2 * Apple Onboard Audio driver for tas codec
4 * Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
6 * GPL v2, can be found in COPYING.
9 * - How to distinguish between 3004 and versions?
12 * - This codec driver doesn't honour the 'connected'
13 * property of the aoa_codec struct, hence if
14 * it is used in machines where not everything is
15 * connected it will display wrong mixer elements.
16 * - Driver assumes that the microphone is always
17 * monaureal and connected to the right channel of
18 * the input. This should also be a codec-dependent
19 * flag, maybe the codec should have 3 different
20 * bits for the three different possibilities how
21 * it can be hooked up...
22 * But as long as I don't see any hardware hooked
24 * - As Apple notes in their code, the tas3004 seems
25 * to delay the right channel by one sample. You can
26 * see this when for example recording stereo in
27 * audacity, or recording the tas output via cable
28 * on another machine (use a sinus generator or so).
29 * I tried programming the BiQuads but couldn't
30 * make the delay work, maybe someone can read the
31 * datasheet and fix it. The relevant Apple comment
32 * is in AppleTAS3004Audio.cpp lines 1637 ff. Note
33 * that their comment describing how they program
34 * the filters sucks...
37 * - this should actually register *two* aoa_codec
38 * structs since it has two inputs. Then it must
39 * use the prepare callback to forbid running the
40 * secondary output on a different clock.
41 * Also, whatever bus knows how to do this must
42 * provide two soundbus_dev devices and the fabric
43 * must be able to link them correctly.
45 * I don't even know if Apple ever uses the second
46 * port on the tas3004 though, I don't think their
47 * i2s controllers can even do it. OTOH, they all
48 * derive the clocks from common clocks, so it
49 * might just be possible. The framework allows the
50 * codec to refine the transfer_info items in the
51 * usable callback, so we can simply remove the
52 * rates the second instance is not using when it
54 * Maybe we'll need to make the sound busses have
55 * a 'clock group id' value so the codec can
56 * determine if the two outputs can be driven at
57 * the same time. But that is likely overkill, up
58 * to the fabric to not link them up incorrectly,
59 * and up to the hardware designer to not wire
60 * them up in some weird unusable way.
63 #include <linux/i2c.h>
64 #include <asm/pmac_low_i2c.h>
66 #include <linux/delay.h>
67 #include <linux/module.h>
68 #include <linux/mutex.h>
70 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
71 MODULE_LICENSE("GPL");
72 MODULE_DESCRIPTION("tas codec driver for snd-aoa");
74 #include "snd-aoa-codec-tas.h"
75 #include "snd-aoa-codec-tas-gain-table.h"
76 #include "snd-aoa-codec-tas-basstreble.h"
78 #include "../soundbus/soundbus.h"
80 #define PFX "snd-aoa-codec-tas: "
84 struct aoa_codec codec
;
85 struct i2c_client i2c
;
86 u32 mute_l
:1, mute_r
:1 ,
90 u8 cached_volume_l
, cached_volume_r
;
91 u8 mixer_l
[3], mixer_r
[3];
95 /* protects hardware access against concurrency from
96 * userspace when hitting controls and during
97 * codec init/suspend/resume */
101 static int tas_reset_init(struct tas
*tas
);
103 static struct tas
*codec_to_tas(struct aoa_codec
*codec
)
105 return container_of(codec
, struct tas
, codec
);
108 static inline int tas_write_reg(struct tas
*tas
, u8 reg
, u8 len
, u8
*data
)
111 return i2c_smbus_write_byte_data(&tas
->i2c
, reg
, *data
);
113 return i2c_smbus_write_i2c_block_data(&tas
->i2c
, reg
, len
, data
);
116 static void tas3004_set_drc(struct tas
*tas
)
118 unsigned char val
[6];
120 if (tas
->drc_enabled
)
121 val
[0] = 0x50; /* 3:1 above threshold */
123 val
[0] = 0x51; /* disabled */
124 val
[1] = 0x02; /* 1:1 below threshold */
125 if (tas
->drc_range
> 0xef)
127 else if (tas
->drc_range
< 0)
130 val
[2] = tas
->drc_range
;
135 tas_write_reg(tas
, TAS_REG_DRC
, 6, val
);
138 static void tas_set_treble(struct tas
*tas
)
142 tmp
= tas3004_treble(tas
->treble
);
143 tas_write_reg(tas
, TAS_REG_TREBLE
, 1, &tmp
);
146 static void tas_set_bass(struct tas
*tas
)
150 tmp
= tas3004_bass(tas
->bass
);
151 tas_write_reg(tas
, TAS_REG_BASS
, 1, &tmp
);
154 static void tas_set_volume(struct tas
*tas
)
160 left
= tas
->cached_volume_l
;
161 right
= tas
->cached_volume_r
;
163 if (left
> 177) left
= 177;
164 if (right
> 177) right
= 177;
166 if (tas
->mute_l
) left
= 0;
167 if (tas
->mute_r
) right
= 0;
169 /* analysing the volume and mixer tables shows
170 * that they are similar enough when we shift
171 * the mixer table down by 4 bits. The error
172 * is miniscule, in just one item the error
173 * is 1, at a value of 0x07f17b (mixer table
174 * value is 0x07f17a) */
175 tmp
= tas_gaintable
[left
];
179 tmp
= tas_gaintable
[right
];
183 tas_write_reg(tas
, TAS_REG_VOL
, 6, block
);
186 static void tas_set_mixer(struct tas
*tas
)
193 val
= tas
->mixer_l
[i
];
194 if (val
> 177) val
= 177;
195 tmp
= tas_gaintable
[val
];
196 block
[3*i
+0] = tmp
>>16;
197 block
[3*i
+1] = tmp
>>8;
200 tas_write_reg(tas
, TAS_REG_LMIX
, 9, block
);
203 val
= tas
->mixer_r
[i
];
204 if (val
> 177) val
= 177;
205 tmp
= tas_gaintable
[val
];
206 block
[3*i
+0] = tmp
>>16;
207 block
[3*i
+1] = tmp
>>8;
210 tas_write_reg(tas
, TAS_REG_RMIX
, 9, block
);
215 static int tas_dev_register(struct snd_device
*dev
)
220 static struct snd_device_ops ops
= {
221 .dev_register
= tas_dev_register
,
224 static int tas_snd_vol_info(struct snd_kcontrol
*kcontrol
,
225 struct snd_ctl_elem_info
*uinfo
)
227 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
229 uinfo
->value
.integer
.min
= 0;
230 uinfo
->value
.integer
.max
= 177;
234 static int tas_snd_vol_get(struct snd_kcontrol
*kcontrol
,
235 struct snd_ctl_elem_value
*ucontrol
)
237 struct tas
*tas
= snd_kcontrol_chip(kcontrol
);
239 mutex_lock(&tas
->mtx
);
240 ucontrol
->value
.integer
.value
[0] = tas
->cached_volume_l
;
241 ucontrol
->value
.integer
.value
[1] = tas
->cached_volume_r
;
242 mutex_unlock(&tas
->mtx
);
246 static int tas_snd_vol_put(struct snd_kcontrol
*kcontrol
,
247 struct snd_ctl_elem_value
*ucontrol
)
249 struct tas
*tas
= snd_kcontrol_chip(kcontrol
);
251 mutex_lock(&tas
->mtx
);
252 if (tas
->cached_volume_l
== ucontrol
->value
.integer
.value
[0]
253 && tas
->cached_volume_r
== ucontrol
->value
.integer
.value
[1]) {
254 mutex_unlock(&tas
->mtx
);
258 tas
->cached_volume_l
= ucontrol
->value
.integer
.value
[0];
259 tas
->cached_volume_r
= ucontrol
->value
.integer
.value
[1];
262 mutex_unlock(&tas
->mtx
);
266 static struct snd_kcontrol_new volume_control
= {
267 .iface
= SNDRV_CTL_ELEM_IFACE_MIXER
,
268 .name
= "Master Playback Volume",
269 .access
= SNDRV_CTL_ELEM_ACCESS_READWRITE
,
270 .info
= tas_snd_vol_info
,
271 .get
= tas_snd_vol_get
,
272 .put
= tas_snd_vol_put
,
275 static int tas_snd_mute_info(struct snd_kcontrol
*kcontrol
,
276 struct snd_ctl_elem_info
*uinfo
)
278 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_BOOLEAN
;
280 uinfo
->value
.integer
.min
= 0;
281 uinfo
->value
.integer
.max
= 1;
285 static int tas_snd_mute_get(struct snd_kcontrol
*kcontrol
,
286 struct snd_ctl_elem_value
*ucontrol
)
288 struct tas
*tas
= snd_kcontrol_chip(kcontrol
);
290 mutex_lock(&tas
->mtx
);
291 ucontrol
->value
.integer
.value
[0] = !tas
->mute_l
;
292 ucontrol
->value
.integer
.value
[1] = !tas
->mute_r
;
293 mutex_unlock(&tas
->mtx
);
297 static int tas_snd_mute_put(struct snd_kcontrol
*kcontrol
,
298 struct snd_ctl_elem_value
*ucontrol
)
300 struct tas
*tas
= snd_kcontrol_chip(kcontrol
);
302 mutex_lock(&tas
->mtx
);
303 if (tas
->mute_l
== !ucontrol
->value
.integer
.value
[0]
304 && tas
->mute_r
== !ucontrol
->value
.integer
.value
[1]) {
305 mutex_unlock(&tas
->mtx
);
309 tas
->mute_l
= !ucontrol
->value
.integer
.value
[0];
310 tas
->mute_r
= !ucontrol
->value
.integer
.value
[1];
313 mutex_unlock(&tas
->mtx
);
317 static struct snd_kcontrol_new mute_control
= {
318 .iface
= SNDRV_CTL_ELEM_IFACE_MIXER
,
319 .name
= "Master Playback Switch",
320 .access
= SNDRV_CTL_ELEM_ACCESS_READWRITE
,
321 .info
= tas_snd_mute_info
,
322 .get
= tas_snd_mute_get
,
323 .put
= tas_snd_mute_put
,
326 static int tas_snd_mixer_info(struct snd_kcontrol
*kcontrol
,
327 struct snd_ctl_elem_info
*uinfo
)
329 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
331 uinfo
->value
.integer
.min
= 0;
332 uinfo
->value
.integer
.max
= 177;
336 static int tas_snd_mixer_get(struct snd_kcontrol
*kcontrol
,
337 struct snd_ctl_elem_value
*ucontrol
)
339 struct tas
*tas
= snd_kcontrol_chip(kcontrol
);
340 int idx
= kcontrol
->private_value
;
342 mutex_lock(&tas
->mtx
);
343 ucontrol
->value
.integer
.value
[0] = tas
->mixer_l
[idx
];
344 ucontrol
->value
.integer
.value
[1] = tas
->mixer_r
[idx
];
345 mutex_unlock(&tas
->mtx
);
350 static int tas_snd_mixer_put(struct snd_kcontrol
*kcontrol
,
351 struct snd_ctl_elem_value
*ucontrol
)
353 struct tas
*tas
= snd_kcontrol_chip(kcontrol
);
354 int idx
= kcontrol
->private_value
;
356 mutex_lock(&tas
->mtx
);
357 if (tas
->mixer_l
[idx
] == ucontrol
->value
.integer
.value
[0]
358 && tas
->mixer_r
[idx
] == ucontrol
->value
.integer
.value
[1]) {
359 mutex_unlock(&tas
->mtx
);
363 tas
->mixer_l
[idx
] = ucontrol
->value
.integer
.value
[0];
364 tas
->mixer_r
[idx
] = ucontrol
->value
.integer
.value
[1];
368 mutex_unlock(&tas
->mtx
);
372 #define MIXER_CONTROL(n,descr,idx) \
373 static struct snd_kcontrol_new n##_control = { \
374 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
375 .name = descr " Playback Volume", \
376 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
377 .info = tas_snd_mixer_info, \
378 .get = tas_snd_mixer_get, \
379 .put = tas_snd_mixer_put, \
380 .private_value = idx, \
383 MIXER_CONTROL(pcm1
, "PCM", 0);
384 MIXER_CONTROL(monitor
, "Monitor", 2);
386 static int tas_snd_drc_range_info(struct snd_kcontrol
*kcontrol
,
387 struct snd_ctl_elem_info
*uinfo
)
389 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
391 uinfo
->value
.integer
.min
= 0;
392 uinfo
->value
.integer
.max
= TAS3004_DRC_MAX
;
396 static int tas_snd_drc_range_get(struct snd_kcontrol
*kcontrol
,
397 struct snd_ctl_elem_value
*ucontrol
)
399 struct tas
*tas
= snd_kcontrol_chip(kcontrol
);
401 mutex_lock(&tas
->mtx
);
402 ucontrol
->value
.integer
.value
[0] = tas
->drc_range
;
403 mutex_unlock(&tas
->mtx
);
407 static int tas_snd_drc_range_put(struct snd_kcontrol
*kcontrol
,
408 struct snd_ctl_elem_value
*ucontrol
)
410 struct tas
*tas
= snd_kcontrol_chip(kcontrol
);
412 mutex_lock(&tas
->mtx
);
413 if (tas
->drc_range
== ucontrol
->value
.integer
.value
[0]) {
414 mutex_unlock(&tas
->mtx
);
418 tas
->drc_range
= ucontrol
->value
.integer
.value
[0];
420 tas3004_set_drc(tas
);
421 mutex_unlock(&tas
->mtx
);
425 static struct snd_kcontrol_new drc_range_control
= {
426 .iface
= SNDRV_CTL_ELEM_IFACE_MIXER
,
428 .access
= SNDRV_CTL_ELEM_ACCESS_READWRITE
,
429 .info
= tas_snd_drc_range_info
,
430 .get
= tas_snd_drc_range_get
,
431 .put
= tas_snd_drc_range_put
,
434 static int tas_snd_drc_switch_info(struct snd_kcontrol
*kcontrol
,
435 struct snd_ctl_elem_info
*uinfo
)
437 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_BOOLEAN
;
439 uinfo
->value
.integer
.min
= 0;
440 uinfo
->value
.integer
.max
= 1;
444 static int tas_snd_drc_switch_get(struct snd_kcontrol
*kcontrol
,
445 struct snd_ctl_elem_value
*ucontrol
)
447 struct tas
*tas
= snd_kcontrol_chip(kcontrol
);
449 mutex_lock(&tas
->mtx
);
450 ucontrol
->value
.integer
.value
[0] = tas
->drc_enabled
;
451 mutex_unlock(&tas
->mtx
);
455 static int tas_snd_drc_switch_put(struct snd_kcontrol
*kcontrol
,
456 struct snd_ctl_elem_value
*ucontrol
)
458 struct tas
*tas
= snd_kcontrol_chip(kcontrol
);
460 mutex_lock(&tas
->mtx
);
461 if (tas
->drc_enabled
== ucontrol
->value
.integer
.value
[0]) {
462 mutex_unlock(&tas
->mtx
);
466 tas
->drc_enabled
= ucontrol
->value
.integer
.value
[0];
468 tas3004_set_drc(tas
);
469 mutex_unlock(&tas
->mtx
);
473 static struct snd_kcontrol_new drc_switch_control
= {
474 .iface
= SNDRV_CTL_ELEM_IFACE_MIXER
,
475 .name
= "DRC Range Switch",
476 .access
= SNDRV_CTL_ELEM_ACCESS_READWRITE
,
477 .info
= tas_snd_drc_switch_info
,
478 .get
= tas_snd_drc_switch_get
,
479 .put
= tas_snd_drc_switch_put
,
482 static int tas_snd_capture_source_info(struct snd_kcontrol
*kcontrol
,
483 struct snd_ctl_elem_info
*uinfo
)
485 static char *texts
[] = { "Line-In", "Microphone" };
487 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_ENUMERATED
;
489 uinfo
->value
.enumerated
.items
= 2;
490 if (uinfo
->value
.enumerated
.item
> 1)
491 uinfo
->value
.enumerated
.item
= 1;
492 strcpy(uinfo
->value
.enumerated
.name
, texts
[uinfo
->value
.enumerated
.item
]);
496 static int tas_snd_capture_source_get(struct snd_kcontrol
*kcontrol
,
497 struct snd_ctl_elem_value
*ucontrol
)
499 struct tas
*tas
= snd_kcontrol_chip(kcontrol
);
501 mutex_lock(&tas
->mtx
);
502 ucontrol
->value
.enumerated
.item
[0] = !!(tas
->acr
& TAS_ACR_INPUT_B
);
503 mutex_unlock(&tas
->mtx
);
507 static int tas_snd_capture_source_put(struct snd_kcontrol
*kcontrol
,
508 struct snd_ctl_elem_value
*ucontrol
)
510 struct tas
*tas
= snd_kcontrol_chip(kcontrol
);
513 mutex_lock(&tas
->mtx
);
517 * Despite what the data sheet says in one place, the
518 * TAS_ACR_B_MONAUREAL bit forces mono output even when
519 * input A (line in) is selected.
521 tas
->acr
&= ~(TAS_ACR_INPUT_B
| TAS_ACR_B_MONAUREAL
);
522 if (ucontrol
->value
.enumerated
.item
[0])
523 tas
->acr
|= TAS_ACR_INPUT_B
| TAS_ACR_B_MONAUREAL
|
524 TAS_ACR_B_MON_SEL_RIGHT
;
525 if (oldacr
== tas
->acr
) {
526 mutex_unlock(&tas
->mtx
);
530 tas_write_reg(tas
, TAS_REG_ACR
, 1, &tas
->acr
);
531 mutex_unlock(&tas
->mtx
);
535 static struct snd_kcontrol_new capture_source_control
= {
536 .iface
= SNDRV_CTL_ELEM_IFACE_MIXER
,
537 /* If we name this 'Input Source', it properly shows up in
538 * alsamixer as a selection, * but it's shown under the
539 * 'Playback' category.
540 * If I name it 'Capture Source', it shows up in strange
541 * ways (two bools of which one can be selected at a
542 * time) but at least it's shown in the 'Capture'
544 * I was told that this was due to backward compatibility,
545 * but I don't understand then why the mangling is *not*
546 * done when I name it "Input Source".....
548 .name
= "Capture Source",
549 .access
= SNDRV_CTL_ELEM_ACCESS_READWRITE
,
550 .info
= tas_snd_capture_source_info
,
551 .get
= tas_snd_capture_source_get
,
552 .put
= tas_snd_capture_source_put
,
555 static int tas_snd_treble_info(struct snd_kcontrol
*kcontrol
,
556 struct snd_ctl_elem_info
*uinfo
)
558 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
560 uinfo
->value
.integer
.min
= TAS3004_TREBLE_MIN
;
561 uinfo
->value
.integer
.max
= TAS3004_TREBLE_MAX
;
565 static int tas_snd_treble_get(struct snd_kcontrol
*kcontrol
,
566 struct snd_ctl_elem_value
*ucontrol
)
568 struct tas
*tas
= snd_kcontrol_chip(kcontrol
);
570 mutex_lock(&tas
->mtx
);
571 ucontrol
->value
.integer
.value
[0] = tas
->treble
;
572 mutex_unlock(&tas
->mtx
);
576 static int tas_snd_treble_put(struct snd_kcontrol
*kcontrol
,
577 struct snd_ctl_elem_value
*ucontrol
)
579 struct tas
*tas
= snd_kcontrol_chip(kcontrol
);
581 mutex_lock(&tas
->mtx
);
582 if (tas
->treble
== ucontrol
->value
.integer
.value
[0]) {
583 mutex_unlock(&tas
->mtx
);
587 tas
->treble
= ucontrol
->value
.integer
.value
[0];
590 mutex_unlock(&tas
->mtx
);
594 static struct snd_kcontrol_new treble_control
= {
595 .iface
= SNDRV_CTL_ELEM_IFACE_MIXER
,
597 .access
= SNDRV_CTL_ELEM_ACCESS_READWRITE
,
598 .info
= tas_snd_treble_info
,
599 .get
= tas_snd_treble_get
,
600 .put
= tas_snd_treble_put
,
603 static int tas_snd_bass_info(struct snd_kcontrol
*kcontrol
,
604 struct snd_ctl_elem_info
*uinfo
)
606 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
608 uinfo
->value
.integer
.min
= TAS3004_BASS_MIN
;
609 uinfo
->value
.integer
.max
= TAS3004_BASS_MAX
;
613 static int tas_snd_bass_get(struct snd_kcontrol
*kcontrol
,
614 struct snd_ctl_elem_value
*ucontrol
)
616 struct tas
*tas
= snd_kcontrol_chip(kcontrol
);
618 mutex_lock(&tas
->mtx
);
619 ucontrol
->value
.integer
.value
[0] = tas
->bass
;
620 mutex_unlock(&tas
->mtx
);
624 static int tas_snd_bass_put(struct snd_kcontrol
*kcontrol
,
625 struct snd_ctl_elem_value
*ucontrol
)
627 struct tas
*tas
= snd_kcontrol_chip(kcontrol
);
629 mutex_lock(&tas
->mtx
);
630 if (tas
->bass
== ucontrol
->value
.integer
.value
[0]) {
631 mutex_unlock(&tas
->mtx
);
635 tas
->bass
= ucontrol
->value
.integer
.value
[0];
638 mutex_unlock(&tas
->mtx
);
642 static struct snd_kcontrol_new bass_control
= {
643 .iface
= SNDRV_CTL_ELEM_IFACE_MIXER
,
645 .access
= SNDRV_CTL_ELEM_ACCESS_READWRITE
,
646 .info
= tas_snd_bass_info
,
647 .get
= tas_snd_bass_get
,
648 .put
= tas_snd_bass_put
,
651 static struct transfer_info tas_transfers
[] = {
654 .formats
= SNDRV_PCM_FMTBIT_S16_BE
| SNDRV_PCM_FMTBIT_S16_BE
|
655 SNDRV_PCM_FMTBIT_S24_BE
| SNDRV_PCM_FMTBIT_S24_BE
,
656 .rates
= SNDRV_PCM_RATE_32000
| SNDRV_PCM_RATE_44100
| SNDRV_PCM_RATE_48000
,
661 .formats
= SNDRV_PCM_FMTBIT_S16_BE
| SNDRV_PCM_FMTBIT_S16_BE
|
662 SNDRV_PCM_FMTBIT_S24_BE
| SNDRV_PCM_FMTBIT_S24_BE
,
663 .rates
= SNDRV_PCM_RATE_32000
| SNDRV_PCM_RATE_44100
| SNDRV_PCM_RATE_48000
,
669 static int tas_usable(struct codec_info_item
*cii
,
670 struct transfer_info
*ti
,
671 struct transfer_info
*out
)
676 static int tas_reset_init(struct tas
*tas
)
680 tas
->codec
.gpio
->methods
->all_amps_off(tas
->codec
.gpio
);
682 tas
->codec
.gpio
->methods
->set_hw_reset(tas
->codec
.gpio
, 0);
684 tas
->codec
.gpio
->methods
->set_hw_reset(tas
->codec
.gpio
, 1);
686 tas
->codec
.gpio
->methods
->set_hw_reset(tas
->codec
.gpio
, 0);
688 tas
->codec
.gpio
->methods
->all_amps_restore(tas
->codec
.gpio
);
690 tmp
= TAS_MCS_SCLK64
| TAS_MCS_SPORT_MODE_I2S
| TAS_MCS_SPORT_WL_24BIT
;
691 if (tas_write_reg(tas
, TAS_REG_MCS
, 1, &tmp
))
694 tas
->acr
|= TAS_ACR_ANALOG_PDOWN
;
695 if (tas_write_reg(tas
, TAS_REG_ACR
, 1, &tas
->acr
))
699 if (tas_write_reg(tas
, TAS_REG_MCS2
, 1, &tmp
))
702 tas3004_set_drc(tas
);
704 /* Set treble & bass to 0dB */
705 tas
->treble
= TAS3004_TREBLE_ZERO
;
706 tas
->bass
= TAS3004_BASS_ZERO
;
710 tas
->acr
&= ~TAS_ACR_ANALOG_PDOWN
;
711 if (tas_write_reg(tas
, TAS_REG_ACR
, 1, &tas
->acr
))
719 static int tas_switch_clock(struct codec_info_item
*cii
, enum clock_switch clock
)
721 struct tas
*tas
= cii
->codec_data
;
724 case CLOCK_SWITCH_PREPARE_SLAVE
:
725 /* Clocks are going away, mute mute mute */
726 tas
->codec
.gpio
->methods
->all_amps_off(tas
->codec
.gpio
);
729 case CLOCK_SWITCH_SLAVE
:
730 /* Clocks are back, re-init the codec */
731 mutex_lock(&tas
->mtx
);
736 tas
->codec
.gpio
->methods
->all_amps_restore(tas
->codec
.gpio
);
737 mutex_unlock(&tas
->mtx
);
740 /* doesn't happen as of now */
746 /* we are controlled via i2c and assume that is always up
747 * If that wasn't the case, we'd have to suspend once
748 * our i2c device is suspended, and then take note of that! */
749 static int tas_suspend(struct tas
*tas
)
751 mutex_lock(&tas
->mtx
);
753 tas
->acr
|= TAS_ACR_ANALOG_PDOWN
;
754 tas_write_reg(tas
, TAS_REG_ACR
, 1, &tas
->acr
);
755 mutex_unlock(&tas
->mtx
);
759 static int tas_resume(struct tas
*tas
)
762 mutex_lock(&tas
->mtx
);
767 mutex_unlock(&tas
->mtx
);
772 static int _tas_suspend(struct codec_info_item
*cii
, pm_message_t state
)
774 return tas_suspend(cii
->codec_data
);
777 static int _tas_resume(struct codec_info_item
*cii
)
779 return tas_resume(cii
->codec_data
);
783 static struct codec_info tas_codec_info
= {
784 .transfers
= tas_transfers
,
785 /* in theory, we can drive it at 512 too...
786 * but so far the framework doesn't allow
787 * for that and I don't see much point in it. */
788 .sysclock_factor
= 256,
789 /* same here, could be 32 for just one 16 bit format */
791 .owner
= THIS_MODULE
,
792 .usable
= tas_usable
,
793 .switch_clock
= tas_switch_clock
,
795 .suspend
= _tas_suspend
,
796 .resume
= _tas_resume
,
800 static int tas_init_codec(struct aoa_codec
*codec
)
802 struct tas
*tas
= codec_to_tas(codec
);
805 if (!tas
->codec
.gpio
|| !tas
->codec
.gpio
->methods
) {
806 printk(KERN_ERR PFX
"gpios not assigned!!\n");
810 mutex_lock(&tas
->mtx
);
811 if (tas_reset_init(tas
)) {
812 printk(KERN_ERR PFX
"tas failed to initialise\n");
813 mutex_unlock(&tas
->mtx
);
817 mutex_unlock(&tas
->mtx
);
819 if (tas
->codec
.soundbus_dev
->attach_codec(tas
->codec
.soundbus_dev
,
821 &tas_codec_info
, tas
)) {
822 printk(KERN_ERR PFX
"error attaching tas to soundbus\n");
826 if (aoa_snd_device_new(SNDRV_DEV_LOWLEVEL
, tas
, &ops
)) {
827 printk(KERN_ERR PFX
"failed to create tas snd device!\n");
830 err
= aoa_snd_ctl_add(snd_ctl_new1(&volume_control
, tas
));
834 err
= aoa_snd_ctl_add(snd_ctl_new1(&mute_control
, tas
));
838 err
= aoa_snd_ctl_add(snd_ctl_new1(&pcm1_control
, tas
));
842 err
= aoa_snd_ctl_add(snd_ctl_new1(&monitor_control
, tas
));
846 err
= aoa_snd_ctl_add(snd_ctl_new1(&capture_source_control
, tas
));
850 err
= aoa_snd_ctl_add(snd_ctl_new1(&drc_range_control
, tas
));
854 err
= aoa_snd_ctl_add(snd_ctl_new1(&drc_switch_control
, tas
));
858 err
= aoa_snd_ctl_add(snd_ctl_new1(&treble_control
, tas
));
862 err
= aoa_snd_ctl_add(snd_ctl_new1(&bass_control
, tas
));
868 tas
->codec
.soundbus_dev
->detach_codec(tas
->codec
.soundbus_dev
, tas
);
869 snd_device_free(aoa_get_card(), tas
);
873 static void tas_exit_codec(struct aoa_codec
*codec
)
875 struct tas
*tas
= codec_to_tas(codec
);
877 if (!tas
->codec
.soundbus_dev
)
879 tas
->codec
.soundbus_dev
->detach_codec(tas
->codec
.soundbus_dev
, tas
);
883 static struct i2c_driver tas_driver
;
885 static int tas_create(struct i2c_adapter
*adapter
,
886 struct device_node
*node
,
891 tas
= kzalloc(sizeof(struct tas
), GFP_KERNEL
);
896 mutex_init(&tas
->mtx
);
897 tas
->i2c
.driver
= &tas_driver
;
898 tas
->i2c
.adapter
= adapter
;
899 tas
->i2c
.addr
= addr
;
900 /* seems that half is a saner default */
901 tas
->drc_range
= TAS3004_DRC_MAX
/ 2;
902 strlcpy(tas
->i2c
.name
, "tas audio codec", I2C_NAME_SIZE
-1);
904 if (i2c_attach_client(&tas
->i2c
)) {
905 printk(KERN_ERR PFX
"failed to attach to i2c\n");
909 strlcpy(tas
->codec
.name
, "tas", MAX_CODEC_NAME_LEN
-1);
910 tas
->codec
.owner
= THIS_MODULE
;
911 tas
->codec
.init
= tas_init_codec
;
912 tas
->codec
.exit
= tas_exit_codec
;
913 tas
->codec
.node
= of_node_get(node
);
915 if (aoa_codec_register(&tas
->codec
)) {
919 "snd-aoa-codec-tas: tas found, addr 0x%02x on %s\n",
920 addr
, node
->full_name
);
923 i2c_detach_client(&tas
->i2c
);
925 mutex_destroy(&tas
->mtx
);
930 static int tas_i2c_attach(struct i2c_adapter
*adapter
)
932 struct device_node
*busnode
, *dev
= NULL
;
933 struct pmac_i2c_bus
*bus
;
935 bus
= pmac_i2c_adapter_to_bus(adapter
);
938 busnode
= pmac_i2c_get_bus_node(bus
);
940 while ((dev
= of_get_next_child(busnode
, dev
)) != NULL
) {
941 if (device_is_compatible(dev
, "tas3004")) {
943 printk(KERN_DEBUG PFX
"found tas3004\n");
944 addr
= (u32
*) get_property(dev
, "reg", NULL
);
947 return tas_create(adapter
, dev
, ((*addr
) >> 1) & 0x7f);
949 /* older machines have no 'codec' node with a 'compatible'
950 * property that says 'tas3004', they just have a 'deq'
951 * node without any such property... */
952 if (strcmp(dev
->name
, "deq") == 0) {
954 printk(KERN_DEBUG PFX
"found 'deq' node\n");
955 _addr
= (u32
*) get_property(dev
, "i2c-address", NULL
);
958 addr
= ((*_addr
) >> 1) & 0x7f;
959 /* now, if the address doesn't match any of the two
960 * that a tas3004 can have, we cannot handle this.
961 * I doubt it ever happens but hey. */
962 if (addr
!= 0x34 && addr
!= 0x35)
964 return tas_create(adapter
, dev
, addr
);
970 static int tas_i2c_detach(struct i2c_client
*client
)
972 struct tas
*tas
= container_of(client
, struct tas
, i2c
);
974 u8 tmp
= TAS_ACR_ANALOG_PDOWN
;
976 if ((err
= i2c_detach_client(client
)))
978 aoa_codec_unregister(&tas
->codec
);
979 of_node_put(tas
->codec
.node
);
981 /* power down codec chip */
982 tas_write_reg(tas
, TAS_REG_ACR
, 1, &tmp
);
984 mutex_destroy(&tas
->mtx
);
989 static struct i2c_driver tas_driver
= {
991 .name
= "aoa_codec_tas",
992 .owner
= THIS_MODULE
,
994 .attach_adapter
= tas_i2c_attach
,
995 .detach_client
= tas_i2c_detach
,
998 static int __init
tas_init(void)
1000 return i2c_add_driver(&tas_driver
);
1003 static void __exit
tas_exit(void)
1005 i2c_del_driver(&tas_driver
);
1008 module_init(tas_init
);
1009 module_exit(tas_exit
);