nfsd4: typo logical vs bitwise negate for want_mask
[linux-btrfs-devel.git] / mm / vmalloc.c
blob464621d18eb249fde1403741e0f75b193aa0c18a
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
34 /*** Page table manipulation functions ***/
36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
38 pte_t *pte;
40 pte = pte_offset_kernel(pmd, addr);
41 do {
42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 } while (pte++, addr += PAGE_SIZE, addr != end);
47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
49 pmd_t *pmd;
50 unsigned long next;
52 pmd = pmd_offset(pud, addr);
53 do {
54 next = pmd_addr_end(addr, end);
55 if (pmd_none_or_clear_bad(pmd))
56 continue;
57 vunmap_pte_range(pmd, addr, next);
58 } while (pmd++, addr = next, addr != end);
61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
63 pud_t *pud;
64 unsigned long next;
66 pud = pud_offset(pgd, addr);
67 do {
68 next = pud_addr_end(addr, end);
69 if (pud_none_or_clear_bad(pud))
70 continue;
71 vunmap_pmd_range(pud, addr, next);
72 } while (pud++, addr = next, addr != end);
75 static void vunmap_page_range(unsigned long addr, unsigned long end)
77 pgd_t *pgd;
78 unsigned long next;
80 BUG_ON(addr >= end);
81 pgd = pgd_offset_k(addr);
82 do {
83 next = pgd_addr_end(addr, end);
84 if (pgd_none_or_clear_bad(pgd))
85 continue;
86 vunmap_pud_range(pgd, addr, next);
87 } while (pgd++, addr = next, addr != end);
90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
93 pte_t *pte;
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
100 pte = pte_alloc_kernel(pmd, addr);
101 if (!pte)
102 return -ENOMEM;
103 do {
104 struct page *page = pages[*nr];
106 if (WARN_ON(!pte_none(*pte)))
107 return -EBUSY;
108 if (WARN_ON(!page))
109 return -ENOMEM;
110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 (*nr)++;
112 } while (pte++, addr += PAGE_SIZE, addr != end);
113 return 0;
116 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
119 pmd_t *pmd;
120 unsigned long next;
122 pmd = pmd_alloc(&init_mm, pud, addr);
123 if (!pmd)
124 return -ENOMEM;
125 do {
126 next = pmd_addr_end(addr, end);
127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128 return -ENOMEM;
129 } while (pmd++, addr = next, addr != end);
130 return 0;
133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
136 pud_t *pud;
137 unsigned long next;
139 pud = pud_alloc(&init_mm, pgd, addr);
140 if (!pud)
141 return -ENOMEM;
142 do {
143 next = pud_addr_end(addr, end);
144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145 return -ENOMEM;
146 } while (pud++, addr = next, addr != end);
147 return 0;
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 pgprot_t prot, struct page **pages)
159 pgd_t *pgd;
160 unsigned long next;
161 unsigned long addr = start;
162 int err = 0;
163 int nr = 0;
165 BUG_ON(addr >= end);
166 pgd = pgd_offset_k(addr);
167 do {
168 next = pgd_addr_end(addr, end);
169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170 if (err)
171 return err;
172 } while (pgd++, addr = next, addr != end);
174 return nr;
177 static int vmap_page_range(unsigned long start, unsigned long end,
178 pgprot_t prot, struct page **pages)
180 int ret;
182 ret = vmap_page_range_noflush(start, end, prot, pages);
183 flush_cache_vmap(start, end);
184 return ret;
187 int is_vmalloc_or_module_addr(const void *x)
190 * ARM, x86-64 and sparc64 put modules in a special place,
191 * and fall back on vmalloc() if that fails. Others
192 * just put it in the vmalloc space.
194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 unsigned long addr = (unsigned long)x;
196 if (addr >= MODULES_VADDR && addr < MODULES_END)
197 return 1;
198 #endif
199 return is_vmalloc_addr(x);
203 * Walk a vmap address to the struct page it maps.
205 struct page *vmalloc_to_page(const void *vmalloc_addr)
207 unsigned long addr = (unsigned long) vmalloc_addr;
208 struct page *page = NULL;
209 pgd_t *pgd = pgd_offset_k(addr);
212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 * architectures that do not vmalloc module space
215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
217 if (!pgd_none(*pgd)) {
218 pud_t *pud = pud_offset(pgd, addr);
219 if (!pud_none(*pud)) {
220 pmd_t *pmd = pmd_offset(pud, addr);
221 if (!pmd_none(*pmd)) {
222 pte_t *ptep, pte;
224 ptep = pte_offset_map(pmd, addr);
225 pte = *ptep;
226 if (pte_present(pte))
227 page = pte_page(pte);
228 pte_unmap(ptep);
232 return page;
234 EXPORT_SYMBOL(vmalloc_to_page);
237 * Map a vmalloc()-space virtual address to the physical page frame number.
239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
241 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
243 EXPORT_SYMBOL(vmalloc_to_pfn);
246 /*** Global kva allocator ***/
248 #define VM_LAZY_FREE 0x01
249 #define VM_LAZY_FREEING 0x02
250 #define VM_VM_AREA 0x04
252 struct vmap_area {
253 unsigned long va_start;
254 unsigned long va_end;
255 unsigned long flags;
256 struct rb_node rb_node; /* address sorted rbtree */
257 struct list_head list; /* address sorted list */
258 struct list_head purge_list; /* "lazy purge" list */
259 void *private;
260 struct rcu_head rcu_head;
263 static DEFINE_SPINLOCK(vmap_area_lock);
264 static LIST_HEAD(vmap_area_list);
265 static struct rb_root vmap_area_root = RB_ROOT;
267 /* The vmap cache globals are protected by vmap_area_lock */
268 static struct rb_node *free_vmap_cache;
269 static unsigned long cached_hole_size;
270 static unsigned long cached_vstart;
271 static unsigned long cached_align;
273 static unsigned long vmap_area_pcpu_hole;
275 static struct vmap_area *__find_vmap_area(unsigned long addr)
277 struct rb_node *n = vmap_area_root.rb_node;
279 while (n) {
280 struct vmap_area *va;
282 va = rb_entry(n, struct vmap_area, rb_node);
283 if (addr < va->va_start)
284 n = n->rb_left;
285 else if (addr > va->va_start)
286 n = n->rb_right;
287 else
288 return va;
291 return NULL;
294 static void __insert_vmap_area(struct vmap_area *va)
296 struct rb_node **p = &vmap_area_root.rb_node;
297 struct rb_node *parent = NULL;
298 struct rb_node *tmp;
300 while (*p) {
301 struct vmap_area *tmp_va;
303 parent = *p;
304 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
305 if (va->va_start < tmp_va->va_end)
306 p = &(*p)->rb_left;
307 else if (va->va_end > tmp_va->va_start)
308 p = &(*p)->rb_right;
309 else
310 BUG();
313 rb_link_node(&va->rb_node, parent, p);
314 rb_insert_color(&va->rb_node, &vmap_area_root);
316 /* address-sort this list so it is usable like the vmlist */
317 tmp = rb_prev(&va->rb_node);
318 if (tmp) {
319 struct vmap_area *prev;
320 prev = rb_entry(tmp, struct vmap_area, rb_node);
321 list_add_rcu(&va->list, &prev->list);
322 } else
323 list_add_rcu(&va->list, &vmap_area_list);
326 static void purge_vmap_area_lazy(void);
329 * Allocate a region of KVA of the specified size and alignment, within the
330 * vstart and vend.
332 static struct vmap_area *alloc_vmap_area(unsigned long size,
333 unsigned long align,
334 unsigned long vstart, unsigned long vend,
335 int node, gfp_t gfp_mask)
337 struct vmap_area *va;
338 struct rb_node *n;
339 unsigned long addr;
340 int purged = 0;
341 struct vmap_area *first;
343 BUG_ON(!size);
344 BUG_ON(size & ~PAGE_MASK);
345 BUG_ON(!is_power_of_2(align));
347 va = kmalloc_node(sizeof(struct vmap_area),
348 gfp_mask & GFP_RECLAIM_MASK, node);
349 if (unlikely(!va))
350 return ERR_PTR(-ENOMEM);
352 retry:
353 spin_lock(&vmap_area_lock);
355 * Invalidate cache if we have more permissive parameters.
356 * cached_hole_size notes the largest hole noticed _below_
357 * the vmap_area cached in free_vmap_cache: if size fits
358 * into that hole, we want to scan from vstart to reuse
359 * the hole instead of allocating above free_vmap_cache.
360 * Note that __free_vmap_area may update free_vmap_cache
361 * without updating cached_hole_size or cached_align.
363 if (!free_vmap_cache ||
364 size < cached_hole_size ||
365 vstart < cached_vstart ||
366 align < cached_align) {
367 nocache:
368 cached_hole_size = 0;
369 free_vmap_cache = NULL;
371 /* record if we encounter less permissive parameters */
372 cached_vstart = vstart;
373 cached_align = align;
375 /* find starting point for our search */
376 if (free_vmap_cache) {
377 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
378 addr = ALIGN(first->va_end, align);
379 if (addr < vstart)
380 goto nocache;
381 if (addr + size - 1 < addr)
382 goto overflow;
384 } else {
385 addr = ALIGN(vstart, align);
386 if (addr + size - 1 < addr)
387 goto overflow;
389 n = vmap_area_root.rb_node;
390 first = NULL;
392 while (n) {
393 struct vmap_area *tmp;
394 tmp = rb_entry(n, struct vmap_area, rb_node);
395 if (tmp->va_end >= addr) {
396 first = tmp;
397 if (tmp->va_start <= addr)
398 break;
399 n = n->rb_left;
400 } else
401 n = n->rb_right;
404 if (!first)
405 goto found;
408 /* from the starting point, walk areas until a suitable hole is found */
409 while (addr + size > first->va_start && addr + size <= vend) {
410 if (addr + cached_hole_size < first->va_start)
411 cached_hole_size = first->va_start - addr;
412 addr = ALIGN(first->va_end, align);
413 if (addr + size - 1 < addr)
414 goto overflow;
416 n = rb_next(&first->rb_node);
417 if (n)
418 first = rb_entry(n, struct vmap_area, rb_node);
419 else
420 goto found;
423 found:
424 if (addr + size > vend)
425 goto overflow;
427 va->va_start = addr;
428 va->va_end = addr + size;
429 va->flags = 0;
430 __insert_vmap_area(va);
431 free_vmap_cache = &va->rb_node;
432 spin_unlock(&vmap_area_lock);
434 BUG_ON(va->va_start & (align-1));
435 BUG_ON(va->va_start < vstart);
436 BUG_ON(va->va_end > vend);
438 return va;
440 overflow:
441 spin_unlock(&vmap_area_lock);
442 if (!purged) {
443 purge_vmap_area_lazy();
444 purged = 1;
445 goto retry;
447 if (printk_ratelimit())
448 printk(KERN_WARNING
449 "vmap allocation for size %lu failed: "
450 "use vmalloc=<size> to increase size.\n", size);
451 kfree(va);
452 return ERR_PTR(-EBUSY);
455 static void __free_vmap_area(struct vmap_area *va)
457 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
459 if (free_vmap_cache) {
460 if (va->va_end < cached_vstart) {
461 free_vmap_cache = NULL;
462 } else {
463 struct vmap_area *cache;
464 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
465 if (va->va_start <= cache->va_start) {
466 free_vmap_cache = rb_prev(&va->rb_node);
468 * We don't try to update cached_hole_size or
469 * cached_align, but it won't go very wrong.
474 rb_erase(&va->rb_node, &vmap_area_root);
475 RB_CLEAR_NODE(&va->rb_node);
476 list_del_rcu(&va->list);
479 * Track the highest possible candidate for pcpu area
480 * allocation. Areas outside of vmalloc area can be returned
481 * here too, consider only end addresses which fall inside
482 * vmalloc area proper.
484 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
485 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
487 kfree_rcu(va, rcu_head);
491 * Free a region of KVA allocated by alloc_vmap_area
493 static void free_vmap_area(struct vmap_area *va)
495 spin_lock(&vmap_area_lock);
496 __free_vmap_area(va);
497 spin_unlock(&vmap_area_lock);
501 * Clear the pagetable entries of a given vmap_area
503 static void unmap_vmap_area(struct vmap_area *va)
505 vunmap_page_range(va->va_start, va->va_end);
508 static void vmap_debug_free_range(unsigned long start, unsigned long end)
511 * Unmap page tables and force a TLB flush immediately if
512 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
513 * bugs similarly to those in linear kernel virtual address
514 * space after a page has been freed.
516 * All the lazy freeing logic is still retained, in order to
517 * minimise intrusiveness of this debugging feature.
519 * This is going to be *slow* (linear kernel virtual address
520 * debugging doesn't do a broadcast TLB flush so it is a lot
521 * faster).
523 #ifdef CONFIG_DEBUG_PAGEALLOC
524 vunmap_page_range(start, end);
525 flush_tlb_kernel_range(start, end);
526 #endif
530 * lazy_max_pages is the maximum amount of virtual address space we gather up
531 * before attempting to purge with a TLB flush.
533 * There is a tradeoff here: a larger number will cover more kernel page tables
534 * and take slightly longer to purge, but it will linearly reduce the number of
535 * global TLB flushes that must be performed. It would seem natural to scale
536 * this number up linearly with the number of CPUs (because vmapping activity
537 * could also scale linearly with the number of CPUs), however it is likely
538 * that in practice, workloads might be constrained in other ways that mean
539 * vmap activity will not scale linearly with CPUs. Also, I want to be
540 * conservative and not introduce a big latency on huge systems, so go with
541 * a less aggressive log scale. It will still be an improvement over the old
542 * code, and it will be simple to change the scale factor if we find that it
543 * becomes a problem on bigger systems.
545 static unsigned long lazy_max_pages(void)
547 unsigned int log;
549 log = fls(num_online_cpus());
551 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
554 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
556 /* for per-CPU blocks */
557 static void purge_fragmented_blocks_allcpus(void);
560 * called before a call to iounmap() if the caller wants vm_area_struct's
561 * immediately freed.
563 void set_iounmap_nonlazy(void)
565 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
569 * Purges all lazily-freed vmap areas.
571 * If sync is 0 then don't purge if there is already a purge in progress.
572 * If force_flush is 1, then flush kernel TLBs between *start and *end even
573 * if we found no lazy vmap areas to unmap (callers can use this to optimise
574 * their own TLB flushing).
575 * Returns with *start = min(*start, lowest purged address)
576 * *end = max(*end, highest purged address)
578 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
579 int sync, int force_flush)
581 static DEFINE_SPINLOCK(purge_lock);
582 LIST_HEAD(valist);
583 struct vmap_area *va;
584 struct vmap_area *n_va;
585 int nr = 0;
588 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
589 * should not expect such behaviour. This just simplifies locking for
590 * the case that isn't actually used at the moment anyway.
592 if (!sync && !force_flush) {
593 if (!spin_trylock(&purge_lock))
594 return;
595 } else
596 spin_lock(&purge_lock);
598 if (sync)
599 purge_fragmented_blocks_allcpus();
601 rcu_read_lock();
602 list_for_each_entry_rcu(va, &vmap_area_list, list) {
603 if (va->flags & VM_LAZY_FREE) {
604 if (va->va_start < *start)
605 *start = va->va_start;
606 if (va->va_end > *end)
607 *end = va->va_end;
608 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
609 list_add_tail(&va->purge_list, &valist);
610 va->flags |= VM_LAZY_FREEING;
611 va->flags &= ~VM_LAZY_FREE;
614 rcu_read_unlock();
616 if (nr)
617 atomic_sub(nr, &vmap_lazy_nr);
619 if (nr || force_flush)
620 flush_tlb_kernel_range(*start, *end);
622 if (nr) {
623 spin_lock(&vmap_area_lock);
624 list_for_each_entry_safe(va, n_va, &valist, purge_list)
625 __free_vmap_area(va);
626 spin_unlock(&vmap_area_lock);
628 spin_unlock(&purge_lock);
632 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
633 * is already purging.
635 static void try_purge_vmap_area_lazy(void)
637 unsigned long start = ULONG_MAX, end = 0;
639 __purge_vmap_area_lazy(&start, &end, 0, 0);
643 * Kick off a purge of the outstanding lazy areas.
645 static void purge_vmap_area_lazy(void)
647 unsigned long start = ULONG_MAX, end = 0;
649 __purge_vmap_area_lazy(&start, &end, 1, 0);
653 * Free a vmap area, caller ensuring that the area has been unmapped
654 * and flush_cache_vunmap had been called for the correct range
655 * previously.
657 static void free_vmap_area_noflush(struct vmap_area *va)
659 va->flags |= VM_LAZY_FREE;
660 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
661 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
662 try_purge_vmap_area_lazy();
666 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
667 * called for the correct range previously.
669 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
671 unmap_vmap_area(va);
672 free_vmap_area_noflush(va);
676 * Free and unmap a vmap area
678 static void free_unmap_vmap_area(struct vmap_area *va)
680 flush_cache_vunmap(va->va_start, va->va_end);
681 free_unmap_vmap_area_noflush(va);
684 static struct vmap_area *find_vmap_area(unsigned long addr)
686 struct vmap_area *va;
688 spin_lock(&vmap_area_lock);
689 va = __find_vmap_area(addr);
690 spin_unlock(&vmap_area_lock);
692 return va;
695 static void free_unmap_vmap_area_addr(unsigned long addr)
697 struct vmap_area *va;
699 va = find_vmap_area(addr);
700 BUG_ON(!va);
701 free_unmap_vmap_area(va);
705 /*** Per cpu kva allocator ***/
708 * vmap space is limited especially on 32 bit architectures. Ensure there is
709 * room for at least 16 percpu vmap blocks per CPU.
712 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
713 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
714 * instead (we just need a rough idea)
716 #if BITS_PER_LONG == 32
717 #define VMALLOC_SPACE (128UL*1024*1024)
718 #else
719 #define VMALLOC_SPACE (128UL*1024*1024*1024)
720 #endif
722 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
723 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
724 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
725 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
726 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
727 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
728 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
729 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
730 VMALLOC_PAGES / NR_CPUS / 16))
732 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
734 static bool vmap_initialized __read_mostly = false;
736 struct vmap_block_queue {
737 spinlock_t lock;
738 struct list_head free;
741 struct vmap_block {
742 spinlock_t lock;
743 struct vmap_area *va;
744 struct vmap_block_queue *vbq;
745 unsigned long free, dirty;
746 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
747 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
748 struct list_head free_list;
749 struct rcu_head rcu_head;
750 struct list_head purge;
753 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
754 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
757 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
758 * in the free path. Could get rid of this if we change the API to return a
759 * "cookie" from alloc, to be passed to free. But no big deal yet.
761 static DEFINE_SPINLOCK(vmap_block_tree_lock);
762 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
765 * We should probably have a fallback mechanism to allocate virtual memory
766 * out of partially filled vmap blocks. However vmap block sizing should be
767 * fairly reasonable according to the vmalloc size, so it shouldn't be a
768 * big problem.
771 static unsigned long addr_to_vb_idx(unsigned long addr)
773 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
774 addr /= VMAP_BLOCK_SIZE;
775 return addr;
778 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
780 struct vmap_block_queue *vbq;
781 struct vmap_block *vb;
782 struct vmap_area *va;
783 unsigned long vb_idx;
784 int node, err;
786 node = numa_node_id();
788 vb = kmalloc_node(sizeof(struct vmap_block),
789 gfp_mask & GFP_RECLAIM_MASK, node);
790 if (unlikely(!vb))
791 return ERR_PTR(-ENOMEM);
793 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
794 VMALLOC_START, VMALLOC_END,
795 node, gfp_mask);
796 if (IS_ERR(va)) {
797 kfree(vb);
798 return ERR_CAST(va);
801 err = radix_tree_preload(gfp_mask);
802 if (unlikely(err)) {
803 kfree(vb);
804 free_vmap_area(va);
805 return ERR_PTR(err);
808 spin_lock_init(&vb->lock);
809 vb->va = va;
810 vb->free = VMAP_BBMAP_BITS;
811 vb->dirty = 0;
812 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
813 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
814 INIT_LIST_HEAD(&vb->free_list);
816 vb_idx = addr_to_vb_idx(va->va_start);
817 spin_lock(&vmap_block_tree_lock);
818 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
819 spin_unlock(&vmap_block_tree_lock);
820 BUG_ON(err);
821 radix_tree_preload_end();
823 vbq = &get_cpu_var(vmap_block_queue);
824 vb->vbq = vbq;
825 spin_lock(&vbq->lock);
826 list_add_rcu(&vb->free_list, &vbq->free);
827 spin_unlock(&vbq->lock);
828 put_cpu_var(vmap_block_queue);
830 return vb;
833 static void free_vmap_block(struct vmap_block *vb)
835 struct vmap_block *tmp;
836 unsigned long vb_idx;
838 vb_idx = addr_to_vb_idx(vb->va->va_start);
839 spin_lock(&vmap_block_tree_lock);
840 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
841 spin_unlock(&vmap_block_tree_lock);
842 BUG_ON(tmp != vb);
844 free_vmap_area_noflush(vb->va);
845 kfree_rcu(vb, rcu_head);
848 static void purge_fragmented_blocks(int cpu)
850 LIST_HEAD(purge);
851 struct vmap_block *vb;
852 struct vmap_block *n_vb;
853 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
855 rcu_read_lock();
856 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
858 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
859 continue;
861 spin_lock(&vb->lock);
862 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
863 vb->free = 0; /* prevent further allocs after releasing lock */
864 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
865 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
866 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
867 spin_lock(&vbq->lock);
868 list_del_rcu(&vb->free_list);
869 spin_unlock(&vbq->lock);
870 spin_unlock(&vb->lock);
871 list_add_tail(&vb->purge, &purge);
872 } else
873 spin_unlock(&vb->lock);
875 rcu_read_unlock();
877 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
878 list_del(&vb->purge);
879 free_vmap_block(vb);
883 static void purge_fragmented_blocks_thiscpu(void)
885 purge_fragmented_blocks(smp_processor_id());
888 static void purge_fragmented_blocks_allcpus(void)
890 int cpu;
892 for_each_possible_cpu(cpu)
893 purge_fragmented_blocks(cpu);
896 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
898 struct vmap_block_queue *vbq;
899 struct vmap_block *vb;
900 unsigned long addr = 0;
901 unsigned int order;
902 int purge = 0;
904 BUG_ON(size & ~PAGE_MASK);
905 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
906 order = get_order(size);
908 again:
909 rcu_read_lock();
910 vbq = &get_cpu_var(vmap_block_queue);
911 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
912 int i;
914 spin_lock(&vb->lock);
915 if (vb->free < 1UL << order)
916 goto next;
918 i = bitmap_find_free_region(vb->alloc_map,
919 VMAP_BBMAP_BITS, order);
921 if (i < 0) {
922 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
923 /* fragmented and no outstanding allocations */
924 BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
925 purge = 1;
927 goto next;
929 addr = vb->va->va_start + (i << PAGE_SHIFT);
930 BUG_ON(addr_to_vb_idx(addr) !=
931 addr_to_vb_idx(vb->va->va_start));
932 vb->free -= 1UL << order;
933 if (vb->free == 0) {
934 spin_lock(&vbq->lock);
935 list_del_rcu(&vb->free_list);
936 spin_unlock(&vbq->lock);
938 spin_unlock(&vb->lock);
939 break;
940 next:
941 spin_unlock(&vb->lock);
944 if (purge)
945 purge_fragmented_blocks_thiscpu();
947 put_cpu_var(vmap_block_queue);
948 rcu_read_unlock();
950 if (!addr) {
951 vb = new_vmap_block(gfp_mask);
952 if (IS_ERR(vb))
953 return vb;
954 goto again;
957 return (void *)addr;
960 static void vb_free(const void *addr, unsigned long size)
962 unsigned long offset;
963 unsigned long vb_idx;
964 unsigned int order;
965 struct vmap_block *vb;
967 BUG_ON(size & ~PAGE_MASK);
968 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
970 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
972 order = get_order(size);
974 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
976 vb_idx = addr_to_vb_idx((unsigned long)addr);
977 rcu_read_lock();
978 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
979 rcu_read_unlock();
980 BUG_ON(!vb);
982 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
984 spin_lock(&vb->lock);
985 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
987 vb->dirty += 1UL << order;
988 if (vb->dirty == VMAP_BBMAP_BITS) {
989 BUG_ON(vb->free);
990 spin_unlock(&vb->lock);
991 free_vmap_block(vb);
992 } else
993 spin_unlock(&vb->lock);
997 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
999 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1000 * to amortize TLB flushing overheads. What this means is that any page you
1001 * have now, may, in a former life, have been mapped into kernel virtual
1002 * address by the vmap layer and so there might be some CPUs with TLB entries
1003 * still referencing that page (additional to the regular 1:1 kernel mapping).
1005 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1006 * be sure that none of the pages we have control over will have any aliases
1007 * from the vmap layer.
1009 void vm_unmap_aliases(void)
1011 unsigned long start = ULONG_MAX, end = 0;
1012 int cpu;
1013 int flush = 0;
1015 if (unlikely(!vmap_initialized))
1016 return;
1018 for_each_possible_cpu(cpu) {
1019 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1020 struct vmap_block *vb;
1022 rcu_read_lock();
1023 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1024 int i;
1026 spin_lock(&vb->lock);
1027 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1028 while (i < VMAP_BBMAP_BITS) {
1029 unsigned long s, e;
1030 int j;
1031 j = find_next_zero_bit(vb->dirty_map,
1032 VMAP_BBMAP_BITS, i);
1034 s = vb->va->va_start + (i << PAGE_SHIFT);
1035 e = vb->va->va_start + (j << PAGE_SHIFT);
1036 flush = 1;
1038 if (s < start)
1039 start = s;
1040 if (e > end)
1041 end = e;
1043 i = j;
1044 i = find_next_bit(vb->dirty_map,
1045 VMAP_BBMAP_BITS, i);
1047 spin_unlock(&vb->lock);
1049 rcu_read_unlock();
1052 __purge_vmap_area_lazy(&start, &end, 1, flush);
1054 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1057 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1058 * @mem: the pointer returned by vm_map_ram
1059 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1061 void vm_unmap_ram(const void *mem, unsigned int count)
1063 unsigned long size = count << PAGE_SHIFT;
1064 unsigned long addr = (unsigned long)mem;
1066 BUG_ON(!addr);
1067 BUG_ON(addr < VMALLOC_START);
1068 BUG_ON(addr > VMALLOC_END);
1069 BUG_ON(addr & (PAGE_SIZE-1));
1071 debug_check_no_locks_freed(mem, size);
1072 vmap_debug_free_range(addr, addr+size);
1074 if (likely(count <= VMAP_MAX_ALLOC))
1075 vb_free(mem, size);
1076 else
1077 free_unmap_vmap_area_addr(addr);
1079 EXPORT_SYMBOL(vm_unmap_ram);
1082 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1083 * @pages: an array of pointers to the pages to be mapped
1084 * @count: number of pages
1085 * @node: prefer to allocate data structures on this node
1086 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1088 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1090 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1092 unsigned long size = count << PAGE_SHIFT;
1093 unsigned long addr;
1094 void *mem;
1096 if (likely(count <= VMAP_MAX_ALLOC)) {
1097 mem = vb_alloc(size, GFP_KERNEL);
1098 if (IS_ERR(mem))
1099 return NULL;
1100 addr = (unsigned long)mem;
1101 } else {
1102 struct vmap_area *va;
1103 va = alloc_vmap_area(size, PAGE_SIZE,
1104 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1105 if (IS_ERR(va))
1106 return NULL;
1108 addr = va->va_start;
1109 mem = (void *)addr;
1111 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1112 vm_unmap_ram(mem, count);
1113 return NULL;
1115 return mem;
1117 EXPORT_SYMBOL(vm_map_ram);
1120 * vm_area_register_early - register vmap area early during boot
1121 * @vm: vm_struct to register
1122 * @align: requested alignment
1124 * This function is used to register kernel vm area before
1125 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1126 * proper values on entry and other fields should be zero. On return,
1127 * vm->addr contains the allocated address.
1129 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1131 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1133 static size_t vm_init_off __initdata;
1134 unsigned long addr;
1136 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1137 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1139 vm->addr = (void *)addr;
1141 vm->next = vmlist;
1142 vmlist = vm;
1145 void __init vmalloc_init(void)
1147 struct vmap_area *va;
1148 struct vm_struct *tmp;
1149 int i;
1151 for_each_possible_cpu(i) {
1152 struct vmap_block_queue *vbq;
1154 vbq = &per_cpu(vmap_block_queue, i);
1155 spin_lock_init(&vbq->lock);
1156 INIT_LIST_HEAD(&vbq->free);
1159 /* Import existing vmlist entries. */
1160 for (tmp = vmlist; tmp; tmp = tmp->next) {
1161 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1162 va->flags = tmp->flags | VM_VM_AREA;
1163 va->va_start = (unsigned long)tmp->addr;
1164 va->va_end = va->va_start + tmp->size;
1165 __insert_vmap_area(va);
1168 vmap_area_pcpu_hole = VMALLOC_END;
1170 vmap_initialized = true;
1174 * map_kernel_range_noflush - map kernel VM area with the specified pages
1175 * @addr: start of the VM area to map
1176 * @size: size of the VM area to map
1177 * @prot: page protection flags to use
1178 * @pages: pages to map
1180 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1181 * specify should have been allocated using get_vm_area() and its
1182 * friends.
1184 * NOTE:
1185 * This function does NOT do any cache flushing. The caller is
1186 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1187 * before calling this function.
1189 * RETURNS:
1190 * The number of pages mapped on success, -errno on failure.
1192 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1193 pgprot_t prot, struct page **pages)
1195 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1199 * unmap_kernel_range_noflush - unmap kernel VM area
1200 * @addr: start of the VM area to unmap
1201 * @size: size of the VM area to unmap
1203 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1204 * specify should have been allocated using get_vm_area() and its
1205 * friends.
1207 * NOTE:
1208 * This function does NOT do any cache flushing. The caller is
1209 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1210 * before calling this function and flush_tlb_kernel_range() after.
1212 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1214 vunmap_page_range(addr, addr + size);
1216 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1219 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1220 * @addr: start of the VM area to unmap
1221 * @size: size of the VM area to unmap
1223 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1224 * the unmapping and tlb after.
1226 void unmap_kernel_range(unsigned long addr, unsigned long size)
1228 unsigned long end = addr + size;
1230 flush_cache_vunmap(addr, end);
1231 vunmap_page_range(addr, end);
1232 flush_tlb_kernel_range(addr, end);
1235 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1237 unsigned long addr = (unsigned long)area->addr;
1238 unsigned long end = addr + area->size - PAGE_SIZE;
1239 int err;
1241 err = vmap_page_range(addr, end, prot, *pages);
1242 if (err > 0) {
1243 *pages += err;
1244 err = 0;
1247 return err;
1249 EXPORT_SYMBOL_GPL(map_vm_area);
1251 /*** Old vmalloc interfaces ***/
1252 DEFINE_RWLOCK(vmlist_lock);
1253 struct vm_struct *vmlist;
1255 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1256 unsigned long flags, void *caller)
1258 struct vm_struct *tmp, **p;
1260 vm->flags = flags;
1261 vm->addr = (void *)va->va_start;
1262 vm->size = va->va_end - va->va_start;
1263 vm->caller = caller;
1264 va->private = vm;
1265 va->flags |= VM_VM_AREA;
1267 write_lock(&vmlist_lock);
1268 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1269 if (tmp->addr >= vm->addr)
1270 break;
1272 vm->next = *p;
1273 *p = vm;
1274 write_unlock(&vmlist_lock);
1277 static struct vm_struct *__get_vm_area_node(unsigned long size,
1278 unsigned long align, unsigned long flags, unsigned long start,
1279 unsigned long end, int node, gfp_t gfp_mask, void *caller)
1281 static struct vmap_area *va;
1282 struct vm_struct *area;
1284 BUG_ON(in_interrupt());
1285 if (flags & VM_IOREMAP) {
1286 int bit = fls(size);
1288 if (bit > IOREMAP_MAX_ORDER)
1289 bit = IOREMAP_MAX_ORDER;
1290 else if (bit < PAGE_SHIFT)
1291 bit = PAGE_SHIFT;
1293 align = 1ul << bit;
1296 size = PAGE_ALIGN(size);
1297 if (unlikely(!size))
1298 return NULL;
1300 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1301 if (unlikely(!area))
1302 return NULL;
1305 * We always allocate a guard page.
1307 size += PAGE_SIZE;
1309 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1310 if (IS_ERR(va)) {
1311 kfree(area);
1312 return NULL;
1315 insert_vmalloc_vm(area, va, flags, caller);
1316 return area;
1319 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1320 unsigned long start, unsigned long end)
1322 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1323 __builtin_return_address(0));
1325 EXPORT_SYMBOL_GPL(__get_vm_area);
1327 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1328 unsigned long start, unsigned long end,
1329 void *caller)
1331 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1332 caller);
1336 * get_vm_area - reserve a contiguous kernel virtual area
1337 * @size: size of the area
1338 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1340 * Search an area of @size in the kernel virtual mapping area,
1341 * and reserved it for out purposes. Returns the area descriptor
1342 * on success or %NULL on failure.
1344 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1346 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1347 -1, GFP_KERNEL, __builtin_return_address(0));
1350 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1351 void *caller)
1353 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1354 -1, GFP_KERNEL, caller);
1357 static struct vm_struct *find_vm_area(const void *addr)
1359 struct vmap_area *va;
1361 va = find_vmap_area((unsigned long)addr);
1362 if (va && va->flags & VM_VM_AREA)
1363 return va->private;
1365 return NULL;
1369 * remove_vm_area - find and remove a continuous kernel virtual area
1370 * @addr: base address
1372 * Search for the kernel VM area starting at @addr, and remove it.
1373 * This function returns the found VM area, but using it is NOT safe
1374 * on SMP machines, except for its size or flags.
1376 struct vm_struct *remove_vm_area(const void *addr)
1378 struct vmap_area *va;
1380 va = find_vmap_area((unsigned long)addr);
1381 if (va && va->flags & VM_VM_AREA) {
1382 struct vm_struct *vm = va->private;
1383 struct vm_struct *tmp, **p;
1385 * remove from list and disallow access to this vm_struct
1386 * before unmap. (address range confliction is maintained by
1387 * vmap.)
1389 write_lock(&vmlist_lock);
1390 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1392 *p = tmp->next;
1393 write_unlock(&vmlist_lock);
1395 vmap_debug_free_range(va->va_start, va->va_end);
1396 free_unmap_vmap_area(va);
1397 vm->size -= PAGE_SIZE;
1399 return vm;
1401 return NULL;
1404 static void __vunmap(const void *addr, int deallocate_pages)
1406 struct vm_struct *area;
1408 if (!addr)
1409 return;
1411 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1412 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1413 return;
1416 area = remove_vm_area(addr);
1417 if (unlikely(!area)) {
1418 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1419 addr);
1420 return;
1423 debug_check_no_locks_freed(addr, area->size);
1424 debug_check_no_obj_freed(addr, area->size);
1426 if (deallocate_pages) {
1427 int i;
1429 for (i = 0; i < area->nr_pages; i++) {
1430 struct page *page = area->pages[i];
1432 BUG_ON(!page);
1433 __free_page(page);
1436 if (area->flags & VM_VPAGES)
1437 vfree(area->pages);
1438 else
1439 kfree(area->pages);
1442 kfree(area);
1443 return;
1447 * vfree - release memory allocated by vmalloc()
1448 * @addr: memory base address
1450 * Free the virtually continuous memory area starting at @addr, as
1451 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1452 * NULL, no operation is performed.
1454 * Must not be called in interrupt context.
1456 void vfree(const void *addr)
1458 BUG_ON(in_interrupt());
1460 kmemleak_free(addr);
1462 __vunmap(addr, 1);
1464 EXPORT_SYMBOL(vfree);
1467 * vunmap - release virtual mapping obtained by vmap()
1468 * @addr: memory base address
1470 * Free the virtually contiguous memory area starting at @addr,
1471 * which was created from the page array passed to vmap().
1473 * Must not be called in interrupt context.
1475 void vunmap(const void *addr)
1477 BUG_ON(in_interrupt());
1478 might_sleep();
1479 __vunmap(addr, 0);
1481 EXPORT_SYMBOL(vunmap);
1484 * vmap - map an array of pages into virtually contiguous space
1485 * @pages: array of page pointers
1486 * @count: number of pages to map
1487 * @flags: vm_area->flags
1488 * @prot: page protection for the mapping
1490 * Maps @count pages from @pages into contiguous kernel virtual
1491 * space.
1493 void *vmap(struct page **pages, unsigned int count,
1494 unsigned long flags, pgprot_t prot)
1496 struct vm_struct *area;
1498 might_sleep();
1500 if (count > totalram_pages)
1501 return NULL;
1503 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1504 __builtin_return_address(0));
1505 if (!area)
1506 return NULL;
1508 if (map_vm_area(area, prot, &pages)) {
1509 vunmap(area->addr);
1510 return NULL;
1513 return area->addr;
1515 EXPORT_SYMBOL(vmap);
1517 static void *__vmalloc_node(unsigned long size, unsigned long align,
1518 gfp_t gfp_mask, pgprot_t prot,
1519 int node, void *caller);
1520 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1521 pgprot_t prot, int node, void *caller)
1523 const int order = 0;
1524 struct page **pages;
1525 unsigned int nr_pages, array_size, i;
1526 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1528 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1529 array_size = (nr_pages * sizeof(struct page *));
1531 area->nr_pages = nr_pages;
1532 /* Please note that the recursion is strictly bounded. */
1533 if (array_size > PAGE_SIZE) {
1534 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1535 PAGE_KERNEL, node, caller);
1536 area->flags |= VM_VPAGES;
1537 } else {
1538 pages = kmalloc_node(array_size, nested_gfp, node);
1540 area->pages = pages;
1541 area->caller = caller;
1542 if (!area->pages) {
1543 remove_vm_area(area->addr);
1544 kfree(area);
1545 return NULL;
1548 for (i = 0; i < area->nr_pages; i++) {
1549 struct page *page;
1550 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1552 if (node < 0)
1553 page = alloc_page(tmp_mask);
1554 else
1555 page = alloc_pages_node(node, tmp_mask, order);
1557 if (unlikely(!page)) {
1558 /* Successfully allocated i pages, free them in __vunmap() */
1559 area->nr_pages = i;
1560 goto fail;
1562 area->pages[i] = page;
1565 if (map_vm_area(area, prot, &pages))
1566 goto fail;
1567 return area->addr;
1569 fail:
1570 warn_alloc_failed(gfp_mask, order, "vmalloc: allocation failure, "
1571 "allocated %ld of %ld bytes\n",
1572 (area->nr_pages*PAGE_SIZE), area->size);
1573 vfree(area->addr);
1574 return NULL;
1578 * __vmalloc_node_range - allocate virtually contiguous memory
1579 * @size: allocation size
1580 * @align: desired alignment
1581 * @start: vm area range start
1582 * @end: vm area range end
1583 * @gfp_mask: flags for the page level allocator
1584 * @prot: protection mask for the allocated pages
1585 * @node: node to use for allocation or -1
1586 * @caller: caller's return address
1588 * Allocate enough pages to cover @size from the page level
1589 * allocator with @gfp_mask flags. Map them into contiguous
1590 * kernel virtual space, using a pagetable protection of @prot.
1592 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1593 unsigned long start, unsigned long end, gfp_t gfp_mask,
1594 pgprot_t prot, int node, void *caller)
1596 struct vm_struct *area;
1597 void *addr;
1598 unsigned long real_size = size;
1600 size = PAGE_ALIGN(size);
1601 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1602 return NULL;
1604 area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node,
1605 gfp_mask, caller);
1607 if (!area)
1608 return NULL;
1610 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1613 * A ref_count = 3 is needed because the vm_struct and vmap_area
1614 * structures allocated in the __get_vm_area_node() function contain
1615 * references to the virtual address of the vmalloc'ed block.
1617 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1619 return addr;
1623 * __vmalloc_node - allocate virtually contiguous memory
1624 * @size: allocation size
1625 * @align: desired alignment
1626 * @gfp_mask: flags for the page level allocator
1627 * @prot: protection mask for the allocated pages
1628 * @node: node to use for allocation or -1
1629 * @caller: caller's return address
1631 * Allocate enough pages to cover @size from the page level
1632 * allocator with @gfp_mask flags. Map them into contiguous
1633 * kernel virtual space, using a pagetable protection of @prot.
1635 static void *__vmalloc_node(unsigned long size, unsigned long align,
1636 gfp_t gfp_mask, pgprot_t prot,
1637 int node, void *caller)
1639 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1640 gfp_mask, prot, node, caller);
1643 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1645 return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1646 __builtin_return_address(0));
1648 EXPORT_SYMBOL(__vmalloc);
1650 static inline void *__vmalloc_node_flags(unsigned long size,
1651 int node, gfp_t flags)
1653 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1654 node, __builtin_return_address(0));
1658 * vmalloc - allocate virtually contiguous memory
1659 * @size: allocation size
1660 * Allocate enough pages to cover @size from the page level
1661 * allocator and map them into contiguous kernel virtual space.
1663 * For tight control over page level allocator and protection flags
1664 * use __vmalloc() instead.
1666 void *vmalloc(unsigned long size)
1668 return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
1670 EXPORT_SYMBOL(vmalloc);
1673 * vzalloc - allocate virtually contiguous memory with zero fill
1674 * @size: allocation size
1675 * Allocate enough pages to cover @size from the page level
1676 * allocator and map them into contiguous kernel virtual space.
1677 * The memory allocated is set to zero.
1679 * For tight control over page level allocator and protection flags
1680 * use __vmalloc() instead.
1682 void *vzalloc(unsigned long size)
1684 return __vmalloc_node_flags(size, -1,
1685 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1687 EXPORT_SYMBOL(vzalloc);
1690 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1691 * @size: allocation size
1693 * The resulting memory area is zeroed so it can be mapped to userspace
1694 * without leaking data.
1696 void *vmalloc_user(unsigned long size)
1698 struct vm_struct *area;
1699 void *ret;
1701 ret = __vmalloc_node(size, SHMLBA,
1702 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1703 PAGE_KERNEL, -1, __builtin_return_address(0));
1704 if (ret) {
1705 area = find_vm_area(ret);
1706 area->flags |= VM_USERMAP;
1708 return ret;
1710 EXPORT_SYMBOL(vmalloc_user);
1713 * vmalloc_node - allocate memory on a specific node
1714 * @size: allocation size
1715 * @node: numa node
1717 * Allocate enough pages to cover @size from the page level
1718 * allocator and map them into contiguous kernel virtual space.
1720 * For tight control over page level allocator and protection flags
1721 * use __vmalloc() instead.
1723 void *vmalloc_node(unsigned long size, int node)
1725 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1726 node, __builtin_return_address(0));
1728 EXPORT_SYMBOL(vmalloc_node);
1731 * vzalloc_node - allocate memory on a specific node with zero fill
1732 * @size: allocation size
1733 * @node: numa node
1735 * Allocate enough pages to cover @size from the page level
1736 * allocator and map them into contiguous kernel virtual space.
1737 * The memory allocated is set to zero.
1739 * For tight control over page level allocator and protection flags
1740 * use __vmalloc_node() instead.
1742 void *vzalloc_node(unsigned long size, int node)
1744 return __vmalloc_node_flags(size, node,
1745 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1747 EXPORT_SYMBOL(vzalloc_node);
1749 #ifndef PAGE_KERNEL_EXEC
1750 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1751 #endif
1754 * vmalloc_exec - allocate virtually contiguous, executable memory
1755 * @size: allocation size
1757 * Kernel-internal function to allocate enough pages to cover @size
1758 * the page level allocator and map them into contiguous and
1759 * executable kernel virtual space.
1761 * For tight control over page level allocator and protection flags
1762 * use __vmalloc() instead.
1765 void *vmalloc_exec(unsigned long size)
1767 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1768 -1, __builtin_return_address(0));
1771 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1772 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1773 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1774 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1775 #else
1776 #define GFP_VMALLOC32 GFP_KERNEL
1777 #endif
1780 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1781 * @size: allocation size
1783 * Allocate enough 32bit PA addressable pages to cover @size from the
1784 * page level allocator and map them into contiguous kernel virtual space.
1786 void *vmalloc_32(unsigned long size)
1788 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1789 -1, __builtin_return_address(0));
1791 EXPORT_SYMBOL(vmalloc_32);
1794 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1795 * @size: allocation size
1797 * The resulting memory area is 32bit addressable and zeroed so it can be
1798 * mapped to userspace without leaking data.
1800 void *vmalloc_32_user(unsigned long size)
1802 struct vm_struct *area;
1803 void *ret;
1805 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1806 -1, __builtin_return_address(0));
1807 if (ret) {
1808 area = find_vm_area(ret);
1809 area->flags |= VM_USERMAP;
1811 return ret;
1813 EXPORT_SYMBOL(vmalloc_32_user);
1816 * small helper routine , copy contents to buf from addr.
1817 * If the page is not present, fill zero.
1820 static int aligned_vread(char *buf, char *addr, unsigned long count)
1822 struct page *p;
1823 int copied = 0;
1825 while (count) {
1826 unsigned long offset, length;
1828 offset = (unsigned long)addr & ~PAGE_MASK;
1829 length = PAGE_SIZE - offset;
1830 if (length > count)
1831 length = count;
1832 p = vmalloc_to_page(addr);
1834 * To do safe access to this _mapped_ area, we need
1835 * lock. But adding lock here means that we need to add
1836 * overhead of vmalloc()/vfree() calles for this _debug_
1837 * interface, rarely used. Instead of that, we'll use
1838 * kmap() and get small overhead in this access function.
1840 if (p) {
1842 * we can expect USER0 is not used (see vread/vwrite's
1843 * function description)
1845 void *map = kmap_atomic(p, KM_USER0);
1846 memcpy(buf, map + offset, length);
1847 kunmap_atomic(map, KM_USER0);
1848 } else
1849 memset(buf, 0, length);
1851 addr += length;
1852 buf += length;
1853 copied += length;
1854 count -= length;
1856 return copied;
1859 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1861 struct page *p;
1862 int copied = 0;
1864 while (count) {
1865 unsigned long offset, length;
1867 offset = (unsigned long)addr & ~PAGE_MASK;
1868 length = PAGE_SIZE - offset;
1869 if (length > count)
1870 length = count;
1871 p = vmalloc_to_page(addr);
1873 * To do safe access to this _mapped_ area, we need
1874 * lock. But adding lock here means that we need to add
1875 * overhead of vmalloc()/vfree() calles for this _debug_
1876 * interface, rarely used. Instead of that, we'll use
1877 * kmap() and get small overhead in this access function.
1879 if (p) {
1881 * we can expect USER0 is not used (see vread/vwrite's
1882 * function description)
1884 void *map = kmap_atomic(p, KM_USER0);
1885 memcpy(map + offset, buf, length);
1886 kunmap_atomic(map, KM_USER0);
1888 addr += length;
1889 buf += length;
1890 copied += length;
1891 count -= length;
1893 return copied;
1897 * vread() - read vmalloc area in a safe way.
1898 * @buf: buffer for reading data
1899 * @addr: vm address.
1900 * @count: number of bytes to be read.
1902 * Returns # of bytes which addr and buf should be increased.
1903 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1904 * includes any intersect with alive vmalloc area.
1906 * This function checks that addr is a valid vmalloc'ed area, and
1907 * copy data from that area to a given buffer. If the given memory range
1908 * of [addr...addr+count) includes some valid address, data is copied to
1909 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1910 * IOREMAP area is treated as memory hole and no copy is done.
1912 * If [addr...addr+count) doesn't includes any intersects with alive
1913 * vm_struct area, returns 0.
1914 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1915 * the caller should guarantee KM_USER0 is not used.
1917 * Note: In usual ops, vread() is never necessary because the caller
1918 * should know vmalloc() area is valid and can use memcpy().
1919 * This is for routines which have to access vmalloc area without
1920 * any informaion, as /dev/kmem.
1924 long vread(char *buf, char *addr, unsigned long count)
1926 struct vm_struct *tmp;
1927 char *vaddr, *buf_start = buf;
1928 unsigned long buflen = count;
1929 unsigned long n;
1931 /* Don't allow overflow */
1932 if ((unsigned long) addr + count < count)
1933 count = -(unsigned long) addr;
1935 read_lock(&vmlist_lock);
1936 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1937 vaddr = (char *) tmp->addr;
1938 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1939 continue;
1940 while (addr < vaddr) {
1941 if (count == 0)
1942 goto finished;
1943 *buf = '\0';
1944 buf++;
1945 addr++;
1946 count--;
1948 n = vaddr + tmp->size - PAGE_SIZE - addr;
1949 if (n > count)
1950 n = count;
1951 if (!(tmp->flags & VM_IOREMAP))
1952 aligned_vread(buf, addr, n);
1953 else /* IOREMAP area is treated as memory hole */
1954 memset(buf, 0, n);
1955 buf += n;
1956 addr += n;
1957 count -= n;
1959 finished:
1960 read_unlock(&vmlist_lock);
1962 if (buf == buf_start)
1963 return 0;
1964 /* zero-fill memory holes */
1965 if (buf != buf_start + buflen)
1966 memset(buf, 0, buflen - (buf - buf_start));
1968 return buflen;
1972 * vwrite() - write vmalloc area in a safe way.
1973 * @buf: buffer for source data
1974 * @addr: vm address.
1975 * @count: number of bytes to be read.
1977 * Returns # of bytes which addr and buf should be incresed.
1978 * (same number to @count).
1979 * If [addr...addr+count) doesn't includes any intersect with valid
1980 * vmalloc area, returns 0.
1982 * This function checks that addr is a valid vmalloc'ed area, and
1983 * copy data from a buffer to the given addr. If specified range of
1984 * [addr...addr+count) includes some valid address, data is copied from
1985 * proper area of @buf. If there are memory holes, no copy to hole.
1986 * IOREMAP area is treated as memory hole and no copy is done.
1988 * If [addr...addr+count) doesn't includes any intersects with alive
1989 * vm_struct area, returns 0.
1990 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1991 * the caller should guarantee KM_USER0 is not used.
1993 * Note: In usual ops, vwrite() is never necessary because the caller
1994 * should know vmalloc() area is valid and can use memcpy().
1995 * This is for routines which have to access vmalloc area without
1996 * any informaion, as /dev/kmem.
1999 long vwrite(char *buf, char *addr, unsigned long count)
2001 struct vm_struct *tmp;
2002 char *vaddr;
2003 unsigned long n, buflen;
2004 int copied = 0;
2006 /* Don't allow overflow */
2007 if ((unsigned long) addr + count < count)
2008 count = -(unsigned long) addr;
2009 buflen = count;
2011 read_lock(&vmlist_lock);
2012 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
2013 vaddr = (char *) tmp->addr;
2014 if (addr >= vaddr + tmp->size - PAGE_SIZE)
2015 continue;
2016 while (addr < vaddr) {
2017 if (count == 0)
2018 goto finished;
2019 buf++;
2020 addr++;
2021 count--;
2023 n = vaddr + tmp->size - PAGE_SIZE - addr;
2024 if (n > count)
2025 n = count;
2026 if (!(tmp->flags & VM_IOREMAP)) {
2027 aligned_vwrite(buf, addr, n);
2028 copied++;
2030 buf += n;
2031 addr += n;
2032 count -= n;
2034 finished:
2035 read_unlock(&vmlist_lock);
2036 if (!copied)
2037 return 0;
2038 return buflen;
2042 * remap_vmalloc_range - map vmalloc pages to userspace
2043 * @vma: vma to cover (map full range of vma)
2044 * @addr: vmalloc memory
2045 * @pgoff: number of pages into addr before first page to map
2047 * Returns: 0 for success, -Exxx on failure
2049 * This function checks that addr is a valid vmalloc'ed area, and
2050 * that it is big enough to cover the vma. Will return failure if
2051 * that criteria isn't met.
2053 * Similar to remap_pfn_range() (see mm/memory.c)
2055 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2056 unsigned long pgoff)
2058 struct vm_struct *area;
2059 unsigned long uaddr = vma->vm_start;
2060 unsigned long usize = vma->vm_end - vma->vm_start;
2062 if ((PAGE_SIZE-1) & (unsigned long)addr)
2063 return -EINVAL;
2065 area = find_vm_area(addr);
2066 if (!area)
2067 return -EINVAL;
2069 if (!(area->flags & VM_USERMAP))
2070 return -EINVAL;
2072 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
2073 return -EINVAL;
2075 addr += pgoff << PAGE_SHIFT;
2076 do {
2077 struct page *page = vmalloc_to_page(addr);
2078 int ret;
2080 ret = vm_insert_page(vma, uaddr, page);
2081 if (ret)
2082 return ret;
2084 uaddr += PAGE_SIZE;
2085 addr += PAGE_SIZE;
2086 usize -= PAGE_SIZE;
2087 } while (usize > 0);
2089 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
2090 vma->vm_flags |= VM_RESERVED;
2092 return 0;
2094 EXPORT_SYMBOL(remap_vmalloc_range);
2097 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2098 * have one.
2100 void __attribute__((weak)) vmalloc_sync_all(void)
2105 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2107 /* apply_to_page_range() does all the hard work. */
2108 return 0;
2112 * alloc_vm_area - allocate a range of kernel address space
2113 * @size: size of the area
2115 * Returns: NULL on failure, vm_struct on success
2117 * This function reserves a range of kernel address space, and
2118 * allocates pagetables to map that range. No actual mappings
2119 * are created. If the kernel address space is not shared
2120 * between processes, it syncs the pagetable across all
2121 * processes.
2123 struct vm_struct *alloc_vm_area(size_t size)
2125 struct vm_struct *area;
2127 area = get_vm_area_caller(size, VM_IOREMAP,
2128 __builtin_return_address(0));
2129 if (area == NULL)
2130 return NULL;
2133 * This ensures that page tables are constructed for this region
2134 * of kernel virtual address space and mapped into init_mm.
2136 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2137 area->size, f, NULL)) {
2138 free_vm_area(area);
2139 return NULL;
2142 return area;
2144 EXPORT_SYMBOL_GPL(alloc_vm_area);
2146 void free_vm_area(struct vm_struct *area)
2148 struct vm_struct *ret;
2149 ret = remove_vm_area(area->addr);
2150 BUG_ON(ret != area);
2151 kfree(area);
2153 EXPORT_SYMBOL_GPL(free_vm_area);
2155 #ifdef CONFIG_SMP
2156 static struct vmap_area *node_to_va(struct rb_node *n)
2158 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2162 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2163 * @end: target address
2164 * @pnext: out arg for the next vmap_area
2165 * @pprev: out arg for the previous vmap_area
2167 * Returns: %true if either or both of next and prev are found,
2168 * %false if no vmap_area exists
2170 * Find vmap_areas end addresses of which enclose @end. ie. if not
2171 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2173 static bool pvm_find_next_prev(unsigned long end,
2174 struct vmap_area **pnext,
2175 struct vmap_area **pprev)
2177 struct rb_node *n = vmap_area_root.rb_node;
2178 struct vmap_area *va = NULL;
2180 while (n) {
2181 va = rb_entry(n, struct vmap_area, rb_node);
2182 if (end < va->va_end)
2183 n = n->rb_left;
2184 else if (end > va->va_end)
2185 n = n->rb_right;
2186 else
2187 break;
2190 if (!va)
2191 return false;
2193 if (va->va_end > end) {
2194 *pnext = va;
2195 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2196 } else {
2197 *pprev = va;
2198 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2200 return true;
2204 * pvm_determine_end - find the highest aligned address between two vmap_areas
2205 * @pnext: in/out arg for the next vmap_area
2206 * @pprev: in/out arg for the previous vmap_area
2207 * @align: alignment
2209 * Returns: determined end address
2211 * Find the highest aligned address between *@pnext and *@pprev below
2212 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2213 * down address is between the end addresses of the two vmap_areas.
2215 * Please note that the address returned by this function may fall
2216 * inside *@pnext vmap_area. The caller is responsible for checking
2217 * that.
2219 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2220 struct vmap_area **pprev,
2221 unsigned long align)
2223 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2224 unsigned long addr;
2226 if (*pnext)
2227 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2228 else
2229 addr = vmalloc_end;
2231 while (*pprev && (*pprev)->va_end > addr) {
2232 *pnext = *pprev;
2233 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2236 return addr;
2240 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2241 * @offsets: array containing offset of each area
2242 * @sizes: array containing size of each area
2243 * @nr_vms: the number of areas to allocate
2244 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2246 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2247 * vm_structs on success, %NULL on failure
2249 * Percpu allocator wants to use congruent vm areas so that it can
2250 * maintain the offsets among percpu areas. This function allocates
2251 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2252 * be scattered pretty far, distance between two areas easily going up
2253 * to gigabytes. To avoid interacting with regular vmallocs, these
2254 * areas are allocated from top.
2256 * Despite its complicated look, this allocator is rather simple. It
2257 * does everything top-down and scans areas from the end looking for
2258 * matching slot. While scanning, if any of the areas overlaps with
2259 * existing vmap_area, the base address is pulled down to fit the
2260 * area. Scanning is repeated till all the areas fit and then all
2261 * necessary data structres are inserted and the result is returned.
2263 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2264 const size_t *sizes, int nr_vms,
2265 size_t align)
2267 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2268 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2269 struct vmap_area **vas, *prev, *next;
2270 struct vm_struct **vms;
2271 int area, area2, last_area, term_area;
2272 unsigned long base, start, end, last_end;
2273 bool purged = false;
2275 /* verify parameters and allocate data structures */
2276 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2277 for (last_area = 0, area = 0; area < nr_vms; area++) {
2278 start = offsets[area];
2279 end = start + sizes[area];
2281 /* is everything aligned properly? */
2282 BUG_ON(!IS_ALIGNED(offsets[area], align));
2283 BUG_ON(!IS_ALIGNED(sizes[area], align));
2285 /* detect the area with the highest address */
2286 if (start > offsets[last_area])
2287 last_area = area;
2289 for (area2 = 0; area2 < nr_vms; area2++) {
2290 unsigned long start2 = offsets[area2];
2291 unsigned long end2 = start2 + sizes[area2];
2293 if (area2 == area)
2294 continue;
2296 BUG_ON(start2 >= start && start2 < end);
2297 BUG_ON(end2 <= end && end2 > start);
2300 last_end = offsets[last_area] + sizes[last_area];
2302 if (vmalloc_end - vmalloc_start < last_end) {
2303 WARN_ON(true);
2304 return NULL;
2307 vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
2308 vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
2309 if (!vas || !vms)
2310 goto err_free;
2312 for (area = 0; area < nr_vms; area++) {
2313 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2314 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2315 if (!vas[area] || !vms[area])
2316 goto err_free;
2318 retry:
2319 spin_lock(&vmap_area_lock);
2321 /* start scanning - we scan from the top, begin with the last area */
2322 area = term_area = last_area;
2323 start = offsets[area];
2324 end = start + sizes[area];
2326 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2327 base = vmalloc_end - last_end;
2328 goto found;
2330 base = pvm_determine_end(&next, &prev, align) - end;
2332 while (true) {
2333 BUG_ON(next && next->va_end <= base + end);
2334 BUG_ON(prev && prev->va_end > base + end);
2337 * base might have underflowed, add last_end before
2338 * comparing.
2340 if (base + last_end < vmalloc_start + last_end) {
2341 spin_unlock(&vmap_area_lock);
2342 if (!purged) {
2343 purge_vmap_area_lazy();
2344 purged = true;
2345 goto retry;
2347 goto err_free;
2351 * If next overlaps, move base downwards so that it's
2352 * right below next and then recheck.
2354 if (next && next->va_start < base + end) {
2355 base = pvm_determine_end(&next, &prev, align) - end;
2356 term_area = area;
2357 continue;
2361 * If prev overlaps, shift down next and prev and move
2362 * base so that it's right below new next and then
2363 * recheck.
2365 if (prev && prev->va_end > base + start) {
2366 next = prev;
2367 prev = node_to_va(rb_prev(&next->rb_node));
2368 base = pvm_determine_end(&next, &prev, align) - end;
2369 term_area = area;
2370 continue;
2374 * This area fits, move on to the previous one. If
2375 * the previous one is the terminal one, we're done.
2377 area = (area + nr_vms - 1) % nr_vms;
2378 if (area == term_area)
2379 break;
2380 start = offsets[area];
2381 end = start + sizes[area];
2382 pvm_find_next_prev(base + end, &next, &prev);
2384 found:
2385 /* we've found a fitting base, insert all va's */
2386 for (area = 0; area < nr_vms; area++) {
2387 struct vmap_area *va = vas[area];
2389 va->va_start = base + offsets[area];
2390 va->va_end = va->va_start + sizes[area];
2391 __insert_vmap_area(va);
2394 vmap_area_pcpu_hole = base + offsets[last_area];
2396 spin_unlock(&vmap_area_lock);
2398 /* insert all vm's */
2399 for (area = 0; area < nr_vms; area++)
2400 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2401 pcpu_get_vm_areas);
2403 kfree(vas);
2404 return vms;
2406 err_free:
2407 for (area = 0; area < nr_vms; area++) {
2408 if (vas)
2409 kfree(vas[area]);
2410 if (vms)
2411 kfree(vms[area]);
2413 kfree(vas);
2414 kfree(vms);
2415 return NULL;
2419 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2420 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2421 * @nr_vms: the number of allocated areas
2423 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2425 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2427 int i;
2429 for (i = 0; i < nr_vms; i++)
2430 free_vm_area(vms[i]);
2431 kfree(vms);
2433 #endif /* CONFIG_SMP */
2435 #ifdef CONFIG_PROC_FS
2436 static void *s_start(struct seq_file *m, loff_t *pos)
2437 __acquires(&vmlist_lock)
2439 loff_t n = *pos;
2440 struct vm_struct *v;
2442 read_lock(&vmlist_lock);
2443 v = vmlist;
2444 while (n > 0 && v) {
2445 n--;
2446 v = v->next;
2448 if (!n)
2449 return v;
2451 return NULL;
2455 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2457 struct vm_struct *v = p;
2459 ++*pos;
2460 return v->next;
2463 static void s_stop(struct seq_file *m, void *p)
2464 __releases(&vmlist_lock)
2466 read_unlock(&vmlist_lock);
2469 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2471 if (NUMA_BUILD) {
2472 unsigned int nr, *counters = m->private;
2474 if (!counters)
2475 return;
2477 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2479 for (nr = 0; nr < v->nr_pages; nr++)
2480 counters[page_to_nid(v->pages[nr])]++;
2482 for_each_node_state(nr, N_HIGH_MEMORY)
2483 if (counters[nr])
2484 seq_printf(m, " N%u=%u", nr, counters[nr]);
2488 static int s_show(struct seq_file *m, void *p)
2490 struct vm_struct *v = p;
2492 seq_printf(m, "0x%p-0x%p %7ld",
2493 v->addr, v->addr + v->size, v->size);
2495 if (v->caller)
2496 seq_printf(m, " %pS", v->caller);
2498 if (v->nr_pages)
2499 seq_printf(m, " pages=%d", v->nr_pages);
2501 if (v->phys_addr)
2502 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2504 if (v->flags & VM_IOREMAP)
2505 seq_printf(m, " ioremap");
2507 if (v->flags & VM_ALLOC)
2508 seq_printf(m, " vmalloc");
2510 if (v->flags & VM_MAP)
2511 seq_printf(m, " vmap");
2513 if (v->flags & VM_USERMAP)
2514 seq_printf(m, " user");
2516 if (v->flags & VM_VPAGES)
2517 seq_printf(m, " vpages");
2519 show_numa_info(m, v);
2520 seq_putc(m, '\n');
2521 return 0;
2524 static const struct seq_operations vmalloc_op = {
2525 .start = s_start,
2526 .next = s_next,
2527 .stop = s_stop,
2528 .show = s_show,
2531 static int vmalloc_open(struct inode *inode, struct file *file)
2533 unsigned int *ptr = NULL;
2534 int ret;
2536 if (NUMA_BUILD) {
2537 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2538 if (ptr == NULL)
2539 return -ENOMEM;
2541 ret = seq_open(file, &vmalloc_op);
2542 if (!ret) {
2543 struct seq_file *m = file->private_data;
2544 m->private = ptr;
2545 } else
2546 kfree(ptr);
2547 return ret;
2550 static const struct file_operations proc_vmalloc_operations = {
2551 .open = vmalloc_open,
2552 .read = seq_read,
2553 .llseek = seq_lseek,
2554 .release = seq_release_private,
2557 static int __init proc_vmalloc_init(void)
2559 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2560 return 0;
2562 module_init(proc_vmalloc_init);
2563 #endif