2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
23 * dbs is used in this file as a shortform for demandbased switching
24 * It helps to keep variable names smaller, simpler
27 #define DEF_FREQUENCY_UP_THRESHOLD (80)
28 #define MIN_FREQUENCY_UP_THRESHOLD (11)
29 #define MAX_FREQUENCY_UP_THRESHOLD (100)
32 * The polling frequency of this governor depends on the capability of
33 * the processor. Default polling frequency is 1000 times the transition
34 * latency of the processor. The governor will work on any processor with
35 * transition latency <= 10mS, using appropriate sampling
37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38 * this governor will not work.
39 * All times here are in uS.
41 static unsigned int def_sampling_rate
;
42 #define MIN_SAMPLING_RATE_RATIO (2)
43 /* for correct statistics, we need at least 10 ticks between each measure */
44 #define MIN_STAT_SAMPLING_RATE \
45 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
46 #define MIN_SAMPLING_RATE \
47 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
48 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
49 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
50 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
52 static void do_dbs_timer(struct work_struct
*work
);
55 enum {DBS_NORMAL_SAMPLE
, DBS_SUB_SAMPLE
};
57 struct cpu_dbs_info_s
{
58 cputime64_t prev_cpu_idle
;
59 cputime64_t prev_cpu_wall
;
60 struct cpufreq_policy
*cur_policy
;
61 struct delayed_work work
;
62 struct cpufreq_frequency_table
*freq_table
;
64 unsigned int freq_lo_jiffies
;
65 unsigned int freq_hi_jiffies
;
67 unsigned int enable
:1,
70 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, cpu_dbs_info
);
72 static unsigned int dbs_enable
; /* number of CPUs using this policy */
75 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
76 * lock and dbs_mutex. cpu_hotplug lock should always be held before
77 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
78 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
79 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
80 * is recursive for the same process. -Venki
82 static DEFINE_MUTEX(dbs_mutex
);
84 static struct workqueue_struct
*kondemand_wq
;
86 static struct dbs_tuners
{
87 unsigned int sampling_rate
;
88 unsigned int up_threshold
;
89 unsigned int ignore_nice
;
90 unsigned int powersave_bias
;
92 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
97 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
)
99 cputime64_t idle_time
;
100 cputime64_t cur_jiffies
;
101 cputime64_t busy_time
;
103 cur_jiffies
= jiffies64_to_cputime64(get_jiffies_64());
104 busy_time
= cputime64_add(kstat_cpu(cpu
).cpustat
.user
,
105 kstat_cpu(cpu
).cpustat
.system
);
107 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.irq
);
108 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.softirq
);
109 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.steal
);
111 if (!dbs_tuners_ins
.ignore_nice
) {
112 busy_time
= cputime64_add(busy_time
,
113 kstat_cpu(cpu
).cpustat
.nice
);
116 idle_time
= cputime64_sub(cur_jiffies
, busy_time
);
121 * Find right freq to be set now with powersave_bias on.
122 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
123 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
125 static unsigned int powersave_bias_target(struct cpufreq_policy
*policy
,
126 unsigned int freq_next
,
127 unsigned int relation
)
129 unsigned int freq_req
, freq_reduc
, freq_avg
;
130 unsigned int freq_hi
, freq_lo
;
131 unsigned int index
= 0;
132 unsigned int jiffies_total
, jiffies_hi
, jiffies_lo
;
133 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(cpu_dbs_info
, policy
->cpu
);
135 if (!dbs_info
->freq_table
) {
136 dbs_info
->freq_lo
= 0;
137 dbs_info
->freq_lo_jiffies
= 0;
141 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_next
,
143 freq_req
= dbs_info
->freq_table
[index
].frequency
;
144 freq_reduc
= freq_req
* dbs_tuners_ins
.powersave_bias
/ 1000;
145 freq_avg
= freq_req
- freq_reduc
;
147 /* Find freq bounds for freq_avg in freq_table */
149 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
150 CPUFREQ_RELATION_H
, &index
);
151 freq_lo
= dbs_info
->freq_table
[index
].frequency
;
153 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
154 CPUFREQ_RELATION_L
, &index
);
155 freq_hi
= dbs_info
->freq_table
[index
].frequency
;
157 /* Find out how long we have to be in hi and lo freqs */
158 if (freq_hi
== freq_lo
) {
159 dbs_info
->freq_lo
= 0;
160 dbs_info
->freq_lo_jiffies
= 0;
163 jiffies_total
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
164 jiffies_hi
= (freq_avg
- freq_lo
) * jiffies_total
;
165 jiffies_hi
+= ((freq_hi
- freq_lo
) / 2);
166 jiffies_hi
/= (freq_hi
- freq_lo
);
167 jiffies_lo
= jiffies_total
- jiffies_hi
;
168 dbs_info
->freq_lo
= freq_lo
;
169 dbs_info
->freq_lo_jiffies
= jiffies_lo
;
170 dbs_info
->freq_hi_jiffies
= jiffies_hi
;
174 static void ondemand_powersave_bias_init(void)
177 for_each_online_cpu(i
) {
178 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(cpu_dbs_info
, i
);
179 dbs_info
->freq_table
= cpufreq_frequency_get_table(i
);
180 dbs_info
->freq_lo
= 0;
184 /************************** sysfs interface ************************/
185 static ssize_t
show_sampling_rate_max(struct cpufreq_policy
*policy
, char *buf
)
187 return sprintf (buf
, "%u\n", MAX_SAMPLING_RATE
);
190 static ssize_t
show_sampling_rate_min(struct cpufreq_policy
*policy
, char *buf
)
192 return sprintf (buf
, "%u\n", MIN_SAMPLING_RATE
);
195 #define define_one_ro(_name) \
196 static struct freq_attr _name = \
197 __ATTR(_name, 0444, show_##_name, NULL)
199 define_one_ro(sampling_rate_max
);
200 define_one_ro(sampling_rate_min
);
202 /* cpufreq_ondemand Governor Tunables */
203 #define show_one(file_name, object) \
204 static ssize_t show_##file_name \
205 (struct cpufreq_policy *unused, char *buf) \
207 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
209 show_one(sampling_rate
, sampling_rate
);
210 show_one(up_threshold
, up_threshold
);
211 show_one(ignore_nice_load
, ignore_nice
);
212 show_one(powersave_bias
, powersave_bias
);
214 static ssize_t
store_sampling_rate(struct cpufreq_policy
*unused
,
215 const char *buf
, size_t count
)
219 ret
= sscanf(buf
, "%u", &input
);
221 mutex_lock(&dbs_mutex
);
222 if (ret
!= 1 || input
> MAX_SAMPLING_RATE
223 || input
< MIN_SAMPLING_RATE
) {
224 mutex_unlock(&dbs_mutex
);
228 dbs_tuners_ins
.sampling_rate
= input
;
229 mutex_unlock(&dbs_mutex
);
234 static ssize_t
store_up_threshold(struct cpufreq_policy
*unused
,
235 const char *buf
, size_t count
)
239 ret
= sscanf(buf
, "%u", &input
);
241 mutex_lock(&dbs_mutex
);
242 if (ret
!= 1 || input
> MAX_FREQUENCY_UP_THRESHOLD
||
243 input
< MIN_FREQUENCY_UP_THRESHOLD
) {
244 mutex_unlock(&dbs_mutex
);
248 dbs_tuners_ins
.up_threshold
= input
;
249 mutex_unlock(&dbs_mutex
);
254 static ssize_t
store_ignore_nice_load(struct cpufreq_policy
*policy
,
255 const char *buf
, size_t count
)
262 ret
= sscanf(buf
, "%u", &input
);
269 mutex_lock(&dbs_mutex
);
270 if ( input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
271 mutex_unlock(&dbs_mutex
);
274 dbs_tuners_ins
.ignore_nice
= input
;
276 /* we need to re-evaluate prev_cpu_idle */
277 for_each_online_cpu(j
) {
278 struct cpu_dbs_info_s
*dbs_info
;
279 dbs_info
= &per_cpu(cpu_dbs_info
, j
);
280 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
);
281 dbs_info
->prev_cpu_wall
= get_jiffies_64();
283 mutex_unlock(&dbs_mutex
);
288 static ssize_t
store_powersave_bias(struct cpufreq_policy
*unused
,
289 const char *buf
, size_t count
)
293 ret
= sscanf(buf
, "%u", &input
);
301 mutex_lock(&dbs_mutex
);
302 dbs_tuners_ins
.powersave_bias
= input
;
303 ondemand_powersave_bias_init();
304 mutex_unlock(&dbs_mutex
);
309 #define define_one_rw(_name) \
310 static struct freq_attr _name = \
311 __ATTR(_name, 0644, show_##_name, store_##_name)
313 define_one_rw(sampling_rate
);
314 define_one_rw(up_threshold
);
315 define_one_rw(ignore_nice_load
);
316 define_one_rw(powersave_bias
);
318 static struct attribute
* dbs_attributes
[] = {
319 &sampling_rate_max
.attr
,
320 &sampling_rate_min
.attr
,
323 &ignore_nice_load
.attr
,
324 &powersave_bias
.attr
,
328 static struct attribute_group dbs_attr_group
= {
329 .attrs
= dbs_attributes
,
333 /************************** sysfs end ************************/
335 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
337 unsigned int idle_ticks
, total_ticks
;
338 unsigned int load
= 0;
339 cputime64_t cur_jiffies
;
341 struct cpufreq_policy
*policy
;
344 if (!this_dbs_info
->enable
)
347 this_dbs_info
->freq_lo
= 0;
348 policy
= this_dbs_info
->cur_policy
;
349 cur_jiffies
= jiffies64_to_cputime64(get_jiffies_64());
350 total_ticks
= (unsigned int) cputime64_sub(cur_jiffies
,
351 this_dbs_info
->prev_cpu_wall
);
352 this_dbs_info
->prev_cpu_wall
= get_jiffies_64();
357 * Every sampling_rate, we check, if current idle time is less
358 * than 20% (default), then we try to increase frequency
359 * Every sampling_rate, we look for a the lowest
360 * frequency which can sustain the load while keeping idle time over
361 * 30%. If such a frequency exist, we try to decrease to this frequency.
363 * Any frequency increase takes it to the maximum frequency.
364 * Frequency reduction happens at minimum steps of
365 * 5% (default) of current frequency
369 idle_ticks
= UINT_MAX
;
370 for_each_cpu_mask(j
, policy
->cpus
) {
371 cputime64_t total_idle_ticks
;
372 unsigned int tmp_idle_ticks
;
373 struct cpu_dbs_info_s
*j_dbs_info
;
375 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
376 total_idle_ticks
= get_cpu_idle_time(j
);
377 tmp_idle_ticks
= (unsigned int) cputime64_sub(total_idle_ticks
,
378 j_dbs_info
->prev_cpu_idle
);
379 j_dbs_info
->prev_cpu_idle
= total_idle_ticks
;
381 if (tmp_idle_ticks
< idle_ticks
)
382 idle_ticks
= tmp_idle_ticks
;
384 if (likely(total_ticks
> idle_ticks
))
385 load
= (100 * (total_ticks
- idle_ticks
)) / total_ticks
;
387 /* Check for frequency increase */
388 if (load
> dbs_tuners_ins
.up_threshold
) {
389 /* if we are already at full speed then break out early */
390 if (!dbs_tuners_ins
.powersave_bias
) {
391 if (policy
->cur
== policy
->max
)
394 __cpufreq_driver_target(policy
, policy
->max
,
397 int freq
= powersave_bias_target(policy
, policy
->max
,
399 __cpufreq_driver_target(policy
, freq
,
405 /* Check for frequency decrease */
406 /* if we cannot reduce the frequency anymore, break out early */
407 if (policy
->cur
== policy
->min
)
411 * The optimal frequency is the frequency that is the lowest that
412 * can support the current CPU usage without triggering the up
413 * policy. To be safe, we focus 10 points under the threshold.
415 if (load
< (dbs_tuners_ins
.up_threshold
- 10)) {
416 unsigned int freq_next
, freq_cur
;
418 freq_cur
= __cpufreq_driver_getavg(policy
);
420 freq_cur
= policy
->cur
;
422 freq_next
= (freq_cur
* load
) /
423 (dbs_tuners_ins
.up_threshold
- 10);
425 if (!dbs_tuners_ins
.powersave_bias
) {
426 __cpufreq_driver_target(policy
, freq_next
,
429 int freq
= powersave_bias_target(policy
, freq_next
,
431 __cpufreq_driver_target(policy
, freq
,
437 static void do_dbs_timer(struct work_struct
*work
)
439 struct cpu_dbs_info_s
*dbs_info
=
440 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
441 unsigned int cpu
= dbs_info
->cpu
;
442 int sample_type
= dbs_info
->sample_type
;
444 /* We want all CPUs to do sampling nearly on same jiffy */
445 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
447 delay
-= jiffies
% delay
;
449 if (lock_policy_rwsem_write(cpu
) < 0)
452 if (!dbs_info
->enable
) {
453 unlock_policy_rwsem_write(cpu
);
457 /* Common NORMAL_SAMPLE setup */
458 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
459 if (!dbs_tuners_ins
.powersave_bias
||
460 sample_type
== DBS_NORMAL_SAMPLE
) {
461 dbs_check_cpu(dbs_info
);
462 if (dbs_info
->freq_lo
) {
463 /* Setup timer for SUB_SAMPLE */
464 dbs_info
->sample_type
= DBS_SUB_SAMPLE
;
465 delay
= dbs_info
->freq_hi_jiffies
;
468 __cpufreq_driver_target(dbs_info
->cur_policy
,
472 queue_delayed_work_on(cpu
, kondemand_wq
, &dbs_info
->work
, delay
);
473 unlock_policy_rwsem_write(cpu
);
476 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
478 /* We want all CPUs to do sampling nearly on same jiffy */
479 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
480 delay
-= jiffies
% delay
;
482 dbs_info
->enable
= 1;
483 ondemand_powersave_bias_init();
484 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
485 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
486 queue_delayed_work_on(dbs_info
->cpu
, kondemand_wq
, &dbs_info
->work
,
490 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
492 dbs_info
->enable
= 0;
493 cancel_delayed_work(&dbs_info
->work
);
496 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
499 unsigned int cpu
= policy
->cpu
;
500 struct cpu_dbs_info_s
*this_dbs_info
;
504 this_dbs_info
= &per_cpu(cpu_dbs_info
, cpu
);
507 case CPUFREQ_GOV_START
:
508 if ((!cpu_online(cpu
)) || (!policy
->cur
))
511 if (this_dbs_info
->enable
) /* Already enabled */
514 mutex_lock(&dbs_mutex
);
517 rc
= sysfs_create_group(&policy
->kobj
, &dbs_attr_group
);
520 mutex_unlock(&dbs_mutex
);
524 for_each_cpu_mask(j
, policy
->cpus
) {
525 struct cpu_dbs_info_s
*j_dbs_info
;
526 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
527 j_dbs_info
->cur_policy
= policy
;
529 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
);
530 j_dbs_info
->prev_cpu_wall
= get_jiffies_64();
532 this_dbs_info
->cpu
= cpu
;
534 * Start the timerschedule work, when this governor
535 * is used for first time
537 if (dbs_enable
== 1) {
538 unsigned int latency
;
539 /* policy latency is in nS. Convert it to uS first */
540 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
544 def_sampling_rate
= latency
*
545 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER
;
547 if (def_sampling_rate
< MIN_STAT_SAMPLING_RATE
)
548 def_sampling_rate
= MIN_STAT_SAMPLING_RATE
;
550 dbs_tuners_ins
.sampling_rate
= def_sampling_rate
;
552 dbs_timer_init(this_dbs_info
);
554 mutex_unlock(&dbs_mutex
);
557 case CPUFREQ_GOV_STOP
:
558 mutex_lock(&dbs_mutex
);
559 dbs_timer_exit(this_dbs_info
);
560 sysfs_remove_group(&policy
->kobj
, &dbs_attr_group
);
562 mutex_unlock(&dbs_mutex
);
566 case CPUFREQ_GOV_LIMITS
:
567 mutex_lock(&dbs_mutex
);
568 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
569 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
572 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
573 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
576 mutex_unlock(&dbs_mutex
);
582 struct cpufreq_governor cpufreq_gov_ondemand
= {
584 .governor
= cpufreq_governor_dbs
,
585 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
586 .owner
= THIS_MODULE
,
588 EXPORT_SYMBOL(cpufreq_gov_ondemand
);
590 static int __init
cpufreq_gov_dbs_init(void)
592 kondemand_wq
= create_workqueue("kondemand");
594 printk(KERN_ERR
"Creation of kondemand failed\n");
597 return cpufreq_register_governor(&cpufreq_gov_ondemand
);
600 static void __exit
cpufreq_gov_dbs_exit(void)
602 cpufreq_unregister_governor(&cpufreq_gov_ondemand
);
603 destroy_workqueue(kondemand_wq
);
607 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
608 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
609 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
610 "Low Latency Frequency Transition capable processors");
611 MODULE_LICENSE("GPL");
613 module_init(cpufreq_gov_dbs_init
);
614 module_exit(cpufreq_gov_dbs_exit
);