2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
45 #include <linux/interrupt.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
59 #include <net/protocol.h>
62 #include <net/checksum.h>
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
70 static struct kmem_cache
*skbuff_head_cache __read_mostly
;
71 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
74 * Keep out-of-line to prevent kernel bloat.
75 * __builtin_return_address is not used because it is not always
80 * skb_over_panic - private function
85 * Out of line support code for skb_put(). Not user callable.
87 void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
89 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
90 "data:%p tail:%p end:%p dev:%s\n",
91 here
, skb
->len
, sz
, skb
->head
, skb
->data
, skb
->tail
, skb
->end
,
92 skb
->dev
? skb
->dev
->name
: "<NULL>");
97 * skb_under_panic - private function
102 * Out of line support code for skb_push(). Not user callable.
105 void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
107 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
108 "data:%p tail:%p end:%p dev:%s\n",
109 here
, skb
->len
, sz
, skb
->head
, skb
->data
, skb
->tail
, skb
->end
,
110 skb
->dev
? skb
->dev
->name
: "<NULL>");
114 void skb_truesize_bug(struct sk_buff
*skb
)
116 printk(KERN_ERR
"SKB BUG: Invalid truesize (%u) "
117 "len=%u, sizeof(sk_buff)=%Zd\n",
118 skb
->truesize
, skb
->len
, sizeof(struct sk_buff
));
120 EXPORT_SYMBOL(skb_truesize_bug
);
122 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
123 * 'private' fields and also do memory statistics to find all the
129 * __alloc_skb - allocate a network buffer
130 * @size: size to allocate
131 * @gfp_mask: allocation mask
132 * @fclone: allocate from fclone cache instead of head cache
133 * and allocate a cloned (child) skb
134 * @node: numa node to allocate memory on
136 * Allocate a new &sk_buff. The returned buffer has no headroom and a
137 * tail room of size bytes. The object has a reference count of one.
138 * The return is the buffer. On a failure the return is %NULL.
140 * Buffers may only be allocated from interrupts using a @gfp_mask of
143 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
144 int fclone
, int node
)
146 struct kmem_cache
*cache
;
147 struct skb_shared_info
*shinfo
;
151 cache
= fclone
? skbuff_fclone_cache
: skbuff_head_cache
;
154 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
158 /* Get the DATA. Size must match skb_add_mtu(). */
159 size
= SKB_DATA_ALIGN(size
);
160 data
= kmalloc_node_track_caller(size
+ sizeof(struct skb_shared_info
),
165 memset(skb
, 0, offsetof(struct sk_buff
, truesize
));
166 skb
->truesize
= size
+ sizeof(struct sk_buff
);
167 atomic_set(&skb
->users
, 1);
171 skb
->end
= data
+ size
;
172 /* make sure we initialize shinfo sequentially */
173 shinfo
= skb_shinfo(skb
);
174 atomic_set(&shinfo
->dataref
, 1);
175 shinfo
->nr_frags
= 0;
176 shinfo
->gso_size
= 0;
177 shinfo
->gso_segs
= 0;
178 shinfo
->gso_type
= 0;
179 shinfo
->ip6_frag_id
= 0;
180 shinfo
->frag_list
= NULL
;
183 struct sk_buff
*child
= skb
+ 1;
184 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
186 skb
->fclone
= SKB_FCLONE_ORIG
;
187 atomic_set(fclone_ref
, 1);
189 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
194 kmem_cache_free(cache
, skb
);
200 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
201 * @dev: network device to receive on
202 * @length: length to allocate
203 * @gfp_mask: get_free_pages mask, passed to alloc_skb
205 * Allocate a new &sk_buff and assign it a usage count of one. The
206 * buffer has unspecified headroom built in. Users should allocate
207 * the headroom they think they need without accounting for the
208 * built in space. The built in space is used for optimisations.
210 * %NULL is returned if there is no free memory.
212 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
213 unsigned int length
, gfp_t gfp_mask
)
215 int node
= dev
->dev
.parent
? dev_to_node(dev
->dev
.parent
) : -1;
218 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
, 0, node
);
220 skb_reserve(skb
, NET_SKB_PAD
);
226 static void skb_drop_list(struct sk_buff
**listp
)
228 struct sk_buff
*list
= *listp
;
233 struct sk_buff
*this = list
;
239 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
241 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
244 static void skb_clone_fraglist(struct sk_buff
*skb
)
246 struct sk_buff
*list
;
248 for (list
= skb_shinfo(skb
)->frag_list
; list
; list
= list
->next
)
252 static void skb_release_data(struct sk_buff
*skb
)
255 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
256 &skb_shinfo(skb
)->dataref
)) {
257 if (skb_shinfo(skb
)->nr_frags
) {
259 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
260 put_page(skb_shinfo(skb
)->frags
[i
].page
);
263 if (skb_shinfo(skb
)->frag_list
)
264 skb_drop_fraglist(skb
);
271 * Free an skbuff by memory without cleaning the state.
273 void kfree_skbmem(struct sk_buff
*skb
)
275 struct sk_buff
*other
;
276 atomic_t
*fclone_ref
;
278 skb_release_data(skb
);
279 switch (skb
->fclone
) {
280 case SKB_FCLONE_UNAVAILABLE
:
281 kmem_cache_free(skbuff_head_cache
, skb
);
284 case SKB_FCLONE_ORIG
:
285 fclone_ref
= (atomic_t
*) (skb
+ 2);
286 if (atomic_dec_and_test(fclone_ref
))
287 kmem_cache_free(skbuff_fclone_cache
, skb
);
290 case SKB_FCLONE_CLONE
:
291 fclone_ref
= (atomic_t
*) (skb
+ 1);
294 /* The clone portion is available for
295 * fast-cloning again.
297 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
299 if (atomic_dec_and_test(fclone_ref
))
300 kmem_cache_free(skbuff_fclone_cache
, other
);
306 * __kfree_skb - private function
309 * Free an sk_buff. Release anything attached to the buffer.
310 * Clean the state. This is an internal helper function. Users should
311 * always call kfree_skb
314 void __kfree_skb(struct sk_buff
*skb
)
316 dst_release(skb
->dst
);
318 secpath_put(skb
->sp
);
320 if (skb
->destructor
) {
322 skb
->destructor(skb
);
324 #ifdef CONFIG_NETFILTER
325 nf_conntrack_put(skb
->nfct
);
326 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
327 nf_conntrack_put_reasm(skb
->nfct_reasm
);
329 #ifdef CONFIG_BRIDGE_NETFILTER
330 nf_bridge_put(skb
->nf_bridge
);
333 /* XXX: IS this still necessary? - JHS */
334 #ifdef CONFIG_NET_SCHED
336 #ifdef CONFIG_NET_CLS_ACT
345 * kfree_skb - free an sk_buff
346 * @skb: buffer to free
348 * Drop a reference to the buffer and free it if the usage count has
351 void kfree_skb(struct sk_buff
*skb
)
355 if (likely(atomic_read(&skb
->users
) == 1))
357 else if (likely(!atomic_dec_and_test(&skb
->users
)))
363 * skb_clone - duplicate an sk_buff
364 * @skb: buffer to clone
365 * @gfp_mask: allocation priority
367 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
368 * copies share the same packet data but not structure. The new
369 * buffer has a reference count of 1. If the allocation fails the
370 * function returns %NULL otherwise the new buffer is returned.
372 * If this function is called from an interrupt gfp_mask() must be
376 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
381 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
382 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
383 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
384 n
->fclone
= SKB_FCLONE_CLONE
;
385 atomic_inc(fclone_ref
);
387 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
390 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
393 #define C(x) n->x = skb->x
395 n
->next
= n
->prev
= NULL
;
406 secpath_get(skb
->sp
);
408 memcpy(n
->cb
, skb
->cb
, sizeof(skb
->cb
));
419 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
423 n
->destructor
= NULL
;
425 #ifdef CONFIG_NETFILTER
427 nf_conntrack_get(skb
->nfct
);
429 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
431 nf_conntrack_get_reasm(skb
->nfct_reasm
);
433 #ifdef CONFIG_BRIDGE_NETFILTER
435 nf_bridge_get(skb
->nf_bridge
);
437 #endif /*CONFIG_NETFILTER*/
438 #ifdef CONFIG_NET_SCHED
440 #ifdef CONFIG_NET_CLS_ACT
441 n
->tc_verd
= SET_TC_VERD(skb
->tc_verd
,0);
442 n
->tc_verd
= CLR_TC_OK2MUNGE(n
->tc_verd
);
443 n
->tc_verd
= CLR_TC_MUNGED(n
->tc_verd
);
446 skb_copy_secmark(n
, skb
);
449 atomic_set(&n
->users
, 1);
455 atomic_inc(&(skb_shinfo(skb
)->dataref
));
461 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
464 * Shift between the two data areas in bytes
466 unsigned long offset
= new->data
- old
->data
;
470 new->priority
= old
->priority
;
471 new->protocol
= old
->protocol
;
472 new->dst
= dst_clone(old
->dst
);
474 new->sp
= secpath_get(old
->sp
);
476 new->h
.raw
= old
->h
.raw
+ offset
;
477 new->nh
.raw
= old
->nh
.raw
+ offset
;
478 new->mac
.raw
= old
->mac
.raw
+ offset
;
479 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
480 new->local_df
= old
->local_df
;
481 new->fclone
= SKB_FCLONE_UNAVAILABLE
;
482 new->pkt_type
= old
->pkt_type
;
483 new->tstamp
= old
->tstamp
;
484 new->destructor
= NULL
;
485 new->mark
= old
->mark
;
486 #ifdef CONFIG_NETFILTER
487 new->nfct
= old
->nfct
;
488 nf_conntrack_get(old
->nfct
);
489 new->nfctinfo
= old
->nfctinfo
;
490 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
491 new->nfct_reasm
= old
->nfct_reasm
;
492 nf_conntrack_get_reasm(old
->nfct_reasm
);
494 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
495 new->ipvs_property
= old
->ipvs_property
;
497 #ifdef CONFIG_BRIDGE_NETFILTER
498 new->nf_bridge
= old
->nf_bridge
;
499 nf_bridge_get(old
->nf_bridge
);
502 #ifdef CONFIG_NET_SCHED
503 #ifdef CONFIG_NET_CLS_ACT
504 new->tc_verd
= old
->tc_verd
;
506 new->tc_index
= old
->tc_index
;
508 skb_copy_secmark(new, old
);
509 atomic_set(&new->users
, 1);
510 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
511 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
512 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
516 * skb_copy - create private copy of an sk_buff
517 * @skb: buffer to copy
518 * @gfp_mask: allocation priority
520 * Make a copy of both an &sk_buff and its data. This is used when the
521 * caller wishes to modify the data and needs a private copy of the
522 * data to alter. Returns %NULL on failure or the pointer to the buffer
523 * on success. The returned buffer has a reference count of 1.
525 * As by-product this function converts non-linear &sk_buff to linear
526 * one, so that &sk_buff becomes completely private and caller is allowed
527 * to modify all the data of returned buffer. This means that this
528 * function is not recommended for use in circumstances when only
529 * header is going to be modified. Use pskb_copy() instead.
532 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
534 int headerlen
= skb
->data
- skb
->head
;
536 * Allocate the copy buffer
538 struct sk_buff
*n
= alloc_skb(skb
->end
- skb
->head
+ skb
->data_len
,
543 /* Set the data pointer */
544 skb_reserve(n
, headerlen
);
545 /* Set the tail pointer and length */
546 skb_put(n
, skb
->len
);
548 n
->ip_summed
= skb
->ip_summed
;
550 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
553 copy_skb_header(n
, skb
);
559 * pskb_copy - create copy of an sk_buff with private head.
560 * @skb: buffer to copy
561 * @gfp_mask: allocation priority
563 * Make a copy of both an &sk_buff and part of its data, located
564 * in header. Fragmented data remain shared. This is used when
565 * the caller wishes to modify only header of &sk_buff and needs
566 * private copy of the header to alter. Returns %NULL on failure
567 * or the pointer to the buffer on success.
568 * The returned buffer has a reference count of 1.
571 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, gfp_t gfp_mask
)
574 * Allocate the copy buffer
576 struct sk_buff
*n
= alloc_skb(skb
->end
- skb
->head
, gfp_mask
);
581 /* Set the data pointer */
582 skb_reserve(n
, skb
->data
- skb
->head
);
583 /* Set the tail pointer and length */
584 skb_put(n
, skb_headlen(skb
));
586 memcpy(n
->data
, skb
->data
, n
->len
);
588 n
->ip_summed
= skb
->ip_summed
;
590 n
->truesize
+= skb
->data_len
;
591 n
->data_len
= skb
->data_len
;
594 if (skb_shinfo(skb
)->nr_frags
) {
597 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
598 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
599 get_page(skb_shinfo(n
)->frags
[i
].page
);
601 skb_shinfo(n
)->nr_frags
= i
;
604 if (skb_shinfo(skb
)->frag_list
) {
605 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
606 skb_clone_fraglist(n
);
609 copy_skb_header(n
, skb
);
615 * pskb_expand_head - reallocate header of &sk_buff
616 * @skb: buffer to reallocate
617 * @nhead: room to add at head
618 * @ntail: room to add at tail
619 * @gfp_mask: allocation priority
621 * Expands (or creates identical copy, if &nhead and &ntail are zero)
622 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
623 * reference count of 1. Returns zero in the case of success or error,
624 * if expansion failed. In the last case, &sk_buff is not changed.
626 * All the pointers pointing into skb header may change and must be
627 * reloaded after call to this function.
630 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
635 int size
= nhead
+ (skb
->end
- skb
->head
) + ntail
;
641 size
= SKB_DATA_ALIGN(size
);
643 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
647 /* Copy only real data... and, alas, header. This should be
648 * optimized for the cases when header is void. */
649 memcpy(data
+ nhead
, skb
->head
, skb
->tail
- skb
->head
);
650 memcpy(data
+ size
, skb
->end
, sizeof(struct skb_shared_info
));
652 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
653 get_page(skb_shinfo(skb
)->frags
[i
].page
);
655 if (skb_shinfo(skb
)->frag_list
)
656 skb_clone_fraglist(skb
);
658 skb_release_data(skb
);
660 off
= (data
+ nhead
) - skb
->head
;
663 skb
->end
= data
+ size
;
671 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
678 /* Make private copy of skb with writable head and some headroom */
680 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
682 struct sk_buff
*skb2
;
683 int delta
= headroom
- skb_headroom(skb
);
686 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
688 skb2
= skb_clone(skb
, GFP_ATOMIC
);
689 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
700 * skb_copy_expand - copy and expand sk_buff
701 * @skb: buffer to copy
702 * @newheadroom: new free bytes at head
703 * @newtailroom: new free bytes at tail
704 * @gfp_mask: allocation priority
706 * Make a copy of both an &sk_buff and its data and while doing so
707 * allocate additional space.
709 * This is used when the caller wishes to modify the data and needs a
710 * private copy of the data to alter as well as more space for new fields.
711 * Returns %NULL on failure or the pointer to the buffer
712 * on success. The returned buffer has a reference count of 1.
714 * You must pass %GFP_ATOMIC as the allocation priority if this function
715 * is called from an interrupt.
717 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
718 * only by netfilter in the cases when checksum is recalculated? --ANK
720 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
721 int newheadroom
, int newtailroom
,
725 * Allocate the copy buffer
727 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
729 int head_copy_len
, head_copy_off
;
734 skb_reserve(n
, newheadroom
);
736 /* Set the tail pointer and length */
737 skb_put(n
, skb
->len
);
739 head_copy_len
= skb_headroom(skb
);
741 if (newheadroom
<= head_copy_len
)
742 head_copy_len
= newheadroom
;
744 head_copy_off
= newheadroom
- head_copy_len
;
746 /* Copy the linear header and data. */
747 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
748 skb
->len
+ head_copy_len
))
751 copy_skb_header(n
, skb
);
757 * skb_pad - zero pad the tail of an skb
758 * @skb: buffer to pad
761 * Ensure that a buffer is followed by a padding area that is zero
762 * filled. Used by network drivers which may DMA or transfer data
763 * beyond the buffer end onto the wire.
765 * May return error in out of memory cases. The skb is freed on error.
768 int skb_pad(struct sk_buff
*skb
, int pad
)
773 /* If the skbuff is non linear tailroom is always zero.. */
774 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
775 memset(skb
->data
+skb
->len
, 0, pad
);
779 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
780 if (likely(skb_cloned(skb
) || ntail
> 0)) {
781 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
786 /* FIXME: The use of this function with non-linear skb's really needs
789 err
= skb_linearize(skb
);
793 memset(skb
->data
+ skb
->len
, 0, pad
);
801 /* Trims skb to length len. It can change skb pointers.
804 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
806 struct sk_buff
**fragp
;
807 struct sk_buff
*frag
;
808 int offset
= skb_headlen(skb
);
809 int nfrags
= skb_shinfo(skb
)->nr_frags
;
813 if (skb_cloned(skb
) &&
814 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
821 for (; i
< nfrags
; i
++) {
822 int end
= offset
+ skb_shinfo(skb
)->frags
[i
].size
;
829 skb_shinfo(skb
)->frags
[i
++].size
= len
- offset
;
832 skb_shinfo(skb
)->nr_frags
= i
;
834 for (; i
< nfrags
; i
++)
835 put_page(skb_shinfo(skb
)->frags
[i
].page
);
837 if (skb_shinfo(skb
)->frag_list
)
838 skb_drop_fraglist(skb
);
842 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
843 fragp
= &frag
->next
) {
844 int end
= offset
+ frag
->len
;
846 if (skb_shared(frag
)) {
847 struct sk_buff
*nfrag
;
849 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
850 if (unlikely(!nfrag
))
853 nfrag
->next
= frag
->next
;
865 unlikely((err
= pskb_trim(frag
, len
- offset
))))
869 skb_drop_list(&frag
->next
);
874 if (len
> skb_headlen(skb
)) {
875 skb
->data_len
-= skb
->len
- len
;
880 skb
->tail
= skb
->data
+ len
;
887 * __pskb_pull_tail - advance tail of skb header
888 * @skb: buffer to reallocate
889 * @delta: number of bytes to advance tail
891 * The function makes a sense only on a fragmented &sk_buff,
892 * it expands header moving its tail forward and copying necessary
893 * data from fragmented part.
895 * &sk_buff MUST have reference count of 1.
897 * Returns %NULL (and &sk_buff does not change) if pull failed
898 * or value of new tail of skb in the case of success.
900 * All the pointers pointing into skb header may change and must be
901 * reloaded after call to this function.
904 /* Moves tail of skb head forward, copying data from fragmented part,
905 * when it is necessary.
906 * 1. It may fail due to malloc failure.
907 * 2. It may change skb pointers.
909 * It is pretty complicated. Luckily, it is called only in exceptional cases.
911 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
913 /* If skb has not enough free space at tail, get new one
914 * plus 128 bytes for future expansions. If we have enough
915 * room at tail, reallocate without expansion only if skb is cloned.
917 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
919 if (eat
> 0 || skb_cloned(skb
)) {
920 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
925 if (skb_copy_bits(skb
, skb_headlen(skb
), skb
->tail
, delta
))
928 /* Optimization: no fragments, no reasons to preestimate
929 * size of pulled pages. Superb.
931 if (!skb_shinfo(skb
)->frag_list
)
934 /* Estimate size of pulled pages. */
936 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
937 if (skb_shinfo(skb
)->frags
[i
].size
>= eat
)
939 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
942 /* If we need update frag list, we are in troubles.
943 * Certainly, it possible to add an offset to skb data,
944 * but taking into account that pulling is expected to
945 * be very rare operation, it is worth to fight against
946 * further bloating skb head and crucify ourselves here instead.
947 * Pure masohism, indeed. 8)8)
950 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
951 struct sk_buff
*clone
= NULL
;
952 struct sk_buff
*insp
= NULL
;
957 if (list
->len
<= eat
) {
958 /* Eaten as whole. */
963 /* Eaten partially. */
965 if (skb_shared(list
)) {
966 /* Sucks! We need to fork list. :-( */
967 clone
= skb_clone(list
, GFP_ATOMIC
);
973 /* This may be pulled without
977 if (!pskb_pull(list
, eat
)) {
986 /* Free pulled out fragments. */
987 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
988 skb_shinfo(skb
)->frag_list
= list
->next
;
991 /* And insert new clone at head. */
994 skb_shinfo(skb
)->frag_list
= clone
;
997 /* Success! Now we may commit changes to skb data. */
1002 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1003 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
1004 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1005 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1007 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1009 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1010 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
1016 skb_shinfo(skb
)->nr_frags
= k
;
1019 skb
->data_len
-= delta
;
1024 /* Copy some data bits from skb to kernel buffer. */
1026 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1029 int start
= skb_headlen(skb
);
1031 if (offset
> (int)skb
->len
- len
)
1035 if ((copy
= start
- offset
) > 0) {
1038 memcpy(to
, skb
->data
+ offset
, copy
);
1039 if ((len
-= copy
) == 0)
1045 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1048 BUG_TRAP(start
<= offset
+ len
);
1050 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1051 if ((copy
= end
- offset
) > 0) {
1057 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
1059 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
1060 offset
- start
, copy
);
1061 kunmap_skb_frag(vaddr
);
1063 if ((len
-= copy
) == 0)
1071 if (skb_shinfo(skb
)->frag_list
) {
1072 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1074 for (; list
; list
= list
->next
) {
1077 BUG_TRAP(start
<= offset
+ len
);
1079 end
= start
+ list
->len
;
1080 if ((copy
= end
- offset
) > 0) {
1083 if (skb_copy_bits(list
, offset
- start
,
1086 if ((len
-= copy
) == 0)
1102 * skb_store_bits - store bits from kernel buffer to skb
1103 * @skb: destination buffer
1104 * @offset: offset in destination
1105 * @from: source buffer
1106 * @len: number of bytes to copy
1108 * Copy the specified number of bytes from the source buffer to the
1109 * destination skb. This function handles all the messy bits of
1110 * traversing fragment lists and such.
1113 int skb_store_bits(const struct sk_buff
*skb
, int offset
, void *from
, int len
)
1116 int start
= skb_headlen(skb
);
1118 if (offset
> (int)skb
->len
- len
)
1121 if ((copy
= start
- offset
) > 0) {
1124 memcpy(skb
->data
+ offset
, from
, copy
);
1125 if ((len
-= copy
) == 0)
1131 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1132 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1135 BUG_TRAP(start
<= offset
+ len
);
1137 end
= start
+ frag
->size
;
1138 if ((copy
= end
- offset
) > 0) {
1144 vaddr
= kmap_skb_frag(frag
);
1145 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1147 kunmap_skb_frag(vaddr
);
1149 if ((len
-= copy
) == 0)
1157 if (skb_shinfo(skb
)->frag_list
) {
1158 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1160 for (; list
; list
= list
->next
) {
1163 BUG_TRAP(start
<= offset
+ len
);
1165 end
= start
+ list
->len
;
1166 if ((copy
= end
- offset
) > 0) {
1169 if (skb_store_bits(list
, offset
- start
,
1172 if ((len
-= copy
) == 0)
1187 EXPORT_SYMBOL(skb_store_bits
);
1189 /* Checksum skb data. */
1191 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1192 int len
, __wsum csum
)
1194 int start
= skb_headlen(skb
);
1195 int i
, copy
= start
- offset
;
1198 /* Checksum header. */
1202 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1203 if ((len
-= copy
) == 0)
1209 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1212 BUG_TRAP(start
<= offset
+ len
);
1214 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1215 if ((copy
= end
- offset
) > 0) {
1218 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1222 vaddr
= kmap_skb_frag(frag
);
1223 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1224 offset
- start
, copy
, 0);
1225 kunmap_skb_frag(vaddr
);
1226 csum
= csum_block_add(csum
, csum2
, pos
);
1235 if (skb_shinfo(skb
)->frag_list
) {
1236 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1238 for (; list
; list
= list
->next
) {
1241 BUG_TRAP(start
<= offset
+ len
);
1243 end
= start
+ list
->len
;
1244 if ((copy
= end
- offset
) > 0) {
1248 csum2
= skb_checksum(list
, offset
- start
,
1250 csum
= csum_block_add(csum
, csum2
, pos
);
1251 if ((len
-= copy
) == 0)
1264 /* Both of above in one bottle. */
1266 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1267 u8
*to
, int len
, __wsum csum
)
1269 int start
= skb_headlen(skb
);
1270 int i
, copy
= start
- offset
;
1277 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1279 if ((len
-= copy
) == 0)
1286 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1289 BUG_TRAP(start
<= offset
+ len
);
1291 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1292 if ((copy
= end
- offset
) > 0) {
1295 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1299 vaddr
= kmap_skb_frag(frag
);
1300 csum2
= csum_partial_copy_nocheck(vaddr
+
1304 kunmap_skb_frag(vaddr
);
1305 csum
= csum_block_add(csum
, csum2
, pos
);
1315 if (skb_shinfo(skb
)->frag_list
) {
1316 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1318 for (; list
; list
= list
->next
) {
1322 BUG_TRAP(start
<= offset
+ len
);
1324 end
= start
+ list
->len
;
1325 if ((copy
= end
- offset
) > 0) {
1328 csum2
= skb_copy_and_csum_bits(list
,
1331 csum
= csum_block_add(csum
, csum2
, pos
);
1332 if ((len
-= copy
) == 0)
1345 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1350 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1351 csstart
= skb
->h
.raw
- skb
->data
;
1353 csstart
= skb_headlen(skb
);
1355 BUG_ON(csstart
> skb_headlen(skb
));
1357 memcpy(to
, skb
->data
, csstart
);
1360 if (csstart
!= skb
->len
)
1361 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1362 skb
->len
- csstart
, 0);
1364 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1365 long csstuff
= csstart
+ skb
->csum_offset
;
1367 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
1372 * skb_dequeue - remove from the head of the queue
1373 * @list: list to dequeue from
1375 * Remove the head of the list. The list lock is taken so the function
1376 * may be used safely with other locking list functions. The head item is
1377 * returned or %NULL if the list is empty.
1380 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1382 unsigned long flags
;
1383 struct sk_buff
*result
;
1385 spin_lock_irqsave(&list
->lock
, flags
);
1386 result
= __skb_dequeue(list
);
1387 spin_unlock_irqrestore(&list
->lock
, flags
);
1392 * skb_dequeue_tail - remove from the tail of the queue
1393 * @list: list to dequeue from
1395 * Remove the tail of the list. The list lock is taken so the function
1396 * may be used safely with other locking list functions. The tail item is
1397 * returned or %NULL if the list is empty.
1399 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
1401 unsigned long flags
;
1402 struct sk_buff
*result
;
1404 spin_lock_irqsave(&list
->lock
, flags
);
1405 result
= __skb_dequeue_tail(list
);
1406 spin_unlock_irqrestore(&list
->lock
, flags
);
1411 * skb_queue_purge - empty a list
1412 * @list: list to empty
1414 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1415 * the list and one reference dropped. This function takes the list
1416 * lock and is atomic with respect to other list locking functions.
1418 void skb_queue_purge(struct sk_buff_head
*list
)
1420 struct sk_buff
*skb
;
1421 while ((skb
= skb_dequeue(list
)) != NULL
)
1426 * skb_queue_head - queue a buffer at the list head
1427 * @list: list to use
1428 * @newsk: buffer to queue
1430 * Queue a buffer at the start of the list. This function takes the
1431 * list lock and can be used safely with other locking &sk_buff functions
1434 * A buffer cannot be placed on two lists at the same time.
1436 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1438 unsigned long flags
;
1440 spin_lock_irqsave(&list
->lock
, flags
);
1441 __skb_queue_head(list
, newsk
);
1442 spin_unlock_irqrestore(&list
->lock
, flags
);
1446 * skb_queue_tail - queue a buffer at the list tail
1447 * @list: list to use
1448 * @newsk: buffer to queue
1450 * Queue a buffer at the tail of the list. This function takes the
1451 * list lock and can be used safely with other locking &sk_buff functions
1454 * A buffer cannot be placed on two lists at the same time.
1456 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1458 unsigned long flags
;
1460 spin_lock_irqsave(&list
->lock
, flags
);
1461 __skb_queue_tail(list
, newsk
);
1462 spin_unlock_irqrestore(&list
->lock
, flags
);
1466 * skb_unlink - remove a buffer from a list
1467 * @skb: buffer to remove
1468 * @list: list to use
1470 * Remove a packet from a list. The list locks are taken and this
1471 * function is atomic with respect to other list locked calls
1473 * You must know what list the SKB is on.
1475 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
1477 unsigned long flags
;
1479 spin_lock_irqsave(&list
->lock
, flags
);
1480 __skb_unlink(skb
, list
);
1481 spin_unlock_irqrestore(&list
->lock
, flags
);
1485 * skb_append - append a buffer
1486 * @old: buffer to insert after
1487 * @newsk: buffer to insert
1488 * @list: list to use
1490 * Place a packet after a given packet in a list. The list locks are taken
1491 * and this function is atomic with respect to other list locked calls.
1492 * A buffer cannot be placed on two lists at the same time.
1494 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1496 unsigned long flags
;
1498 spin_lock_irqsave(&list
->lock
, flags
);
1499 __skb_append(old
, newsk
, list
);
1500 spin_unlock_irqrestore(&list
->lock
, flags
);
1505 * skb_insert - insert a buffer
1506 * @old: buffer to insert before
1507 * @newsk: buffer to insert
1508 * @list: list to use
1510 * Place a packet before a given packet in a list. The list locks are
1511 * taken and this function is atomic with respect to other list locked
1514 * A buffer cannot be placed on two lists at the same time.
1516 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1518 unsigned long flags
;
1520 spin_lock_irqsave(&list
->lock
, flags
);
1521 __skb_insert(newsk
, old
->prev
, old
, list
);
1522 spin_unlock_irqrestore(&list
->lock
, flags
);
1527 * Tune the memory allocator for a new MTU size.
1529 void skb_add_mtu(int mtu
)
1531 /* Must match allocation in alloc_skb */
1532 mtu
= SKB_DATA_ALIGN(mtu
) + sizeof(struct skb_shared_info
);
1534 kmem_add_cache_size(mtu
);
1538 static inline void skb_split_inside_header(struct sk_buff
*skb
,
1539 struct sk_buff
* skb1
,
1540 const u32 len
, const int pos
)
1544 memcpy(skb_put(skb1
, pos
- len
), skb
->data
+ len
, pos
- len
);
1546 /* And move data appendix as is. */
1547 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1548 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1550 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
1551 skb_shinfo(skb
)->nr_frags
= 0;
1552 skb1
->data_len
= skb
->data_len
;
1553 skb1
->len
+= skb1
->data_len
;
1556 skb
->tail
= skb
->data
+ len
;
1559 static inline void skb_split_no_header(struct sk_buff
*skb
,
1560 struct sk_buff
* skb1
,
1561 const u32 len
, int pos
)
1564 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
1566 skb_shinfo(skb
)->nr_frags
= 0;
1567 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
1569 skb
->data_len
= len
- pos
;
1571 for (i
= 0; i
< nfrags
; i
++) {
1572 int size
= skb_shinfo(skb
)->frags
[i
].size
;
1574 if (pos
+ size
> len
) {
1575 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1579 * We have two variants in this case:
1580 * 1. Move all the frag to the second
1581 * part, if it is possible. F.e.
1582 * this approach is mandatory for TUX,
1583 * where splitting is expensive.
1584 * 2. Split is accurately. We make this.
1586 get_page(skb_shinfo(skb
)->frags
[i
].page
);
1587 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
1588 skb_shinfo(skb1
)->frags
[0].size
-= len
- pos
;
1589 skb_shinfo(skb
)->frags
[i
].size
= len
- pos
;
1590 skb_shinfo(skb
)->nr_frags
++;
1594 skb_shinfo(skb
)->nr_frags
++;
1597 skb_shinfo(skb1
)->nr_frags
= k
;
1601 * skb_split - Split fragmented skb to two parts at length len.
1602 * @skb: the buffer to split
1603 * @skb1: the buffer to receive the second part
1604 * @len: new length for skb
1606 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
1608 int pos
= skb_headlen(skb
);
1610 if (len
< pos
) /* Split line is inside header. */
1611 skb_split_inside_header(skb
, skb1
, len
, pos
);
1612 else /* Second chunk has no header, nothing to copy. */
1613 skb_split_no_header(skb
, skb1
, len
, pos
);
1617 * skb_prepare_seq_read - Prepare a sequential read of skb data
1618 * @skb: the buffer to read
1619 * @from: lower offset of data to be read
1620 * @to: upper offset of data to be read
1621 * @st: state variable
1623 * Initializes the specified state variable. Must be called before
1624 * invoking skb_seq_read() for the first time.
1626 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
1627 unsigned int to
, struct skb_seq_state
*st
)
1629 st
->lower_offset
= from
;
1630 st
->upper_offset
= to
;
1631 st
->root_skb
= st
->cur_skb
= skb
;
1632 st
->frag_idx
= st
->stepped_offset
= 0;
1633 st
->frag_data
= NULL
;
1637 * skb_seq_read - Sequentially read skb data
1638 * @consumed: number of bytes consumed by the caller so far
1639 * @data: destination pointer for data to be returned
1640 * @st: state variable
1642 * Reads a block of skb data at &consumed relative to the
1643 * lower offset specified to skb_prepare_seq_read(). Assigns
1644 * the head of the data block to &data and returns the length
1645 * of the block or 0 if the end of the skb data or the upper
1646 * offset has been reached.
1648 * The caller is not required to consume all of the data
1649 * returned, i.e. &consumed is typically set to the number
1650 * of bytes already consumed and the next call to
1651 * skb_seq_read() will return the remaining part of the block.
1653 * Note: The size of each block of data returned can be arbitary,
1654 * this limitation is the cost for zerocopy seqeuental
1655 * reads of potentially non linear data.
1657 * Note: Fragment lists within fragments are not implemented
1658 * at the moment, state->root_skb could be replaced with
1659 * a stack for this purpose.
1661 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
1662 struct skb_seq_state
*st
)
1664 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
1667 if (unlikely(abs_offset
>= st
->upper_offset
))
1671 block_limit
= skb_headlen(st
->cur_skb
);
1673 if (abs_offset
< block_limit
) {
1674 *data
= st
->cur_skb
->data
+ abs_offset
;
1675 return block_limit
- abs_offset
;
1678 if (st
->frag_idx
== 0 && !st
->frag_data
)
1679 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
1681 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
1682 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
1683 block_limit
= frag
->size
+ st
->stepped_offset
;
1685 if (abs_offset
< block_limit
) {
1687 st
->frag_data
= kmap_skb_frag(frag
);
1689 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
1690 (abs_offset
- st
->stepped_offset
);
1692 return block_limit
- abs_offset
;
1695 if (st
->frag_data
) {
1696 kunmap_skb_frag(st
->frag_data
);
1697 st
->frag_data
= NULL
;
1701 st
->stepped_offset
+= frag
->size
;
1704 if (st
->cur_skb
->next
) {
1705 st
->cur_skb
= st
->cur_skb
->next
;
1708 } else if (st
->root_skb
== st
->cur_skb
&&
1709 skb_shinfo(st
->root_skb
)->frag_list
) {
1710 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
1718 * skb_abort_seq_read - Abort a sequential read of skb data
1719 * @st: state variable
1721 * Must be called if skb_seq_read() was not called until it
1724 void skb_abort_seq_read(struct skb_seq_state
*st
)
1727 kunmap_skb_frag(st
->frag_data
);
1730 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1732 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
1733 struct ts_config
*conf
,
1734 struct ts_state
*state
)
1736 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
1739 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
1741 skb_abort_seq_read(TS_SKB_CB(state
));
1745 * skb_find_text - Find a text pattern in skb data
1746 * @skb: the buffer to look in
1747 * @from: search offset
1749 * @config: textsearch configuration
1750 * @state: uninitialized textsearch state variable
1752 * Finds a pattern in the skb data according to the specified
1753 * textsearch configuration. Use textsearch_next() to retrieve
1754 * subsequent occurrences of the pattern. Returns the offset
1755 * to the first occurrence or UINT_MAX if no match was found.
1757 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
1758 unsigned int to
, struct ts_config
*config
,
1759 struct ts_state
*state
)
1763 config
->get_next_block
= skb_ts_get_next_block
;
1764 config
->finish
= skb_ts_finish
;
1766 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
1768 ret
= textsearch_find(config
, state
);
1769 return (ret
<= to
- from
? ret
: UINT_MAX
);
1773 * skb_append_datato_frags: - append the user data to a skb
1774 * @sk: sock structure
1775 * @skb: skb structure to be appened with user data.
1776 * @getfrag: call back function to be used for getting the user data
1777 * @from: pointer to user message iov
1778 * @length: length of the iov message
1780 * Description: This procedure append the user data in the fragment part
1781 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1783 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
1784 int (*getfrag
)(void *from
, char *to
, int offset
,
1785 int len
, int odd
, struct sk_buff
*skb
),
1786 void *from
, int length
)
1789 skb_frag_t
*frag
= NULL
;
1790 struct page
*page
= NULL
;
1796 /* Return error if we don't have space for new frag */
1797 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
1798 if (frg_cnt
>= MAX_SKB_FRAGS
)
1801 /* allocate a new page for next frag */
1802 page
= alloc_pages(sk
->sk_allocation
, 0);
1804 /* If alloc_page fails just return failure and caller will
1805 * free previous allocated pages by doing kfree_skb()
1810 /* initialize the next frag */
1811 sk
->sk_sndmsg_page
= page
;
1812 sk
->sk_sndmsg_off
= 0;
1813 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
1814 skb
->truesize
+= PAGE_SIZE
;
1815 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
1817 /* get the new initialized frag */
1818 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
1819 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
1821 /* copy the user data to page */
1822 left
= PAGE_SIZE
- frag
->page_offset
;
1823 copy
= (length
> left
)? left
: length
;
1825 ret
= getfrag(from
, (page_address(frag
->page
) +
1826 frag
->page_offset
+ frag
->size
),
1827 offset
, copy
, 0, skb
);
1831 /* copy was successful so update the size parameters */
1832 sk
->sk_sndmsg_off
+= copy
;
1835 skb
->data_len
+= copy
;
1839 } while (length
> 0);
1845 * skb_pull_rcsum - pull skb and update receive checksum
1846 * @skb: buffer to update
1847 * @start: start of data before pull
1848 * @len: length of data pulled
1850 * This function performs an skb_pull on the packet and updates
1851 * update the CHECKSUM_COMPLETE checksum. It should be used on
1852 * receive path processing instead of skb_pull unless you know
1853 * that the checksum difference is zero (e.g., a valid IP header)
1854 * or you are setting ip_summed to CHECKSUM_NONE.
1856 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
1858 BUG_ON(len
> skb
->len
);
1860 BUG_ON(skb
->len
< skb
->data_len
);
1861 skb_postpull_rcsum(skb
, skb
->data
, len
);
1862 return skb
->data
+= len
;
1865 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
1868 * skb_segment - Perform protocol segmentation on skb.
1869 * @skb: buffer to segment
1870 * @features: features for the output path (see dev->features)
1872 * This function performs segmentation on the given skb. It returns
1873 * the segment at the given position. It returns NULL if there are
1874 * no more segments to generate, or when an error is encountered.
1876 struct sk_buff
*skb_segment(struct sk_buff
*skb
, int features
)
1878 struct sk_buff
*segs
= NULL
;
1879 struct sk_buff
*tail
= NULL
;
1880 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
1881 unsigned int doffset
= skb
->data
- skb
->mac
.raw
;
1882 unsigned int offset
= doffset
;
1883 unsigned int headroom
;
1885 int sg
= features
& NETIF_F_SG
;
1886 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1891 __skb_push(skb
, doffset
);
1892 headroom
= skb_headroom(skb
);
1893 pos
= skb_headlen(skb
);
1896 struct sk_buff
*nskb
;
1902 len
= skb
->len
- offset
;
1906 hsize
= skb_headlen(skb
) - offset
;
1909 if (hsize
> len
|| !sg
)
1912 nskb
= alloc_skb(hsize
+ doffset
+ headroom
, GFP_ATOMIC
);
1913 if (unlikely(!nskb
))
1922 nskb
->dev
= skb
->dev
;
1923 nskb
->priority
= skb
->priority
;
1924 nskb
->protocol
= skb
->protocol
;
1925 nskb
->dst
= dst_clone(skb
->dst
);
1926 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
1927 nskb
->pkt_type
= skb
->pkt_type
;
1928 nskb
->mac_len
= skb
->mac_len
;
1930 skb_reserve(nskb
, headroom
);
1931 nskb
->mac
.raw
= nskb
->data
;
1932 nskb
->nh
.raw
= nskb
->data
+ skb
->mac_len
;
1933 nskb
->h
.raw
= nskb
->nh
.raw
+ (skb
->h
.raw
- skb
->nh
.raw
);
1934 memcpy(skb_put(nskb
, doffset
), skb
->data
, doffset
);
1937 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
1943 frag
= skb_shinfo(nskb
)->frags
;
1946 nskb
->ip_summed
= CHECKSUM_PARTIAL
;
1947 nskb
->csum
= skb
->csum
;
1948 memcpy(skb_put(nskb
, hsize
), skb
->data
+ offset
, hsize
);
1950 while (pos
< offset
+ len
) {
1951 BUG_ON(i
>= nfrags
);
1953 *frag
= skb_shinfo(skb
)->frags
[i
];
1954 get_page(frag
->page
);
1958 frag
->page_offset
+= offset
- pos
;
1959 frag
->size
-= offset
- pos
;
1964 if (pos
+ size
<= offset
+ len
) {
1968 frag
->size
-= pos
+ size
- (offset
+ len
);
1975 skb_shinfo(nskb
)->nr_frags
= k
;
1976 nskb
->data_len
= len
- hsize
;
1977 nskb
->len
+= nskb
->data_len
;
1978 nskb
->truesize
+= nskb
->data_len
;
1979 } while ((offset
+= len
) < skb
->len
);
1984 while ((skb
= segs
)) {
1988 return ERR_PTR(err
);
1991 EXPORT_SYMBOL_GPL(skb_segment
);
1993 void __init
skb_init(void)
1995 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
1996 sizeof(struct sk_buff
),
1998 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2000 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
2001 (2*sizeof(struct sk_buff
)) +
2004 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2008 EXPORT_SYMBOL(___pskb_trim
);
2009 EXPORT_SYMBOL(__kfree_skb
);
2010 EXPORT_SYMBOL(kfree_skb
);
2011 EXPORT_SYMBOL(__pskb_pull_tail
);
2012 EXPORT_SYMBOL(__alloc_skb
);
2013 EXPORT_SYMBOL(__netdev_alloc_skb
);
2014 EXPORT_SYMBOL(pskb_copy
);
2015 EXPORT_SYMBOL(pskb_expand_head
);
2016 EXPORT_SYMBOL(skb_checksum
);
2017 EXPORT_SYMBOL(skb_clone
);
2018 EXPORT_SYMBOL(skb_clone_fraglist
);
2019 EXPORT_SYMBOL(skb_copy
);
2020 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2021 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
2022 EXPORT_SYMBOL(skb_copy_bits
);
2023 EXPORT_SYMBOL(skb_copy_expand
);
2024 EXPORT_SYMBOL(skb_over_panic
);
2025 EXPORT_SYMBOL(skb_pad
);
2026 EXPORT_SYMBOL(skb_realloc_headroom
);
2027 EXPORT_SYMBOL(skb_under_panic
);
2028 EXPORT_SYMBOL(skb_dequeue
);
2029 EXPORT_SYMBOL(skb_dequeue_tail
);
2030 EXPORT_SYMBOL(skb_insert
);
2031 EXPORT_SYMBOL(skb_queue_purge
);
2032 EXPORT_SYMBOL(skb_queue_head
);
2033 EXPORT_SYMBOL(skb_queue_tail
);
2034 EXPORT_SYMBOL(skb_unlink
);
2035 EXPORT_SYMBOL(skb_append
);
2036 EXPORT_SYMBOL(skb_split
);
2037 EXPORT_SYMBOL(skb_prepare_seq_read
);
2038 EXPORT_SYMBOL(skb_seq_read
);
2039 EXPORT_SYMBOL(skb_abort_seq_read
);
2040 EXPORT_SYMBOL(skb_find_text
);
2041 EXPORT_SYMBOL(skb_append_datato_frags
);