[PATCH] dpt_i2o fix for deadlock condition
[linux-2.6/openmoko-kernel/knife-kernel.git] / include / linux / mm.h
bloba06a84d347fb5cbbc3b29ff3dfa727f429cc0f7b
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
4 #include <linux/sched.h>
5 #include <linux/errno.h>
7 #ifdef __KERNEL__
9 #include <linux/config.h>
10 #include <linux/gfp.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/prio_tree.h>
15 #include <linux/fs.h>
17 struct mempolicy;
18 struct anon_vma;
20 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
21 extern unsigned long max_mapnr;
22 #endif
24 extern unsigned long num_physpages;
25 extern void * high_memory;
26 extern unsigned long vmalloc_earlyreserve;
27 extern int page_cluster;
29 #ifdef CONFIG_SYSCTL
30 extern int sysctl_legacy_va_layout;
31 #else
32 #define sysctl_legacy_va_layout 0
33 #endif
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/processor.h>
38 #include <asm/atomic.h>
40 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43 * Linux kernel virtual memory manager primitives.
44 * The idea being to have a "virtual" mm in the same way
45 * we have a virtual fs - giving a cleaner interface to the
46 * mm details, and allowing different kinds of memory mappings
47 * (from shared memory to executable loading to arbitrary
48 * mmap() functions).
52 * This struct defines a memory VMM memory area. There is one of these
53 * per VM-area/task. A VM area is any part of the process virtual memory
54 * space that has a special rule for the page-fault handlers (ie a shared
55 * library, the executable area etc).
57 struct vm_area_struct {
58 struct mm_struct * vm_mm; /* The address space we belong to. */
59 unsigned long vm_start; /* Our start address within vm_mm. */
60 unsigned long vm_end; /* The first byte after our end address
61 within vm_mm. */
63 /* linked list of VM areas per task, sorted by address */
64 struct vm_area_struct *vm_next;
66 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
67 unsigned long vm_flags; /* Flags, listed below. */
69 struct rb_node vm_rb;
72 * For areas with an address space and backing store,
73 * linkage into the address_space->i_mmap prio tree, or
74 * linkage to the list of like vmas hanging off its node, or
75 * linkage of vma in the address_space->i_mmap_nonlinear list.
77 union {
78 struct {
79 struct list_head list;
80 void *parent; /* aligns with prio_tree_node parent */
81 struct vm_area_struct *head;
82 } vm_set;
84 struct raw_prio_tree_node prio_tree_node;
85 } shared;
88 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
89 * list, after a COW of one of the file pages. A MAP_SHARED vma
90 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
91 * or brk vma (with NULL file) can only be in an anon_vma list.
93 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
94 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
96 /* Function pointers to deal with this struct. */
97 struct vm_operations_struct * vm_ops;
99 /* Information about our backing store: */
100 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
101 units, *not* PAGE_CACHE_SIZE */
102 struct file * vm_file; /* File we map to (can be NULL). */
103 void * vm_private_data; /* was vm_pte (shared mem) */
104 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
106 #ifndef CONFIG_MMU
107 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
108 #endif
109 #ifdef CONFIG_NUMA
110 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
111 #endif
115 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
116 * disabled, then there's a single shared list of VMAs maintained by the
117 * system, and mm's subscribe to these individually
119 struct vm_list_struct {
120 struct vm_list_struct *next;
121 struct vm_area_struct *vma;
124 #ifndef CONFIG_MMU
125 extern struct rb_root nommu_vma_tree;
126 extern struct rw_semaphore nommu_vma_sem;
128 extern unsigned int kobjsize(const void *objp);
129 #endif
132 * vm_flags..
134 #define VM_READ 0x00000001 /* currently active flags */
135 #define VM_WRITE 0x00000002
136 #define VM_EXEC 0x00000004
137 #define VM_SHARED 0x00000008
139 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
140 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
141 #define VM_MAYWRITE 0x00000020
142 #define VM_MAYEXEC 0x00000040
143 #define VM_MAYSHARE 0x00000080
145 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
146 #define VM_GROWSUP 0x00000200
147 #define VM_SHM 0x00000000 /* Means nothing: delete it later */
148 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
149 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
151 #define VM_EXECUTABLE 0x00001000
152 #define VM_LOCKED 0x00002000
153 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
155 /* Used by sys_madvise() */
156 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
157 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
159 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
160 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
161 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
162 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
163 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
164 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
165 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
166 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
168 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
169 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
170 #endif
172 #ifdef CONFIG_STACK_GROWSUP
173 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
174 #else
175 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
176 #endif
178 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
179 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
180 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
181 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
182 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
185 * mapping from the currently active vm_flags protection bits (the
186 * low four bits) to a page protection mask..
188 extern pgprot_t protection_map[16];
192 * These are the virtual MM functions - opening of an area, closing and
193 * unmapping it (needed to keep files on disk up-to-date etc), pointer
194 * to the functions called when a no-page or a wp-page exception occurs.
196 struct vm_operations_struct {
197 void (*open)(struct vm_area_struct * area);
198 void (*close)(struct vm_area_struct * area);
199 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
200 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
201 #ifdef CONFIG_NUMA
202 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
203 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
204 unsigned long addr);
205 #endif
208 struct mmu_gather;
209 struct inode;
212 * Each physical page in the system has a struct page associated with
213 * it to keep track of whatever it is we are using the page for at the
214 * moment. Note that we have no way to track which tasks are using
215 * a page.
217 struct page {
218 unsigned long flags; /* Atomic flags, some possibly
219 * updated asynchronously */
220 atomic_t _count; /* Usage count, see below. */
221 atomic_t _mapcount; /* Count of ptes mapped in mms,
222 * to show when page is mapped
223 * & limit reverse map searches.
225 union {
226 unsigned long private; /* Mapping-private opaque data:
227 * usually used for buffer_heads
228 * if PagePrivate set; used for
229 * swp_entry_t if PageSwapCache
230 * When page is free, this indicates
231 * order in the buddy system.
233 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
234 spinlock_t ptl;
235 #endif
236 } u;
237 struct address_space *mapping; /* If low bit clear, points to
238 * inode address_space, or NULL.
239 * If page mapped as anonymous
240 * memory, low bit is set, and
241 * it points to anon_vma object:
242 * see PAGE_MAPPING_ANON below.
244 pgoff_t index; /* Our offset within mapping. */
245 struct list_head lru; /* Pageout list, eg. active_list
246 * protected by zone->lru_lock !
249 * On machines where all RAM is mapped into kernel address space,
250 * we can simply calculate the virtual address. On machines with
251 * highmem some memory is mapped into kernel virtual memory
252 * dynamically, so we need a place to store that address.
253 * Note that this field could be 16 bits on x86 ... ;)
255 * Architectures with slow multiplication can define
256 * WANT_PAGE_VIRTUAL in asm/page.h
258 #if defined(WANT_PAGE_VIRTUAL)
259 void *virtual; /* Kernel virtual address (NULL if
260 not kmapped, ie. highmem) */
261 #endif /* WANT_PAGE_VIRTUAL */
264 #define page_private(page) ((page)->u.private)
265 #define set_page_private(page, v) ((page)->u.private = (v))
268 * FIXME: take this include out, include page-flags.h in
269 * files which need it (119 of them)
271 #include <linux/page-flags.h>
274 * Methods to modify the page usage count.
276 * What counts for a page usage:
277 * - cache mapping (page->mapping)
278 * - private data (page->private)
279 * - page mapped in a task's page tables, each mapping
280 * is counted separately
282 * Also, many kernel routines increase the page count before a critical
283 * routine so they can be sure the page doesn't go away from under them.
285 * Since 2.6.6 (approx), a free page has ->_count = -1. This is so that we
286 * can use atomic_add_negative(-1, page->_count) to detect when the page
287 * becomes free and so that we can also use atomic_inc_and_test to atomically
288 * detect when we just tried to grab a ref on a page which some other CPU has
289 * already deemed to be freeable.
291 * NO code should make assumptions about this internal detail! Use the provided
292 * macros which retain the old rules: page_count(page) == 0 is a free page.
296 * Drop a ref, return true if the logical refcount fell to zero (the page has
297 * no users)
299 #define put_page_testzero(p) \
300 ({ \
301 BUG_ON(page_count(p) == 0); \
302 atomic_add_negative(-1, &(p)->_count); \
306 * Grab a ref, return true if the page previously had a logical refcount of
307 * zero. ie: returns true if we just grabbed an already-deemed-to-be-free page
309 #define get_page_testone(p) atomic_inc_and_test(&(p)->_count)
311 #define set_page_count(p,v) atomic_set(&(p)->_count, v - 1)
312 #define __put_page(p) atomic_dec(&(p)->_count)
314 extern void FASTCALL(__page_cache_release(struct page *));
316 static inline int page_count(struct page *page)
318 if (PageCompound(page))
319 page = (struct page *)page_private(page);
320 return atomic_read(&page->_count) + 1;
323 static inline void get_page(struct page *page)
325 if (unlikely(PageCompound(page)))
326 page = (struct page *)page_private(page);
327 atomic_inc(&page->_count);
330 void put_page(struct page *page);
333 * Multiple processes may "see" the same page. E.g. for untouched
334 * mappings of /dev/null, all processes see the same page full of
335 * zeroes, and text pages of executables and shared libraries have
336 * only one copy in memory, at most, normally.
338 * For the non-reserved pages, page_count(page) denotes a reference count.
339 * page_count() == 0 means the page is free. page->lru is then used for
340 * freelist management in the buddy allocator.
341 * page_count() == 1 means the page is used for exactly one purpose
342 * (e.g. a private data page of one process).
344 * A page may be used for kmalloc() or anyone else who does a
345 * __get_free_page(). In this case the page_count() is at least 1, and
346 * all other fields are unused but should be 0 or NULL. The
347 * management of this page is the responsibility of the one who uses
348 * it.
350 * The other pages (we may call them "process pages") are completely
351 * managed by the Linux memory manager: I/O, buffers, swapping etc.
352 * The following discussion applies only to them.
354 * A page may belong to an inode's memory mapping. In this case,
355 * page->mapping is the pointer to the inode, and page->index is the
356 * file offset of the page, in units of PAGE_CACHE_SIZE.
358 * A page contains an opaque `private' member, which belongs to the
359 * page's address_space. Usually, this is the address of a circular
360 * list of the page's disk buffers.
362 * For pages belonging to inodes, the page_count() is the number of
363 * attaches, plus 1 if `private' contains something, plus one for
364 * the page cache itself.
366 * Instead of keeping dirty/clean pages in per address-space lists, we instead
367 * now tag pages as dirty/under writeback in the radix tree.
369 * There is also a per-mapping radix tree mapping index to the page
370 * in memory if present. The tree is rooted at mapping->root.
372 * All process pages can do I/O:
373 * - inode pages may need to be read from disk,
374 * - inode pages which have been modified and are MAP_SHARED may need
375 * to be written to disk,
376 * - private pages which have been modified may need to be swapped out
377 * to swap space and (later) to be read back into memory.
381 * The zone field is never updated after free_area_init_core()
382 * sets it, so none of the operations on it need to be atomic.
387 * page->flags layout:
389 * There are three possibilities for how page->flags get
390 * laid out. The first is for the normal case, without
391 * sparsemem. The second is for sparsemem when there is
392 * plenty of space for node and section. The last is when
393 * we have run out of space and have to fall back to an
394 * alternate (slower) way of determining the node.
396 * No sparsemem: | NODE | ZONE | ... | FLAGS |
397 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
398 * no space for node: | SECTION | ZONE | ... | FLAGS |
400 #ifdef CONFIG_SPARSEMEM
401 #define SECTIONS_WIDTH SECTIONS_SHIFT
402 #else
403 #define SECTIONS_WIDTH 0
404 #endif
406 #define ZONES_WIDTH ZONES_SHIFT
408 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
409 #define NODES_WIDTH NODES_SHIFT
410 #else
411 #define NODES_WIDTH 0
412 #endif
414 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
415 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
416 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
417 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
420 * We are going to use the flags for the page to node mapping if its in
421 * there. This includes the case where there is no node, so it is implicit.
423 #define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0)
425 #ifndef PFN_SECTION_SHIFT
426 #define PFN_SECTION_SHIFT 0
427 #endif
430 * Define the bit shifts to access each section. For non-existant
431 * sections we define the shift as 0; that plus a 0 mask ensures
432 * the compiler will optimise away reference to them.
434 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
435 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
436 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
438 /* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */
439 #if FLAGS_HAS_NODE
440 #define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT)
441 #else
442 #define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
443 #endif
444 #define ZONETABLE_PGSHIFT ZONES_PGSHIFT
446 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
447 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
448 #endif
450 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
451 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
452 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
453 #define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1)
455 static inline unsigned long page_zonenum(struct page *page)
457 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
460 struct zone;
461 extern struct zone *zone_table[];
463 static inline struct zone *page_zone(struct page *page)
465 return zone_table[(page->flags >> ZONETABLE_PGSHIFT) &
466 ZONETABLE_MASK];
469 static inline unsigned long page_to_nid(struct page *page)
471 if (FLAGS_HAS_NODE)
472 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
473 else
474 return page_zone(page)->zone_pgdat->node_id;
476 static inline unsigned long page_to_section(struct page *page)
478 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
481 static inline void set_page_zone(struct page *page, unsigned long zone)
483 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
484 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
486 static inline void set_page_node(struct page *page, unsigned long node)
488 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
489 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
491 static inline void set_page_section(struct page *page, unsigned long section)
493 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
494 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
497 static inline void set_page_links(struct page *page, unsigned long zone,
498 unsigned long node, unsigned long pfn)
500 set_page_zone(page, zone);
501 set_page_node(page, node);
502 set_page_section(page, pfn_to_section_nr(pfn));
505 #ifndef CONFIG_DISCONTIGMEM
506 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
507 extern struct page *mem_map;
508 #endif
510 static inline void *lowmem_page_address(struct page *page)
512 return __va(page_to_pfn(page) << PAGE_SHIFT);
515 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
516 #define HASHED_PAGE_VIRTUAL
517 #endif
519 #if defined(WANT_PAGE_VIRTUAL)
520 #define page_address(page) ((page)->virtual)
521 #define set_page_address(page, address) \
522 do { \
523 (page)->virtual = (address); \
524 } while(0)
525 #define page_address_init() do { } while(0)
526 #endif
528 #if defined(HASHED_PAGE_VIRTUAL)
529 void *page_address(struct page *page);
530 void set_page_address(struct page *page, void *virtual);
531 void page_address_init(void);
532 #endif
534 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
535 #define page_address(page) lowmem_page_address(page)
536 #define set_page_address(page, address) do { } while(0)
537 #define page_address_init() do { } while(0)
538 #endif
541 * On an anonymous page mapped into a user virtual memory area,
542 * page->mapping points to its anon_vma, not to a struct address_space;
543 * with the PAGE_MAPPING_ANON bit set to distinguish it.
545 * Please note that, confusingly, "page_mapping" refers to the inode
546 * address_space which maps the page from disk; whereas "page_mapped"
547 * refers to user virtual address space into which the page is mapped.
549 #define PAGE_MAPPING_ANON 1
551 extern struct address_space swapper_space;
552 static inline struct address_space *page_mapping(struct page *page)
554 struct address_space *mapping = page->mapping;
556 if (unlikely(PageSwapCache(page)))
557 mapping = &swapper_space;
558 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
559 mapping = NULL;
560 return mapping;
563 static inline int PageAnon(struct page *page)
565 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
569 * Return the pagecache index of the passed page. Regular pagecache pages
570 * use ->index whereas swapcache pages use ->private
572 static inline pgoff_t page_index(struct page *page)
574 if (unlikely(PageSwapCache(page)))
575 return page_private(page);
576 return page->index;
580 * The atomic page->_mapcount, like _count, starts from -1:
581 * so that transitions both from it and to it can be tracked,
582 * using atomic_inc_and_test and atomic_add_negative(-1).
584 static inline void reset_page_mapcount(struct page *page)
586 atomic_set(&(page)->_mapcount, -1);
589 static inline int page_mapcount(struct page *page)
591 return atomic_read(&(page)->_mapcount) + 1;
595 * Return true if this page is mapped into pagetables.
597 static inline int page_mapped(struct page *page)
599 return atomic_read(&(page)->_mapcount) >= 0;
603 * Error return values for the *_nopage functions
605 #define NOPAGE_SIGBUS (NULL)
606 #define NOPAGE_OOM ((struct page *) (-1))
609 * Different kinds of faults, as returned by handle_mm_fault().
610 * Used to decide whether a process gets delivered SIGBUS or
611 * just gets major/minor fault counters bumped up.
613 #define VM_FAULT_OOM 0x00
614 #define VM_FAULT_SIGBUS 0x01
615 #define VM_FAULT_MINOR 0x02
616 #define VM_FAULT_MAJOR 0x03
619 * Special case for get_user_pages.
620 * Must be in a distinct bit from the above VM_FAULT_ flags.
622 #define VM_FAULT_WRITE 0x10
624 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
626 extern void show_free_areas(void);
628 #ifdef CONFIG_SHMEM
629 struct page *shmem_nopage(struct vm_area_struct *vma,
630 unsigned long address, int *type);
631 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
632 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
633 unsigned long addr);
634 int shmem_lock(struct file *file, int lock, struct user_struct *user);
635 #else
636 #define shmem_nopage filemap_nopage
637 #define shmem_lock(a, b, c) ({0;}) /* always in memory, no need to lock */
638 #define shmem_set_policy(a, b) (0)
639 #define shmem_get_policy(a, b) (NULL)
640 #endif
641 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
643 int shmem_zero_setup(struct vm_area_struct *);
645 static inline int can_do_mlock(void)
647 if (capable(CAP_IPC_LOCK))
648 return 1;
649 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
650 return 1;
651 return 0;
653 extern int user_shm_lock(size_t, struct user_struct *);
654 extern void user_shm_unlock(size_t, struct user_struct *);
657 * Parameter block passed down to zap_pte_range in exceptional cases.
659 struct zap_details {
660 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
661 struct address_space *check_mapping; /* Check page->mapping if set */
662 pgoff_t first_index; /* Lowest page->index to unmap */
663 pgoff_t last_index; /* Highest page->index to unmap */
664 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
665 unsigned long truncate_count; /* Compare vm_truncate_count */
668 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
669 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
670 unsigned long size, struct zap_details *);
671 unsigned long unmap_vmas(struct mmu_gather **tlb,
672 struct vm_area_struct *start_vma, unsigned long start_addr,
673 unsigned long end_addr, unsigned long *nr_accounted,
674 struct zap_details *);
675 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
676 unsigned long end, unsigned long floor, unsigned long ceiling);
677 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
678 unsigned long floor, unsigned long ceiling);
679 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
680 struct vm_area_struct *vma);
681 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
682 unsigned long size, pgprot_t prot);
683 void unmap_mapping_range(struct address_space *mapping,
684 loff_t const holebegin, loff_t const holelen, int even_cows);
686 static inline void unmap_shared_mapping_range(struct address_space *mapping,
687 loff_t const holebegin, loff_t const holelen)
689 unmap_mapping_range(mapping, holebegin, holelen, 0);
692 extern int vmtruncate(struct inode * inode, loff_t offset);
693 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
694 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
695 extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access);
697 static inline int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, int write_access)
699 return __handle_mm_fault(mm, vma, address, write_access) & (~VM_FAULT_WRITE);
702 extern int make_pages_present(unsigned long addr, unsigned long end);
703 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
704 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
706 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
707 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
708 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
710 int __set_page_dirty_buffers(struct page *page);
711 int __set_page_dirty_nobuffers(struct page *page);
712 int redirty_page_for_writepage(struct writeback_control *wbc,
713 struct page *page);
714 int FASTCALL(set_page_dirty(struct page *page));
715 int set_page_dirty_lock(struct page *page);
716 int clear_page_dirty_for_io(struct page *page);
718 extern unsigned long do_mremap(unsigned long addr,
719 unsigned long old_len, unsigned long new_len,
720 unsigned long flags, unsigned long new_addr);
723 * Prototype to add a shrinker callback for ageable caches.
725 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
726 * scan `nr_to_scan' objects, attempting to free them.
728 * The callback must return the number of objects which remain in the cache.
730 * The callback will be passed nr_to_scan == 0 when the VM is querying the
731 * cache size, so a fastpath for that case is appropriate.
733 typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
736 * Add an aging callback. The int is the number of 'seeks' it takes
737 * to recreate one of the objects that these functions age.
740 #define DEFAULT_SEEKS 2
741 struct shrinker;
742 extern struct shrinker *set_shrinker(int, shrinker_t);
743 extern void remove_shrinker(struct shrinker *shrinker);
745 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
747 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
748 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
749 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
750 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
753 * The following ifdef needed to get the 4level-fixup.h header to work.
754 * Remove it when 4level-fixup.h has been removed.
756 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
757 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
759 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
760 NULL: pud_offset(pgd, address);
763 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
765 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
766 NULL: pmd_offset(pud, address);
768 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
770 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
772 * We tuck a spinlock to guard each pagetable page into its struct page,
773 * at page->private, with BUILD_BUG_ON to make sure that this will not
774 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
775 * When freeing, reset page->mapping so free_pages_check won't complain.
777 #define __pte_lockptr(page) &((page)->u.ptl)
778 #define pte_lock_init(_page) do { \
779 spin_lock_init(__pte_lockptr(_page)); \
780 } while (0)
781 #define pte_lock_deinit(page) ((page)->mapping = NULL)
782 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
783 #else
785 * We use mm->page_table_lock to guard all pagetable pages of the mm.
787 #define pte_lock_init(page) do {} while (0)
788 #define pte_lock_deinit(page) do {} while (0)
789 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
790 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
792 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
793 ({ \
794 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
795 pte_t *__pte = pte_offset_map(pmd, address); \
796 *(ptlp) = __ptl; \
797 spin_lock(__ptl); \
798 __pte; \
801 #define pte_unmap_unlock(pte, ptl) do { \
802 spin_unlock(ptl); \
803 pte_unmap(pte); \
804 } while (0)
806 #define pte_alloc_map(mm, pmd, address) \
807 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
808 NULL: pte_offset_map(pmd, address))
810 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
811 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
812 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
814 #define pte_alloc_kernel(pmd, address) \
815 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
816 NULL: pte_offset_kernel(pmd, address))
818 extern void free_area_init(unsigned long * zones_size);
819 extern void free_area_init_node(int nid, pg_data_t *pgdat,
820 unsigned long * zones_size, unsigned long zone_start_pfn,
821 unsigned long *zholes_size);
822 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
823 extern void setup_per_zone_pages_min(void);
824 extern void mem_init(void);
825 extern void show_mem(void);
826 extern void si_meminfo(struct sysinfo * val);
827 extern void si_meminfo_node(struct sysinfo *val, int nid);
829 #ifdef CONFIG_NUMA
830 extern void setup_per_cpu_pageset(void);
831 #else
832 static inline void setup_per_cpu_pageset(void) {}
833 #endif
835 /* prio_tree.c */
836 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
837 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
838 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
839 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
840 struct prio_tree_iter *iter);
842 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
843 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
844 (vma = vma_prio_tree_next(vma, iter)); )
846 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
847 struct list_head *list)
849 vma->shared.vm_set.parent = NULL;
850 list_add_tail(&vma->shared.vm_set.list, list);
853 /* mmap.c */
854 extern int __vm_enough_memory(long pages, int cap_sys_admin);
855 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
856 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
857 extern struct vm_area_struct *vma_merge(struct mm_struct *,
858 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
859 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
860 struct mempolicy *);
861 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
862 extern int split_vma(struct mm_struct *,
863 struct vm_area_struct *, unsigned long addr, int new_below);
864 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
865 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
866 struct rb_node **, struct rb_node *);
867 extern void unlink_file_vma(struct vm_area_struct *);
868 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
869 unsigned long addr, unsigned long len, pgoff_t pgoff);
870 extern void exit_mmap(struct mm_struct *);
871 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
873 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
875 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
876 unsigned long len, unsigned long prot,
877 unsigned long flag, unsigned long pgoff);
879 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
880 unsigned long len, unsigned long prot,
881 unsigned long flag, unsigned long offset)
883 unsigned long ret = -EINVAL;
884 if ((offset + PAGE_ALIGN(len)) < offset)
885 goto out;
886 if (!(offset & ~PAGE_MASK))
887 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
888 out:
889 return ret;
892 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
894 extern unsigned long do_brk(unsigned long, unsigned long);
896 /* filemap.c */
897 extern unsigned long page_unuse(struct page *);
898 extern void truncate_inode_pages(struct address_space *, loff_t);
900 /* generic vm_area_ops exported for stackable file systems */
901 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
902 extern int filemap_populate(struct vm_area_struct *, unsigned long,
903 unsigned long, pgprot_t, unsigned long, int);
905 /* mm/page-writeback.c */
906 int write_one_page(struct page *page, int wait);
908 /* readahead.c */
909 #define VM_MAX_READAHEAD 128 /* kbytes */
910 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
911 #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
912 * turning readahead off */
914 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
915 pgoff_t offset, unsigned long nr_to_read);
916 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
917 pgoff_t offset, unsigned long nr_to_read);
918 unsigned long page_cache_readahead(struct address_space *mapping,
919 struct file_ra_state *ra,
920 struct file *filp,
921 pgoff_t offset,
922 unsigned long size);
923 void handle_ra_miss(struct address_space *mapping,
924 struct file_ra_state *ra, pgoff_t offset);
925 unsigned long max_sane_readahead(unsigned long nr);
927 /* Do stack extension */
928 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
929 #ifdef CONFIG_IA64
930 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
931 #endif
933 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
934 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
935 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
936 struct vm_area_struct **pprev);
938 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
939 NULL if none. Assume start_addr < end_addr. */
940 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
942 struct vm_area_struct * vma = find_vma(mm,start_addr);
944 if (vma && end_addr <= vma->vm_start)
945 vma = NULL;
946 return vma;
949 static inline unsigned long vma_pages(struct vm_area_struct *vma)
951 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
954 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
955 struct page *vmalloc_to_page(void *addr);
956 unsigned long vmalloc_to_pfn(void *addr);
957 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
958 unsigned long pfn, unsigned long size, pgprot_t);
959 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
961 struct page *follow_page(struct vm_area_struct *, unsigned long address,
962 unsigned int foll_flags);
963 #define FOLL_WRITE 0x01 /* check pte is writable */
964 #define FOLL_TOUCH 0x02 /* mark page accessed */
965 #define FOLL_GET 0x04 /* do get_page on page */
966 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
968 #ifdef CONFIG_PROC_FS
969 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
970 #else
971 static inline void vm_stat_account(struct mm_struct *mm,
972 unsigned long flags, struct file *file, long pages)
975 #endif /* CONFIG_PROC_FS */
977 #ifndef CONFIG_DEBUG_PAGEALLOC
978 static inline void
979 kernel_map_pages(struct page *page, int numpages, int enable)
982 #endif
984 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
985 #ifdef __HAVE_ARCH_GATE_AREA
986 int in_gate_area_no_task(unsigned long addr);
987 int in_gate_area(struct task_struct *task, unsigned long addr);
988 #else
989 int in_gate_area_no_task(unsigned long addr);
990 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
991 #endif /* __HAVE_ARCH_GATE_AREA */
993 /* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */
994 #define OOM_DISABLE -17
996 #endif /* __KERNEL__ */
997 #endif /* _LINUX_MM_H */