2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
32 #include "xfs_dmapi.h"
33 #include "xfs_mount.h"
34 #include "xfs_bmap_btree.h"
35 #include "xfs_alloc_btree.h"
36 #include "xfs_ialloc_btree.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
53 #include "xfs_filestream.h"
54 #include "xfs_vnodeops.h"
56 kmem_zone_t
*xfs_ifork_zone
;
57 kmem_zone_t
*xfs_inode_zone
;
58 kmem_zone_t
*xfs_icluster_zone
;
61 * Used in xfs_itruncate(). This is the maximum number of extents
62 * freed from a file in a single transaction.
64 #define XFS_ITRUNC_MAX_EXTENTS 2
66 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
67 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
68 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
69 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
73 * Make sure that the extents in the given memory buffer
83 xfs_bmbt_rec_host_t rec
;
86 for (i
= 0; i
< nrecs
; i
++) {
87 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
88 rec
.l0
= get_unaligned(&ep
->l0
);
89 rec
.l1
= get_unaligned(&ep
->l1
);
90 xfs_bmbt_get_all(&rec
, &irec
);
91 if (fmt
== XFS_EXTFMT_NOSTATE
)
92 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
96 #define xfs_validate_extents(ifp, nrecs, fmt)
100 * Check that none of the inode's in the buffer have a next
101 * unlinked field of 0.
113 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
115 for (i
= 0; i
< j
; i
++) {
116 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
117 i
* mp
->m_sb
.sb_inodesize
);
118 if (!dip
->di_next_unlinked
) {
119 xfs_fs_cmn_err(CE_ALERT
, mp
,
120 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
122 ASSERT(dip
->di_next_unlinked
);
129 * This routine is called to map an inode number within a file
130 * system to the buffer containing the on-disk version of the
131 * inode. It returns a pointer to the buffer containing the
132 * on-disk inode in the bpp parameter, and in the dip parameter
133 * it returns a pointer to the on-disk inode within that buffer.
135 * If a non-zero error is returned, then the contents of bpp and
136 * dipp are undefined.
138 * Use xfs_imap() to determine the size and location of the
139 * buffer to read from disk.
157 * Call the space management code to find the location of the
161 error
= xfs_imap(mp
, tp
, ino
, &imap
, XFS_IMAP_LOOKUP
);
164 "xfs_inotobp: xfs_imap() returned an "
165 "error %d on %s. Returning error.", error
, mp
->m_fsname
);
170 * If the inode number maps to a block outside the bounds of the
171 * file system then return NULL rather than calling read_buf
172 * and panicing when we get an error from the driver.
174 if ((imap
.im_blkno
+ imap
.im_len
) >
175 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
177 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
178 "of the file system %s. Returning EINVAL.",
179 (unsigned long long)imap
.im_blkno
,
180 imap
.im_len
, mp
->m_fsname
);
181 return XFS_ERROR(EINVAL
);
185 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
186 * default to just a read_buf() call.
188 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
.im_blkno
,
189 (int)imap
.im_len
, XFS_BUF_LOCK
, &bp
);
193 "xfs_inotobp: xfs_trans_read_buf() returned an "
194 "error %d on %s. Returning error.", error
, mp
->m_fsname
);
197 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, 0);
199 be16_to_cpu(dip
->di_core
.di_magic
) == XFS_DINODE_MAGIC
&&
200 XFS_DINODE_GOOD_VERSION(dip
->di_core
.di_version
);
201 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
, XFS_ERRTAG_ITOBP_INOTOBP
,
202 XFS_RANDOM_ITOBP_INOTOBP
))) {
203 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW
, mp
, dip
);
204 xfs_trans_brelse(tp
, bp
);
206 "xfs_inotobp: XFS_TEST_ERROR() returned an "
207 "error on %s. Returning EFSCORRUPTED.", mp
->m_fsname
);
208 return XFS_ERROR(EFSCORRUPTED
);
211 xfs_inobp_check(mp
, bp
);
214 * Set *dipp to point to the on-disk inode in the buffer.
216 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
218 *offset
= imap
.im_boffset
;
224 * This routine is called to map an inode to the buffer containing
225 * the on-disk version of the inode. It returns a pointer to the
226 * buffer containing the on-disk inode in the bpp parameter, and in
227 * the dip parameter it returns a pointer to the on-disk inode within
230 * If a non-zero error is returned, then the contents of bpp and
231 * dipp are undefined.
233 * If the inode is new and has not yet been initialized, use xfs_imap()
234 * to determine the size and location of the buffer to read from disk.
235 * If the inode has already been mapped to its buffer and read in once,
236 * then use the mapping information stored in the inode rather than
237 * calling xfs_imap(). This allows us to avoid the overhead of looking
238 * at the inode btree for small block file systems (see xfs_dilocate()).
239 * We can tell whether the inode has been mapped in before by comparing
240 * its disk block address to 0. Only uninitialized inodes will have
241 * 0 for the disk block address.
259 if (ip
->i_blkno
== (xfs_daddr_t
)0) {
261 * Call the space management code to find the location of the
265 if ((error
= xfs_imap(mp
, tp
, ip
->i_ino
, &imap
,
266 XFS_IMAP_LOOKUP
| imap_flags
)))
270 * If the inode number maps to a block outside the bounds
271 * of the file system then return NULL rather than calling
272 * read_buf and panicing when we get an error from the
275 if ((imap
.im_blkno
+ imap
.im_len
) >
276 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
278 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_itobp: "
279 "(imap.im_blkno (0x%llx) "
280 "+ imap.im_len (0x%llx)) > "
281 " XFS_FSB_TO_BB(mp, "
282 "mp->m_sb.sb_dblocks) (0x%llx)",
283 (unsigned long long) imap
.im_blkno
,
284 (unsigned long long) imap
.im_len
,
285 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
287 return XFS_ERROR(EINVAL
);
291 * Fill in the fields in the inode that will be used to
292 * map the inode to its buffer from now on.
294 ip
->i_blkno
= imap
.im_blkno
;
295 ip
->i_len
= imap
.im_len
;
296 ip
->i_boffset
= imap
.im_boffset
;
299 * We've already mapped the inode once, so just use the
300 * mapping that we saved the first time.
302 imap
.im_blkno
= ip
->i_blkno
;
303 imap
.im_len
= ip
->i_len
;
304 imap
.im_boffset
= ip
->i_boffset
;
306 ASSERT(bno
== 0 || bno
== imap
.im_blkno
);
309 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
310 * default to just a read_buf() call.
312 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
.im_blkno
,
313 (int)imap
.im_len
, XFS_BUF_LOCK
, &bp
);
316 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_itobp: "
317 "xfs_trans_read_buf() returned error %d, "
318 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
319 error
, (unsigned long long) imap
.im_blkno
,
320 (unsigned long long) imap
.im_len
);
326 * Validate the magic number and version of every inode in the buffer
327 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
328 * No validation is done here in userspace (xfs_repair).
330 #if !defined(__KERNEL__)
333 ni
= BBTOB(imap
.im_len
) >> mp
->m_sb
.sb_inodelog
;
334 #else /* usual case */
338 for (i
= 0; i
< ni
; i
++) {
342 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
343 (i
<< mp
->m_sb
.sb_inodelog
));
344 di_ok
= be16_to_cpu(dip
->di_core
.di_magic
) == XFS_DINODE_MAGIC
&&
345 XFS_DINODE_GOOD_VERSION(dip
->di_core
.di_version
);
346 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
347 XFS_ERRTAG_ITOBP_INOTOBP
,
348 XFS_RANDOM_ITOBP_INOTOBP
))) {
349 if (imap_flags
& XFS_IMAP_BULKSTAT
) {
350 xfs_trans_brelse(tp
, bp
);
351 return XFS_ERROR(EINVAL
);
355 "Device %s - bad inode magic/vsn "
356 "daddr %lld #%d (magic=%x)",
357 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
358 (unsigned long long)imap
.im_blkno
, i
,
359 be16_to_cpu(dip
->di_core
.di_magic
));
361 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH
,
363 xfs_trans_brelse(tp
, bp
);
364 return XFS_ERROR(EFSCORRUPTED
);
368 xfs_inobp_check(mp
, bp
);
371 * Mark the buffer as an inode buffer now that it looks good
373 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
376 * Set *dipp to point to the on-disk inode in the buffer.
378 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
384 * Move inode type and inode format specific information from the
385 * on-disk inode to the in-core inode. For fifos, devs, and sockets
386 * this means set if_rdev to the proper value. For files, directories,
387 * and symlinks this means to bring in the in-line data or extent
388 * pointers. For a file in B-tree format, only the root is immediately
389 * brought in-core. The rest will be in-lined in if_extents when it
390 * is first referenced (see xfs_iread_extents()).
397 xfs_attr_shortform_t
*atp
;
401 ip
->i_df
.if_ext_max
=
402 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
405 if (unlikely(be32_to_cpu(dip
->di_core
.di_nextents
) +
406 be16_to_cpu(dip
->di_core
.di_anextents
) >
407 be64_to_cpu(dip
->di_core
.di_nblocks
))) {
408 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
409 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
410 (unsigned long long)ip
->i_ino
,
411 (int)(be32_to_cpu(dip
->di_core
.di_nextents
) +
412 be16_to_cpu(dip
->di_core
.di_anextents
)),
414 be64_to_cpu(dip
->di_core
.di_nblocks
));
415 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
417 return XFS_ERROR(EFSCORRUPTED
);
420 if (unlikely(dip
->di_core
.di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
421 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
422 "corrupt dinode %Lu, forkoff = 0x%x.",
423 (unsigned long long)ip
->i_ino
,
424 dip
->di_core
.di_forkoff
);
425 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
427 return XFS_ERROR(EFSCORRUPTED
);
430 switch (ip
->i_d
.di_mode
& S_IFMT
) {
435 if (unlikely(dip
->di_core
.di_format
!= XFS_DINODE_FMT_DEV
)) {
436 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
438 return XFS_ERROR(EFSCORRUPTED
);
442 ip
->i_df
.if_u2
.if_rdev
= be32_to_cpu(dip
->di_u
.di_dev
);
448 switch (dip
->di_core
.di_format
) {
449 case XFS_DINODE_FMT_LOCAL
:
451 * no local regular files yet
453 if (unlikely((be16_to_cpu(dip
->di_core
.di_mode
) & S_IFMT
) == S_IFREG
)) {
454 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
456 "(local format for regular file).",
457 (unsigned long long) ip
->i_ino
);
458 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
461 return XFS_ERROR(EFSCORRUPTED
);
464 di_size
= be64_to_cpu(dip
->di_core
.di_size
);
465 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
466 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
468 "(bad size %Ld for local inode).",
469 (unsigned long long) ip
->i_ino
,
470 (long long) di_size
);
471 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
474 return XFS_ERROR(EFSCORRUPTED
);
478 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
480 case XFS_DINODE_FMT_EXTENTS
:
481 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
483 case XFS_DINODE_FMT_BTREE
:
484 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
487 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
489 return XFS_ERROR(EFSCORRUPTED
);
494 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
495 return XFS_ERROR(EFSCORRUPTED
);
500 if (!XFS_DFORK_Q(dip
))
502 ASSERT(ip
->i_afp
== NULL
);
503 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
);
504 ip
->i_afp
->if_ext_max
=
505 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
506 switch (dip
->di_core
.di_aformat
) {
507 case XFS_DINODE_FMT_LOCAL
:
508 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
509 size
= be16_to_cpu(atp
->hdr
.totsize
);
510 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
512 case XFS_DINODE_FMT_EXTENTS
:
513 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
515 case XFS_DINODE_FMT_BTREE
:
516 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
519 error
= XFS_ERROR(EFSCORRUPTED
);
523 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
525 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
531 * The file is in-lined in the on-disk inode.
532 * If it fits into if_inline_data, then copy
533 * it there, otherwise allocate a buffer for it
534 * and copy the data there. Either way, set
535 * if_data to point at the data.
536 * If we allocate a buffer for the data, make
537 * sure that its size is a multiple of 4 and
538 * record the real size in i_real_bytes.
551 * If the size is unreasonable, then something
552 * is wrong and we just bail out rather than crash in
553 * kmem_alloc() or memcpy() below.
555 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
556 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
558 "(bad size %d for local fork, size = %d).",
559 (unsigned long long) ip
->i_ino
, size
,
560 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
561 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
563 return XFS_ERROR(EFSCORRUPTED
);
565 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
568 ifp
->if_u1
.if_data
= NULL
;
569 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
570 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
572 real_size
= roundup(size
, 4);
573 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
575 ifp
->if_bytes
= size
;
576 ifp
->if_real_bytes
= real_size
;
578 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
579 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
580 ifp
->if_flags
|= XFS_IFINLINE
;
585 * The file consists of a set of extents all
586 * of which fit into the on-disk inode.
587 * If there are few enough extents to fit into
588 * the if_inline_ext, then copy them there.
589 * Otherwise allocate a buffer for them and copy
590 * them into it. Either way, set if_extents
591 * to point at the extents.
605 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
606 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
607 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
610 * If the number of extents is unreasonable, then something
611 * is wrong and we just bail out rather than crash in
612 * kmem_alloc() or memcpy() below.
614 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
615 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
616 "corrupt inode %Lu ((a)extents = %d).",
617 (unsigned long long) ip
->i_ino
, nex
);
618 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
620 return XFS_ERROR(EFSCORRUPTED
);
623 ifp
->if_real_bytes
= 0;
625 ifp
->if_u1
.if_extents
= NULL
;
626 else if (nex
<= XFS_INLINE_EXTS
)
627 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
629 xfs_iext_add(ifp
, 0, nex
);
631 ifp
->if_bytes
= size
;
633 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
634 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
635 for (i
= 0; i
< nex
; i
++, dp
++) {
636 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
637 ep
->l0
= be64_to_cpu(get_unaligned(&dp
->l0
));
638 ep
->l1
= be64_to_cpu(get_unaligned(&dp
->l1
));
640 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
641 if (whichfork
!= XFS_DATA_FORK
||
642 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
643 if (unlikely(xfs_check_nostate_extents(
645 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
648 return XFS_ERROR(EFSCORRUPTED
);
651 ifp
->if_flags
|= XFS_IFEXTENTS
;
656 * The file has too many extents to fit into
657 * the inode, so they are in B-tree format.
658 * Allocate a buffer for the root of the B-tree
659 * and copy the root into it. The i_extents
660 * field will remain NULL until all of the
661 * extents are read in (when they are needed).
669 xfs_bmdr_block_t
*dfp
;
675 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
676 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
677 size
= XFS_BMAP_BROOT_SPACE(dfp
);
678 nrecs
= XFS_BMAP_BROOT_NUMRECS(dfp
);
681 * blow out if -- fork has less extents than can fit in
682 * fork (fork shouldn't be a btree format), root btree
683 * block has more records than can fit into the fork,
684 * or the number of extents is greater than the number of
687 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
688 || XFS_BMDR_SPACE_CALC(nrecs
) >
689 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
690 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
691 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
692 "corrupt inode %Lu (btree).",
693 (unsigned long long) ip
->i_ino
);
694 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
696 return XFS_ERROR(EFSCORRUPTED
);
699 ifp
->if_broot_bytes
= size
;
700 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
);
701 ASSERT(ifp
->if_broot
!= NULL
);
703 * Copy and convert from the on-disk structure
704 * to the in-memory structure.
706 xfs_bmdr_to_bmbt(dfp
, XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
707 ifp
->if_broot
, size
);
708 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
709 ifp
->if_flags
|= XFS_IFBROOT
;
715 xfs_dinode_from_disk(
717 xfs_dinode_core_t
*from
)
719 to
->di_magic
= be16_to_cpu(from
->di_magic
);
720 to
->di_mode
= be16_to_cpu(from
->di_mode
);
721 to
->di_version
= from
->di_version
;
722 to
->di_format
= from
->di_format
;
723 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
724 to
->di_uid
= be32_to_cpu(from
->di_uid
);
725 to
->di_gid
= be32_to_cpu(from
->di_gid
);
726 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
727 to
->di_projid
= be16_to_cpu(from
->di_projid
);
728 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
729 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
730 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
731 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
732 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
733 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
734 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
735 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
736 to
->di_size
= be64_to_cpu(from
->di_size
);
737 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
738 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
739 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
740 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
741 to
->di_forkoff
= from
->di_forkoff
;
742 to
->di_aformat
= from
->di_aformat
;
743 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
744 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
745 to
->di_flags
= be16_to_cpu(from
->di_flags
);
746 to
->di_gen
= be32_to_cpu(from
->di_gen
);
751 xfs_dinode_core_t
*to
,
752 xfs_icdinode_t
*from
)
754 to
->di_magic
= cpu_to_be16(from
->di_magic
);
755 to
->di_mode
= cpu_to_be16(from
->di_mode
);
756 to
->di_version
= from
->di_version
;
757 to
->di_format
= from
->di_format
;
758 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
759 to
->di_uid
= cpu_to_be32(from
->di_uid
);
760 to
->di_gid
= cpu_to_be32(from
->di_gid
);
761 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
762 to
->di_projid
= cpu_to_be16(from
->di_projid
);
763 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
764 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
765 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
766 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
767 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
768 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
769 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
770 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
771 to
->di_size
= cpu_to_be64(from
->di_size
);
772 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
773 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
774 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
775 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
776 to
->di_forkoff
= from
->di_forkoff
;
777 to
->di_aformat
= from
->di_aformat
;
778 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
779 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
780 to
->di_flags
= cpu_to_be16(from
->di_flags
);
781 to
->di_gen
= cpu_to_be32(from
->di_gen
);
790 if (di_flags
& XFS_DIFLAG_ANY
) {
791 if (di_flags
& XFS_DIFLAG_REALTIME
)
792 flags
|= XFS_XFLAG_REALTIME
;
793 if (di_flags
& XFS_DIFLAG_PREALLOC
)
794 flags
|= XFS_XFLAG_PREALLOC
;
795 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
796 flags
|= XFS_XFLAG_IMMUTABLE
;
797 if (di_flags
& XFS_DIFLAG_APPEND
)
798 flags
|= XFS_XFLAG_APPEND
;
799 if (di_flags
& XFS_DIFLAG_SYNC
)
800 flags
|= XFS_XFLAG_SYNC
;
801 if (di_flags
& XFS_DIFLAG_NOATIME
)
802 flags
|= XFS_XFLAG_NOATIME
;
803 if (di_flags
& XFS_DIFLAG_NODUMP
)
804 flags
|= XFS_XFLAG_NODUMP
;
805 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
806 flags
|= XFS_XFLAG_RTINHERIT
;
807 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
808 flags
|= XFS_XFLAG_PROJINHERIT
;
809 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
810 flags
|= XFS_XFLAG_NOSYMLINKS
;
811 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
812 flags
|= XFS_XFLAG_EXTSIZE
;
813 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
814 flags
|= XFS_XFLAG_EXTSZINHERIT
;
815 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
816 flags
|= XFS_XFLAG_NODEFRAG
;
817 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
818 flags
|= XFS_XFLAG_FILESTREAM
;
828 xfs_icdinode_t
*dic
= &ip
->i_d
;
830 return _xfs_dic2xflags(dic
->di_flags
) |
831 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
838 xfs_dinode_core_t
*dic
= &dip
->di_core
;
840 return _xfs_dic2xflags(be16_to_cpu(dic
->di_flags
)) |
841 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
845 * Given a mount structure and an inode number, return a pointer
846 * to a newly allocated in-core inode corresponding to the given
849 * Initialize the inode's attributes and extent pointers if it
850 * already has them (it will not if the inode has no links).
866 ASSERT(xfs_inode_zone
!= NULL
);
868 ip
= kmem_zone_zalloc(xfs_inode_zone
, KM_SLEEP
);
871 atomic_set(&ip
->i_iocount
, 0);
872 spin_lock_init(&ip
->i_flags_lock
);
875 * Get pointer's to the on-disk inode and the buffer containing it.
876 * If the inode number refers to a block outside the file system
877 * then xfs_itobp() will return NULL. In this case we should
878 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
879 * know that this is a new incore inode.
881 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &bp
, bno
, imap_flags
);
883 kmem_zone_free(xfs_inode_zone
, ip
);
888 * Initialize inode's trace buffers.
889 * Do this before xfs_iformat in case it adds entries.
891 #ifdef XFS_INODE_TRACE
892 ip
->i_trace
= ktrace_alloc(INODE_TRACE_SIZE
, KM_SLEEP
);
894 #ifdef XFS_BMAP_TRACE
895 ip
->i_xtrace
= ktrace_alloc(XFS_BMAP_KTRACE_SIZE
, KM_SLEEP
);
897 #ifdef XFS_BMBT_TRACE
898 ip
->i_btrace
= ktrace_alloc(XFS_BMBT_KTRACE_SIZE
, KM_SLEEP
);
901 ip
->i_rwtrace
= ktrace_alloc(XFS_RW_KTRACE_SIZE
, KM_SLEEP
);
903 #ifdef XFS_ILOCK_TRACE
904 ip
->i_lock_trace
= ktrace_alloc(XFS_ILOCK_KTRACE_SIZE
, KM_SLEEP
);
906 #ifdef XFS_DIR2_TRACE
907 ip
->i_dir_trace
= ktrace_alloc(XFS_DIR2_KTRACE_SIZE
, KM_SLEEP
);
911 * If we got something that isn't an inode it means someone
912 * (nfs or dmi) has a stale handle.
914 if (be16_to_cpu(dip
->di_core
.di_magic
) != XFS_DINODE_MAGIC
) {
915 kmem_zone_free(xfs_inode_zone
, ip
);
916 xfs_trans_brelse(tp
, bp
);
918 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
919 "dip->di_core.di_magic (0x%x) != "
920 "XFS_DINODE_MAGIC (0x%x)",
921 be16_to_cpu(dip
->di_core
.di_magic
),
924 return XFS_ERROR(EINVAL
);
928 * If the on-disk inode is already linked to a directory
929 * entry, copy all of the inode into the in-core inode.
930 * xfs_iformat() handles copying in the inode format
931 * specific information.
932 * Otherwise, just get the truly permanent information.
934 if (dip
->di_core
.di_mode
) {
935 xfs_dinode_from_disk(&ip
->i_d
, &dip
->di_core
);
936 error
= xfs_iformat(ip
, dip
);
938 kmem_zone_free(xfs_inode_zone
, ip
);
939 xfs_trans_brelse(tp
, bp
);
941 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
942 "xfs_iformat() returned error %d",
948 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_core
.di_magic
);
949 ip
->i_d
.di_version
= dip
->di_core
.di_version
;
950 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_core
.di_gen
);
951 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_core
.di_flushiter
);
953 * Make sure to pull in the mode here as well in
954 * case the inode is released without being used.
955 * This ensures that xfs_inactive() will see that
956 * the inode is already free and not try to mess
957 * with the uninitialized part of it.
961 * Initialize the per-fork minima and maxima for a new
962 * inode here. xfs_iformat will do it for old inodes.
964 ip
->i_df
.if_ext_max
=
965 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
968 INIT_LIST_HEAD(&ip
->i_reclaim
);
971 * The inode format changed when we moved the link count and
972 * made it 32 bits long. If this is an old format inode,
973 * convert it in memory to look like a new one. If it gets
974 * flushed to disk we will convert back before flushing or
975 * logging it. We zero out the new projid field and the old link
976 * count field. We'll handle clearing the pad field (the remains
977 * of the old uuid field) when we actually convert the inode to
978 * the new format. We don't change the version number so that we
979 * can distinguish this from a real new format inode.
981 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
982 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
983 ip
->i_d
.di_onlink
= 0;
984 ip
->i_d
.di_projid
= 0;
987 ip
->i_delayed_blks
= 0;
988 ip
->i_size
= ip
->i_d
.di_size
;
991 * Mark the buffer containing the inode as something to keep
992 * around for a while. This helps to keep recently accessed
993 * meta-data in-core longer.
995 XFS_BUF_SET_REF(bp
, XFS_INO_REF
);
998 * Use xfs_trans_brelse() to release the buffer containing the
999 * on-disk inode, because it was acquired with xfs_trans_read_buf()
1000 * in xfs_itobp() above. If tp is NULL, this is just a normal
1001 * brelse(). If we're within a transaction, then xfs_trans_brelse()
1002 * will only release the buffer if it is not dirty within the
1003 * transaction. It will be OK to release the buffer in this case,
1004 * because inodes on disk are never destroyed and we will be
1005 * locking the new in-core inode before putting it in the hash
1006 * table where other processes can find it. Thus we don't have
1007 * to worry about the inode being changed just because we released
1010 xfs_trans_brelse(tp
, bp
);
1016 * Read in extents from a btree-format inode.
1017 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1027 xfs_extnum_t nextents
;
1030 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
1031 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
1033 return XFS_ERROR(EFSCORRUPTED
);
1035 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
1036 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
1037 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
1040 * We know that the size is valid (it's checked in iformat_btree)
1042 ifp
->if_lastex
= NULLEXTNUM
;
1043 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
1044 ifp
->if_flags
|= XFS_IFEXTENTS
;
1045 xfs_iext_add(ifp
, 0, nextents
);
1046 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
1048 xfs_iext_destroy(ifp
);
1049 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
1052 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
1057 * Allocate an inode on disk and return a copy of its in-core version.
1058 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1059 * appropriately within the inode. The uid and gid for the inode are
1060 * set according to the contents of the given cred structure.
1062 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1063 * has a free inode available, call xfs_iget()
1064 * to obtain the in-core version of the allocated inode. Finally,
1065 * fill in the inode and log its initial contents. In this case,
1066 * ialloc_context would be set to NULL and call_again set to false.
1068 * If xfs_dialloc() does not have an available inode,
1069 * it will replenish its supply by doing an allocation. Since we can
1070 * only do one allocation within a transaction without deadlocks, we
1071 * must commit the current transaction before returning the inode itself.
1072 * In this case, therefore, we will set call_again to true and return.
1073 * The caller should then commit the current transaction, start a new
1074 * transaction, and call xfs_ialloc() again to actually get the inode.
1076 * To ensure that some other process does not grab the inode that
1077 * was allocated during the first call to xfs_ialloc(), this routine
1078 * also returns the [locked] bp pointing to the head of the freelist
1079 * as ialloc_context. The caller should hold this buffer across
1080 * the commit and pass it back into this routine on the second call.
1082 * If we are allocating quota inodes, we do not have a parent inode
1083 * to attach to or associate with (i.e. pip == NULL) because they
1084 * are not linked into the directory structure - they are attached
1085 * directly to the superblock - and so have no parent.
1097 xfs_buf_t
**ialloc_context
,
1098 boolean_t
*call_again
,
1108 * Call the space management code to pick
1109 * the on-disk inode to be allocated.
1111 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
1112 ialloc_context
, call_again
, &ino
);
1116 if (*call_again
|| ino
== NULLFSINO
) {
1120 ASSERT(*ialloc_context
== NULL
);
1123 * Get the in-core inode with the lock held exclusively.
1124 * This is because we're setting fields here we need
1125 * to prevent others from looking at until we're done.
1127 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1128 XFS_IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1135 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1136 ip
->i_d
.di_onlink
= 0;
1137 ip
->i_d
.di_nlink
= nlink
;
1138 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1139 ip
->i_d
.di_uid
= current_fsuid(cr
);
1140 ip
->i_d
.di_gid
= current_fsgid(cr
);
1141 ip
->i_d
.di_projid
= prid
;
1142 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1145 * If the superblock version is up to where we support new format
1146 * inodes and this is currently an old format inode, then change
1147 * the inode version number now. This way we only do the conversion
1148 * here rather than here and in the flush/logging code.
1150 if (XFS_SB_VERSION_HASNLINK(&tp
->t_mountp
->m_sb
) &&
1151 ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
1152 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
1154 * We've already zeroed the old link count, the projid field,
1155 * and the pad field.
1160 * Project ids won't be stored on disk if we are using a version 1 inode.
1162 if ((prid
!= 0) && (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
))
1163 xfs_bump_ino_vers2(tp
, ip
);
1165 if (pip
&& XFS_INHERIT_GID(pip
)) {
1166 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1167 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1168 ip
->i_d
.di_mode
|= S_ISGID
;
1173 * If the group ID of the new file does not match the effective group
1174 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1175 * (and only if the irix_sgid_inherit compatibility variable is set).
1177 if ((irix_sgid_inherit
) &&
1178 (ip
->i_d
.di_mode
& S_ISGID
) &&
1179 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1180 ip
->i_d
.di_mode
&= ~S_ISGID
;
1183 ip
->i_d
.di_size
= 0;
1185 ip
->i_d
.di_nextents
= 0;
1186 ASSERT(ip
->i_d
.di_nblocks
== 0);
1187 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
|XFS_ICHGTIME_ACC
|XFS_ICHGTIME_MOD
);
1189 * di_gen will have been taken care of in xfs_iread.
1191 ip
->i_d
.di_extsize
= 0;
1192 ip
->i_d
.di_dmevmask
= 0;
1193 ip
->i_d
.di_dmstate
= 0;
1194 ip
->i_d
.di_flags
= 0;
1195 flags
= XFS_ILOG_CORE
;
1196 switch (mode
& S_IFMT
) {
1201 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1202 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1203 ip
->i_df
.if_flags
= 0;
1204 flags
|= XFS_ILOG_DEV
;
1207 if (pip
&& xfs_inode_is_filestream(pip
)) {
1208 error
= xfs_filestream_associate(pip
, ip
);
1212 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1216 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1219 if ((mode
& S_IFMT
) == S_IFDIR
) {
1220 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1221 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1222 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1223 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1224 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1226 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1227 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1228 di_flags
|= XFS_DIFLAG_REALTIME
;
1229 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1230 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1231 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1234 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1235 xfs_inherit_noatime
)
1236 di_flags
|= XFS_DIFLAG_NOATIME
;
1237 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1239 di_flags
|= XFS_DIFLAG_NODUMP
;
1240 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1242 di_flags
|= XFS_DIFLAG_SYNC
;
1243 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1244 xfs_inherit_nosymlinks
)
1245 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1246 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1247 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1248 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1249 xfs_inherit_nodefrag
)
1250 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1251 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1252 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1253 ip
->i_d
.di_flags
|= di_flags
;
1257 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1258 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1259 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1260 ip
->i_df
.if_u1
.if_extents
= NULL
;
1266 * Attribute fork settings for new inode.
1268 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1269 ip
->i_d
.di_anextents
= 0;
1272 * Log the new values stuffed into the inode.
1274 xfs_trans_log_inode(tp
, ip
, flags
);
1276 /* now that we have an i_mode we can setup inode ops and unlock */
1277 xfs_initialize_vnode(tp
->t_mountp
, vp
, ip
);
1284 * Check to make sure that there are no blocks allocated to the
1285 * file beyond the size of the file. We don't check this for
1286 * files with fixed size extents or real time extents, but we
1287 * at least do it for regular files.
1296 xfs_fileoff_t map_first
;
1298 xfs_bmbt_irec_t imaps
[2];
1300 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1303 if (XFS_IS_REALTIME_INODE(ip
))
1306 if (ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
)
1310 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1312 * The filesystem could be shutting down, so bmapi may return
1315 if (xfs_bmapi(NULL
, ip
, map_first
,
1317 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1319 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1322 ASSERT(nimaps
== 1);
1323 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1328 * Calculate the last possible buffered byte in a file. This must
1329 * include data that was buffered beyond the EOF by the write code.
1330 * This also needs to deal with overflowing the xfs_fsize_t type
1331 * which can happen for sizes near the limit.
1333 * We also need to take into account any blocks beyond the EOF. It
1334 * may be the case that they were buffered by a write which failed.
1335 * In that case the pages will still be in memory, but the inode size
1336 * will never have been updated.
1343 xfs_fsize_t last_byte
;
1344 xfs_fileoff_t last_block
;
1345 xfs_fileoff_t size_last_block
;
1348 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
| MR_ACCESS
));
1352 * Only check for blocks beyond the EOF if the extents have
1353 * been read in. This eliminates the need for the inode lock,
1354 * and it also saves us from looking when it really isn't
1357 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1358 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1366 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_size
);
1367 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1369 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1370 if (last_byte
< 0) {
1371 return XFS_MAXIOFFSET(mp
);
1373 last_byte
+= (1 << mp
->m_writeio_log
);
1374 if (last_byte
< 0) {
1375 return XFS_MAXIOFFSET(mp
);
1380 #if defined(XFS_RW_TRACE)
1386 xfs_fsize_t new_size
,
1387 xfs_off_t toss_start
,
1388 xfs_off_t toss_finish
)
1390 if (ip
->i_rwtrace
== NULL
) {
1394 ktrace_enter(ip
->i_rwtrace
,
1397 (void*)(unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff),
1398 (void*)(unsigned long)(ip
->i_d
.di_size
& 0xffffffff),
1399 (void*)((long)flag
),
1400 (void*)(unsigned long)((new_size
>> 32) & 0xffffffff),
1401 (void*)(unsigned long)(new_size
& 0xffffffff),
1402 (void*)(unsigned long)((toss_start
>> 32) & 0xffffffff),
1403 (void*)(unsigned long)(toss_start
& 0xffffffff),
1404 (void*)(unsigned long)((toss_finish
>> 32) & 0xffffffff),
1405 (void*)(unsigned long)(toss_finish
& 0xffffffff),
1406 (void*)(unsigned long)current_cpu(),
1407 (void*)(unsigned long)current_pid(),
1413 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1417 * Start the truncation of the file to new_size. The new size
1418 * must be smaller than the current size. This routine will
1419 * clear the buffer and page caches of file data in the removed
1420 * range, and xfs_itruncate_finish() will remove the underlying
1423 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1424 * must NOT have the inode lock held at all. This is because we're
1425 * calling into the buffer/page cache code and we can't hold the
1426 * inode lock when we do so.
1428 * We need to wait for any direct I/Os in flight to complete before we
1429 * proceed with the truncate. This is needed to prevent the extents
1430 * being read or written by the direct I/Os from being removed while the
1431 * I/O is in flight as there is no other method of synchronising
1432 * direct I/O with the truncate operation. Also, because we hold
1433 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1434 * started until the truncate completes and drops the lock. Essentially,
1435 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1436 * between direct I/Os and the truncate operation.
1438 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1439 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1440 * in the case that the caller is locking things out of order and
1441 * may not be able to call xfs_itruncate_finish() with the inode lock
1442 * held without dropping the I/O lock. If the caller must drop the
1443 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1444 * must be called again with all the same restrictions as the initial
1448 xfs_itruncate_start(
1451 xfs_fsize_t new_size
)
1453 xfs_fsize_t last_byte
;
1454 xfs_off_t toss_start
;
1459 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
) != 0);
1460 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1461 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1462 (flags
== XFS_ITRUNC_MAYBE
));
1467 /* wait for the completion of any pending DIOs */
1468 if (new_size
< ip
->i_size
)
1472 * Call toss_pages or flushinval_pages to get rid of pages
1473 * overlapping the region being removed. We have to use
1474 * the less efficient flushinval_pages in the case that the
1475 * caller may not be able to finish the truncate without
1476 * dropping the inode's I/O lock. Make sure
1477 * to catch any pages brought in by buffers overlapping
1478 * the EOF by searching out beyond the isize by our
1479 * block size. We round new_size up to a block boundary
1480 * so that we don't toss things on the same block as
1481 * new_size but before it.
1483 * Before calling toss_page or flushinval_pages, make sure to
1484 * call remapf() over the same region if the file is mapped.
1485 * This frees up mapped file references to the pages in the
1486 * given range and for the flushinval_pages case it ensures
1487 * that we get the latest mapped changes flushed out.
1489 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1490 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1491 if (toss_start
< 0) {
1493 * The place to start tossing is beyond our maximum
1494 * file size, so there is no way that the data extended
1499 last_byte
= xfs_file_last_byte(ip
);
1500 xfs_itrunc_trace(XFS_ITRUNC_START
, ip
, flags
, new_size
, toss_start
,
1502 if (last_byte
> toss_start
) {
1503 if (flags
& XFS_ITRUNC_DEFINITE
) {
1504 xfs_tosspages(ip
, toss_start
,
1505 -1, FI_REMAPF_LOCKED
);
1507 error
= xfs_flushinval_pages(ip
, toss_start
,
1508 -1, FI_REMAPF_LOCKED
);
1513 if (new_size
== 0) {
1514 ASSERT(VN_CACHED(vp
) == 0);
1521 * Shrink the file to the given new_size. The new
1522 * size must be smaller than the current size.
1523 * This will free up the underlying blocks
1524 * in the removed range after a call to xfs_itruncate_start()
1525 * or xfs_atruncate_start().
1527 * The transaction passed to this routine must have made
1528 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1529 * This routine may commit the given transaction and
1530 * start new ones, so make sure everything involved in
1531 * the transaction is tidy before calling here.
1532 * Some transaction will be returned to the caller to be
1533 * committed. The incoming transaction must already include
1534 * the inode, and both inode locks must be held exclusively.
1535 * The inode must also be "held" within the transaction. On
1536 * return the inode will be "held" within the returned transaction.
1537 * This routine does NOT require any disk space to be reserved
1538 * for it within the transaction.
1540 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1541 * and it indicates the fork which is to be truncated. For the
1542 * attribute fork we only support truncation to size 0.
1544 * We use the sync parameter to indicate whether or not the first
1545 * transaction we perform might have to be synchronous. For the attr fork,
1546 * it needs to be so if the unlink of the inode is not yet known to be
1547 * permanent in the log. This keeps us from freeing and reusing the
1548 * blocks of the attribute fork before the unlink of the inode becomes
1551 * For the data fork, we normally have to run synchronously if we're
1552 * being called out of the inactive path or we're being called
1553 * out of the create path where we're truncating an existing file.
1554 * Either way, the truncate needs to be sync so blocks don't reappear
1555 * in the file with altered data in case of a crash. wsync filesystems
1556 * can run the first case async because anything that shrinks the inode
1557 * has to run sync so by the time we're called here from inactive, the
1558 * inode size is permanently set to 0.
1560 * Calls from the truncate path always need to be sync unless we're
1561 * in a wsync filesystem and the file has already been unlinked.
1563 * The caller is responsible for correctly setting the sync parameter.
1564 * It gets too hard for us to guess here which path we're being called
1565 * out of just based on inode state.
1568 xfs_itruncate_finish(
1571 xfs_fsize_t new_size
,
1575 xfs_fsblock_t first_block
;
1576 xfs_fileoff_t first_unmap_block
;
1577 xfs_fileoff_t last_block
;
1578 xfs_filblks_t unmap_len
=0;
1583 xfs_bmap_free_t free_list
;
1586 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
) != 0);
1587 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
) != 0);
1588 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1589 ASSERT(*tp
!= NULL
);
1590 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1591 ASSERT(ip
->i_transp
== *tp
);
1592 ASSERT(ip
->i_itemp
!= NULL
);
1593 ASSERT(ip
->i_itemp
->ili_flags
& XFS_ILI_HOLD
);
1597 mp
= (ntp
)->t_mountp
;
1598 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1601 * We only support truncating the entire attribute fork.
1603 if (fork
== XFS_ATTR_FORK
) {
1606 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1607 xfs_itrunc_trace(XFS_ITRUNC_FINISH1
, ip
, 0, new_size
, 0, 0);
1609 * The first thing we do is set the size to new_size permanently
1610 * on disk. This way we don't have to worry about anyone ever
1611 * being able to look at the data being freed even in the face
1612 * of a crash. What we're getting around here is the case where
1613 * we free a block, it is allocated to another file, it is written
1614 * to, and then we crash. If the new data gets written to the
1615 * file but the log buffers containing the free and reallocation
1616 * don't, then we'd end up with garbage in the blocks being freed.
1617 * As long as we make the new_size permanent before actually
1618 * freeing any blocks it doesn't matter if they get writtten to.
1620 * The callers must signal into us whether or not the size
1621 * setting here must be synchronous. There are a few cases
1622 * where it doesn't have to be synchronous. Those cases
1623 * occur if the file is unlinked and we know the unlink is
1624 * permanent or if the blocks being truncated are guaranteed
1625 * to be beyond the inode eof (regardless of the link count)
1626 * and the eof value is permanent. Both of these cases occur
1627 * only on wsync-mounted filesystems. In those cases, we're
1628 * guaranteed that no user will ever see the data in the blocks
1629 * that are being truncated so the truncate can run async.
1630 * In the free beyond eof case, the file may wind up with
1631 * more blocks allocated to it than it needs if we crash
1632 * and that won't get fixed until the next time the file
1633 * is re-opened and closed but that's ok as that shouldn't
1634 * be too many blocks.
1636 * However, we can't just make all wsync xactions run async
1637 * because there's one call out of the create path that needs
1638 * to run sync where it's truncating an existing file to size
1639 * 0 whose size is > 0.
1641 * It's probably possible to come up with a test in this
1642 * routine that would correctly distinguish all the above
1643 * cases from the values of the function parameters and the
1644 * inode state but for sanity's sake, I've decided to let the
1645 * layers above just tell us. It's simpler to correctly figure
1646 * out in the layer above exactly under what conditions we
1647 * can run async and I think it's easier for others read and
1648 * follow the logic in case something has to be changed.
1649 * cscope is your friend -- rcc.
1651 * The attribute fork is much simpler.
1653 * For the attribute fork we allow the caller to tell us whether
1654 * the unlink of the inode that led to this call is yet permanent
1655 * in the on disk log. If it is not and we will be freeing extents
1656 * in this inode then we make the first transaction synchronous
1657 * to make sure that the unlink is permanent by the time we free
1660 if (fork
== XFS_DATA_FORK
) {
1661 if (ip
->i_d
.di_nextents
> 0) {
1663 * If we are not changing the file size then do
1664 * not update the on-disk file size - we may be
1665 * called from xfs_inactive_free_eofblocks(). If we
1666 * update the on-disk file size and then the system
1667 * crashes before the contents of the file are
1668 * flushed to disk then the files may be full of
1669 * holes (ie NULL files bug).
1671 if (ip
->i_size
!= new_size
) {
1672 ip
->i_d
.di_size
= new_size
;
1673 ip
->i_size
= new_size
;
1674 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1678 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1679 if (ip
->i_d
.di_anextents
> 0)
1680 xfs_trans_set_sync(ntp
);
1682 ASSERT(fork
== XFS_DATA_FORK
||
1683 (fork
== XFS_ATTR_FORK
&&
1684 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1685 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1688 * Since it is possible for space to become allocated beyond
1689 * the end of the file (in a crash where the space is allocated
1690 * but the inode size is not yet updated), simply remove any
1691 * blocks which show up between the new EOF and the maximum
1692 * possible file size. If the first block to be removed is
1693 * beyond the maximum file size (ie it is the same as last_block),
1694 * then there is nothing to do.
1696 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1697 ASSERT(first_unmap_block
<= last_block
);
1699 if (last_block
== first_unmap_block
) {
1702 unmap_len
= last_block
- first_unmap_block
+ 1;
1706 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1707 * will tell us whether it freed the entire range or
1708 * not. If this is a synchronous mount (wsync),
1709 * then we can tell bunmapi to keep all the
1710 * transactions asynchronous since the unlink
1711 * transaction that made this inode inactive has
1712 * already hit the disk. There's no danger of
1713 * the freed blocks being reused, there being a
1714 * crash, and the reused blocks suddenly reappearing
1715 * in this file with garbage in them once recovery
1718 XFS_BMAP_INIT(&free_list
, &first_block
);
1719 error
= xfs_bunmapi(ntp
, ip
,
1720 first_unmap_block
, unmap_len
,
1721 XFS_BMAPI_AFLAG(fork
) |
1722 (sync
? 0 : XFS_BMAPI_ASYNC
),
1723 XFS_ITRUNC_MAX_EXTENTS
,
1724 &first_block
, &free_list
,
1728 * If the bunmapi call encounters an error,
1729 * return to the caller where the transaction
1730 * can be properly aborted. We just need to
1731 * make sure we're not holding any resources
1732 * that we were not when we came in.
1734 xfs_bmap_cancel(&free_list
);
1739 * Duplicate the transaction that has the permanent
1740 * reservation and commit the old transaction.
1742 error
= xfs_bmap_finish(tp
, &free_list
, &committed
);
1746 * If the bmap finish call encounters an error,
1747 * return to the caller where the transaction
1748 * can be properly aborted. We just need to
1749 * make sure we're not holding any resources
1750 * that we were not when we came in.
1752 * Aborting from this point might lose some
1753 * blocks in the file system, but oh well.
1755 xfs_bmap_cancel(&free_list
);
1758 * If the passed in transaction committed
1759 * in xfs_bmap_finish(), then we want to
1760 * add the inode to this one before returning.
1761 * This keeps things simple for the higher
1762 * level code, because it always knows that
1763 * the inode is locked and held in the
1764 * transaction that returns to it whether
1765 * errors occur or not. We don't mark the
1766 * inode dirty so that this transaction can
1767 * be easily aborted if possible.
1769 xfs_trans_ijoin(ntp
, ip
,
1770 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1771 xfs_trans_ihold(ntp
, ip
);
1778 * The first xact was committed,
1779 * so add the inode to the new one.
1780 * Mark it dirty so it will be logged
1781 * and moved forward in the log as
1782 * part of every commit.
1784 xfs_trans_ijoin(ntp
, ip
,
1785 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1786 xfs_trans_ihold(ntp
, ip
);
1787 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1789 ntp
= xfs_trans_dup(ntp
);
1790 (void) xfs_trans_commit(*tp
, 0);
1792 error
= xfs_trans_reserve(ntp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0,
1793 XFS_TRANS_PERM_LOG_RES
,
1794 XFS_ITRUNCATE_LOG_COUNT
);
1796 * Add the inode being truncated to the next chained
1799 xfs_trans_ijoin(ntp
, ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1800 xfs_trans_ihold(ntp
, ip
);
1805 * Only update the size in the case of the data fork, but
1806 * always re-log the inode so that our permanent transaction
1807 * can keep on rolling it forward in the log.
1809 if (fork
== XFS_DATA_FORK
) {
1810 xfs_isize_check(mp
, ip
, new_size
);
1812 * If we are not changing the file size then do
1813 * not update the on-disk file size - we may be
1814 * called from xfs_inactive_free_eofblocks(). If we
1815 * update the on-disk file size and then the system
1816 * crashes before the contents of the file are
1817 * flushed to disk then the files may be full of
1818 * holes (ie NULL files bug).
1820 if (ip
->i_size
!= new_size
) {
1821 ip
->i_d
.di_size
= new_size
;
1822 ip
->i_size
= new_size
;
1825 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1826 ASSERT((new_size
!= 0) ||
1827 (fork
== XFS_ATTR_FORK
) ||
1828 (ip
->i_delayed_blks
== 0));
1829 ASSERT((new_size
!= 0) ||
1830 (fork
== XFS_ATTR_FORK
) ||
1831 (ip
->i_d
.di_nextents
== 0));
1832 xfs_itrunc_trace(XFS_ITRUNC_FINISH2
, ip
, 0, new_size
, 0, 0);
1840 * Do the first part of growing a file: zero any data in the last
1841 * block that is beyond the old EOF. We need to do this before
1842 * the inode is joined to the transaction to modify the i_size.
1843 * That way we can drop the inode lock and call into the buffer
1844 * cache to get the buffer mapping the EOF.
1849 xfs_fsize_t new_size
,
1852 ASSERT(ismrlocked(&(ip
->i_lock
), MR_UPDATE
) != 0);
1853 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
) != 0);
1854 ASSERT(new_size
> ip
->i_size
);
1857 * Zero any pages that may have been created by
1858 * xfs_write_file() beyond the end of the file
1859 * and any blocks between the old and new file sizes.
1861 return xfs_zero_eof(ip
, new_size
, ip
->i_size
);
1867 * This routine is called to extend the size of a file.
1868 * The inode must have both the iolock and the ilock locked
1869 * for update and it must be a part of the current transaction.
1870 * The xfs_igrow_start() function must have been called previously.
1871 * If the change_flag is not zero, the inode change timestamp will
1878 xfs_fsize_t new_size
,
1881 ASSERT(ismrlocked(&(ip
->i_lock
), MR_UPDATE
) != 0);
1882 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
) != 0);
1883 ASSERT(ip
->i_transp
== tp
);
1884 ASSERT(new_size
> ip
->i_size
);
1887 * Update the file size. Update the inode change timestamp
1888 * if change_flag set.
1890 ip
->i_d
.di_size
= new_size
;
1891 ip
->i_size
= new_size
;
1893 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
);
1894 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1900 * This is called when the inode's link count goes to 0.
1901 * We place the on-disk inode on a list in the AGI. It
1902 * will be pulled from this list when the inode is freed.
1914 xfs_agnumber_t agno
;
1915 xfs_daddr_t agdaddr
;
1922 ASSERT(ip
->i_d
.di_nlink
== 0);
1923 ASSERT(ip
->i_d
.di_mode
!= 0);
1924 ASSERT(ip
->i_transp
== tp
);
1928 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1929 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1932 * Get the agi buffer first. It ensures lock ordering
1935 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1936 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1941 * Validate the magic number of the agi block.
1943 agi
= XFS_BUF_TO_AGI(agibp
);
1945 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
1946 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
1947 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK
,
1948 XFS_RANDOM_IUNLINK
))) {
1949 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW
, mp
, agi
);
1950 xfs_trans_brelse(tp
, agibp
);
1951 return XFS_ERROR(EFSCORRUPTED
);
1954 * Get the index into the agi hash table for the
1955 * list this inode will go on.
1957 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1959 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1960 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1961 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1963 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1965 * There is already another inode in the bucket we need
1966 * to add ourselves to. Add us at the front of the list.
1967 * Here we put the head pointer into our next pointer,
1968 * and then we fall through to point the head at us.
1970 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
1974 ASSERT(be32_to_cpu(dip
->di_next_unlinked
) == NULLAGINO
);
1975 /* both on-disk, don't endian flip twice */
1976 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1977 offset
= ip
->i_boffset
+
1978 offsetof(xfs_dinode_t
, di_next_unlinked
);
1979 xfs_trans_inode_buf(tp
, ibp
);
1980 xfs_trans_log_buf(tp
, ibp
, offset
,
1981 (offset
+ sizeof(xfs_agino_t
) - 1));
1982 xfs_inobp_check(mp
, ibp
);
1986 * Point the bucket head pointer at the inode being inserted.
1989 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1990 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1991 (sizeof(xfs_agino_t
) * bucket_index
);
1992 xfs_trans_log_buf(tp
, agibp
, offset
,
1993 (offset
+ sizeof(xfs_agino_t
) - 1));
1998 * Pull the on-disk inode from the AGI unlinked list.
2011 xfs_agnumber_t agno
;
2012 xfs_daddr_t agdaddr
;
2014 xfs_agino_t next_agino
;
2015 xfs_buf_t
*last_ibp
;
2016 xfs_dinode_t
*last_dip
= NULL
;
2018 int offset
, last_offset
= 0;
2023 * First pull the on-disk inode from the AGI unlinked list.
2027 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
2028 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
2031 * Get the agi buffer first. It ensures lock ordering
2034 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
2035 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
2038 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2039 error
, mp
->m_fsname
);
2043 * Validate the magic number of the agi block.
2045 agi
= XFS_BUF_TO_AGI(agibp
);
2047 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
2048 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
2049 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK_REMOVE
,
2050 XFS_RANDOM_IUNLINK_REMOVE
))) {
2051 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW
,
2053 xfs_trans_brelse(tp
, agibp
);
2055 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2057 return XFS_ERROR(EFSCORRUPTED
);
2060 * Get the index into the agi hash table for the
2061 * list this inode will go on.
2063 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2065 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2066 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
2067 ASSERT(agi
->agi_unlinked
[bucket_index
]);
2069 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
2071 * We're at the head of the list. Get the inode's
2072 * on-disk buffer to see if there is anyone after us
2073 * on the list. Only modify our next pointer if it
2074 * is not already NULLAGINO. This saves us the overhead
2075 * of dealing with the buffer when there is no need to
2078 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
2081 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2082 error
, mp
->m_fsname
);
2085 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2086 ASSERT(next_agino
!= 0);
2087 if (next_agino
!= NULLAGINO
) {
2088 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2089 offset
= ip
->i_boffset
+
2090 offsetof(xfs_dinode_t
, di_next_unlinked
);
2091 xfs_trans_inode_buf(tp
, ibp
);
2092 xfs_trans_log_buf(tp
, ibp
, offset
,
2093 (offset
+ sizeof(xfs_agino_t
) - 1));
2094 xfs_inobp_check(mp
, ibp
);
2096 xfs_trans_brelse(tp
, ibp
);
2099 * Point the bucket head pointer at the next inode.
2101 ASSERT(next_agino
!= 0);
2102 ASSERT(next_agino
!= agino
);
2103 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
2104 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2105 (sizeof(xfs_agino_t
) * bucket_index
);
2106 xfs_trans_log_buf(tp
, agibp
, offset
,
2107 (offset
+ sizeof(xfs_agino_t
) - 1));
2110 * We need to search the list for the inode being freed.
2112 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2114 while (next_agino
!= agino
) {
2116 * If the last inode wasn't the one pointing to
2117 * us, then release its buffer since we're not
2118 * going to do anything with it.
2120 if (last_ibp
!= NULL
) {
2121 xfs_trans_brelse(tp
, last_ibp
);
2123 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2124 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
2125 &last_ibp
, &last_offset
);
2128 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2129 error
, mp
->m_fsname
);
2132 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
2133 ASSERT(next_agino
!= NULLAGINO
);
2134 ASSERT(next_agino
!= 0);
2137 * Now last_ibp points to the buffer previous to us on
2138 * the unlinked list. Pull us from the list.
2140 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
2143 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2144 error
, mp
->m_fsname
);
2147 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2148 ASSERT(next_agino
!= 0);
2149 ASSERT(next_agino
!= agino
);
2150 if (next_agino
!= NULLAGINO
) {
2151 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2152 offset
= ip
->i_boffset
+
2153 offsetof(xfs_dinode_t
, di_next_unlinked
);
2154 xfs_trans_inode_buf(tp
, ibp
);
2155 xfs_trans_log_buf(tp
, ibp
, offset
,
2156 (offset
+ sizeof(xfs_agino_t
) - 1));
2157 xfs_inobp_check(mp
, ibp
);
2159 xfs_trans_brelse(tp
, ibp
);
2162 * Point the previous inode on the list to the next inode.
2164 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
2165 ASSERT(next_agino
!= 0);
2166 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2167 xfs_trans_inode_buf(tp
, last_ibp
);
2168 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2169 (offset
+ sizeof(xfs_agino_t
) - 1));
2170 xfs_inobp_check(mp
, last_ibp
);
2175 STATIC_INLINE
int xfs_inode_clean(xfs_inode_t
*ip
)
2177 return (((ip
->i_itemp
== NULL
) ||
2178 !(ip
->i_itemp
->ili_format
.ilf_fields
& XFS_ILOG_ALL
)) &&
2179 (ip
->i_update_core
== 0));
2184 xfs_inode_t
*free_ip
,
2188 xfs_mount_t
*mp
= free_ip
->i_mount
;
2189 int blks_per_cluster
;
2192 int i
, j
, found
, pre_flushed
;
2195 xfs_inode_t
*ip
, **ip_found
;
2196 xfs_inode_log_item_t
*iip
;
2197 xfs_log_item_t
*lip
;
2198 xfs_perag_t
*pag
= xfs_get_perag(mp
, inum
);
2200 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
2201 blks_per_cluster
= 1;
2202 ninodes
= mp
->m_sb
.sb_inopblock
;
2203 nbufs
= XFS_IALLOC_BLOCKS(mp
);
2205 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
2206 mp
->m_sb
.sb_blocksize
;
2207 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
2208 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
2211 ip_found
= kmem_alloc(ninodes
* sizeof(xfs_inode_t
*), KM_NOFS
);
2213 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
2214 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2215 XFS_INO_TO_AGBNO(mp
, inum
));
2219 * Look for each inode in memory and attempt to lock it,
2220 * we can be racing with flush and tail pushing here.
2221 * any inode we get the locks on, add to an array of
2222 * inode items to process later.
2224 * The get the buffer lock, we could beat a flush
2225 * or tail pushing thread to the lock here, in which
2226 * case they will go looking for the inode buffer
2227 * and fail, we need some other form of interlock
2231 for (i
= 0; i
< ninodes
; i
++) {
2232 read_lock(&pag
->pag_ici_lock
);
2233 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2234 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2236 /* Inode not in memory or we found it already,
2239 if (!ip
|| xfs_iflags_test(ip
, XFS_ISTALE
)) {
2240 read_unlock(&pag
->pag_ici_lock
);
2244 if (xfs_inode_clean(ip
)) {
2245 read_unlock(&pag
->pag_ici_lock
);
2249 /* If we can get the locks then add it to the
2250 * list, otherwise by the time we get the bp lock
2251 * below it will already be attached to the
2255 /* This inode will already be locked - by us, lets
2259 if (ip
== free_ip
) {
2260 if (xfs_iflock_nowait(ip
)) {
2261 xfs_iflags_set(ip
, XFS_ISTALE
);
2262 if (xfs_inode_clean(ip
)) {
2265 ip_found
[found
++] = ip
;
2268 read_unlock(&pag
->pag_ici_lock
);
2272 if (xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2273 if (xfs_iflock_nowait(ip
)) {
2274 xfs_iflags_set(ip
, XFS_ISTALE
);
2276 if (xfs_inode_clean(ip
)) {
2278 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2280 ip_found
[found
++] = ip
;
2283 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2286 read_unlock(&pag
->pag_ici_lock
);
2289 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2290 mp
->m_bsize
* blks_per_cluster
,
2294 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
2296 if (lip
->li_type
== XFS_LI_INODE
) {
2297 iip
= (xfs_inode_log_item_t
*)lip
;
2298 ASSERT(iip
->ili_logged
== 1);
2299 lip
->li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*)) xfs_istale_done
;
2300 spin_lock(&mp
->m_ail_lock
);
2301 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2302 spin_unlock(&mp
->m_ail_lock
);
2303 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2306 lip
= lip
->li_bio_list
;
2309 for (i
= 0; i
< found
; i
++) {
2314 ip
->i_update_core
= 0;
2316 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2320 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2321 iip
->ili_format
.ilf_fields
= 0;
2322 iip
->ili_logged
= 1;
2323 spin_lock(&mp
->m_ail_lock
);
2324 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2325 spin_unlock(&mp
->m_ail_lock
);
2327 xfs_buf_attach_iodone(bp
,
2328 (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
2329 xfs_istale_done
, (xfs_log_item_t
*)iip
);
2330 if (ip
!= free_ip
) {
2331 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2335 if (found
|| pre_flushed
)
2336 xfs_trans_stale_inode_buf(tp
, bp
);
2337 xfs_trans_binval(tp
, bp
);
2340 kmem_free(ip_found
, ninodes
* sizeof(xfs_inode_t
*));
2341 xfs_put_perag(mp
, pag
);
2345 * This is called to return an inode to the inode free list.
2346 * The inode should already be truncated to 0 length and have
2347 * no pages associated with it. This routine also assumes that
2348 * the inode is already a part of the transaction.
2350 * The on-disk copy of the inode will have been added to the list
2351 * of unlinked inodes in the AGI. We need to remove the inode from
2352 * that list atomically with respect to freeing it here.
2358 xfs_bmap_free_t
*flist
)
2362 xfs_ino_t first_ino
;
2366 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
2367 ASSERT(ip
->i_transp
== tp
);
2368 ASSERT(ip
->i_d
.di_nlink
== 0);
2369 ASSERT(ip
->i_d
.di_nextents
== 0);
2370 ASSERT(ip
->i_d
.di_anextents
== 0);
2371 ASSERT((ip
->i_d
.di_size
== 0 && ip
->i_size
== 0) ||
2372 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2373 ASSERT(ip
->i_d
.di_nblocks
== 0);
2376 * Pull the on-disk inode from the AGI unlinked list.
2378 error
= xfs_iunlink_remove(tp
, ip
);
2383 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2387 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2388 ip
->i_d
.di_flags
= 0;
2389 ip
->i_d
.di_dmevmask
= 0;
2390 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2391 ip
->i_df
.if_ext_max
=
2392 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2393 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2394 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2396 * Bump the generation count so no one will be confused
2397 * by reincarnations of this inode.
2401 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2403 error
= xfs_itobp(ip
->i_mount
, tp
, ip
, &dip
, &ibp
, 0, 0);
2408 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2409 * from picking up this inode when it is reclaimed (its incore state
2410 * initialzed but not flushed to disk yet). The in-core di_mode is
2411 * already cleared and a corresponding transaction logged.
2412 * The hack here just synchronizes the in-core to on-disk
2413 * di_mode value in advance before the actual inode sync to disk.
2414 * This is OK because the inode is already unlinked and would never
2415 * change its di_mode again for this inode generation.
2416 * This is a temporary hack that would require a proper fix
2419 dip
->di_core
.di_mode
= 0;
2422 xfs_ifree_cluster(ip
, tp
, first_ino
);
2429 * Reallocate the space for if_broot based on the number of records
2430 * being added or deleted as indicated in rec_diff. Move the records
2431 * and pointers in if_broot to fit the new size. When shrinking this
2432 * will eliminate holes between the records and pointers created by
2433 * the caller. When growing this will create holes to be filled in
2436 * The caller must not request to add more records than would fit in
2437 * the on-disk inode root. If the if_broot is currently NULL, then
2438 * if we adding records one will be allocated. The caller must also
2439 * not request that the number of records go below zero, although
2440 * it can go to zero.
2442 * ip -- the inode whose if_broot area is changing
2443 * ext_diff -- the change in the number of records, positive or negative,
2444 * requested for the if_broot array.
2454 xfs_bmbt_block_t
*new_broot
;
2461 * Handle the degenerate case quietly.
2463 if (rec_diff
== 0) {
2467 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2470 * If there wasn't any memory allocated before, just
2471 * allocate it now and get out.
2473 if (ifp
->if_broot_bytes
== 0) {
2474 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2475 ifp
->if_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
,
2477 ifp
->if_broot_bytes
= (int)new_size
;
2482 * If there is already an existing if_broot, then we need
2483 * to realloc() it and shift the pointers to their new
2484 * location. The records don't change location because
2485 * they are kept butted up against the btree block header.
2487 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2488 new_max
= cur_max
+ rec_diff
;
2489 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2490 ifp
->if_broot
= (xfs_bmbt_block_t
*)
2491 kmem_realloc(ifp
->if_broot
,
2493 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2495 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2496 ifp
->if_broot_bytes
);
2497 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2499 ifp
->if_broot_bytes
= (int)new_size
;
2500 ASSERT(ifp
->if_broot_bytes
<=
2501 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2502 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2507 * rec_diff is less than 0. In this case, we are shrinking the
2508 * if_broot buffer. It must already exist. If we go to zero
2509 * records, just get rid of the root and clear the status bit.
2511 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2512 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2513 new_max
= cur_max
+ rec_diff
;
2514 ASSERT(new_max
>= 0);
2516 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2520 new_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
, KM_SLEEP
);
2522 * First copy over the btree block header.
2524 memcpy(new_broot
, ifp
->if_broot
, sizeof(xfs_bmbt_block_t
));
2527 ifp
->if_flags
&= ~XFS_IFBROOT
;
2531 * Only copy the records and pointers if there are any.
2535 * First copy the records.
2537 op
= (char *)XFS_BMAP_BROOT_REC_ADDR(ifp
->if_broot
, 1,
2538 ifp
->if_broot_bytes
);
2539 np
= (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot
, 1,
2541 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2544 * Then copy the pointers.
2546 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2547 ifp
->if_broot_bytes
);
2548 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot
, 1,
2550 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2552 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2553 ifp
->if_broot
= new_broot
;
2554 ifp
->if_broot_bytes
= (int)new_size
;
2555 ASSERT(ifp
->if_broot_bytes
<=
2556 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2562 * This is called when the amount of space needed for if_data
2563 * is increased or decreased. The change in size is indicated by
2564 * the number of bytes that need to be added or deleted in the
2565 * byte_diff parameter.
2567 * If the amount of space needed has decreased below the size of the
2568 * inline buffer, then switch to using the inline buffer. Otherwise,
2569 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2570 * to what is needed.
2572 * ip -- the inode whose if_data area is changing
2573 * byte_diff -- the change in the number of bytes, positive or negative,
2574 * requested for the if_data array.
2586 if (byte_diff
== 0) {
2590 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2591 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2592 ASSERT(new_size
>= 0);
2594 if (new_size
== 0) {
2595 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2596 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2598 ifp
->if_u1
.if_data
= NULL
;
2600 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2602 * If the valid extents/data can fit in if_inline_ext/data,
2603 * copy them from the malloc'd vector and free it.
2605 if (ifp
->if_u1
.if_data
== NULL
) {
2606 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2607 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2608 ASSERT(ifp
->if_real_bytes
!= 0);
2609 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2611 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2612 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2617 * Stuck with malloc/realloc.
2618 * For inline data, the underlying buffer must be
2619 * a multiple of 4 bytes in size so that it can be
2620 * logged and stay on word boundaries. We enforce
2623 real_size
= roundup(new_size
, 4);
2624 if (ifp
->if_u1
.if_data
== NULL
) {
2625 ASSERT(ifp
->if_real_bytes
== 0);
2626 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2627 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2629 * Only do the realloc if the underlying size
2630 * is really changing.
2632 if (ifp
->if_real_bytes
!= real_size
) {
2633 ifp
->if_u1
.if_data
=
2634 kmem_realloc(ifp
->if_u1
.if_data
,
2640 ASSERT(ifp
->if_real_bytes
== 0);
2641 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2642 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2646 ifp
->if_real_bytes
= real_size
;
2647 ifp
->if_bytes
= new_size
;
2648 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2655 * Map inode to disk block and offset.
2657 * mp -- the mount point structure for the current file system
2658 * tp -- the current transaction
2659 * ino -- the inode number of the inode to be located
2660 * imap -- this structure is filled in with the information necessary
2661 * to retrieve the given inode from disk
2662 * flags -- flags to pass to xfs_dilocate indicating whether or not
2663 * lookups in the inode btree were OK or not
2673 xfs_fsblock_t fsbno
;
2678 fsbno
= imap
->im_blkno
?
2679 XFS_DADDR_TO_FSB(mp
, imap
->im_blkno
) : NULLFSBLOCK
;
2680 error
= xfs_dilocate(mp
, tp
, ino
, &fsbno
, &len
, &off
, flags
);
2684 imap
->im_blkno
= XFS_FSB_TO_DADDR(mp
, fsbno
);
2685 imap
->im_len
= XFS_FSB_TO_BB(mp
, len
);
2686 imap
->im_agblkno
= XFS_FSB_TO_AGBNO(mp
, fsbno
);
2687 imap
->im_ioffset
= (ushort
)off
;
2688 imap
->im_boffset
= (ushort
)(off
<< mp
->m_sb
.sb_inodelog
);
2699 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2700 if (ifp
->if_broot
!= NULL
) {
2701 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2702 ifp
->if_broot
= NULL
;
2706 * If the format is local, then we can't have an extents
2707 * array so just look for an inline data array. If we're
2708 * not local then we may or may not have an extents list,
2709 * so check and free it up if we do.
2711 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2712 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2713 (ifp
->if_u1
.if_data
!= NULL
)) {
2714 ASSERT(ifp
->if_real_bytes
!= 0);
2715 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2716 ifp
->if_u1
.if_data
= NULL
;
2717 ifp
->if_real_bytes
= 0;
2719 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2720 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2721 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2722 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2723 ASSERT(ifp
->if_real_bytes
!= 0);
2724 xfs_iext_destroy(ifp
);
2726 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2727 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2728 ASSERT(ifp
->if_real_bytes
== 0);
2729 if (whichfork
== XFS_ATTR_FORK
) {
2730 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2736 * This is called free all the memory associated with an inode.
2737 * It must free the inode itself and any buffers allocated for
2738 * if_extents/if_data and if_broot. It must also free the lock
2739 * associated with the inode.
2745 switch (ip
->i_d
.di_mode
& S_IFMT
) {
2749 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
2753 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
2754 mrfree(&ip
->i_lock
);
2755 mrfree(&ip
->i_iolock
);
2756 freesema(&ip
->i_flock
);
2758 #ifdef XFS_INODE_TRACE
2759 ktrace_free(ip
->i_trace
);
2761 #ifdef XFS_BMAP_TRACE
2762 ktrace_free(ip
->i_xtrace
);
2764 #ifdef XFS_BMBT_TRACE
2765 ktrace_free(ip
->i_btrace
);
2768 ktrace_free(ip
->i_rwtrace
);
2770 #ifdef XFS_ILOCK_TRACE
2771 ktrace_free(ip
->i_lock_trace
);
2773 #ifdef XFS_DIR2_TRACE
2774 ktrace_free(ip
->i_dir_trace
);
2778 * Only if we are shutting down the fs will we see an
2779 * inode still in the AIL. If it is there, we should remove
2780 * it to prevent a use-after-free from occurring.
2782 xfs_mount_t
*mp
= ip
->i_mount
;
2783 xfs_log_item_t
*lip
= &ip
->i_itemp
->ili_item
;
2785 ASSERT(((lip
->li_flags
& XFS_LI_IN_AIL
) == 0) ||
2786 XFS_FORCED_SHUTDOWN(ip
->i_mount
));
2787 if (lip
->li_flags
& XFS_LI_IN_AIL
) {
2788 spin_lock(&mp
->m_ail_lock
);
2789 if (lip
->li_flags
& XFS_LI_IN_AIL
)
2790 xfs_trans_delete_ail(mp
, lip
);
2792 spin_unlock(&mp
->m_ail_lock
);
2794 xfs_inode_item_destroy(ip
);
2796 kmem_zone_free(xfs_inode_zone
, ip
);
2801 * Increment the pin count of the given buffer.
2802 * This value is protected by ipinlock spinlock in the mount structure.
2808 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
2810 atomic_inc(&ip
->i_pincount
);
2814 * Decrement the pin count of the given inode, and wake up
2815 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2816 * inode must have been previously pinned with a call to xfs_ipin().
2822 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
2824 if (atomic_dec_and_test(&ip
->i_pincount
))
2825 wake_up(&ip
->i_ipin_wait
);
2829 * This is called to wait for the given inode to be unpinned.
2830 * It will sleep until this happens. The caller must have the
2831 * inode locked in at least shared mode so that the buffer cannot
2832 * be subsequently pinned once someone is waiting for it to be
2839 xfs_inode_log_item_t
*iip
;
2842 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
| MR_ACCESS
));
2844 if (atomic_read(&ip
->i_pincount
) == 0) {
2849 if (iip
&& iip
->ili_last_lsn
) {
2850 lsn
= iip
->ili_last_lsn
;
2856 * Give the log a push so we don't wait here too long.
2858 xfs_log_force(ip
->i_mount
, lsn
, XFS_LOG_FORCE
);
2860 wait_event(ip
->i_ipin_wait
, (atomic_read(&ip
->i_pincount
) == 0));
2865 * xfs_iextents_copy()
2867 * This is called to copy the REAL extents (as opposed to the delayed
2868 * allocation extents) from the inode into the given buffer. It
2869 * returns the number of bytes copied into the buffer.
2871 * If there are no delayed allocation extents, then we can just
2872 * memcpy() the extents into the buffer. Otherwise, we need to
2873 * examine each extent in turn and skip those which are delayed.
2885 xfs_fsblock_t start_block
;
2887 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2888 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
2889 ASSERT(ifp
->if_bytes
> 0);
2891 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2892 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2896 * There are some delayed allocation extents in the
2897 * inode, so copy the extents one at a time and skip
2898 * the delayed ones. There must be at least one
2899 * non-delayed extent.
2902 for (i
= 0; i
< nrecs
; i
++) {
2903 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2904 start_block
= xfs_bmbt_get_startblock(ep
);
2905 if (ISNULLSTARTBLOCK(start_block
)) {
2907 * It's a delayed allocation extent, so skip it.
2912 /* Translate to on disk format */
2913 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2914 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2918 ASSERT(copied
!= 0);
2919 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2921 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2925 * Each of the following cases stores data into the same region
2926 * of the on-disk inode, so only one of them can be valid at
2927 * any given time. While it is possible to have conflicting formats
2928 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2929 * in EXTENTS format, this can only happen when the fork has
2930 * changed formats after being modified but before being flushed.
2931 * In these cases, the format always takes precedence, because the
2932 * format indicates the current state of the fork.
2939 xfs_inode_log_item_t
*iip
,
2946 #ifdef XFS_TRANS_DEBUG
2949 static const short brootflag
[2] =
2950 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2951 static const short dataflag
[2] =
2952 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2953 static const short extflag
[2] =
2954 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2958 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2960 * This can happen if we gave up in iformat in an error path,
2961 * for the attribute fork.
2964 ASSERT(whichfork
== XFS_ATTR_FORK
);
2967 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2969 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2970 case XFS_DINODE_FMT_LOCAL
:
2971 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2972 (ifp
->if_bytes
> 0)) {
2973 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2974 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2975 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2979 case XFS_DINODE_FMT_EXTENTS
:
2980 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2981 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2982 ASSERT((xfs_iext_get_ext(ifp
, 0) != NULL
) ||
2983 (ifp
->if_bytes
== 0));
2984 ASSERT((xfs_iext_get_ext(ifp
, 0) == NULL
) ||
2985 (ifp
->if_bytes
> 0));
2986 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2987 (ifp
->if_bytes
> 0)) {
2988 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2989 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2994 case XFS_DINODE_FMT_BTREE
:
2995 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
2996 (ifp
->if_broot_bytes
> 0)) {
2997 ASSERT(ifp
->if_broot
!= NULL
);
2998 ASSERT(ifp
->if_broot_bytes
<=
2999 (XFS_IFORK_SIZE(ip
, whichfork
) +
3000 XFS_BROOT_SIZE_ADJ
));
3001 xfs_bmbt_to_bmdr(ifp
->if_broot
, ifp
->if_broot_bytes
,
3002 (xfs_bmdr_block_t
*)cp
,
3003 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
3007 case XFS_DINODE_FMT_DEV
:
3008 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
3009 ASSERT(whichfork
== XFS_DATA_FORK
);
3010 dip
->di_u
.di_dev
= cpu_to_be32(ip
->i_df
.if_u2
.if_rdev
);
3014 case XFS_DINODE_FMT_UUID
:
3015 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
3016 ASSERT(whichfork
== XFS_DATA_FORK
);
3017 memcpy(&dip
->di_u
.di_muuid
, &ip
->i_df
.if_u2
.if_uuid
,
3031 * xfs_iflush() will write a modified inode's changes out to the
3032 * inode's on disk home. The caller must have the inode lock held
3033 * in at least shared mode and the inode flush semaphore must be
3034 * held as well. The inode lock will still be held upon return from
3035 * the call and the caller is free to unlock it.
3036 * The inode flush lock will be unlocked when the inode reaches the disk.
3037 * The flags indicate how the inode's buffer should be written out.
3044 xfs_inode_log_item_t
*iip
;
3051 int clcount
; /* count of inodes clustered */
3053 struct hlist_node
*entry
;
3054 enum { INT_DELWRI
= (1 << 0), INT_ASYNC
= (1 << 1) };
3056 XFS_STATS_INC(xs_iflush_count
);
3058 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
3059 ASSERT(issemalocked(&(ip
->i_flock
)));
3060 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3061 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3067 * If the inode isn't dirty, then just release the inode
3068 * flush lock and do nothing.
3070 if ((ip
->i_update_core
== 0) &&
3071 ((iip
== NULL
) || !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3072 ASSERT((iip
!= NULL
) ?
3073 !(iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) : 1);
3079 * We can't flush the inode until it is unpinned, so
3080 * wait for it. We know noone new can pin it, because
3081 * we are holding the inode lock shared and you need
3082 * to hold it exclusively to pin the inode.
3084 xfs_iunpin_wait(ip
);
3087 * This may have been unpinned because the filesystem is shutting
3088 * down forcibly. If that's the case we must not write this inode
3089 * to disk, because the log record didn't make it to disk!
3091 if (XFS_FORCED_SHUTDOWN(mp
)) {
3092 ip
->i_update_core
= 0;
3094 iip
->ili_format
.ilf_fields
= 0;
3096 return XFS_ERROR(EIO
);
3100 * Get the buffer containing the on-disk inode.
3102 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
, 0, 0);
3109 * Decide how buffer will be flushed out. This is done before
3110 * the call to xfs_iflush_int because this field is zeroed by it.
3112 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3114 * Flush out the inode buffer according to the directions
3115 * of the caller. In the cases where the caller has given
3116 * us a choice choose the non-delwri case. This is because
3117 * the inode is in the AIL and we need to get it out soon.
3120 case XFS_IFLUSH_SYNC
:
3121 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3124 case XFS_IFLUSH_ASYNC
:
3125 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3128 case XFS_IFLUSH_DELWRI
:
3138 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3139 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3140 case XFS_IFLUSH_DELWRI
:
3143 case XFS_IFLUSH_ASYNC
:
3146 case XFS_IFLUSH_SYNC
:
3157 * First flush out the inode that xfs_iflush was called with.
3159 error
= xfs_iflush_int(ip
, bp
);
3166 * see if other inodes can be gathered into this write
3168 spin_lock(&ip
->i_cluster
->icl_lock
);
3169 ip
->i_cluster
->icl_buf
= bp
;
3172 hlist_for_each_entry(iq
, entry
, &ip
->i_cluster
->icl_inodes
, i_cnode
) {
3177 * Do an un-protected check to see if the inode is dirty and
3178 * is a candidate for flushing. These checks will be repeated
3179 * later after the appropriate locks are acquired.
3182 if ((iq
->i_update_core
== 0) &&
3184 !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
)) &&
3185 xfs_ipincount(iq
) == 0) {
3190 * Try to get locks. If any are unavailable,
3191 * then this inode cannot be flushed and is skipped.
3194 /* get inode locks (just i_lock) */
3195 if (xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
)) {
3196 /* get inode flush lock */
3197 if (xfs_iflock_nowait(iq
)) {
3198 /* check if pinned */
3199 if (xfs_ipincount(iq
) == 0) {
3200 /* arriving here means that
3201 * this inode can be flushed.
3202 * first re-check that it's
3206 if ((iq
->i_update_core
!= 0)||
3208 (iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3210 error
= xfs_iflush_int(iq
, bp
);
3214 goto cluster_corrupt_out
;
3223 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3226 spin_unlock(&ip
->i_cluster
->icl_lock
);
3229 XFS_STATS_INC(xs_icluster_flushcnt
);
3230 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
3234 * If the buffer is pinned then push on the log so we won't
3235 * get stuck waiting in the write for too long.
3237 if (XFS_BUF_ISPINNED(bp
)){
3238 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
3241 if (flags
& INT_DELWRI
) {
3242 xfs_bdwrite(mp
, bp
);
3243 } else if (flags
& INT_ASYNC
) {
3244 xfs_bawrite(mp
, bp
);
3246 error
= xfs_bwrite(mp
, bp
);
3252 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3253 xfs_iflush_abort(ip
);
3255 * Unlocks the flush lock
3257 return XFS_ERROR(EFSCORRUPTED
);
3259 cluster_corrupt_out
:
3260 /* Corruption detected in the clustering loop. Invalidate the
3261 * inode buffer and shut down the filesystem.
3263 spin_unlock(&ip
->i_cluster
->icl_lock
);
3266 * Clean up the buffer. If it was B_DELWRI, just release it --
3267 * brelse can handle it with no problems. If not, shut down the
3268 * filesystem before releasing the buffer.
3270 if ((bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
))) {
3274 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3278 * Just like incore_relse: if we have b_iodone functions,
3279 * mark the buffer as an error and call them. Otherwise
3280 * mark it as stale and brelse.
3282 if (XFS_BUF_IODONE_FUNC(bp
)) {
3283 XFS_BUF_CLR_BDSTRAT_FUNC(bp
);
3287 XFS_BUF_ERROR(bp
,EIO
);
3295 xfs_iflush_abort(iq
);
3297 * Unlocks the flush lock
3299 return XFS_ERROR(EFSCORRUPTED
);
3308 xfs_inode_log_item_t
*iip
;
3311 #ifdef XFS_TRANS_DEBUG
3315 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
3316 ASSERT(issemalocked(&(ip
->i_flock
)));
3317 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3318 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3325 * If the inode isn't dirty, then just release the inode
3326 * flush lock and do nothing.
3328 if ((ip
->i_update_core
== 0) &&
3329 ((iip
== NULL
) || !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3334 /* set *dip = inode's place in the buffer */
3335 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_boffset
);
3338 * Clear i_update_core before copying out the data.
3339 * This is for coordination with our timestamp updates
3340 * that don't hold the inode lock. They will always
3341 * update the timestamps BEFORE setting i_update_core,
3342 * so if we clear i_update_core after they set it we
3343 * are guaranteed to see their updates to the timestamps.
3344 * I believe that this depends on strongly ordered memory
3345 * semantics, but we have that. We use the SYNCHRONIZE
3346 * macro to make sure that the compiler does not reorder
3347 * the i_update_core access below the data copy below.
3349 ip
->i_update_core
= 0;
3353 * Make sure to get the latest atime from the Linux inode.
3355 xfs_synchronize_atime(ip
);
3357 if (XFS_TEST_ERROR(be16_to_cpu(dip
->di_core
.di_magic
) != XFS_DINODE_MAGIC
,
3358 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3359 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3360 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3361 ip
->i_ino
, be16_to_cpu(dip
->di_core
.di_magic
), dip
);
3364 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3365 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3366 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3367 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3368 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3371 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
3373 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3374 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3375 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3376 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3377 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3381 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
3383 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3384 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3385 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3386 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3387 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3388 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3393 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3394 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3395 XFS_RANDOM_IFLUSH_5
)) {
3396 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3397 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3399 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3404 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3405 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3406 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3407 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3408 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3412 * bump the flush iteration count, used to detect flushes which
3413 * postdate a log record during recovery.
3416 ip
->i_d
.di_flushiter
++;
3419 * Copy the dirty parts of the inode into the on-disk
3420 * inode. We always copy out the core of the inode,
3421 * because if the inode is dirty at all the core must
3424 xfs_dinode_to_disk(&dip
->di_core
, &ip
->i_d
);
3426 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3427 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3428 ip
->i_d
.di_flushiter
= 0;
3431 * If this is really an old format inode and the superblock version
3432 * has not been updated to support only new format inodes, then
3433 * convert back to the old inode format. If the superblock version
3434 * has been updated, then make the conversion permanent.
3436 ASSERT(ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
||
3437 XFS_SB_VERSION_HASNLINK(&mp
->m_sb
));
3438 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
3439 if (!XFS_SB_VERSION_HASNLINK(&mp
->m_sb
)) {
3443 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3444 dip
->di_core
.di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
3447 * The superblock version has already been bumped,
3448 * so just make the conversion to the new inode
3451 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
3452 dip
->di_core
.di_version
= XFS_DINODE_VERSION_2
;
3453 ip
->i_d
.di_onlink
= 0;
3454 dip
->di_core
.di_onlink
= 0;
3455 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3456 memset(&(dip
->di_core
.di_pad
[0]), 0,
3457 sizeof(dip
->di_core
.di_pad
));
3458 ASSERT(ip
->i_d
.di_projid
== 0);
3462 if (xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
) == EFSCORRUPTED
) {
3466 if (XFS_IFORK_Q(ip
)) {
3468 * The only error from xfs_iflush_fork is on the data fork.
3470 (void) xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3472 xfs_inobp_check(mp
, bp
);
3475 * We've recorded everything logged in the inode, so we'd
3476 * like to clear the ilf_fields bits so we don't log and
3477 * flush things unnecessarily. However, we can't stop
3478 * logging all this information until the data we've copied
3479 * into the disk buffer is written to disk. If we did we might
3480 * overwrite the copy of the inode in the log with all the
3481 * data after re-logging only part of it, and in the face of
3482 * a crash we wouldn't have all the data we need to recover.
3484 * What we do is move the bits to the ili_last_fields field.
3485 * When logging the inode, these bits are moved back to the
3486 * ilf_fields field. In the xfs_iflush_done() routine we
3487 * clear ili_last_fields, since we know that the information
3488 * those bits represent is permanently on disk. As long as
3489 * the flush completes before the inode is logged again, then
3490 * both ilf_fields and ili_last_fields will be cleared.
3492 * We can play with the ilf_fields bits here, because the inode
3493 * lock must be held exclusively in order to set bits there
3494 * and the flush lock protects the ili_last_fields bits.
3495 * Set ili_logged so the flush done
3496 * routine can tell whether or not to look in the AIL.
3497 * Also, store the current LSN of the inode so that we can tell
3498 * whether the item has moved in the AIL from xfs_iflush_done().
3499 * In order to read the lsn we need the AIL lock, because
3500 * it is a 64 bit value that cannot be read atomically.
3502 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3503 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3504 iip
->ili_format
.ilf_fields
= 0;
3505 iip
->ili_logged
= 1;
3507 ASSERT(sizeof(xfs_lsn_t
) == 8); /* don't lock if it shrinks */
3508 spin_lock(&mp
->m_ail_lock
);
3509 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
3510 spin_unlock(&mp
->m_ail_lock
);
3513 * Attach the function xfs_iflush_done to the inode's
3514 * buffer. This will remove the inode from the AIL
3515 * and unlock the inode's flush lock when the inode is
3516 * completely written to disk.
3518 xfs_buf_attach_iodone(bp
, (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
3519 xfs_iflush_done
, (xfs_log_item_t
*)iip
);
3521 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3522 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3525 * We're flushing an inode which is not in the AIL and has
3526 * not been logged but has i_update_core set. For this
3527 * case we can use a B_DELWRI flush and immediately drop
3528 * the inode flush lock because we can avoid the whole
3529 * AIL state thing. It's OK to drop the flush lock now,
3530 * because we've already locked the buffer and to do anything
3531 * you really need both.
3534 ASSERT(iip
->ili_logged
== 0);
3535 ASSERT(iip
->ili_last_fields
== 0);
3536 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3544 return XFS_ERROR(EFSCORRUPTED
);
3549 * Flush all inactive inodes in mp.
3559 XFS_MOUNT_ILOCK(mp
);
3565 /* Make sure we skip markers inserted by sync */
3566 if (ip
->i_mount
== NULL
) {
3571 vp
= XFS_ITOV_NULL(ip
);
3573 XFS_MOUNT_IUNLOCK(mp
);
3574 xfs_finish_reclaim(ip
, 0, XFS_IFLUSH_ASYNC
);
3578 ASSERT(vn_count(vp
) == 0);
3581 } while (ip
!= mp
->m_inodes
);
3583 XFS_MOUNT_IUNLOCK(mp
);
3586 #ifdef XFS_ILOCK_TRACE
3587 ktrace_t
*xfs_ilock_trace_buf
;
3590 xfs_ilock_trace(xfs_inode_t
*ip
, int lock
, unsigned int lockflags
, inst_t
*ra
)
3592 ktrace_enter(ip
->i_lock_trace
,
3594 (void *)(unsigned long)lock
, /* 1 = LOCK, 3=UNLOCK, etc */
3595 (void *)(unsigned long)lockflags
, /* XFS_ILOCK_EXCL etc */
3596 (void *)ra
, /* caller of ilock */
3597 (void *)(unsigned long)current_cpu(),
3598 (void *)(unsigned long)current_pid(),
3599 NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
);
3604 * Return a pointer to the extent record at file index idx.
3606 xfs_bmbt_rec_host_t
*
3608 xfs_ifork_t
*ifp
, /* inode fork pointer */
3609 xfs_extnum_t idx
) /* index of target extent */
3612 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3613 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3614 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3615 xfs_ext_irec_t
*erp
; /* irec pointer */
3616 int erp_idx
= 0; /* irec index */
3617 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3619 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3620 return &erp
->er_extbuf
[page_idx
];
3621 } else if (ifp
->if_bytes
) {
3622 return &ifp
->if_u1
.if_extents
[idx
];
3629 * Insert new item(s) into the extent records for incore inode
3630 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3634 xfs_ifork_t
*ifp
, /* inode fork pointer */
3635 xfs_extnum_t idx
, /* starting index of new items */
3636 xfs_extnum_t count
, /* number of inserted items */
3637 xfs_bmbt_irec_t
*new) /* items to insert */
3639 xfs_extnum_t i
; /* extent record index */
3641 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3642 xfs_iext_add(ifp
, idx
, count
);
3643 for (i
= idx
; i
< idx
+ count
; i
++, new++)
3644 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
3648 * This is called when the amount of space required for incore file
3649 * extents needs to be increased. The ext_diff parameter stores the
3650 * number of new extents being added and the idx parameter contains
3651 * the extent index where the new extents will be added. If the new
3652 * extents are being appended, then we just need to (re)allocate and
3653 * initialize the space. Otherwise, if the new extents are being
3654 * inserted into the middle of the existing entries, a bit more work
3655 * is required to make room for the new extents to be inserted. The
3656 * caller is responsible for filling in the new extent entries upon
3661 xfs_ifork_t
*ifp
, /* inode fork pointer */
3662 xfs_extnum_t idx
, /* index to begin adding exts */
3663 int ext_diff
) /* number of extents to add */
3665 int byte_diff
; /* new bytes being added */
3666 int new_size
; /* size of extents after adding */
3667 xfs_extnum_t nextents
; /* number of extents in file */
3669 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3670 ASSERT((idx
>= 0) && (idx
<= nextents
));
3671 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3672 new_size
= ifp
->if_bytes
+ byte_diff
;
3674 * If the new number of extents (nextents + ext_diff)
3675 * fits inside the inode, then continue to use the inline
3678 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3679 if (idx
< nextents
) {
3680 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3681 &ifp
->if_u2
.if_inline_ext
[idx
],
3682 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3683 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3685 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3686 ifp
->if_real_bytes
= 0;
3687 ifp
->if_lastex
= nextents
+ ext_diff
;
3690 * Otherwise use a linear (direct) extent list.
3691 * If the extents are currently inside the inode,
3692 * xfs_iext_realloc_direct will switch us from
3693 * inline to direct extent allocation mode.
3695 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3696 xfs_iext_realloc_direct(ifp
, new_size
);
3697 if (idx
< nextents
) {
3698 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3699 &ifp
->if_u1
.if_extents
[idx
],
3700 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3701 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3704 /* Indirection array */
3706 xfs_ext_irec_t
*erp
;
3710 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3711 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3712 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3714 xfs_iext_irec_init(ifp
);
3715 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3716 erp
= ifp
->if_u1
.if_ext_irec
;
3718 /* Extents fit in target extent page */
3719 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3720 if (page_idx
< erp
->er_extcount
) {
3721 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3722 &erp
->er_extbuf
[page_idx
],
3723 (erp
->er_extcount
- page_idx
) *
3724 sizeof(xfs_bmbt_rec_t
));
3725 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3727 erp
->er_extcount
+= ext_diff
;
3728 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3730 /* Insert a new extent page */
3732 xfs_iext_add_indirect_multi(ifp
,
3733 erp_idx
, page_idx
, ext_diff
);
3736 * If extent(s) are being appended to the last page in
3737 * the indirection array and the new extent(s) don't fit
3738 * in the page, then erp is NULL and erp_idx is set to
3739 * the next index needed in the indirection array.
3742 int count
= ext_diff
;
3745 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3746 erp
->er_extcount
= count
;
3747 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3754 ifp
->if_bytes
= new_size
;
3758 * This is called when incore extents are being added to the indirection
3759 * array and the new extents do not fit in the target extent list. The
3760 * erp_idx parameter contains the irec index for the target extent list
3761 * in the indirection array, and the idx parameter contains the extent
3762 * index within the list. The number of extents being added is stored
3763 * in the count parameter.
3765 * |-------| |-------|
3766 * | | | | idx - number of extents before idx
3768 * | | | | count - number of extents being inserted at idx
3769 * |-------| |-------|
3770 * | count | | nex2 | nex2 - number of extents after idx + count
3771 * |-------| |-------|
3774 xfs_iext_add_indirect_multi(
3775 xfs_ifork_t
*ifp
, /* inode fork pointer */
3776 int erp_idx
, /* target extent irec index */
3777 xfs_extnum_t idx
, /* index within target list */
3778 int count
) /* new extents being added */
3780 int byte_diff
; /* new bytes being added */
3781 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3782 xfs_extnum_t ext_diff
; /* number of extents to add */
3783 xfs_extnum_t ext_cnt
; /* new extents still needed */
3784 xfs_extnum_t nex2
; /* extents after idx + count */
3785 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3786 int nlists
; /* number of irec's (lists) */
3788 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3789 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3790 nex2
= erp
->er_extcount
- idx
;
3791 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3794 * Save second part of target extent list
3795 * (all extents past */
3797 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3798 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_SLEEP
);
3799 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3800 erp
->er_extcount
-= nex2
;
3801 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3802 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3806 * Add the new extents to the end of the target
3807 * list, then allocate new irec record(s) and
3808 * extent buffer(s) as needed to store the rest
3809 * of the new extents.
3812 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3814 erp
->er_extcount
+= ext_diff
;
3815 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3816 ext_cnt
-= ext_diff
;
3820 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3821 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3822 erp
->er_extcount
= ext_diff
;
3823 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3824 ext_cnt
-= ext_diff
;
3827 /* Add nex2 extents back to indirection array */
3829 xfs_extnum_t ext_avail
;
3832 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3833 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3836 * If nex2 extents fit in the current page, append
3837 * nex2_ep after the new extents.
3839 if (nex2
<= ext_avail
) {
3840 i
= erp
->er_extcount
;
3843 * Otherwise, check if space is available in the
3846 else if ((erp_idx
< nlists
- 1) &&
3847 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3848 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3851 /* Create a hole for nex2 extents */
3852 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3853 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3856 * Final choice, create a new extent page for
3861 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3863 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3864 kmem_free(nex2_ep
, byte_diff
);
3865 erp
->er_extcount
+= nex2
;
3866 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3871 * This is called when the amount of space required for incore file
3872 * extents needs to be decreased. The ext_diff parameter stores the
3873 * number of extents to be removed and the idx parameter contains
3874 * the extent index where the extents will be removed from.
3876 * If the amount of space needed has decreased below the linear
3877 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3878 * extent array. Otherwise, use kmem_realloc() to adjust the
3879 * size to what is needed.
3883 xfs_ifork_t
*ifp
, /* inode fork pointer */
3884 xfs_extnum_t idx
, /* index to begin removing exts */
3885 int ext_diff
) /* number of extents to remove */
3887 xfs_extnum_t nextents
; /* number of extents in file */
3888 int new_size
; /* size of extents after removal */
3890 ASSERT(ext_diff
> 0);
3891 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3892 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3894 if (new_size
== 0) {
3895 xfs_iext_destroy(ifp
);
3896 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3897 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3898 } else if (ifp
->if_real_bytes
) {
3899 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3901 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3903 ifp
->if_bytes
= new_size
;
3907 * This removes ext_diff extents from the inline buffer, beginning
3908 * at extent index idx.
3911 xfs_iext_remove_inline(
3912 xfs_ifork_t
*ifp
, /* inode fork pointer */
3913 xfs_extnum_t idx
, /* index to begin removing exts */
3914 int ext_diff
) /* number of extents to remove */
3916 int nextents
; /* number of extents in file */
3918 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3919 ASSERT(idx
< XFS_INLINE_EXTS
);
3920 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3921 ASSERT(((nextents
- ext_diff
) > 0) &&
3922 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3924 if (idx
+ ext_diff
< nextents
) {
3925 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3926 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3927 (nextents
- (idx
+ ext_diff
)) *
3928 sizeof(xfs_bmbt_rec_t
));
3929 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3930 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3932 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3933 ext_diff
* sizeof(xfs_bmbt_rec_t
));
3938 * This removes ext_diff extents from a linear (direct) extent list,
3939 * beginning at extent index idx. If the extents are being removed
3940 * from the end of the list (ie. truncate) then we just need to re-
3941 * allocate the list to remove the extra space. Otherwise, if the
3942 * extents are being removed from the middle of the existing extent
3943 * entries, then we first need to move the extent records beginning
3944 * at idx + ext_diff up in the list to overwrite the records being
3945 * removed, then remove the extra space via kmem_realloc.
3948 xfs_iext_remove_direct(
3949 xfs_ifork_t
*ifp
, /* inode fork pointer */
3950 xfs_extnum_t idx
, /* index to begin removing exts */
3951 int ext_diff
) /* number of extents to remove */
3953 xfs_extnum_t nextents
; /* number of extents in file */
3954 int new_size
; /* size of extents after removal */
3956 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3957 new_size
= ifp
->if_bytes
-
3958 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
3959 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3961 if (new_size
== 0) {
3962 xfs_iext_destroy(ifp
);
3965 /* Move extents up in the list (if needed) */
3966 if (idx
+ ext_diff
< nextents
) {
3967 memmove(&ifp
->if_u1
.if_extents
[idx
],
3968 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3969 (nextents
- (idx
+ ext_diff
)) *
3970 sizeof(xfs_bmbt_rec_t
));
3972 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
3973 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3975 * Reallocate the direct extent list. If the extents
3976 * will fit inside the inode then xfs_iext_realloc_direct
3977 * will switch from direct to inline extent allocation
3980 xfs_iext_realloc_direct(ifp
, new_size
);
3981 ifp
->if_bytes
= new_size
;
3985 * This is called when incore extents are being removed from the
3986 * indirection array and the extents being removed span multiple extent
3987 * buffers. The idx parameter contains the file extent index where we
3988 * want to begin removing extents, and the count parameter contains
3989 * how many extents need to be removed.
3991 * |-------| |-------|
3992 * | nex1 | | | nex1 - number of extents before idx
3993 * |-------| | count |
3994 * | | | | count - number of extents being removed at idx
3995 * | count | |-------|
3996 * | | | nex2 | nex2 - number of extents after idx + count
3997 * |-------| |-------|
4000 xfs_iext_remove_indirect(
4001 xfs_ifork_t
*ifp
, /* inode fork pointer */
4002 xfs_extnum_t idx
, /* index to begin removing extents */
4003 int count
) /* number of extents to remove */
4005 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4006 int erp_idx
= 0; /* indirection array index */
4007 xfs_extnum_t ext_cnt
; /* extents left to remove */
4008 xfs_extnum_t ext_diff
; /* extents to remove in current list */
4009 xfs_extnum_t nex1
; /* number of extents before idx */
4010 xfs_extnum_t nex2
; /* extents after idx + count */
4011 int nlists
; /* entries in indirection array */
4012 int page_idx
= idx
; /* index in target extent list */
4014 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4015 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
4016 ASSERT(erp
!= NULL
);
4017 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4021 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
4022 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
4024 * Check for deletion of entire list;
4025 * xfs_iext_irec_remove() updates extent offsets.
4027 if (ext_diff
== erp
->er_extcount
) {
4028 xfs_iext_irec_remove(ifp
, erp_idx
);
4029 ext_cnt
-= ext_diff
;
4032 ASSERT(erp_idx
< ifp
->if_real_bytes
/
4034 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4041 /* Move extents up (if needed) */
4043 memmove(&erp
->er_extbuf
[nex1
],
4044 &erp
->er_extbuf
[nex1
+ ext_diff
],
4045 nex2
* sizeof(xfs_bmbt_rec_t
));
4047 /* Zero out rest of page */
4048 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
4049 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
4050 /* Update remaining counters */
4051 erp
->er_extcount
-= ext_diff
;
4052 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
4053 ext_cnt
-= ext_diff
;
4058 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
4059 xfs_iext_irec_compact(ifp
);
4063 * Create, destroy, or resize a linear (direct) block of extents.
4066 xfs_iext_realloc_direct(
4067 xfs_ifork_t
*ifp
, /* inode fork pointer */
4068 int new_size
) /* new size of extents */
4070 int rnew_size
; /* real new size of extents */
4072 rnew_size
= new_size
;
4074 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
4075 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
4076 (new_size
!= ifp
->if_real_bytes
)));
4078 /* Free extent records */
4079 if (new_size
== 0) {
4080 xfs_iext_destroy(ifp
);
4082 /* Resize direct extent list and zero any new bytes */
4083 else if (ifp
->if_real_bytes
) {
4084 /* Check if extents will fit inside the inode */
4085 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
4086 xfs_iext_direct_to_inline(ifp
, new_size
/
4087 (uint
)sizeof(xfs_bmbt_rec_t
));
4088 ifp
->if_bytes
= new_size
;
4091 if (!is_power_of_2(new_size
)){
4092 rnew_size
= roundup_pow_of_two(new_size
);
4094 if (rnew_size
!= ifp
->if_real_bytes
) {
4095 ifp
->if_u1
.if_extents
=
4096 kmem_realloc(ifp
->if_u1
.if_extents
,
4101 if (rnew_size
> ifp
->if_real_bytes
) {
4102 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
4103 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
4104 rnew_size
- ifp
->if_real_bytes
);
4108 * Switch from the inline extent buffer to a direct
4109 * extent list. Be sure to include the inline extent
4110 * bytes in new_size.
4113 new_size
+= ifp
->if_bytes
;
4114 if (!is_power_of_2(new_size
)) {
4115 rnew_size
= roundup_pow_of_two(new_size
);
4117 xfs_iext_inline_to_direct(ifp
, rnew_size
);
4119 ifp
->if_real_bytes
= rnew_size
;
4120 ifp
->if_bytes
= new_size
;
4124 * Switch from linear (direct) extent records to inline buffer.
4127 xfs_iext_direct_to_inline(
4128 xfs_ifork_t
*ifp
, /* inode fork pointer */
4129 xfs_extnum_t nextents
) /* number of extents in file */
4131 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
4132 ASSERT(nextents
<= XFS_INLINE_EXTS
);
4134 * The inline buffer was zeroed when we switched
4135 * from inline to direct extent allocation mode,
4136 * so we don't need to clear it here.
4138 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
4139 nextents
* sizeof(xfs_bmbt_rec_t
));
4140 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
4141 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
4142 ifp
->if_real_bytes
= 0;
4146 * Switch from inline buffer to linear (direct) extent records.
4147 * new_size should already be rounded up to the next power of 2
4148 * by the caller (when appropriate), so use new_size as it is.
4149 * However, since new_size may be rounded up, we can't update
4150 * if_bytes here. It is the caller's responsibility to update
4151 * if_bytes upon return.
4154 xfs_iext_inline_to_direct(
4155 xfs_ifork_t
*ifp
, /* inode fork pointer */
4156 int new_size
) /* number of extents in file */
4158 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_SLEEP
);
4159 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
4160 if (ifp
->if_bytes
) {
4161 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
4163 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
4164 sizeof(xfs_bmbt_rec_t
));
4166 ifp
->if_real_bytes
= new_size
;
4170 * Resize an extent indirection array to new_size bytes.
4173 xfs_iext_realloc_indirect(
4174 xfs_ifork_t
*ifp
, /* inode fork pointer */
4175 int new_size
) /* new indirection array size */
4177 int nlists
; /* number of irec's (ex lists) */
4178 int size
; /* current indirection array size */
4180 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4181 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4182 size
= nlists
* sizeof(xfs_ext_irec_t
);
4183 ASSERT(ifp
->if_real_bytes
);
4184 ASSERT((new_size
>= 0) && (new_size
!= size
));
4185 if (new_size
== 0) {
4186 xfs_iext_destroy(ifp
);
4188 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
4189 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
4190 new_size
, size
, KM_SLEEP
);
4195 * Switch from indirection array to linear (direct) extent allocations.
4198 xfs_iext_indirect_to_direct(
4199 xfs_ifork_t
*ifp
) /* inode fork pointer */
4201 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
4202 xfs_extnum_t nextents
; /* number of extents in file */
4203 int size
; /* size of file extents */
4205 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4206 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4207 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4208 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
4210 xfs_iext_irec_compact_full(ifp
);
4211 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
4213 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
4214 kmem_free(ifp
->if_u1
.if_ext_irec
, sizeof(xfs_ext_irec_t
));
4215 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
4216 ifp
->if_u1
.if_extents
= ep
;
4217 ifp
->if_bytes
= size
;
4218 if (nextents
< XFS_LINEAR_EXTS
) {
4219 xfs_iext_realloc_direct(ifp
, size
);
4224 * Free incore file extents.
4228 xfs_ifork_t
*ifp
) /* inode fork pointer */
4230 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4234 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4235 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
4236 xfs_iext_irec_remove(ifp
, erp_idx
);
4238 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
4239 } else if (ifp
->if_real_bytes
) {
4240 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
4241 } else if (ifp
->if_bytes
) {
4242 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
4243 sizeof(xfs_bmbt_rec_t
));
4245 ifp
->if_u1
.if_extents
= NULL
;
4246 ifp
->if_real_bytes
= 0;
4251 * Return a pointer to the extent record for file system block bno.
4253 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
4254 xfs_iext_bno_to_ext(
4255 xfs_ifork_t
*ifp
, /* inode fork pointer */
4256 xfs_fileoff_t bno
, /* block number to search for */
4257 xfs_extnum_t
*idxp
) /* index of target extent */
4259 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
4260 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
4261 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
4262 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
4263 int high
; /* upper boundary in search */
4264 xfs_extnum_t idx
= 0; /* index of target extent */
4265 int low
; /* lower boundary in search */
4266 xfs_extnum_t nextents
; /* number of file extents */
4267 xfs_fileoff_t startoff
= 0; /* start offset of extent */
4269 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4270 if (nextents
== 0) {
4275 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4276 /* Find target extent list */
4278 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
4279 base
= erp
->er_extbuf
;
4280 high
= erp
->er_extcount
- 1;
4282 base
= ifp
->if_u1
.if_extents
;
4283 high
= nextents
- 1;
4285 /* Binary search extent records */
4286 while (low
<= high
) {
4287 idx
= (low
+ high
) >> 1;
4289 startoff
= xfs_bmbt_get_startoff(ep
);
4290 blockcount
= xfs_bmbt_get_blockcount(ep
);
4291 if (bno
< startoff
) {
4293 } else if (bno
>= startoff
+ blockcount
) {
4296 /* Convert back to file-based extent index */
4297 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4298 idx
+= erp
->er_extoff
;
4304 /* Convert back to file-based extent index */
4305 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4306 idx
+= erp
->er_extoff
;
4308 if (bno
>= startoff
+ blockcount
) {
4309 if (++idx
== nextents
) {
4312 ep
= xfs_iext_get_ext(ifp
, idx
);
4320 * Return a pointer to the indirection array entry containing the
4321 * extent record for filesystem block bno. Store the index of the
4322 * target irec in *erp_idxp.
4324 xfs_ext_irec_t
* /* pointer to found extent record */
4325 xfs_iext_bno_to_irec(
4326 xfs_ifork_t
*ifp
, /* inode fork pointer */
4327 xfs_fileoff_t bno
, /* block number to search for */
4328 int *erp_idxp
) /* irec index of target ext list */
4330 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
4331 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
4332 int erp_idx
; /* indirection array index */
4333 int nlists
; /* number of extent irec's (lists) */
4334 int high
; /* binary search upper limit */
4335 int low
; /* binary search lower limit */
4337 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4338 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4342 while (low
<= high
) {
4343 erp_idx
= (low
+ high
) >> 1;
4344 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4345 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
4346 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
4348 } else if (erp_next
&& bno
>=
4349 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
4355 *erp_idxp
= erp_idx
;
4360 * Return a pointer to the indirection array entry containing the
4361 * extent record at file extent index *idxp. Store the index of the
4362 * target irec in *erp_idxp and store the page index of the target
4363 * extent record in *idxp.
4366 xfs_iext_idx_to_irec(
4367 xfs_ifork_t
*ifp
, /* inode fork pointer */
4368 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
4369 int *erp_idxp
, /* pointer to target irec */
4370 int realloc
) /* new bytes were just added */
4372 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
4373 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
4374 int erp_idx
; /* indirection array index */
4375 int nlists
; /* number of irec's (ex lists) */
4376 int high
; /* binary search upper limit */
4377 int low
; /* binary search lower limit */
4378 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
4380 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4381 ASSERT(page_idx
>= 0 && page_idx
<=
4382 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
));
4383 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4388 /* Binary search extent irec's */
4389 while (low
<= high
) {
4390 erp_idx
= (low
+ high
) >> 1;
4391 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4392 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
4393 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
4394 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
4396 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
4397 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4400 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4401 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4405 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
4408 page_idx
-= erp
->er_extoff
;
4413 *erp_idxp
= erp_idx
;
4418 * Allocate and initialize an indirection array once the space needed
4419 * for incore extents increases above XFS_IEXT_BUFSZ.
4423 xfs_ifork_t
*ifp
) /* inode fork pointer */
4425 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4426 xfs_extnum_t nextents
; /* number of extents in file */
4428 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4429 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4430 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4432 erp
= (xfs_ext_irec_t
*)
4433 kmem_alloc(sizeof(xfs_ext_irec_t
), KM_SLEEP
);
4435 if (nextents
== 0) {
4436 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_SLEEP
);
4437 } else if (!ifp
->if_real_bytes
) {
4438 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
4439 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
4440 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
4442 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
4443 erp
->er_extcount
= nextents
;
4446 ifp
->if_flags
|= XFS_IFEXTIREC
;
4447 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
4448 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
4449 ifp
->if_u1
.if_ext_irec
= erp
;
4455 * Allocate and initialize a new entry in the indirection array.
4459 xfs_ifork_t
*ifp
, /* inode fork pointer */
4460 int erp_idx
) /* index for new irec */
4462 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4463 int i
; /* loop counter */
4464 int nlists
; /* number of irec's (ex lists) */
4466 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4467 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4469 /* Resize indirection array */
4470 xfs_iext_realloc_indirect(ifp
, ++nlists
*
4471 sizeof(xfs_ext_irec_t
));
4473 * Move records down in the array so the
4474 * new page can use erp_idx.
4476 erp
= ifp
->if_u1
.if_ext_irec
;
4477 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
4478 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
4480 ASSERT(i
== erp_idx
);
4482 /* Initialize new extent record */
4483 erp
= ifp
->if_u1
.if_ext_irec
;
4484 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_SLEEP
);
4485 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4486 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
4487 erp
[erp_idx
].er_extcount
= 0;
4488 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
4489 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
4490 return (&erp
[erp_idx
]);
4494 * Remove a record from the indirection array.
4497 xfs_iext_irec_remove(
4498 xfs_ifork_t
*ifp
, /* inode fork pointer */
4499 int erp_idx
) /* irec index to remove */
4501 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4502 int i
; /* loop counter */
4503 int nlists
; /* number of irec's (ex lists) */
4505 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4506 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4507 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4508 if (erp
->er_extbuf
) {
4509 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
4511 kmem_free(erp
->er_extbuf
, XFS_IEXT_BUFSZ
);
4513 /* Compact extent records */
4514 erp
= ifp
->if_u1
.if_ext_irec
;
4515 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4516 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4519 * Manually free the last extent record from the indirection
4520 * array. A call to xfs_iext_realloc_indirect() with a size
4521 * of zero would result in a call to xfs_iext_destroy() which
4522 * would in turn call this function again, creating a nasty
4526 xfs_iext_realloc_indirect(ifp
,
4527 nlists
* sizeof(xfs_ext_irec_t
));
4529 kmem_free(ifp
->if_u1
.if_ext_irec
,
4530 sizeof(xfs_ext_irec_t
));
4532 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4536 * This is called to clean up large amounts of unused memory allocated
4537 * by the indirection array. Before compacting anything though, verify
4538 * that the indirection array is still needed and switch back to the
4539 * linear extent list (or even the inline buffer) if possible. The
4540 * compaction policy is as follows:
4542 * Full Compaction: Extents fit into a single page (or inline buffer)
4543 * Full Compaction: Extents occupy less than 10% of allocated space
4544 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4545 * No Compaction: Extents occupy at least 50% of allocated space
4548 xfs_iext_irec_compact(
4549 xfs_ifork_t
*ifp
) /* inode fork pointer */
4551 xfs_extnum_t nextents
; /* number of extents in file */
4552 int nlists
; /* number of irec's (ex lists) */
4554 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4555 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4556 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4558 if (nextents
== 0) {
4559 xfs_iext_destroy(ifp
);
4560 } else if (nextents
<= XFS_INLINE_EXTS
) {
4561 xfs_iext_indirect_to_direct(ifp
);
4562 xfs_iext_direct_to_inline(ifp
, nextents
);
4563 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4564 xfs_iext_indirect_to_direct(ifp
);
4565 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 3) {
4566 xfs_iext_irec_compact_full(ifp
);
4567 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4568 xfs_iext_irec_compact_pages(ifp
);
4573 * Combine extents from neighboring extent pages.
4576 xfs_iext_irec_compact_pages(
4577 xfs_ifork_t
*ifp
) /* inode fork pointer */
4579 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4580 int erp_idx
= 0; /* indirection array index */
4581 int nlists
; /* number of irec's (ex lists) */
4583 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4584 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4585 while (erp_idx
< nlists
- 1) {
4586 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4588 if (erp_next
->er_extcount
<=
4589 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4590 memmove(&erp
->er_extbuf
[erp
->er_extcount
],
4591 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4592 sizeof(xfs_bmbt_rec_t
));
4593 erp
->er_extcount
+= erp_next
->er_extcount
;
4595 * Free page before removing extent record
4596 * so er_extoffs don't get modified in
4597 * xfs_iext_irec_remove.
4599 kmem_free(erp_next
->er_extbuf
, XFS_IEXT_BUFSZ
);
4600 erp_next
->er_extbuf
= NULL
;
4601 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4602 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4610 * Fully compact the extent records managed by the indirection array.
4613 xfs_iext_irec_compact_full(
4614 xfs_ifork_t
*ifp
) /* inode fork pointer */
4616 xfs_bmbt_rec_host_t
*ep
, *ep_next
; /* extent record pointers */
4617 xfs_ext_irec_t
*erp
, *erp_next
; /* extent irec pointers */
4618 int erp_idx
= 0; /* extent irec index */
4619 int ext_avail
; /* empty entries in ex list */
4620 int ext_diff
; /* number of exts to add */
4621 int nlists
; /* number of irec's (ex lists) */
4623 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4624 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4625 erp
= ifp
->if_u1
.if_ext_irec
;
4626 ep
= &erp
->er_extbuf
[erp
->er_extcount
];
4628 ep_next
= erp_next
->er_extbuf
;
4629 while (erp_idx
< nlists
- 1) {
4630 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
4631 ext_diff
= MIN(ext_avail
, erp_next
->er_extcount
);
4632 memcpy(ep
, ep_next
, ext_diff
* sizeof(xfs_bmbt_rec_t
));
4633 erp
->er_extcount
+= ext_diff
;
4634 erp_next
->er_extcount
-= ext_diff
;
4635 /* Remove next page */
4636 if (erp_next
->er_extcount
== 0) {
4638 * Free page before removing extent record
4639 * so er_extoffs don't get modified in
4640 * xfs_iext_irec_remove.
4642 kmem_free(erp_next
->er_extbuf
,
4643 erp_next
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
4644 erp_next
->er_extbuf
= NULL
;
4645 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4646 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4647 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4648 /* Update next page */
4650 /* Move rest of page up to become next new page */
4651 memmove(erp_next
->er_extbuf
, ep_next
,
4652 erp_next
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
4653 ep_next
= erp_next
->er_extbuf
;
4654 memset(&ep_next
[erp_next
->er_extcount
], 0,
4655 (XFS_LINEAR_EXTS
- erp_next
->er_extcount
) *
4656 sizeof(xfs_bmbt_rec_t
));
4658 if (erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4660 if (erp_idx
< nlists
)
4661 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4665 ep
= &erp
->er_extbuf
[erp
->er_extcount
];
4667 ep_next
= erp_next
->er_extbuf
;
4672 * This is called to update the er_extoff field in the indirection
4673 * array when extents have been added or removed from one of the
4674 * extent lists. erp_idx contains the irec index to begin updating
4675 * at and ext_diff contains the number of extents that were added
4679 xfs_iext_irec_update_extoffs(
4680 xfs_ifork_t
*ifp
, /* inode fork pointer */
4681 int erp_idx
, /* irec index to update */
4682 int ext_diff
) /* number of new extents */
4684 int i
; /* loop counter */
4685 int nlists
; /* number of irec's (ex lists */
4687 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4688 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4689 for (i
= erp_idx
; i
< nlists
; i
++) {
4690 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;