[PATCH] x86_64 early quirks: fix early_qrk[] section tag
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / firmware / dmi_scan.c
blob37deee6c0c1cc5aa4ca575797dea77d6ad792243
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/dmi.h>
6 #include <linux/efi.h>
7 #include <linux/bootmem.h>
8 #include <linux/slab.h>
9 #include <asm/dmi.h>
11 static char * __init dmi_string(struct dmi_header *dm, u8 s)
13 u8 *bp = ((u8 *) dm) + dm->length;
14 char *str = "";
16 if (s) {
17 s--;
18 while (s > 0 && *bp) {
19 bp += strlen(bp) + 1;
20 s--;
23 if (*bp != 0) {
24 str = dmi_alloc(strlen(bp) + 1);
25 if (str != NULL)
26 strcpy(str, bp);
27 else
28 printk(KERN_ERR "dmi_string: out of memory.\n");
32 return str;
36 * We have to be cautious here. We have seen BIOSes with DMI pointers
37 * pointing to completely the wrong place for example
39 static int __init dmi_table(u32 base, int len, int num,
40 void (*decode)(struct dmi_header *))
42 u8 *buf, *data;
43 int i = 0;
45 buf = dmi_ioremap(base, len);
46 if (buf == NULL)
47 return -1;
49 data = buf;
52 * Stop when we see all the items the table claimed to have
53 * OR we run off the end of the table (also happens)
55 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
56 struct dmi_header *dm = (struct dmi_header *)data;
58 * We want to know the total length (formated area and strings)
59 * before decoding to make sure we won't run off the table in
60 * dmi_decode or dmi_string
62 data += dm->length;
63 while ((data - buf < len - 1) && (data[0] || data[1]))
64 data++;
65 if (data - buf < len - 1)
66 decode(dm);
67 data += 2;
68 i++;
70 dmi_iounmap(buf, len);
71 return 0;
74 static int __init dmi_checksum(u8 *buf)
76 u8 sum = 0;
77 int a;
79 for (a = 0; a < 15; a++)
80 sum += buf[a];
82 return sum == 0;
85 static char *dmi_ident[DMI_STRING_MAX];
86 static LIST_HEAD(dmi_devices);
89 * Save a DMI string
91 static void __init dmi_save_ident(struct dmi_header *dm, int slot, int string)
93 char *p, *d = (char*) dm;
95 if (dmi_ident[slot])
96 return;
98 p = dmi_string(dm, d[string]);
99 if (p == NULL)
100 return;
102 dmi_ident[slot] = p;
105 static void __init dmi_save_devices(struct dmi_header *dm)
107 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
108 struct dmi_device *dev;
110 for (i = 0; i < count; i++) {
111 char *d = (char *)(dm + 1) + (i * 2);
113 /* Skip disabled device */
114 if ((*d & 0x80) == 0)
115 continue;
117 dev = dmi_alloc(sizeof(*dev));
118 if (!dev) {
119 printk(KERN_ERR "dmi_save_devices: out of memory.\n");
120 break;
123 dev->type = *d++ & 0x7f;
124 dev->name = dmi_string(dm, *d);
125 dev->device_data = NULL;
126 list_add(&dev->list, &dmi_devices);
130 static void __init dmi_save_oem_strings_devices(struct dmi_header *dm)
132 int i, count = *(u8 *)(dm + 1);
133 struct dmi_device *dev;
135 for (i = 1; i <= count; i++) {
136 dev = dmi_alloc(sizeof(*dev));
137 if (!dev) {
138 printk(KERN_ERR
139 "dmi_save_oem_strings_devices: out of memory.\n");
140 break;
143 dev->type = DMI_DEV_TYPE_OEM_STRING;
144 dev->name = dmi_string(dm, i);
145 dev->device_data = NULL;
147 list_add(&dev->list, &dmi_devices);
151 static void __init dmi_save_ipmi_device(struct dmi_header *dm)
153 struct dmi_device *dev;
154 void * data;
156 data = dmi_alloc(dm->length);
157 if (data == NULL) {
158 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
159 return;
162 memcpy(data, dm, dm->length);
164 dev = dmi_alloc(sizeof(*dev));
165 if (!dev) {
166 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
167 return;
170 dev->type = DMI_DEV_TYPE_IPMI;
171 dev->name = "IPMI controller";
172 dev->device_data = data;
174 list_add(&dev->list, &dmi_devices);
178 * Process a DMI table entry. Right now all we care about are the BIOS
179 * and machine entries. For 2.5 we should pull the smbus controller info
180 * out of here.
182 static void __init dmi_decode(struct dmi_header *dm)
184 switch(dm->type) {
185 case 0: /* BIOS Information */
186 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
187 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
188 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
189 break;
190 case 1: /* System Information */
191 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
192 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
193 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
194 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
195 break;
196 case 2: /* Base Board Information */
197 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
198 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
199 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
200 break;
201 case 10: /* Onboard Devices Information */
202 dmi_save_devices(dm);
203 break;
204 case 11: /* OEM Strings */
205 dmi_save_oem_strings_devices(dm);
206 break;
207 case 38: /* IPMI Device Information */
208 dmi_save_ipmi_device(dm);
212 static int __init dmi_present(char __iomem *p)
214 u8 buf[15];
215 memcpy_fromio(buf, p, 15);
216 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
217 u16 num = (buf[13] << 8) | buf[12];
218 u16 len = (buf[7] << 8) | buf[6];
219 u32 base = (buf[11] << 24) | (buf[10] << 16) |
220 (buf[9] << 8) | buf[8];
223 * DMI version 0.0 means that the real version is taken from
224 * the SMBIOS version, which we don't know at this point.
226 if (buf[14] != 0)
227 printk(KERN_INFO "DMI %d.%d present.\n",
228 buf[14] >> 4, buf[14] & 0xF);
229 else
230 printk(KERN_INFO "DMI present.\n");
231 if (dmi_table(base,len, num, dmi_decode) == 0)
232 return 0;
234 return 1;
237 void __init dmi_scan_machine(void)
239 char __iomem *p, *q;
240 int rc;
242 if (efi_enabled) {
243 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
244 goto out;
246 /* This is called as a core_initcall() because it isn't
247 * needed during early boot. This also means we can
248 * iounmap the space when we're done with it.
250 p = dmi_ioremap(efi.smbios, 32);
251 if (p == NULL)
252 goto out;
254 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
255 dmi_iounmap(p, 32);
256 if (!rc)
257 return;
259 else {
261 * no iounmap() for that ioremap(); it would be a no-op, but
262 * it's so early in setup that sucker gets confused into doing
263 * what it shouldn't if we actually call it.
265 p = dmi_ioremap(0xF0000, 0x10000);
266 if (p == NULL)
267 goto out;
269 for (q = p; q < p + 0x10000; q += 16) {
270 rc = dmi_present(q);
271 if (!rc)
272 return;
275 out: printk(KERN_INFO "DMI not present or invalid.\n");
279 * dmi_check_system - check system DMI data
280 * @list: array of dmi_system_id structures to match against
281 * All non-null elements of the list must match
282 * their slot's (field index's) data (i.e., each
283 * list string must be a substring of the specified
284 * DMI slot's string data) to be considered a
285 * successful match.
287 * Walk the blacklist table running matching functions until someone
288 * returns non zero or we hit the end. Callback function is called for
289 * each successful match. Returns the number of matches.
291 int dmi_check_system(struct dmi_system_id *list)
293 int i, count = 0;
294 struct dmi_system_id *d = list;
296 while (d->ident) {
297 for (i = 0; i < ARRAY_SIZE(d->matches); i++) {
298 int s = d->matches[i].slot;
299 if (s == DMI_NONE)
300 continue;
301 if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr))
302 continue;
303 /* No match */
304 goto fail;
306 count++;
307 if (d->callback && d->callback(d))
308 break;
309 fail: d++;
312 return count;
314 EXPORT_SYMBOL(dmi_check_system);
317 * dmi_get_system_info - return DMI data value
318 * @field: data index (see enum dmi_field)
320 * Returns one DMI data value, can be used to perform
321 * complex DMI data checks.
323 char *dmi_get_system_info(int field)
325 return dmi_ident[field];
327 EXPORT_SYMBOL(dmi_get_system_info);
331 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
332 * @str: Case sensitive Name
334 int dmi_name_in_vendors(char *str)
336 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
337 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
338 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
339 int i;
340 for (i = 0; fields[i] != DMI_NONE; i++) {
341 int f = fields[i];
342 if (dmi_ident[f] && strstr(dmi_ident[f], str))
343 return 1;
345 return 0;
347 EXPORT_SYMBOL(dmi_name_in_vendors);
350 * dmi_find_device - find onboard device by type/name
351 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
352 * @name: device name string or %NULL to match all
353 * @from: previous device found in search, or %NULL for new search.
355 * Iterates through the list of known onboard devices. If a device is
356 * found with a matching @vendor and @device, a pointer to its device
357 * structure is returned. Otherwise, %NULL is returned.
358 * A new search is initiated by passing %NULL as the @from argument.
359 * If @from is not %NULL, searches continue from next device.
361 struct dmi_device * dmi_find_device(int type, const char *name,
362 struct dmi_device *from)
364 struct list_head *d, *head = from ? &from->list : &dmi_devices;
366 for(d = head->next; d != &dmi_devices; d = d->next) {
367 struct dmi_device *dev = list_entry(d, struct dmi_device, list);
369 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
370 ((name == NULL) || (strcmp(dev->name, name) == 0)))
371 return dev;
374 return NULL;
376 EXPORT_SYMBOL(dmi_find_device);
379 * dmi_get_year - Return year of a DMI date
380 * @field: data index (like dmi_get_system_info)
382 * Returns -1 when the field doesn't exist. 0 when it is broken.
384 int dmi_get_year(int field)
386 int year;
387 char *s = dmi_get_system_info(field);
389 if (!s)
390 return -1;
391 if (*s == '\0')
392 return 0;
393 s = strrchr(s, '/');
394 if (!s)
395 return 0;
397 s += 1;
398 year = simple_strtoul(s, NULL, 0);
399 if (year && year < 100) { /* 2-digit year */
400 year += 1900;
401 if (year < 1996) /* no dates < spec 1.0 */
402 year += 100;
405 return year;