 0)
1213 break;
1214 if (tty_hung_up_p(filp) ||
1215 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1216 if (portp->flags & ASYNC_HUP_NOTIFY)
1217 rc = -EBUSY;
1218 else
1219 rc = -ERESTARTSYS;
1220 break;
1222 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1223 (doclocal || (portp->sigs & TIOCM_CD))) {
1224 break;
1226 if (signal_pending(current)) {
1227 rc = -ERESTARTSYS;
1228 break;
1230 interruptible_sleep_on(&portp->open_wait);
1233 spin_lock_irqsave(&stli_lock, flags);
1234 if (! tty_hung_up_p(filp))
1235 portp->refcount++;
1236 portp->openwaitcnt--;
1237 spin_unlock_irqrestore(&stli_lock, flags);
1239 return rc;
1242 /*****************************************************************************/
1245 * Write routine. Take the data and put it in the shared memory ring
1246 * queue. If port is not already sending chars then need to mark the
1247 * service bits for this port.
1250 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1252 cdkasy_t __iomem *ap;
1253 cdkhdr_t __iomem *hdrp;
1254 unsigned char __iomem *bits;
1255 unsigned char __iomem *shbuf;
1256 unsigned char *chbuf;
1257 struct stliport *portp;
1258 struct stlibrd *brdp;
1259 unsigned int len, stlen, head, tail, size;
1260 unsigned long flags;
1262 if (tty == stli_txcooktty)
1263 stli_flushchars(tty);
1264 portp = tty->driver_data;
1265 if (portp == NULL)
1266 return 0;
1267 if (portp->brdnr >= stli_nrbrds)
1268 return 0;
1269 brdp = stli_brds[portp->brdnr];
1270 if (brdp == NULL)
1271 return 0;
1272 chbuf = (unsigned char *) buf;
1275 * All data is now local, shove as much as possible into shared memory.
1277 spin_lock_irqsave(&brd_lock, flags);
1278 EBRDENABLE(brdp);
1279 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1280 head = (unsigned int) readw(&ap->txq.head);
1281 tail = (unsigned int) readw(&ap->txq.tail);
1282 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1283 tail = (unsigned int) readw(&ap->txq.tail);
1284 size = portp->txsize;
1285 if (head >= tail) {
1286 len = size - (head - tail) - 1;
1287 stlen = size - head;
1288 } else {
1289 len = tail - head - 1;
1290 stlen = len;
1293 len = min(len, (unsigned int)count);
1294 count = 0;
1295 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1297 while (len > 0) {
1298 stlen = min(len, stlen);
1299 memcpy_toio(shbuf + head, chbuf, stlen);
1300 chbuf += stlen;
1301 len -= stlen;
1302 count += stlen;
1303 head += stlen;
1304 if (head >= size) {
1305 head = 0;
1306 stlen = tail;
1310 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1311 writew(head, &ap->txq.head);
1312 if (test_bit(ST_TXBUSY, &portp->state)) {
1313 if (readl(&ap->changed.data) & DT_TXEMPTY)
1314 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1316 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1317 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1318 portp->portidx;
1319 writeb(readb(bits) | portp->portbit, bits);
1320 set_bit(ST_TXBUSY, &portp->state);
1321 EBRDDISABLE(brdp);
1322 spin_unlock_irqrestore(&brd_lock, flags);
1324 return(count);
1327 /*****************************************************************************/
1330 * Output a single character. We put it into a temporary local buffer
1331 * (for speed) then write out that buffer when the flushchars routine
1332 * is called. There is a safety catch here so that if some other port
1333 * writes chars before the current buffer has been, then we write them
1334 * first them do the new ports.
1337 static void stli_putchar(struct tty_struct *tty, unsigned char ch)
1339 if (tty != stli_txcooktty) {
1340 if (stli_txcooktty != NULL)
1341 stli_flushchars(stli_txcooktty);
1342 stli_txcooktty = tty;
1345 stli_txcookbuf[stli_txcooksize++] = ch;
1348 /*****************************************************************************/
1351 * Transfer characters from the local TX cooking buffer to the board.
1352 * We sort of ignore the tty that gets passed in here. We rely on the
1353 * info stored with the TX cook buffer to tell us which port to flush
1354 * the data on. In any case we clean out the TX cook buffer, for re-use
1355 * by someone else.
1358 static void stli_flushchars(struct tty_struct *tty)
1360 cdkhdr_t __iomem *hdrp;
1361 unsigned char __iomem *bits;
1362 cdkasy_t __iomem *ap;
1363 struct tty_struct *cooktty;
1364 struct stliport *portp;
1365 struct stlibrd *brdp;
1366 unsigned int len, stlen, head, tail, size, count, cooksize;
1367 unsigned char *buf;
1368 unsigned char __iomem *shbuf;
1369 unsigned long flags;
1371 cooksize = stli_txcooksize;
1372 cooktty = stli_txcooktty;
1373 stli_txcooksize = 0;
1374 stli_txcookrealsize = 0;
1375 stli_txcooktty = NULL;
1377 if (tty == NULL)
1378 return;
1379 if (cooktty == NULL)
1380 return;
1381 if (tty != cooktty)
1382 tty = cooktty;
1383 if (cooksize == 0)
1384 return;
1386 portp = tty->driver_data;
1387 if (portp == NULL)
1388 return;
1389 if (portp->brdnr >= stli_nrbrds)
1390 return;
1391 brdp = stli_brds[portp->brdnr];
1392 if (brdp == NULL)
1393 return;
1395 spin_lock_irqsave(&brd_lock, flags);
1396 EBRDENABLE(brdp);
1398 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1399 head = (unsigned int) readw(&ap->txq.head);
1400 tail = (unsigned int) readw(&ap->txq.tail);
1401 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1402 tail = (unsigned int) readw(&ap->txq.tail);
1403 size = portp->txsize;
1404 if (head >= tail) {
1405 len = size - (head - tail) - 1;
1406 stlen = size - head;
1407 } else {
1408 len = tail - head - 1;
1409 stlen = len;
1412 len = min(len, cooksize);
1413 count = 0;
1414 shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1415 buf = stli_txcookbuf;
1417 while (len > 0) {
1418 stlen = min(len, stlen);
1419 memcpy_toio(shbuf + head, buf, stlen);
1420 buf += stlen;
1421 len -= stlen;
1422 count += stlen;
1423 head += stlen;
1424 if (head >= size) {
1425 head = 0;
1426 stlen = tail;
1430 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1431 writew(head, &ap->txq.head);
1433 if (test_bit(ST_TXBUSY, &portp->state)) {
1434 if (readl(&ap->changed.data) & DT_TXEMPTY)
1435 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1437 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1438 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1439 portp->portidx;
1440 writeb(readb(bits) | portp->portbit, bits);
1441 set_bit(ST_TXBUSY, &portp->state);
1443 EBRDDISABLE(brdp);
1444 spin_unlock_irqrestore(&brd_lock, flags);
1447 /*****************************************************************************/
1449 static int stli_writeroom(struct tty_struct *tty)
1451 cdkasyrq_t __iomem *rp;
1452 struct stliport *portp;
1453 struct stlibrd *brdp;
1454 unsigned int head, tail, len;
1455 unsigned long flags;
1457 if (tty == stli_txcooktty) {
1458 if (stli_txcookrealsize != 0) {
1459 len = stli_txcookrealsize - stli_txcooksize;
1460 return len;
1464 portp = tty->driver_data;
1465 if (portp == NULL)
1466 return 0;
1467 if (portp->brdnr >= stli_nrbrds)
1468 return 0;
1469 brdp = stli_brds[portp->brdnr];
1470 if (brdp == NULL)
1471 return 0;
1473 spin_lock_irqsave(&brd_lock, flags);
1474 EBRDENABLE(brdp);
1475 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1476 head = (unsigned int) readw(&rp->head);
1477 tail = (unsigned int) readw(&rp->tail);
1478 if (tail != ((unsigned int) readw(&rp->tail)))
1479 tail = (unsigned int) readw(&rp->tail);
1480 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1481 len--;
1482 EBRDDISABLE(brdp);
1483 spin_unlock_irqrestore(&brd_lock, flags);
1485 if (tty == stli_txcooktty) {
1486 stli_txcookrealsize = len;
1487 len -= stli_txcooksize;
1489 return len;
1492 /*****************************************************************************/
1495 * Return the number of characters in the transmit buffer. Normally we
1496 * will return the number of chars in the shared memory ring queue.
1497 * We need to kludge around the case where the shared memory buffer is
1498 * empty but not all characters have drained yet, for this case just
1499 * return that there is 1 character in the buffer!
1502 static int stli_charsinbuffer(struct tty_struct *tty)
1504 cdkasyrq_t __iomem *rp;
1505 struct stliport *portp;
1506 struct stlibrd *brdp;
1507 unsigned int head, tail, len;
1508 unsigned long flags;
1510 if (tty == stli_txcooktty)
1511 stli_flushchars(tty);
1512 portp = tty->driver_data;
1513 if (portp == NULL)
1514 return 0;
1515 if (portp->brdnr >= stli_nrbrds)
1516 return 0;
1517 brdp = stli_brds[portp->brdnr];
1518 if (brdp == NULL)
1519 return 0;
1521 spin_lock_irqsave(&brd_lock, flags);
1522 EBRDENABLE(brdp);
1523 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1524 head = (unsigned int) readw(&rp->head);
1525 tail = (unsigned int) readw(&rp->tail);
1526 if (tail != ((unsigned int) readw(&rp->tail)))
1527 tail = (unsigned int) readw(&rp->tail);
1528 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1529 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1530 len = 1;
1531 EBRDDISABLE(brdp);
1532 spin_unlock_irqrestore(&brd_lock, flags);
1534 return len;
1537 /*****************************************************************************/
1540 * Generate the serial struct info.
1543 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp)
1545 struct serial_struct sio;
1546 struct stlibrd *brdp;
1548 memset(&sio, 0, sizeof(struct serial_struct));
1549 sio.type = PORT_UNKNOWN;
1550 sio.line = portp->portnr;
1551 sio.irq = 0;
1552 sio.flags = portp->flags;
1553 sio.baud_base = portp->baud_base;
1554 sio.close_delay = portp->close_delay;
1555 sio.closing_wait = portp->closing_wait;
1556 sio.custom_divisor = portp->custom_divisor;
1557 sio.xmit_fifo_size = 0;
1558 sio.hub6 = 0;
1560 brdp = stli_brds[portp->brdnr];
1561 if (brdp != NULL)
1562 sio.port = brdp->iobase;
1564 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1565 -EFAULT : 0;
1568 /*****************************************************************************/
1571 * Set port according to the serial struct info.
1572 * At this point we do not do any auto-configure stuff, so we will
1573 * just quietly ignore any requests to change irq, etc.
1576 static int stli_setserial(struct stliport *portp, struct serial_struct __user *sp)
1578 struct serial_struct sio;
1579 int rc;
1581 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1582 return -EFAULT;
1583 if (!capable(CAP_SYS_ADMIN)) {
1584 if ((sio.baud_base != portp->baud_base) ||
1585 (sio.close_delay != portp->close_delay) ||
1586 ((sio.flags & ~ASYNC_USR_MASK) !=
1587 (portp->flags & ~ASYNC_USR_MASK)))
1588 return -EPERM;
1591 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1592 (sio.flags & ASYNC_USR_MASK);
1593 portp->baud_base = sio.baud_base;
1594 portp->close_delay = sio.close_delay;
1595 portp->closing_wait = sio.closing_wait;
1596 portp->custom_divisor = sio.custom_divisor;
1598 if ((rc = stli_setport(portp)) < 0)
1599 return rc;
1600 return 0;
1603 /*****************************************************************************/
1605 static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1607 struct stliport *portp = tty->driver_data;
1608 struct stlibrd *brdp;
1609 int rc;
1611 if (portp == NULL)
1612 return -ENODEV;
1613 if (portp->brdnr >= stli_nrbrds)
1614 return 0;
1615 brdp = stli_brds[portp->brdnr];
1616 if (brdp == NULL)
1617 return 0;
1618 if (tty->flags & (1 << TTY_IO_ERROR))
1619 return -EIO;
1621 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1622 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1623 return rc;
1625 return stli_mktiocm(portp->asig.sigvalue);
1628 static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1629 unsigned int set, unsigned int clear)
1631 struct stliport *portp = tty->driver_data;
1632 struct stlibrd *brdp;
1633 int rts = -1, dtr = -1;
1635 if (portp == NULL)
1636 return -ENODEV;
1637 if (portp->brdnr >= stli_nrbrds)
1638 return 0;
1639 brdp = stli_brds[portp->brdnr];
1640 if (brdp == NULL)
1641 return 0;
1642 if (tty->flags & (1 << TTY_IO_ERROR))
1643 return -EIO;
1645 if (set & TIOCM_RTS)
1646 rts = 1;
1647 if (set & TIOCM_DTR)
1648 dtr = 1;
1649 if (clear & TIOCM_RTS)
1650 rts = 0;
1651 if (clear & TIOCM_DTR)
1652 dtr = 0;
1654 stli_mkasysigs(&portp->asig, dtr, rts);
1656 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1657 sizeof(asysigs_t), 0);
1660 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1662 struct stliport *portp;
1663 struct stlibrd *brdp;
1664 unsigned int ival;
1665 int rc;
1666 void __user *argp = (void __user *)arg;
1668 portp = tty->driver_data;
1669 if (portp == NULL)
1670 return -ENODEV;
1671 if (portp->brdnr >= stli_nrbrds)
1672 return 0;
1673 brdp = stli_brds[portp->brdnr];
1674 if (brdp == NULL)
1675 return 0;
1677 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1678 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1679 if (tty->flags & (1 << TTY_IO_ERROR))
1680 return -EIO;
1683 rc = 0;
1685 switch (cmd) {
1686 case TIOCGSOFTCAR:
1687 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
1688 (unsigned __user *) arg);
1689 break;
1690 case TIOCSSOFTCAR:
1691 if ((rc = get_user(ival, (unsigned __user *) arg)) == 0)
1692 tty->termios->c_cflag =
1693 (tty->termios->c_cflag & ~CLOCAL) |
1694 (ival ? CLOCAL : 0);
1695 break;
1696 case TIOCGSERIAL:
1697 rc = stli_getserial(portp, argp);
1698 break;
1699 case TIOCSSERIAL:
1700 rc = stli_setserial(portp, argp);
1701 break;
1702 case STL_GETPFLAG:
1703 rc = put_user(portp->pflag, (unsigned __user *)argp);
1704 break;
1705 case STL_SETPFLAG:
1706 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1707 stli_setport(portp);
1708 break;
1709 case COM_GETPORTSTATS:
1710 rc = stli_getportstats(portp, argp);
1711 break;
1712 case COM_CLRPORTSTATS:
1713 rc = stli_clrportstats(portp, argp);
1714 break;
1715 case TIOCSERCONFIG:
1716 case TIOCSERGWILD:
1717 case TIOCSERSWILD:
1718 case TIOCSERGETLSR:
1719 case TIOCSERGSTRUCT:
1720 case TIOCSERGETMULTI:
1721 case TIOCSERSETMULTI:
1722 default:
1723 rc = -ENOIOCTLCMD;
1724 break;
1727 return rc;
1730 /*****************************************************************************/
1733 * This routine assumes that we have user context and can sleep.
1734 * Looks like it is true for the current ttys implementation..!!
1737 static void stli_settermios(struct tty_struct *tty, struct ktermios *old)
1739 struct stliport *portp;
1740 struct stlibrd *brdp;
1741 struct ktermios *tiosp;
1742 asyport_t aport;
1744 if (tty == NULL)
1745 return;
1746 portp = tty->driver_data;
1747 if (portp == NULL)
1748 return;
1749 if (portp->brdnr >= stli_nrbrds)
1750 return;
1751 brdp = stli_brds[portp->brdnr];
1752 if (brdp == NULL)
1753 return;
1755 tiosp = tty->termios;
1756 if ((tiosp->c_cflag == old->c_cflag) &&
1757 (tiosp->c_iflag == old->c_iflag))
1758 return;
1760 stli_mkasyport(portp, &aport, tiosp);
1761 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1762 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1763 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1764 sizeof(asysigs_t), 0);
1765 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1766 tty->hw_stopped = 0;
1767 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1768 wake_up_interruptible(&portp->open_wait);
1771 /*****************************************************************************/
1774 * Attempt to flow control who ever is sending us data. We won't really
1775 * do any flow control action here. We can't directly, and even if we
1776 * wanted to we would have to send a command to the slave. The slave
1777 * knows how to flow control, and will do so when its buffers reach its
1778 * internal high water marks. So what we will do is set a local state
1779 * bit that will stop us sending any RX data up from the poll routine
1780 * (which is the place where RX data from the slave is handled).
1783 static void stli_throttle(struct tty_struct *tty)
1785 struct stliport *portp = tty->driver_data;
1786 if (portp == NULL)
1787 return;
1788 set_bit(ST_RXSTOP, &portp->state);
1791 /*****************************************************************************/
1794 * Unflow control the device sending us data... That means that all
1795 * we have to do is clear the RXSTOP state bit. The next poll call
1796 * will then be able to pass the RX data back up.
1799 static void stli_unthrottle(struct tty_struct *tty)
1801 struct stliport *portp = tty->driver_data;
1802 if (portp == NULL)
1803 return;
1804 clear_bit(ST_RXSTOP, &portp->state);
1807 /*****************************************************************************/
1810 * Stop the transmitter.
1813 static void stli_stop(struct tty_struct *tty)
1817 /*****************************************************************************/
1820 * Start the transmitter again.
1823 static void stli_start(struct tty_struct *tty)
1827 /*****************************************************************************/
1830 * Scheduler called hang up routine. This is called from the scheduler,
1831 * not direct from the driver "poll" routine. We can't call it there
1832 * since the real local hangup code will enable/disable the board and
1833 * other things that we can't do while handling the poll. Much easier
1834 * to deal with it some time later (don't really care when, hangups
1835 * aren't that time critical).
1838 static void stli_dohangup(struct work_struct *ugly_api)
1840 struct stliport *portp = container_of(ugly_api, struct stliport, tqhangup);
1841 if (portp->tty != NULL) {
1842 tty_hangup(portp->tty);
1846 /*****************************************************************************/
1849 * Hangup this port. This is pretty much like closing the port, only
1850 * a little more brutal. No waiting for data to drain. Shutdown the
1851 * port and maybe drop signals. This is rather tricky really. We want
1852 * to close the port as well.
1855 static void stli_hangup(struct tty_struct *tty)
1857 struct stliport *portp;
1858 struct stlibrd *brdp;
1859 unsigned long flags;
1861 portp = tty->driver_data;
1862 if (portp == NULL)
1863 return;
1864 if (portp->brdnr >= stli_nrbrds)
1865 return;
1866 brdp = stli_brds[portp->brdnr];
1867 if (brdp == NULL)
1868 return;
1870 portp->flags &= ~ASYNC_INITIALIZED;
1872 if (!test_bit(ST_CLOSING, &portp->state))
1873 stli_rawclose(brdp, portp, 0, 0);
1875 spin_lock_irqsave(&stli_lock, flags);
1876 if (tty->termios->c_cflag & HUPCL) {
1877 stli_mkasysigs(&portp->asig, 0, 0);
1878 if (test_bit(ST_CMDING, &portp->state)) {
1879 set_bit(ST_DOSIGS, &portp->state);
1880 set_bit(ST_DOFLUSHTX, &portp->state);
1881 set_bit(ST_DOFLUSHRX, &portp->state);
1882 } else {
1883 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
1884 &portp->asig, sizeof(asysigs_t), 0);
1888 clear_bit(ST_TXBUSY, &portp->state);
1889 clear_bit(ST_RXSTOP, &portp->state);
1890 set_bit(TTY_IO_ERROR, &tty->flags);
1891 portp->tty = NULL;
1892 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
1893 portp->refcount = 0;
1894 spin_unlock_irqrestore(&stli_lock, flags);
1896 wake_up_interruptible(&portp->open_wait);
1899 /*****************************************************************************/
1902 * Flush characters from the lower buffer. We may not have user context
1903 * so we cannot sleep waiting for it to complete. Also we need to check
1904 * if there is chars for this port in the TX cook buffer, and flush them
1905 * as well.
1908 static void stli_flushbuffer(struct tty_struct *tty)
1910 struct stliport *portp;
1911 struct stlibrd *brdp;
1912 unsigned long ftype, flags;
1914 portp = tty->driver_data;
1915 if (portp == NULL)
1916 return;
1917 if (portp->brdnr >= stli_nrbrds)
1918 return;
1919 brdp = stli_brds[portp->brdnr];
1920 if (brdp == NULL)
1921 return;
1923 spin_lock_irqsave(&brd_lock, flags);
1924 if (tty == stli_txcooktty) {
1925 stli_txcooktty = NULL;
1926 stli_txcooksize = 0;
1927 stli_txcookrealsize = 0;
1929 if (test_bit(ST_CMDING, &portp->state)) {
1930 set_bit(ST_DOFLUSHTX, &portp->state);
1931 } else {
1932 ftype = FLUSHTX;
1933 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
1934 ftype |= FLUSHRX;
1935 clear_bit(ST_DOFLUSHRX, &portp->state);
1937 __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
1939 spin_unlock_irqrestore(&brd_lock, flags);
1940 tty_wakeup(tty);
1943 /*****************************************************************************/
1945 static void stli_breakctl(struct tty_struct *tty, int state)
1947 struct stlibrd *brdp;
1948 struct stliport *portp;
1949 long arg;
1951 portp = tty->driver_data;
1952 if (portp == NULL)
1953 return;
1954 if (portp->brdnr >= stli_nrbrds)
1955 return;
1956 brdp = stli_brds[portp->brdnr];
1957 if (brdp == NULL)
1958 return;
1960 arg = (state == -1) ? BREAKON : BREAKOFF;
1961 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
1964 /*****************************************************************************/
1966 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
1968 struct stliport *portp;
1969 unsigned long tend;
1971 if (tty == NULL)
1972 return;
1973 portp = tty->driver_data;
1974 if (portp == NULL)
1975 return;
1977 if (timeout == 0)
1978 timeout = HZ;
1979 tend = jiffies + timeout;
1981 while (test_bit(ST_TXBUSY, &portp->state)) {
1982 if (signal_pending(current))
1983 break;
1984 msleep_interruptible(20);
1985 if (time_after_eq(jiffies, tend))
1986 break;
1990 /*****************************************************************************/
1992 static void stli_sendxchar(struct tty_struct *tty, char ch)
1994 struct stlibrd *brdp;
1995 struct stliport *portp;
1996 asyctrl_t actrl;
1998 portp = tty->driver_data;
1999 if (portp == NULL)
2000 return;
2001 if (portp->brdnr >= stli_nrbrds)
2002 return;
2003 brdp = stli_brds[portp->brdnr];
2004 if (brdp == NULL)
2005 return;
2007 memset(&actrl, 0, sizeof(asyctrl_t));
2008 if (ch == STOP_CHAR(tty)) {
2009 actrl.rxctrl = CT_STOPFLOW;
2010 } else if (ch == START_CHAR(tty)) {
2011 actrl.rxctrl = CT_STARTFLOW;
2012 } else {
2013 actrl.txctrl = CT_SENDCHR;
2014 actrl.tximdch = ch;
2016 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2019 /*****************************************************************************/
2021 #define MAXLINE 80
2024 * Format info for a specified port. The line is deliberately limited
2025 * to 80 characters. (If it is too long it will be truncated, if too
2026 * short then padded with spaces).
2029 static int stli_portinfo(struct stlibrd *brdp, struct stliport *portp, int portnr, char *pos)
2031 char *sp, *uart;
2032 int rc, cnt;
2034 rc = stli_portcmdstats(portp);
2036 uart = "UNKNOWN";
2037 if (brdp->state & BST_STARTED) {
2038 switch (stli_comstats.hwid) {
2039 case 0: uart = "2681"; break;
2040 case 1: uart = "SC26198"; break;
2041 default:uart = "CD1400"; break;
2045 sp = pos;
2046 sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2048 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2049 sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2050 (int) stli_comstats.rxtotal);
2052 if (stli_comstats.rxframing)
2053 sp += sprintf(sp, " fe:%d",
2054 (int) stli_comstats.rxframing);
2055 if (stli_comstats.rxparity)
2056 sp += sprintf(sp, " pe:%d",
2057 (int) stli_comstats.rxparity);
2058 if (stli_comstats.rxbreaks)
2059 sp += sprintf(sp, " brk:%d",
2060 (int) stli_comstats.rxbreaks);
2061 if (stli_comstats.rxoverrun)
2062 sp += sprintf(sp, " oe:%d",
2063 (int) stli_comstats.rxoverrun);
2065 cnt = sprintf(sp, "%s%s%s%s%s ",
2066 (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2067 (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2068 (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2069 (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2070 (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2071 *sp = ' ';
2072 sp += cnt;
2075 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2076 *sp++ = ' ';
2077 if (cnt >= MAXLINE)
2078 pos[(MAXLINE - 2)] = '+';
2079 pos[(MAXLINE - 1)] = '\n';
2081 return(MAXLINE);
2084 /*****************************************************************************/
2087 * Port info, read from the /proc file system.
2090 static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2092 struct stlibrd *brdp;
2093 struct stliport *portp;
2094 unsigned int brdnr, portnr, totalport;
2095 int curoff, maxoff;
2096 char *pos;
2098 pos = page;
2099 totalport = 0;
2100 curoff = 0;
2102 if (off == 0) {
2103 pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2104 stli_drvversion);
2105 while (pos < (page + MAXLINE - 1))
2106 *pos++ = ' ';
2107 *pos++ = '\n';
2109 curoff = MAXLINE;
2112 * We scan through for each board, panel and port. The offset is
2113 * calculated on the fly, and irrelevant ports are skipped.
2115 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2116 brdp = stli_brds[brdnr];
2117 if (brdp == NULL)
2118 continue;
2119 if (brdp->state == 0)
2120 continue;
2122 maxoff = curoff + (brdp->nrports * MAXLINE);
2123 if (off >= maxoff) {
2124 curoff = maxoff;
2125 continue;
2128 totalport = brdnr * STL_MAXPORTS;
2129 for (portnr = 0; (portnr < brdp->nrports); portnr++,
2130 totalport++) {
2131 portp = brdp->ports[portnr];
2132 if (portp == NULL)
2133 continue;
2134 if (off >= (curoff += MAXLINE))
2135 continue;
2136 if ((pos - page + MAXLINE) > count)
2137 goto stli_readdone;
2138 pos += stli_portinfo(brdp, portp, totalport, pos);
2142 *eof = 1;
2144 stli_readdone:
2145 *start = page;
2146 return(pos - page);
2149 /*****************************************************************************/
2152 * Generic send command routine. This will send a message to the slave,
2153 * of the specified type with the specified argument. Must be very
2154 * careful of data that will be copied out from shared memory -
2155 * containing command results. The command completion is all done from
2156 * a poll routine that does not have user context. Therefore you cannot
2157 * copy back directly into user space, or to the kernel stack of a
2158 * process. This routine does not sleep, so can be called from anywhere.
2160 * The caller must hold the brd_lock (see also stli_sendcmd the usual
2161 * entry point)
2164 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2166 cdkhdr_t __iomem *hdrp;
2167 cdkctrl_t __iomem *cp;
2168 unsigned char __iomem *bits;
2169 unsigned long flags;
2171 spin_lock_irqsave(&brd_lock, flags);
2173 if (test_bit(ST_CMDING, &portp->state)) {
2174 printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2175 (int) cmd);
2176 spin_unlock_irqrestore(&brd_lock, flags);
2177 return;
2180 EBRDENABLE(brdp);
2181 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2182 if (size > 0) {
2183 memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
2184 if (copyback) {
2185 portp->argp = arg;
2186 portp->argsize = size;
2189 writel(0, &cp->status);
2190 writel(cmd, &cp->cmd);
2191 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2192 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
2193 portp->portidx;
2194 writeb(readb(bits) | portp->portbit, bits);
2195 set_bit(ST_CMDING, &portp->state);
2196 EBRDDISABLE(brdp);
2197 spin_unlock_irqrestore(&brd_lock, flags);
2200 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2202 unsigned long flags;
2204 spin_lock_irqsave(&brd_lock, flags);
2205 __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2206 spin_unlock_irqrestore(&brd_lock, flags);
2209 /*****************************************************************************/
2212 * Read data from shared memory. This assumes that the shared memory
2213 * is enabled and that interrupts are off. Basically we just empty out
2214 * the shared memory buffer into the tty buffer. Must be careful to
2215 * handle the case where we fill up the tty buffer, but still have
2216 * more chars to unload.
2219 static void stli_read(struct stlibrd *brdp, struct stliport *portp)
2221 cdkasyrq_t __iomem *rp;
2222 char __iomem *shbuf;
2223 struct tty_struct *tty;
2224 unsigned int head, tail, size;
2225 unsigned int len, stlen;
2227 if (test_bit(ST_RXSTOP, &portp->state))
2228 return;
2229 tty = portp->tty;
2230 if (tty == NULL)
2231 return;
2233 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2234 head = (unsigned int) readw(&rp->head);
2235 if (head != ((unsigned int) readw(&rp->head)))
2236 head = (unsigned int) readw(&rp->head);
2237 tail = (unsigned int) readw(&rp->tail);
2238 size = portp->rxsize;
2239 if (head >= tail) {
2240 len = head - tail;
2241 stlen = len;
2242 } else {
2243 len = size - (tail - head);
2244 stlen = size - tail;
2247 len = tty_buffer_request_room(tty, len);
2249 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2251 while (len > 0) {
2252 unsigned char *cptr;
2254 stlen = min(len, stlen);
2255 tty_prepare_flip_string(tty, &cptr, stlen);
2256 memcpy_fromio(cptr, shbuf + tail, stlen);
2257 len -= stlen;
2258 tail += stlen;
2259 if (tail >= size) {
2260 tail = 0;
2261 stlen = head;
2264 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2265 writew(tail, &rp->tail);
2267 if (head != tail)
2268 set_bit(ST_RXING, &portp->state);
2270 tty_schedule_flip(tty);
2273 /*****************************************************************************/
2276 * Set up and carry out any delayed commands. There is only a small set
2277 * of slave commands that can be done "off-level". So it is not too
2278 * difficult to deal with them here.
2281 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp)
2283 int cmd;
2285 if (test_bit(ST_DOSIGS, &portp->state)) {
2286 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2287 test_bit(ST_DOFLUSHRX, &portp->state))
2288 cmd = A_SETSIGNALSF;
2289 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2290 cmd = A_SETSIGNALSFTX;
2291 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2292 cmd = A_SETSIGNALSFRX;
2293 else
2294 cmd = A_SETSIGNALS;
2295 clear_bit(ST_DOFLUSHTX, &portp->state);
2296 clear_bit(ST_DOFLUSHRX, &portp->state);
2297 clear_bit(ST_DOSIGS, &portp->state);
2298 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2299 sizeof(asysigs_t));
2300 writel(0, &cp->status);
2301 writel(cmd, &cp->cmd);
2302 set_bit(ST_CMDING, &portp->state);
2303 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2304 test_bit(ST_DOFLUSHRX, &portp->state)) {
2305 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2306 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2307 clear_bit(ST_DOFLUSHTX, &portp->state);
2308 clear_bit(ST_DOFLUSHRX, &portp->state);
2309 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2310 writel(0, &cp->status);
2311 writel(A_FLUSH, &cp->cmd);
2312 set_bit(ST_CMDING, &portp->state);
2316 /*****************************************************************************/
2319 * Host command service checking. This handles commands or messages
2320 * coming from the slave to the host. Must have board shared memory
2321 * enabled and interrupts off when called. Notice that by servicing the
2322 * read data last we don't need to change the shared memory pointer
2323 * during processing (which is a slow IO operation).
2324 * Return value indicates if this port is still awaiting actions from
2325 * the slave (like open, command, or even TX data being sent). If 0
2326 * then port is still busy, otherwise no longer busy.
2329 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp)
2331 cdkasy_t __iomem *ap;
2332 cdkctrl_t __iomem *cp;
2333 struct tty_struct *tty;
2334 asynotify_t nt;
2335 unsigned long oldsigs;
2336 int rc, donerx;
2338 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2339 cp = &ap->ctrl;
2342 * Check if we are waiting for an open completion message.
2344 if (test_bit(ST_OPENING, &portp->state)) {
2345 rc = readl(&cp->openarg);
2346 if (readb(&cp->open) == 0 && rc != 0) {
2347 if (rc > 0)
2348 rc--;
2349 writel(0, &cp->openarg);
2350 portp->rc = rc;
2351 clear_bit(ST_OPENING, &portp->state);
2352 wake_up_interruptible(&portp->raw_wait);
2357 * Check if we are waiting for a close completion message.
2359 if (test_bit(ST_CLOSING, &portp->state)) {
2360 rc = (int) readl(&cp->closearg);
2361 if (readb(&cp->close) == 0 && rc != 0) {
2362 if (rc > 0)
2363 rc--;
2364 writel(0, &cp->closearg);
2365 portp->rc = rc;
2366 clear_bit(ST_CLOSING, &portp->state);
2367 wake_up_interruptible(&portp->raw_wait);
2372 * Check if we are waiting for a command completion message. We may
2373 * need to copy out the command results associated with this command.
2375 if (test_bit(ST_CMDING, &portp->state)) {
2376 rc = readl(&cp->status);
2377 if (readl(&cp->cmd) == 0 && rc != 0) {
2378 if (rc > 0)
2379 rc--;
2380 if (portp->argp != NULL) {
2381 memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2382 portp->argsize);
2383 portp->argp = NULL;
2385 writel(0, &cp->status);
2386 portp->rc = rc;
2387 clear_bit(ST_CMDING, &portp->state);
2388 stli_dodelaycmd(portp, cp);
2389 wake_up_interruptible(&portp->raw_wait);
2394 * Check for any notification messages ready. This includes lots of
2395 * different types of events - RX chars ready, RX break received,
2396 * TX data low or empty in the slave, modem signals changed state.
2398 donerx = 0;
2400 if (ap->notify) {
2401 nt = ap->changed;
2402 ap->notify = 0;
2403 tty = portp->tty;
2405 if (nt.signal & SG_DCD) {
2406 oldsigs = portp->sigs;
2407 portp->sigs = stli_mktiocm(nt.sigvalue);
2408 clear_bit(ST_GETSIGS, &portp->state);
2409 if ((portp->sigs & TIOCM_CD) &&
2410 ((oldsigs & TIOCM_CD) == 0))
2411 wake_up_interruptible(&portp->open_wait);
2412 if ((oldsigs & TIOCM_CD) &&
2413 ((portp->sigs & TIOCM_CD) == 0)) {
2414 if (portp->flags & ASYNC_CHECK_CD) {
2415 if (tty)
2416 schedule_work(&portp->tqhangup);
2421 if (nt.data & DT_TXEMPTY)
2422 clear_bit(ST_TXBUSY, &portp->state);
2423 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2424 if (tty != NULL) {
2425 tty_wakeup(tty);
2426 EBRDENABLE(brdp);
2430 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2431 if (tty != NULL) {
2432 tty_insert_flip_char(tty, 0, TTY_BREAK);
2433 if (portp->flags & ASYNC_SAK) {
2434 do_SAK(tty);
2435 EBRDENABLE(brdp);
2437 tty_schedule_flip(tty);
2441 if (nt.data & DT_RXBUSY) {
2442 donerx++;
2443 stli_read(brdp, portp);
2448 * It might seem odd that we are checking for more RX chars here.
2449 * But, we need to handle the case where the tty buffer was previously
2450 * filled, but we had more characters to pass up. The slave will not
2451 * send any more RX notify messages until the RX buffer has been emptied.
2452 * But it will leave the service bits on (since the buffer is not empty).
2453 * So from here we can try to process more RX chars.
2455 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2456 clear_bit(ST_RXING, &portp->state);
2457 stli_read(brdp, portp);
2460 return((test_bit(ST_OPENING, &portp->state) ||
2461 test_bit(ST_CLOSING, &portp->state) ||
2462 test_bit(ST_CMDING, &portp->state) ||
2463 test_bit(ST_TXBUSY, &portp->state) ||
2464 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2467 /*****************************************************************************/
2470 * Service all ports on a particular board. Assumes that the boards
2471 * shared memory is enabled, and that the page pointer is pointed
2472 * at the cdk header structure.
2475 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp)
2477 struct stliport *portp;
2478 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2479 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2480 unsigned char __iomem *slavep;
2481 int bitpos, bitat, bitsize;
2482 int channr, nrdevs, slavebitchange;
2484 bitsize = brdp->bitsize;
2485 nrdevs = brdp->nrdevs;
2488 * Check if slave wants any service. Basically we try to do as
2489 * little work as possible here. There are 2 levels of service
2490 * bits. So if there is nothing to do we bail early. We check
2491 * 8 service bits at a time in the inner loop, so we can bypass
2492 * the lot if none of them want service.
2494 memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2495 bitsize);
2497 memset(&slavebits[0], 0, bitsize);
2498 slavebitchange = 0;
2500 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2501 if (hostbits[bitpos] == 0)
2502 continue;
2503 channr = bitpos * 8;
2504 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2505 if (hostbits[bitpos] & bitat) {
2506 portp = brdp->ports[(channr - 1)];
2507 if (stli_hostcmd(brdp, portp)) {
2508 slavebitchange++;
2509 slavebits[bitpos] |= bitat;
2516 * If any of the ports are no longer busy then update them in the
2517 * slave request bits. We need to do this after, since a host port
2518 * service may initiate more slave requests.
2520 if (slavebitchange) {
2521 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2522 slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2523 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2524 if (readb(slavebits + bitpos))
2525 writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2530 /*****************************************************************************/
2533 * Driver poll routine. This routine polls the boards in use and passes
2534 * messages back up to host when necessary. This is actually very
2535 * CPU efficient, since we will always have the kernel poll clock, it
2536 * adds only a few cycles when idle (since board service can be
2537 * determined very easily), but when loaded generates no interrupts
2538 * (with their expensive associated context change).
2541 static void stli_poll(unsigned long arg)
2543 cdkhdr_t __iomem *hdrp;
2544 struct stlibrd *brdp;
2545 unsigned int brdnr;
2547 mod_timer(&stli_timerlist, STLI_TIMEOUT);
2550 * Check each board and do any servicing required.
2552 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2553 brdp = stli_brds[brdnr];
2554 if (brdp == NULL)
2555 continue;
2556 if ((brdp->state & BST_STARTED) == 0)
2557 continue;
2559 spin_lock(&brd_lock);
2560 EBRDENABLE(brdp);
2561 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2562 if (readb(&hdrp->hostreq))
2563 stli_brdpoll(brdp, hdrp);
2564 EBRDDISABLE(brdp);
2565 spin_unlock(&brd_lock);
2569 /*****************************************************************************/
2572 * Translate the termios settings into the port setting structure of
2573 * the slave.
2576 static void stli_mkasyport(struct stliport *portp, asyport_t *pp, struct ktermios *tiosp)
2578 memset(pp, 0, sizeof(asyport_t));
2581 * Start of by setting the baud, char size, parity and stop bit info.
2583 pp->baudout = tty_get_baud_rate(portp->tty);
2584 if ((tiosp->c_cflag & CBAUD) == B38400) {
2585 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2586 pp->baudout = 57600;
2587 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2588 pp->baudout = 115200;
2589 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2590 pp->baudout = 230400;
2591 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2592 pp->baudout = 460800;
2593 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2594 pp->baudout = (portp->baud_base / portp->custom_divisor);
2596 if (pp->baudout > STL_MAXBAUD)
2597 pp->baudout = STL_MAXBAUD;
2598 pp->baudin = pp->baudout;
2600 switch (tiosp->c_cflag & CSIZE) {
2601 case CS5:
2602 pp->csize = 5;
2603 break;
2604 case CS6:
2605 pp->csize = 6;
2606 break;
2607 case CS7:
2608 pp->csize = 7;
2609 break;
2610 default:
2611 pp->csize = 8;
2612 break;
2615 if (tiosp->c_cflag & CSTOPB)
2616 pp->stopbs = PT_STOP2;
2617 else
2618 pp->stopbs = PT_STOP1;
2620 if (tiosp->c_cflag & PARENB) {
2621 if (tiosp->c_cflag & PARODD)
2622 pp->parity = PT_ODDPARITY;
2623 else
2624 pp->parity = PT_EVENPARITY;
2625 } else {
2626 pp->parity = PT_NOPARITY;
2630 * Set up any flow control options enabled.
2632 if (tiosp->c_iflag & IXON) {
2633 pp->flow |= F_IXON;
2634 if (tiosp->c_iflag & IXANY)
2635 pp->flow |= F_IXANY;
2637 if (tiosp->c_cflag & CRTSCTS)
2638 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2640 pp->startin = tiosp->c_cc[VSTART];
2641 pp->stopin = tiosp->c_cc[VSTOP];
2642 pp->startout = tiosp->c_cc[VSTART];
2643 pp->stopout = tiosp->c_cc[VSTOP];
2646 * Set up the RX char marking mask with those RX error types we must
2647 * catch. We can get the slave to help us out a little here, it will
2648 * ignore parity errors and breaks for us, and mark parity errors in
2649 * the data stream.
2651 if (tiosp->c_iflag & IGNPAR)
2652 pp->iflag |= FI_IGNRXERRS;
2653 if (tiosp->c_iflag & IGNBRK)
2654 pp->iflag |= FI_IGNBREAK;
2656 portp->rxmarkmsk = 0;
2657 if (tiosp->c_iflag & (INPCK | PARMRK))
2658 pp->iflag |= FI_1MARKRXERRS;
2659 if (tiosp->c_iflag & BRKINT)
2660 portp->rxmarkmsk |= BRKINT;
2663 * Set up clocal processing as required.
2665 if (tiosp->c_cflag & CLOCAL)
2666 portp->flags &= ~ASYNC_CHECK_CD;
2667 else
2668 portp->flags |= ASYNC_CHECK_CD;
2671 * Transfer any persistent flags into the asyport structure.
2673 pp->pflag = (portp->pflag & 0xffff);
2674 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2675 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2676 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2679 /*****************************************************************************/
2682 * Construct a slave signals structure for setting the DTR and RTS
2683 * signals as specified.
2686 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2688 memset(sp, 0, sizeof(asysigs_t));
2689 if (dtr >= 0) {
2690 sp->signal |= SG_DTR;
2691 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2693 if (rts >= 0) {
2694 sp->signal |= SG_RTS;
2695 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2699 /*****************************************************************************/
2702 * Convert the signals returned from the slave into a local TIOCM type
2703 * signals value. We keep them locally in TIOCM format.
2706 static long stli_mktiocm(unsigned long sigvalue)
2708 long tiocm = 0;
2709 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2710 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2711 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2712 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2713 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2714 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2715 return(tiocm);
2718 /*****************************************************************************/
2721 * All panels and ports actually attached have been worked out. All
2722 * we need to do here is set up the appropriate per port data structures.
2725 static int stli_initports(struct stlibrd *brdp)
2727 struct stliport *portp;
2728 unsigned int i, panelnr, panelport;
2730 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2731 portp = kzalloc(sizeof(struct stliport), GFP_KERNEL);
2732 if (!portp) {
2733 printk("STALLION: failed to allocate port structure\n");
2734 continue;
2737 portp->magic = STLI_PORTMAGIC;
2738 portp->portnr = i;
2739 portp->brdnr = brdp->brdnr;
2740 portp->panelnr = panelnr;
2741 portp->baud_base = STL_BAUDBASE;
2742 portp->close_delay = STL_CLOSEDELAY;
2743 portp->closing_wait = 30 * HZ;
2744 INIT_WORK(&portp->tqhangup, stli_dohangup);
2745 init_waitqueue_head(&portp->open_wait);
2746 init_waitqueue_head(&portp->close_wait);
2747 init_waitqueue_head(&portp->raw_wait);
2748 panelport++;
2749 if (panelport >= brdp->panels[panelnr]) {
2750 panelport = 0;
2751 panelnr++;
2753 brdp->ports[i] = portp;
2756 return 0;
2759 /*****************************************************************************/
2762 * All the following routines are board specific hardware operations.
2765 static void stli_ecpinit(struct stlibrd *brdp)
2767 unsigned long memconf;
2769 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2770 udelay(10);
2771 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2772 udelay(100);
2774 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2775 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2778 /*****************************************************************************/
2780 static void stli_ecpenable(struct stlibrd *brdp)
2782 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2785 /*****************************************************************************/
2787 static void stli_ecpdisable(struct stlibrd *brdp)
2789 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2792 /*****************************************************************************/
2794 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2796 void __iomem *ptr;
2797 unsigned char val;
2799 if (offset > brdp->memsize) {
2800 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2801 "range at line=%d(%d), brd=%d\n",
2802 (int) offset, line, __LINE__, brdp->brdnr);
2803 ptr = NULL;
2804 val = 0;
2805 } else {
2806 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2807 val = (unsigned char) (offset / ECP_ATPAGESIZE);
2809 outb(val, (brdp->iobase + ECP_ATMEMPR));
2810 return(ptr);
2813 /*****************************************************************************/
2815 static void stli_ecpreset(struct stlibrd *brdp)
2817 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2818 udelay(10);
2819 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2820 udelay(500);
2823 /*****************************************************************************/
2825 static void stli_ecpintr(struct stlibrd *brdp)
2827 outb(0x1, brdp->iobase);
2830 /*****************************************************************************/
2833 * The following set of functions act on ECP EISA boards.
2836 static void stli_ecpeiinit(struct stlibrd *brdp)
2838 unsigned long memconf;
2840 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2841 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2842 udelay(10);
2843 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2844 udelay(500);
2846 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
2847 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
2848 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
2849 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
2852 /*****************************************************************************/
2854 static void stli_ecpeienable(struct stlibrd *brdp)
2856 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
2859 /*****************************************************************************/
2861 static void stli_ecpeidisable(struct stlibrd *brdp)
2863 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2866 /*****************************************************************************/
2868 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2870 void __iomem *ptr;
2871 unsigned char val;
2873 if (offset > brdp->memsize) {
2874 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2875 "range at line=%d(%d), brd=%d\n",
2876 (int) offset, line, __LINE__, brdp->brdnr);
2877 ptr = NULL;
2878 val = 0;
2879 } else {
2880 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
2881 if (offset < ECP_EIPAGESIZE)
2882 val = ECP_EIENABLE;
2883 else
2884 val = ECP_EIENABLE | 0x40;
2886 outb(val, (brdp->iobase + ECP_EICONFR));
2887 return(ptr);
2890 /*****************************************************************************/
2892 static void stli_ecpeireset(struct stlibrd *brdp)
2894 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2895 udelay(10);
2896 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2897 udelay(500);
2900 /*****************************************************************************/
2903 * The following set of functions act on ECP MCA boards.
2906 static void stli_ecpmcenable(struct stlibrd *brdp)
2908 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
2911 /*****************************************************************************/
2913 static void stli_ecpmcdisable(struct stlibrd *brdp)
2915 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2918 /*****************************************************************************/
2920 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2922 void __iomem *ptr;
2923 unsigned char val;
2925 if (offset > brdp->memsize) {
2926 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2927 "range at line=%d(%d), brd=%d\n",
2928 (int) offset, line, __LINE__, brdp->brdnr);
2929 ptr = NULL;
2930 val = 0;
2931 } else {
2932 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
2933 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
2935 outb(val, (brdp->iobase + ECP_MCCONFR));
2936 return(ptr);
2939 /*****************************************************************************/
2941 static void stli_ecpmcreset(struct stlibrd *brdp)
2943 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
2944 udelay(10);
2945 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2946 udelay(500);
2949 /*****************************************************************************/
2952 * The following set of functions act on ECP PCI boards.
2955 static void stli_ecppciinit(struct stlibrd *brdp)
2957 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2958 udelay(10);
2959 outb(0, (brdp->iobase + ECP_PCICONFR));
2960 udelay(500);
2963 /*****************************************************************************/
2965 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2967 void __iomem *ptr;
2968 unsigned char val;
2970 if (offset > brdp->memsize) {
2971 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2972 "range at line=%d(%d), board=%d\n",
2973 (int) offset, line, __LINE__, brdp->brdnr);
2974 ptr = NULL;
2975 val = 0;
2976 } else {
2977 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
2978 val = (offset / ECP_PCIPAGESIZE) << 1;
2980 outb(val, (brdp->iobase + ECP_PCICONFR));
2981 return(ptr);
2984 /*****************************************************************************/
2986 static void stli_ecppcireset(struct stlibrd *brdp)
2988 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2989 udelay(10);
2990 outb(0, (brdp->iobase + ECP_PCICONFR));
2991 udelay(500);
2994 /*****************************************************************************/
2997 * The following routines act on ONboards.
3000 static void stli_onbinit(struct stlibrd *brdp)
3002 unsigned long memconf;
3004 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3005 udelay(10);
3006 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3007 mdelay(1000);
3009 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
3010 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
3011 outb(0x1, brdp->iobase);
3012 mdelay(1);
3015 /*****************************************************************************/
3017 static void stli_onbenable(struct stlibrd *brdp)
3019 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
3022 /*****************************************************************************/
3024 static void stli_onbdisable(struct stlibrd *brdp)
3026 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
3029 /*****************************************************************************/
3031 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3033 void __iomem *ptr;
3035 if (offset > brdp->memsize) {
3036 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3037 "range at line=%d(%d), brd=%d\n",
3038 (int) offset, line, __LINE__, brdp->brdnr);
3039 ptr = NULL;
3040 } else {
3041 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3043 return(ptr);
3046 /*****************************************************************************/
3048 static void stli_onbreset(struct stlibrd *brdp)
3050 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3051 udelay(10);
3052 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3053 mdelay(1000);
3056 /*****************************************************************************/
3059 * The following routines act on ONboard EISA.
3062 static void stli_onbeinit(struct stlibrd *brdp)
3064 unsigned long memconf;
3066 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3067 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3068 udelay(10);
3069 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3070 mdelay(1000);
3072 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3073 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3074 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3075 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3076 outb(0x1, brdp->iobase);
3077 mdelay(1);
3080 /*****************************************************************************/
3082 static void stli_onbeenable(struct stlibrd *brdp)
3084 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3087 /*****************************************************************************/
3089 static void stli_onbedisable(struct stlibrd *brdp)
3091 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3094 /*****************************************************************************/
3096 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3098 void __iomem *ptr;
3099 unsigned char val;
3101 if (offset > brdp->memsize) {
3102 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3103 "range at line=%d(%d), brd=%d\n",
3104 (int) offset, line, __LINE__, brdp->brdnr);
3105 ptr = NULL;
3106 val = 0;
3107 } else {
3108 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3109 if (offset < ONB_EIPAGESIZE)
3110 val = ONB_EIENABLE;
3111 else
3112 val = ONB_EIENABLE | 0x40;
3114 outb(val, (brdp->iobase + ONB_EICONFR));
3115 return(ptr);
3118 /*****************************************************************************/
3120 static void stli_onbereset(struct stlibrd *brdp)
3122 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3123 udelay(10);
3124 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3125 mdelay(1000);
3128 /*****************************************************************************/
3131 * The following routines act on Brumby boards.
3134 static void stli_bbyinit(struct stlibrd *brdp)
3136 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3137 udelay(10);
3138 outb(0, (brdp->iobase + BBY_ATCONFR));
3139 mdelay(1000);
3140 outb(0x1, brdp->iobase);
3141 mdelay(1);
3144 /*****************************************************************************/
3146 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3148 void __iomem *ptr;
3149 unsigned char val;
3151 BUG_ON(offset > brdp->memsize);
3153 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3154 val = (unsigned char) (offset / BBY_PAGESIZE);
3155 outb(val, (brdp->iobase + BBY_ATCONFR));
3156 return(ptr);
3159 /*****************************************************************************/
3161 static void stli_bbyreset(struct stlibrd *brdp)
3163 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3164 udelay(10);
3165 outb(0, (brdp->iobase + BBY_ATCONFR));
3166 mdelay(1000);
3169 /*****************************************************************************/
3172 * The following routines act on original old Stallion boards.
3175 static void stli_stalinit(struct stlibrd *brdp)
3177 outb(0x1, brdp->iobase);
3178 mdelay(1000);
3181 /*****************************************************************************/
3183 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3185 BUG_ON(offset > brdp->memsize);
3186 return brdp->membase + (offset % STAL_PAGESIZE);
3189 /*****************************************************************************/
3191 static void stli_stalreset(struct stlibrd *brdp)
3193 u32 __iomem *vecp;
3195 vecp = (u32 __iomem *) (brdp->membase + 0x30);
3196 writel(0xffff0000, vecp);
3197 outb(0, brdp->iobase);
3198 mdelay(1000);
3201 /*****************************************************************************/
3204 * Try to find an ECP board and initialize it. This handles only ECP
3205 * board types.
3208 static int stli_initecp(struct stlibrd *brdp)
3210 cdkecpsig_t sig;
3211 cdkecpsig_t __iomem *sigsp;
3212 unsigned int status, nxtid;
3213 char *name;
3214 int retval, panelnr, nrports;
3216 if ((brdp->iobase == 0) || (brdp->memaddr == 0)) {
3217 retval = -ENODEV;
3218 goto err;
3221 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3222 retval = -EIO;
3223 goto err;
3226 brdp->iosize = ECP_IOSIZE;
3229 * Based on the specific board type setup the common vars to access
3230 * and enable shared memory. Set all board specific information now
3231 * as well.
3233 switch (brdp->brdtype) {
3234 case BRD_ECP:
3235 brdp->memsize = ECP_MEMSIZE;
3236 brdp->pagesize = ECP_ATPAGESIZE;
3237 brdp->init = stli_ecpinit;
3238 brdp->enable = stli_ecpenable;
3239 brdp->reenable = stli_ecpenable;
3240 brdp->disable = stli_ecpdisable;
3241 brdp->getmemptr = stli_ecpgetmemptr;
3242 brdp->intr = stli_ecpintr;
3243 brdp->reset = stli_ecpreset;
3244 name = "serial(EC8/64)";
3245 break;
3247 case BRD_ECPE:
3248 brdp->memsize = ECP_MEMSIZE;
3249 brdp->pagesize = ECP_EIPAGESIZE;
3250 brdp->init = stli_ecpeiinit;
3251 brdp->enable = stli_ecpeienable;
3252 brdp->reenable = stli_ecpeienable;
3253 brdp->disable = stli_ecpeidisable;
3254 brdp->getmemptr = stli_ecpeigetmemptr;
3255 brdp->intr = stli_ecpintr;
3256 brdp->reset = stli_ecpeireset;
3257 name = "serial(EC8/64-EI)";
3258 break;
3260 case BRD_ECPMC:
3261 brdp->memsize = ECP_MEMSIZE;
3262 brdp->pagesize = ECP_MCPAGESIZE;
3263 brdp->init = NULL;
3264 brdp->enable = stli_ecpmcenable;
3265 brdp->reenable = stli_ecpmcenable;
3266 brdp->disable = stli_ecpmcdisable;
3267 brdp->getmemptr = stli_ecpmcgetmemptr;
3268 brdp->intr = stli_ecpintr;
3269 brdp->reset = stli_ecpmcreset;
3270 name = "serial(EC8/64-MCA)";
3271 break;
3273 case BRD_ECPPCI:
3274 brdp->memsize = ECP_PCIMEMSIZE;
3275 brdp->pagesize = ECP_PCIPAGESIZE;
3276 brdp->init = stli_ecppciinit;
3277 brdp->enable = NULL;
3278 brdp->reenable = NULL;
3279 brdp->disable = NULL;
3280 brdp->getmemptr = stli_ecppcigetmemptr;
3281 brdp->intr = stli_ecpintr;
3282 brdp->reset = stli_ecppcireset;
3283 name = "serial(EC/RA-PCI)";
3284 break;
3286 default:
3287 retval = -EINVAL;
3288 goto err_reg;
3292 * The per-board operations structure is all set up, so now let's go
3293 * and get the board operational. Firstly initialize board configuration
3294 * registers. Set the memory mapping info so we can get at the boards
3295 * shared memory.
3297 EBRDINIT(brdp);
3299 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3300 if (brdp->membase == NULL) {
3301 retval = -ENOMEM;
3302 goto err_reg;
3306 * Now that all specific code is set up, enable the shared memory and
3307 * look for the a signature area that will tell us exactly what board
3308 * this is, and what it is connected to it.
3310 EBRDENABLE(brdp);
3311 sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3312 memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3313 EBRDDISABLE(brdp);
3315 if (sig.magic != cpu_to_le32(ECP_MAGIC)) {
3316 retval = -ENODEV;
3317 goto err_unmap;
3321 * Scan through the signature looking at the panels connected to the
3322 * board. Calculate the total number of ports as we go.
3324 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3325 status = sig.panelid[nxtid];
3326 if ((status & ECH_PNLIDMASK) != nxtid)
3327 break;
3329 brdp->panelids[panelnr] = status;
3330 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3331 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3332 nxtid++;
3333 brdp->panels[panelnr] = nrports;
3334 brdp->nrports += nrports;
3335 nxtid++;
3336 brdp->nrpanels++;
3340 brdp->state |= BST_FOUND;
3341 return 0;
3342 err_unmap:
3343 iounmap(brdp->membase);
3344 brdp->membase = NULL;
3345 err_reg:
3346 release_region(brdp->iobase, brdp->iosize);
3347 err:
3348 return retval;
3351 /*****************************************************************************/
3354 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3355 * This handles only these board types.
3358 static int stli_initonb(struct stlibrd *brdp)
3360 cdkonbsig_t sig;
3361 cdkonbsig_t __iomem *sigsp;
3362 char *name;
3363 int i, retval;
3366 * Do a basic sanity check on the IO and memory addresses.
3368 if (brdp->iobase == 0 || brdp->memaddr == 0) {
3369 retval = -ENODEV;
3370 goto err;
3373 brdp->iosize = ONB_IOSIZE;
3375 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3376 retval = -EIO;
3377 goto err;
3381 * Based on the specific board type setup the common vars to access
3382 * and enable shared memory. Set all board specific information now
3383 * as well.
3385 switch (brdp->brdtype) {
3386 case BRD_ONBOARD:
3387 case BRD_ONBOARD2:
3388 brdp->memsize = ONB_MEMSIZE;
3389 brdp->pagesize = ONB_ATPAGESIZE;
3390 brdp->init = stli_onbinit;
3391 brdp->enable = stli_onbenable;
3392 brdp->reenable = stli_onbenable;
3393 brdp->disable = stli_onbdisable;
3394 brdp->getmemptr = stli_onbgetmemptr;
3395 brdp->intr = stli_ecpintr;
3396 brdp->reset = stli_onbreset;
3397 if (brdp->memaddr > 0x100000)
3398 brdp->enabval = ONB_MEMENABHI;
3399 else
3400 brdp->enabval = ONB_MEMENABLO;
3401 name = "serial(ONBoard)";
3402 break;
3404 case BRD_ONBOARDE:
3405 brdp->memsize = ONB_EIMEMSIZE;
3406 brdp->pagesize = ONB_EIPAGESIZE;
3407 brdp->init = stli_onbeinit;
3408 brdp->enable = stli_onbeenable;
3409 brdp->reenable = stli_onbeenable;
3410 brdp->disable = stli_onbedisable;
3411 brdp->getmemptr = stli_onbegetmemptr;
3412 brdp->intr = stli_ecpintr;
3413 brdp->reset = stli_onbereset;
3414 name = "serial(ONBoard/E)";
3415 break;
3417 case BRD_BRUMBY4:
3418 brdp->memsize = BBY_MEMSIZE;
3419 brdp->pagesize = BBY_PAGESIZE;
3420 brdp->init = stli_bbyinit;
3421 brdp->enable = NULL;
3422 brdp->reenable = NULL;
3423 brdp->disable = NULL;
3424 brdp->getmemptr = stli_bbygetmemptr;
3425 brdp->intr = stli_ecpintr;
3426 brdp->reset = stli_bbyreset;
3427 name = "serial(Brumby)";
3428 break;
3430 case BRD_STALLION:
3431 brdp->memsize = STAL_MEMSIZE;
3432 brdp->pagesize = STAL_PAGESIZE;
3433 brdp->init = stli_stalinit;
3434 brdp->enable = NULL;
3435 brdp->reenable = NULL;
3436 brdp->disable = NULL;
3437 brdp->getmemptr = stli_stalgetmemptr;
3438 brdp->intr = stli_ecpintr;
3439 brdp->reset = stli_stalreset;
3440 name = "serial(Stallion)";
3441 break;
3443 default:
3444 retval = -EINVAL;
3445 goto err_reg;
3449 * The per-board operations structure is all set up, so now let's go
3450 * and get the board operational. Firstly initialize board configuration
3451 * registers. Set the memory mapping info so we can get at the boards
3452 * shared memory.
3454 EBRDINIT(brdp);
3456 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3457 if (brdp->membase == NULL) {
3458 retval = -ENOMEM;
3459 goto err_reg;
3463 * Now that all specific code is set up, enable the shared memory and
3464 * look for the a signature area that will tell us exactly what board
3465 * this is, and how many ports.
3467 EBRDENABLE(brdp);
3468 sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3469 memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3470 EBRDDISABLE(brdp);
3472 if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3473 sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3474 sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3475 sig.magic3 != cpu_to_le16(ONB_MAGIC3)) {
3476 retval = -ENODEV;
3477 goto err_unmap;
3481 * Scan through the signature alive mask and calculate how many ports
3482 * there are on this board.
3484 brdp->nrpanels = 1;
3485 if (sig.amask1) {
3486 brdp->nrports = 32;
3487 } else {
3488 for (i = 0; (i < 16); i++) {
3489 if (((sig.amask0 << i) & 0x8000) == 0)
3490 break;
3492 brdp->nrports = i;
3494 brdp->panels[0] = brdp->nrports;
3497 brdp->state |= BST_FOUND;
3498 return 0;
3499 err_unmap:
3500 iounmap(brdp->membase);
3501 brdp->membase = NULL;
3502 err_reg:
3503 release_region(brdp->iobase, brdp->iosize);
3504 err:
3505 return retval;
3508 /*****************************************************************************/
3511 * Start up a running board. This routine is only called after the
3512 * code has been down loaded to the board and is operational. It will
3513 * read in the memory map, and get the show on the road...
3516 static int stli_startbrd(struct stlibrd *brdp)
3518 cdkhdr_t __iomem *hdrp;
3519 cdkmem_t __iomem *memp;
3520 cdkasy_t __iomem *ap;
3521 unsigned long flags;
3522 unsigned int portnr, nrdevs, i;
3523 struct stliport *portp;
3524 int rc = 0;
3525 u32 memoff;
3527 spin_lock_irqsave(&brd_lock, flags);
3528 EBRDENABLE(brdp);
3529 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3530 nrdevs = hdrp->nrdevs;
3532 #if 0
3533 printk("%s(%d): CDK version %d.%d.%d --> "
3534 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3535 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3536 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3537 readl(&hdrp->slavep));
3538 #endif
3540 if (nrdevs < (brdp->nrports + 1)) {
3541 printk(KERN_ERR "STALLION: slave failed to allocate memory for "
3542 "all devices, devices=%d\n", nrdevs);
3543 brdp->nrports = nrdevs - 1;
3545 brdp->nrdevs = nrdevs;
3546 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3547 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3548 brdp->bitsize = (nrdevs + 7) / 8;
3549 memoff = readl(&hdrp->memp);
3550 if (memoff > brdp->memsize) {
3551 printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
3552 rc = -EIO;
3553 goto stli_donestartup;
3555 memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3556 if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3557 printk(KERN_ERR "STALLION: no slave control device found\n");
3558 goto stli_donestartup;
3560 memp++;
3563 * Cycle through memory allocation of each port. We are guaranteed to
3564 * have all ports inside the first page of slave window, so no need to
3565 * change pages while reading memory map.
3567 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3568 if (readw(&memp->dtype) != TYP_ASYNC)
3569 break;
3570 portp = brdp->ports[portnr];
3571 if (portp == NULL)
3572 break;
3573 portp->devnr = i;
3574 portp->addr = readl(&memp->offset);
3575 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3576 portp->portidx = (unsigned char) (i / 8);
3577 portp->portbit = (unsigned char) (0x1 << (i % 8));
3580 writeb(0xff, &hdrp->slavereq);
3583 * For each port setup a local copy of the RX and TX buffer offsets
3584 * and sizes. We do this separate from the above, because we need to
3585 * move the shared memory page...
3587 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3588 portp = brdp->ports[portnr];
3589 if (portp == NULL)
3590 break;
3591 if (portp->addr == 0)
3592 break;
3593 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3594 if (ap != NULL) {
3595 portp->rxsize = readw(&ap->rxq.size);
3596 portp->txsize = readw(&ap->txq.size);
3597 portp->rxoffset = readl(&ap->rxq.offset);
3598 portp->txoffset = readl(&ap->txq.offset);
3602 stli_donestartup:
3603 EBRDDISABLE(brdp);
3604 spin_unlock_irqrestore(&brd_lock, flags);
3606 if (rc == 0)
3607 brdp->state |= BST_STARTED;
3609 if (! stli_timeron) {
3610 stli_timeron++;
3611 mod_timer(&stli_timerlist, STLI_TIMEOUT);
3614 return rc;
3617 /*****************************************************************************/
3620 * Probe and initialize the specified board.
3623 static int __devinit stli_brdinit(struct stlibrd *brdp)
3625 int retval;
3627 switch (brdp->brdtype) {
3628 case BRD_ECP:
3629 case BRD_ECPE:
3630 case BRD_ECPMC:
3631 case BRD_ECPPCI:
3632 retval = stli_initecp(brdp);
3633 break;
3634 case BRD_ONBOARD:
3635 case BRD_ONBOARDE:
3636 case BRD_ONBOARD2:
3637 case BRD_BRUMBY4:
3638 case BRD_STALLION:
3639 retval = stli_initonb(brdp);
3640 break;
3641 default:
3642 printk(KERN_ERR "STALLION: board=%d is unknown board "
3643 "type=%d\n", brdp->brdnr, brdp->brdtype);
3644 retval = -ENODEV;
3647 if (retval)
3648 return retval;
3650 stli_initports(brdp);
3651 printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
3652 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3653 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3654 brdp->nrpanels, brdp->nrports);
3655 return 0;
3658 #if STLI_EISAPROBE != 0
3659 /*****************************************************************************/
3662 * Probe around trying to find where the EISA boards shared memory
3663 * might be. This is a bit if hack, but it is the best we can do.
3666 static int stli_eisamemprobe(struct stlibrd *brdp)
3668 cdkecpsig_t ecpsig, __iomem *ecpsigp;
3669 cdkonbsig_t onbsig, __iomem *onbsigp;
3670 int i, foundit;
3673 * First up we reset the board, to get it into a known state. There
3674 * is only 2 board types here we need to worry about. Don;t use the
3675 * standard board init routine here, it programs up the shared
3676 * memory address, and we don't know it yet...
3678 if (brdp->brdtype == BRD_ECPE) {
3679 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3680 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3681 udelay(10);
3682 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3683 udelay(500);
3684 stli_ecpeienable(brdp);
3685 } else if (brdp->brdtype == BRD_ONBOARDE) {
3686 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3687 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3688 udelay(10);
3689 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3690 mdelay(100);
3691 outb(0x1, brdp->iobase);
3692 mdelay(1);
3693 stli_onbeenable(brdp);
3694 } else {
3695 return -ENODEV;
3698 foundit = 0;
3699 brdp->memsize = ECP_MEMSIZE;
3702 * Board shared memory is enabled, so now we have a poke around and
3703 * see if we can find it.
3705 for (i = 0; (i < stli_eisamempsize); i++) {
3706 brdp->memaddr = stli_eisamemprobeaddrs[i];
3707 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3708 if (brdp->membase == NULL)
3709 continue;
3711 if (brdp->brdtype == BRD_ECPE) {
3712 ecpsigp = stli_ecpeigetmemptr(brdp,
3713 CDK_SIGADDR, __LINE__);
3714 memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3715 if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3716 foundit = 1;
3717 } else {
3718 onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3719 CDK_SIGADDR, __LINE__);
3720 memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3721 if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3722 (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3723 (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3724 (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3725 foundit = 1;
3728 iounmap(brdp->membase);
3729 if (foundit)
3730 break;
3734 * Regardless of whether we found the shared memory or not we must
3735 * disable the region. After that return success or failure.
3737 if (brdp->brdtype == BRD_ECPE)
3738 stli_ecpeidisable(brdp);
3739 else
3740 stli_onbedisable(brdp);
3742 if (! foundit) {
3743 brdp->memaddr = 0;
3744 brdp->membase = NULL;
3745 printk(KERN_ERR "STALLION: failed to probe shared memory "
3746 "region for %s in EISA slot=%d\n",
3747 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3748 return -ENODEV;
3750 return 0;
3752 #endif
3754 static int stli_getbrdnr(void)
3756 unsigned int i;
3758 for (i = 0; i < STL_MAXBRDS; i++) {
3759 if (!stli_brds[i]) {
3760 if (i >= stli_nrbrds)
3761 stli_nrbrds = i + 1;
3762 return i;
3765 return -1;
3768 #if STLI_EISAPROBE != 0
3769 /*****************************************************************************/
3772 * Probe around and try to find any EISA boards in system. The biggest
3773 * problem here is finding out what memory address is associated with
3774 * an EISA board after it is found. The registers of the ECPE and
3775 * ONboardE are not readable - so we can't read them from there. We
3776 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
3777 * actually have any way to find out the real value. The best we can
3778 * do is go probing around in the usual places hoping we can find it.
3781 static int stli_findeisabrds(void)
3783 struct stlibrd *brdp;
3784 unsigned int iobase, eid, i;
3785 int brdnr, found = 0;
3788 * Firstly check if this is an EISA system. If this is not an EISA system then
3789 * don't bother going any further!
3791 if (EISA_bus)
3792 return 0;
3795 * Looks like an EISA system, so go searching for EISA boards.
3797 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3798 outb(0xff, (iobase + 0xc80));
3799 eid = inb(iobase + 0xc80);
3800 eid |= inb(iobase + 0xc81) << 8;
3801 if (eid != STL_EISAID)
3802 continue;
3805 * We have found a board. Need to check if this board was
3806 * statically configured already (just in case!).
3808 for (i = 0; (i < STL_MAXBRDS); i++) {
3809 brdp = stli_brds[i];
3810 if (brdp == NULL)
3811 continue;
3812 if (brdp->iobase == iobase)
3813 break;
3815 if (i < STL_MAXBRDS)
3816 continue;
3819 * We have found a Stallion board and it is not configured already.
3820 * Allocate a board structure and initialize it.
3822 if ((brdp = stli_allocbrd()) == NULL)
3823 return found ? : -ENOMEM;
3824 brdnr = stli_getbrdnr();
3825 if (brdnr < 0)
3826 return found ? : -ENOMEM;
3827 brdp->brdnr = (unsigned int)brdnr;
3828 eid = inb(iobase + 0xc82);
3829 if (eid == ECP_EISAID)
3830 brdp->brdtype = BRD_ECPE;
3831 else if (eid == ONB_EISAID)
3832 brdp->brdtype = BRD_ONBOARDE;
3833 else
3834 brdp->brdtype = BRD_UNKNOWN;
3835 brdp->iobase = iobase;
3836 outb(0x1, (iobase + 0xc84));
3837 if (stli_eisamemprobe(brdp))
3838 outb(0, (iobase + 0xc84));
3839 if (stli_brdinit(brdp) < 0) {
3840 kfree(brdp);
3841 continue;
3844 stli_brds[brdp->brdnr] = brdp;
3845 found++;
3847 for (i = 0; i < brdp->nrports; i++)
3848 tty_register_device(stli_serial,
3849 brdp->brdnr * STL_MAXPORTS + i, NULL);
3852 return found;
3854 #else
3855 static inline int stli_findeisabrds(void) { return 0; }
3856 #endif
3858 /*****************************************************************************/
3861 * Find the next available board number that is free.
3864 /*****************************************************************************/
3867 * We have a Stallion board. Allocate a board structure and
3868 * initialize it. Read its IO and MEMORY resources from PCI
3869 * configuration space.
3872 static int __devinit stli_pciprobe(struct pci_dev *pdev,
3873 const struct pci_device_id *ent)
3875 struct stlibrd *brdp;
3876 unsigned int i;
3877 int brdnr, retval = -EIO;
3879 retval = pci_enable_device(pdev);
3880 if (retval)
3881 goto err;
3882 brdp = stli_allocbrd();
3883 if (brdp == NULL) {
3884 retval = -ENOMEM;
3885 goto err;
3887 mutex_lock(&stli_brdslock);
3888 brdnr = stli_getbrdnr();
3889 if (brdnr < 0) {
3890 printk(KERN_INFO "STALLION: too many boards found, "
3891 "maximum supported %d\n", STL_MAXBRDS);
3892 mutex_unlock(&stli_brdslock);
3893 retval = -EIO;
3894 goto err_fr;
3896 brdp->brdnr = (unsigned int)brdnr;
3897 stli_brds[brdp->brdnr] = brdp;
3898 mutex_unlock(&stli_brdslock);
3899 brdp->brdtype = BRD_ECPPCI;
3901 * We have all resources from the board, so lets setup the actual
3902 * board structure now.
3904 brdp->iobase = pci_resource_start(pdev, 3);
3905 brdp->memaddr = pci_resource_start(pdev, 2);
3906 retval = stli_brdinit(brdp);
3907 if (retval)
3908 goto err_null;
3910 brdp->state |= BST_PROBED;
3911 pci_set_drvdata(pdev, brdp);
3913 EBRDENABLE(brdp);
3914 brdp->enable = NULL;
3915 brdp->disable = NULL;
3917 for (i = 0; i < brdp->nrports; i++)
3918 tty_register_device(stli_serial, brdp->brdnr * STL_MAXPORTS + i,
3919 &pdev->dev);
3921 return 0;
3922 err_null:
3923 stli_brds[brdp->brdnr] = NULL;
3924 err_fr:
3925 kfree(brdp);
3926 err:
3927 return retval;
3930 static void stli_pciremove(struct pci_dev *pdev)
3932 struct stlibrd *brdp = pci_get_drvdata(pdev);
3934 stli_cleanup_ports(brdp);
3936 iounmap(brdp->membase);
3937 if (brdp->iosize > 0)
3938 release_region(brdp->iobase, brdp->iosize);
3940 stli_brds[brdp->brdnr] = NULL;
3941 kfree(brdp);
3944 static struct pci_driver stli_pcidriver = {
3945 .name = "istallion",
3946 .id_table = istallion_pci_tbl,
3947 .probe = stli_pciprobe,
3948 .remove = __devexit_p(stli_pciremove)
3950 /*****************************************************************************/
3953 * Allocate a new board structure. Fill out the basic info in it.
3956 static struct stlibrd *stli_allocbrd(void)
3958 struct stlibrd *brdp;
3960 brdp = kzalloc(sizeof(struct stlibrd), GFP_KERNEL);
3961 if (!brdp) {
3962 printk(KERN_ERR "STALLION: failed to allocate memory "
3963 "(size=%Zd)\n", sizeof(struct stlibrd));
3964 return NULL;
3966 brdp->magic = STLI_BOARDMAGIC;
3967 return brdp;
3970 /*****************************************************************************/
3973 * Scan through all the boards in the configuration and see what we
3974 * can find.
3977 static int stli_initbrds(void)
3979 struct stlibrd *brdp, *nxtbrdp;
3980 struct stlconf conf;
3981 unsigned int i, j, found = 0;
3982 int retval;
3984 for (stli_nrbrds = 0; stli_nrbrds < ARRAY_SIZE(stli_brdsp);
3985 stli_nrbrds++) {
3986 memset(&conf, 0, sizeof(conf));
3987 if (stli_parsebrd(&conf, stli_brdsp[stli_nrbrds]) == 0)
3988 continue;
3989 if ((brdp = stli_allocbrd()) == NULL)
3990 continue;
3991 brdp->brdnr = stli_nrbrds;
3992 brdp->brdtype = conf.brdtype;
3993 brdp->iobase = conf.ioaddr1;
3994 brdp->memaddr = conf.memaddr;
3995 if (stli_brdinit(brdp) < 0) {
3996 kfree(brdp);
3997 continue;
3999 stli_brds[brdp->brdnr] = brdp;
4000 found++;
4002 for (i = 0; i < brdp->nrports; i++)
4003 tty_register_device(stli_serial,
4004 brdp->brdnr * STL_MAXPORTS + i, NULL);
4007 retval = stli_findeisabrds();
4008 if (retval > 0)
4009 found += retval;
4012 * All found boards are initialized. Now for a little optimization, if
4013 * no boards are sharing the "shared memory" regions then we can just
4014 * leave them all enabled. This is in fact the usual case.
4016 stli_shared = 0;
4017 if (stli_nrbrds > 1) {
4018 for (i = 0; (i < stli_nrbrds); i++) {
4019 brdp = stli_brds[i];
4020 if (brdp == NULL)
4021 continue;
4022 for (j = i + 1; (j < stli_nrbrds); j++) {
4023 nxtbrdp = stli_brds[j];
4024 if (nxtbrdp == NULL)
4025 continue;
4026 if ((brdp->membase >= nxtbrdp->membase) &&
4027 (brdp->membase <= (nxtbrdp->membase +
4028 nxtbrdp->memsize - 1))) {
4029 stli_shared++;
4030 break;
4036 if (stli_shared == 0) {
4037 for (i = 0; (i < stli_nrbrds); i++) {
4038 brdp = stli_brds[i];
4039 if (brdp == NULL)
4040 continue;
4041 if (brdp->state & BST_FOUND) {
4042 EBRDENABLE(brdp);
4043 brdp->enable = NULL;
4044 brdp->disable = NULL;
4049 retval = pci_register_driver(&stli_pcidriver);
4050 if (retval && found == 0) {
4051 printk(KERN_ERR "Neither isa nor eisa cards found nor pci "
4052 "driver can be registered!\n");
4053 goto err;
4056 return 0;
4057 err:
4058 return retval;
4061 /*****************************************************************************/
4064 * Code to handle an "staliomem" read operation. This device is the
4065 * contents of the board shared memory. It is used for down loading
4066 * the slave image (and debugging :-)
4069 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4071 unsigned long flags;
4072 void __iomem *memptr;
4073 struct stlibrd *brdp;
4074 unsigned int brdnr;
4075 int size, n;
4076 void *p;
4077 loff_t off = *offp;
4079 brdnr = iminor(fp->f_path.dentry->d_inode);
4080 if (brdnr >= stli_nrbrds)
4081 return -ENODEV;
4082 brdp = stli_brds[brdnr];
4083 if (brdp == NULL)
4084 return -ENODEV;
4085 if (brdp->state == 0)
4086 return -ENODEV;
4087 if (off >= brdp->memsize || off + count < off)
4088 return 0;
4090 size = min(count, (size_t)(brdp->memsize - off));
4093 * Copy the data a page at a time
4096 p = (void *)__get_free_page(GFP_KERNEL);
4097 if(p == NULL)
4098 return -ENOMEM;
4100 while (size > 0) {
4101 spin_lock_irqsave(&brd_lock, flags);
4102 EBRDENABLE(brdp);
4103 memptr = EBRDGETMEMPTR(brdp, off);
4104 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4105 n = min(n, (int)PAGE_SIZE);
4106 memcpy_fromio(p, memptr, n);
4107 EBRDDISABLE(brdp);
4108 spin_unlock_irqrestore(&brd_lock, flags);
4109 if (copy_to_user(buf, p, n)) {
4110 count = -EFAULT;
4111 goto out;
4113 off += n;
4114 buf += n;
4115 size -= n;
4117 out:
4118 *offp = off;
4119 free_page((unsigned long)p);
4120 return count;
4123 /*****************************************************************************/
4126 * Code to handle an "staliomem" write operation. This device is the
4127 * contents of the board shared memory. It is used for down loading
4128 * the slave image (and debugging :-)
4130 * FIXME: copy under lock
4133 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4135 unsigned long flags;
4136 void __iomem *memptr;
4137 struct stlibrd *brdp;
4138 char __user *chbuf;
4139 unsigned int brdnr;
4140 int size, n;
4141 void *p;
4142 loff_t off = *offp;
4144 brdnr = iminor(fp->f_path.dentry->d_inode);
4146 if (brdnr >= stli_nrbrds)
4147 return -ENODEV;
4148 brdp = stli_brds[brdnr];
4149 if (brdp == NULL)
4150 return -ENODEV;
4151 if (brdp->state == 0)
4152 return -ENODEV;
4153 if (off >= brdp->memsize || off + count < off)
4154 return 0;
4156 chbuf = (char __user *) buf;
4157 size = min(count, (size_t)(brdp->memsize - off));
4160 * Copy the data a page at a time
4163 p = (void *)__get_free_page(GFP_KERNEL);
4164 if(p == NULL)
4165 return -ENOMEM;
4167 while (size > 0) {
4168 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4169 n = min(n, (int)PAGE_SIZE);
4170 if (copy_from_user(p, chbuf, n)) {
4171 if (count == 0)
4172 count = -EFAULT;
4173 goto out;
4175 spin_lock_irqsave(&brd_lock, flags);
4176 EBRDENABLE(brdp);
4177 memptr = EBRDGETMEMPTR(brdp, off);
4178 memcpy_toio(memptr, p, n);
4179 EBRDDISABLE(brdp);
4180 spin_unlock_irqrestore(&brd_lock, flags);
4181 off += n;
4182 chbuf += n;
4183 size -= n;
4185 out:
4186 free_page((unsigned long) p);
4187 *offp = off;
4188 return count;
4191 /*****************************************************************************/
4194 * Return the board stats structure to user app.
4197 static int stli_getbrdstats(combrd_t __user *bp)
4199 struct stlibrd *brdp;
4200 unsigned int i;
4202 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4203 return -EFAULT;
4204 if (stli_brdstats.brd >= STL_MAXBRDS)
4205 return -ENODEV;
4206 brdp = stli_brds[stli_brdstats.brd];
4207 if (brdp == NULL)
4208 return -ENODEV;
4210 memset(&stli_brdstats, 0, sizeof(combrd_t));
4211 stli_brdstats.brd = brdp->brdnr;
4212 stli_brdstats.type = brdp->brdtype;
4213 stli_brdstats.hwid = 0;
4214 stli_brdstats.state = brdp->state;
4215 stli_brdstats.ioaddr = brdp->iobase;
4216 stli_brdstats.memaddr = brdp->memaddr;
4217 stli_brdstats.nrpanels = brdp->nrpanels;
4218 stli_brdstats.nrports = brdp->nrports;
4219 for (i = 0; (i < brdp->nrpanels); i++) {
4220 stli_brdstats.panels[i].panel = i;
4221 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4222 stli_brdstats.panels[i].nrports = brdp->panels[i];
4225 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4226 return -EFAULT;
4227 return 0;
4230 /*****************************************************************************/
4233 * Resolve the referenced port number into a port struct pointer.
4236 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr,
4237 unsigned int portnr)
4239 struct stlibrd *brdp;
4240 unsigned int i;
4242 if (brdnr >= STL_MAXBRDS)
4243 return NULL;
4244 brdp = stli_brds[brdnr];
4245 if (brdp == NULL)
4246 return NULL;
4247 for (i = 0; (i < panelnr); i++)
4248 portnr += brdp->panels[i];
4249 if (portnr >= brdp->nrports)
4250 return NULL;
4251 return brdp->ports[portnr];
4254 /*****************************************************************************/
4257 * Return the port stats structure to user app. A NULL port struct
4258 * pointer passed in means that we need to find out from the app
4259 * what port to get stats for (used through board control device).
4262 static int stli_portcmdstats(struct stliport *portp)
4264 unsigned long flags;
4265 struct stlibrd *brdp;
4266 int rc;
4268 memset(&stli_comstats, 0, sizeof(comstats_t));
4270 if (portp == NULL)
4271 return -ENODEV;
4272 brdp = stli_brds[portp->brdnr];
4273 if (brdp == NULL)
4274 return -ENODEV;
4276 if (brdp->state & BST_STARTED) {
4277 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4278 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4279 return rc;
4280 } else {
4281 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4284 stli_comstats.brd = portp->brdnr;
4285 stli_comstats.panel = portp->panelnr;
4286 stli_comstats.port = portp->portnr;
4287 stli_comstats.state = portp->state;
4288 stli_comstats.flags = portp->flags;
4290 spin_lock_irqsave(&brd_lock, flags);
4291 if (portp->tty != NULL) {
4292 if (portp->tty->driver_data == portp) {
4293 stli_comstats.ttystate = portp->tty->flags;
4294 stli_comstats.rxbuffered = -1;
4295 if (portp->tty->termios != NULL) {
4296 stli_comstats.cflags = portp->tty->termios->c_cflag;
4297 stli_comstats.iflags = portp->tty->termios->c_iflag;
4298 stli_comstats.oflags = portp->tty->termios->c_oflag;
4299 stli_comstats.lflags = portp->tty->termios->c_lflag;
4303 spin_unlock_irqrestore(&brd_lock, flags);
4305 stli_comstats.txtotal = stli_cdkstats.txchars;
4306 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4307 stli_comstats.txbuffered = stli_cdkstats.txringq;
4308 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4309 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4310 stli_comstats.rxparity = stli_cdkstats.parity;
4311 stli_comstats.rxframing = stli_cdkstats.framing;
4312 stli_comstats.rxlost = stli_cdkstats.ringover;
4313 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4314 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4315 stli_comstats.txxon = stli_cdkstats.txstart;
4316 stli_comstats.txxoff = stli_cdkstats.txstop;
4317 stli_comstats.rxxon = stli_cdkstats.rxstart;
4318 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4319 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4320 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4321 stli_comstats.modem = stli_cdkstats.dcdcnt;
4322 stli_comstats.hwid = stli_cdkstats.hwid;
4323 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4325 return 0;
4328 /*****************************************************************************/
4331 * Return the port stats structure to user app. A NULL port struct
4332 * pointer passed in means that we need to find out from the app
4333 * what port to get stats for (used through board control device).
4336 static int stli_getportstats(struct stliport *portp, comstats_t __user *cp)
4338 struct stlibrd *brdp;
4339 int rc;
4341 if (!portp) {
4342 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4343 return -EFAULT;
4344 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4345 stli_comstats.port);
4346 if (!portp)
4347 return -ENODEV;
4350 brdp = stli_brds[portp->brdnr];
4351 if (!brdp)
4352 return -ENODEV;
4354 if ((rc = stli_portcmdstats(portp)) < 0)
4355 return rc;
4357 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4358 -EFAULT : 0;
4361 /*****************************************************************************/
4364 * Clear the port stats structure. We also return it zeroed out...
4367 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp)
4369 struct stlibrd *brdp;
4370 int rc;
4372 if (!portp) {
4373 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4374 return -EFAULT;
4375 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4376 stli_comstats.port);
4377 if (!portp)
4378 return -ENODEV;
4381 brdp = stli_brds[portp->brdnr];
4382 if (!brdp)
4383 return -ENODEV;
4385 if (brdp->state & BST_STARTED) {
4386 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
4387 return rc;
4390 memset(&stli_comstats, 0, sizeof(comstats_t));
4391 stli_comstats.brd = portp->brdnr;
4392 stli_comstats.panel = portp->panelnr;
4393 stli_comstats.port = portp->portnr;
4395 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4396 return -EFAULT;
4397 return 0;
4400 /*****************************************************************************/
4403 * Return the entire driver ports structure to a user app.
4406 static int stli_getportstruct(struct stliport __user *arg)
4408 struct stliport stli_dummyport;
4409 struct stliport *portp;
4411 if (copy_from_user(&stli_dummyport, arg, sizeof(struct stliport)))
4412 return -EFAULT;
4413 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4414 stli_dummyport.portnr);
4415 if (!portp)
4416 return -ENODEV;
4417 if (copy_to_user(arg, portp, sizeof(struct stliport)))
4418 return -EFAULT;
4419 return 0;
4422 /*****************************************************************************/
4425 * Return the entire driver board structure to a user app.
4428 static int stli_getbrdstruct(struct stlibrd __user *arg)
4430 struct stlibrd stli_dummybrd;
4431 struct stlibrd *brdp;
4433 if (copy_from_user(&stli_dummybrd, arg, sizeof(struct stlibrd)))
4434 return -EFAULT;
4435 if (stli_dummybrd.brdnr >= STL_MAXBRDS)
4436 return -ENODEV;
4437 brdp = stli_brds[stli_dummybrd.brdnr];
4438 if (!brdp)
4439 return -ENODEV;
4440 if (copy_to_user(arg, brdp, sizeof(struct stlibrd)))
4441 return -EFAULT;
4442 return 0;
4445 /*****************************************************************************/
4448 * The "staliomem" device is also required to do some special operations on
4449 * the board. We need to be able to send an interrupt to the board,
4450 * reset it, and start/stop it.
4453 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
4455 struct stlibrd *brdp;
4456 int brdnr, rc, done;
4457 void __user *argp = (void __user *)arg;
4460 * First up handle the board independent ioctls.
4462 done = 0;
4463 rc = 0;
4465 switch (cmd) {
4466 case COM_GETPORTSTATS:
4467 rc = stli_getportstats(NULL, argp);
4468 done++;
4469 break;
4470 case COM_CLRPORTSTATS:
4471 rc = stli_clrportstats(NULL, argp);
4472 done++;
4473 break;
4474 case COM_GETBRDSTATS:
4475 rc = stli_getbrdstats(argp);
4476 done++;
4477 break;
4478 case COM_READPORT:
4479 rc = stli_getportstruct(argp);
4480 done++;
4481 break;
4482 case COM_READBOARD:
4483 rc = stli_getbrdstruct(argp);
4484 done++;
4485 break;
4488 if (done)
4489 return rc;
4492 * Now handle the board specific ioctls. These all depend on the
4493 * minor number of the device they were called from.
4495 brdnr = iminor(ip);
4496 if (brdnr >= STL_MAXBRDS)
4497 return -ENODEV;
4498 brdp = stli_brds[brdnr];
4499 if (!brdp)
4500 return -ENODEV;
4501 if (brdp->state == 0)
4502 return -ENODEV;
4504 switch (cmd) {
4505 case STL_BINTR:
4506 EBRDINTR(brdp);
4507 break;
4508 case STL_BSTART:
4509 rc = stli_startbrd(brdp);
4510 break;
4511 case STL_BSTOP:
4512 brdp->state &= ~BST_STARTED;
4513 break;
4514 case STL_BRESET:
4515 brdp->state &= ~BST_STARTED;
4516 EBRDRESET(brdp);
4517 if (stli_shared == 0) {
4518 if (brdp->reenable != NULL)
4519 (* brdp->reenable)(brdp);
4521 break;
4522 default:
4523 rc = -ENOIOCTLCMD;
4524 break;
4526 return rc;
4529 static const struct tty_operations stli_ops = {
4530 .open = stli_open,
4531 .close = stli_close,
4532 .write = stli_write,
4533 .put_char = stli_putchar,
4534 .flush_chars = stli_flushchars,
4535 .write_room = stli_writeroom,
4536 .chars_in_buffer = stli_charsinbuffer,
4537 .ioctl = stli_ioctl,
4538 .set_termios = stli_settermios,
4539 .throttle = stli_throttle,
4540 .unthrottle = stli_unthrottle,
4541 .stop = stli_stop,
4542 .start = stli_start,
4543 .hangup = stli_hangup,
4544 .flush_buffer = stli_flushbuffer,
4545 .break_ctl = stli_breakctl,
4546 .wait_until_sent = stli_waituntilsent,
4547 .send_xchar = stli_sendxchar,
4548 .read_proc = stli_readproc,
4549 .tiocmget = stli_tiocmget,
4550 .tiocmset = stli_tiocmset,
4553 /*****************************************************************************/
4555 * Loadable module initialization stuff.
4558 static void istallion_cleanup_isa(void)
4560 struct stlibrd *brdp;
4561 unsigned int j;
4563 for (j = 0; (j < stli_nrbrds); j++) {
4564 if ((brdp = stli_brds[j]) == NULL || (brdp->state & BST_PROBED))
4565 continue;
4567 stli_cleanup_ports(brdp);
4569 iounmap(brdp->membase);
4570 if (brdp->iosize > 0)
4571 release_region(brdp->iobase, brdp->iosize);
4572 kfree(brdp);
4573 stli_brds[j] = NULL;
4577 static int __init istallion_module_init(void)
4579 unsigned int i;
4580 int retval;
4582 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4584 spin_lock_init(&stli_lock);
4585 spin_lock_init(&brd_lock);
4587 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4588 if (!stli_txcookbuf) {
4589 printk(KERN_ERR "STALLION: failed to allocate memory "
4590 "(size=%d)\n", STLI_TXBUFSIZE);
4591 retval = -ENOMEM;
4592 goto err;
4595 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4596 if (!stli_serial) {
4597 retval = -ENOMEM;
4598 goto err_free;
4601 stli_serial->owner = THIS_MODULE;
4602 stli_serial->driver_name = stli_drvname;
4603 stli_serial->name = stli_serialname;
4604 stli_serial->major = STL_SERIALMAJOR;
4605 stli_serial->minor_start = 0;
4606 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4607 stli_serial->subtype = SERIAL_TYPE_NORMAL;
4608 stli_serial->init_termios = stli_deftermios;
4609 stli_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4610 tty_set_operations(stli_serial, &stli_ops);
4612 retval = tty_register_driver(stli_serial);
4613 if (retval) {
4614 printk(KERN_ERR "STALLION: failed to register serial driver\n");
4615 goto err_ttyput;
4618 retval = stli_initbrds();
4619 if (retval)
4620 goto err_ttyunr;
4623 * Set up a character driver for the shared memory region. We need this
4624 * to down load the slave code image. Also it is a useful debugging tool.
4626 retval = register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem);
4627 if (retval) {
4628 printk(KERN_ERR "STALLION: failed to register serial memory "
4629 "device\n");
4630 goto err_deinit;
4633 istallion_class = class_create(THIS_MODULE, "staliomem");
4634 for (i = 0; i < 4; i++)
4635 class_device_create(istallion_class, NULL,
4636 MKDEV(STL_SIOMEMMAJOR, i),
4637 NULL, "staliomem%d", i);
4639 return 0;
4640 err_deinit:
4641 pci_unregister_driver(&stli_pcidriver);
4642 istallion_cleanup_isa();
4643 err_ttyunr:
4644 tty_unregister_driver(stli_serial);
4645 err_ttyput:
4646 put_tty_driver(stli_serial);
4647 err_free:
4648 kfree(stli_txcookbuf);
4649 err:
4650 return retval;
4653 /*****************************************************************************/
4655 static void __exit istallion_module_exit(void)
4657 unsigned int j;
4659 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
4660 stli_drvversion);
4662 if (stli_timeron) {
4663 stli_timeron = 0;
4664 del_timer_sync(&stli_timerlist);
4667 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4669 for (j = 0; j < 4; j++)
4670 class_device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR,
4671 j));
4672 class_destroy(istallion_class);
4674 pci_unregister_driver(&stli_pcidriver);
4675 istallion_cleanup_isa();
4677 tty_unregister_driver(stli_serial);
4678 put_tty_driver(stli_serial);
4680 kfree(stli_txcookbuf);
4683 module_init(istallion_module_init);
4684 module_exit(istallion_module_exit);