1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* ethtool support for igb */
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
43 char stat_string
[ETH_GSTRING_LEN
];
48 #define IGB_STAT(_name, _stat) { \
49 .stat_string = _name, \
50 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
51 .stat_offset = offsetof(struct igb_adapter, _stat) \
53 static const struct igb_stats igb_gstrings_stats
[] = {
54 IGB_STAT("rx_packets", stats
.gprc
),
55 IGB_STAT("tx_packets", stats
.gptc
),
56 IGB_STAT("rx_bytes", stats
.gorc
),
57 IGB_STAT("tx_bytes", stats
.gotc
),
58 IGB_STAT("rx_broadcast", stats
.bprc
),
59 IGB_STAT("tx_broadcast", stats
.bptc
),
60 IGB_STAT("rx_multicast", stats
.mprc
),
61 IGB_STAT("tx_multicast", stats
.mptc
),
62 IGB_STAT("multicast", stats
.mprc
),
63 IGB_STAT("collisions", stats
.colc
),
64 IGB_STAT("rx_crc_errors", stats
.crcerrs
),
65 IGB_STAT("rx_no_buffer_count", stats
.rnbc
),
66 IGB_STAT("rx_missed_errors", stats
.mpc
),
67 IGB_STAT("tx_aborted_errors", stats
.ecol
),
68 IGB_STAT("tx_carrier_errors", stats
.tncrs
),
69 IGB_STAT("tx_window_errors", stats
.latecol
),
70 IGB_STAT("tx_abort_late_coll", stats
.latecol
),
71 IGB_STAT("tx_deferred_ok", stats
.dc
),
72 IGB_STAT("tx_single_coll_ok", stats
.scc
),
73 IGB_STAT("tx_multi_coll_ok", stats
.mcc
),
74 IGB_STAT("tx_timeout_count", tx_timeout_count
),
75 IGB_STAT("rx_long_length_errors", stats
.roc
),
76 IGB_STAT("rx_short_length_errors", stats
.ruc
),
77 IGB_STAT("rx_align_errors", stats
.algnerrc
),
78 IGB_STAT("tx_tcp_seg_good", stats
.tsctc
),
79 IGB_STAT("tx_tcp_seg_failed", stats
.tsctfc
),
80 IGB_STAT("rx_flow_control_xon", stats
.xonrxc
),
81 IGB_STAT("rx_flow_control_xoff", stats
.xoffrxc
),
82 IGB_STAT("tx_flow_control_xon", stats
.xontxc
),
83 IGB_STAT("tx_flow_control_xoff", stats
.xofftxc
),
84 IGB_STAT("rx_long_byte_count", stats
.gorc
),
85 IGB_STAT("tx_dma_out_of_sync", stats
.doosync
),
86 IGB_STAT("tx_smbus", stats
.mgptc
),
87 IGB_STAT("rx_smbus", stats
.mgprc
),
88 IGB_STAT("dropped_smbus", stats
.mgpdc
),
89 IGB_STAT("os2bmc_rx_by_bmc", stats
.o2bgptc
),
90 IGB_STAT("os2bmc_tx_by_bmc", stats
.b2ospc
),
91 IGB_STAT("os2bmc_tx_by_host", stats
.o2bspc
),
92 IGB_STAT("os2bmc_rx_by_host", stats
.b2ogprc
),
95 #define IGB_NETDEV_STAT(_net_stat) { \
96 .stat_string = __stringify(_net_stat), \
97 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
98 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 static const struct igb_stats igb_gstrings_net_stats
[] = {
101 IGB_NETDEV_STAT(rx_errors
),
102 IGB_NETDEV_STAT(tx_errors
),
103 IGB_NETDEV_STAT(tx_dropped
),
104 IGB_NETDEV_STAT(rx_length_errors
),
105 IGB_NETDEV_STAT(rx_over_errors
),
106 IGB_NETDEV_STAT(rx_frame_errors
),
107 IGB_NETDEV_STAT(rx_fifo_errors
),
108 IGB_NETDEV_STAT(tx_fifo_errors
),
109 IGB_NETDEV_STAT(tx_heartbeat_errors
)
112 #define IGB_GLOBAL_STATS_LEN \
113 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
114 #define IGB_NETDEV_STATS_LEN \
115 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
116 #define IGB_RX_QUEUE_STATS_LEN \
117 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121 #define IGB_QUEUE_STATS_LEN \
122 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
123 IGB_RX_QUEUE_STATS_LEN) + \
124 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
125 IGB_TX_QUEUE_STATS_LEN))
126 #define IGB_STATS_LEN \
127 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129 static const char igb_gstrings_test
[][ETH_GSTRING_LEN
] = {
130 "Register test (offline)", "Eeprom test (offline)",
131 "Interrupt test (offline)", "Loopback test (offline)",
132 "Link test (on/offline)"
134 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136 static int igb_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
138 struct igb_adapter
*adapter
= netdev_priv(netdev
);
139 struct e1000_hw
*hw
= &adapter
->hw
;
142 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
144 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
145 SUPPORTED_10baseT_Full
|
146 SUPPORTED_100baseT_Half
|
147 SUPPORTED_100baseT_Full
|
148 SUPPORTED_1000baseT_Full
|
151 ecmd
->advertising
= ADVERTISED_TP
;
153 if (hw
->mac
.autoneg
== 1) {
154 ecmd
->advertising
|= ADVERTISED_Autoneg
;
155 /* the e1000 autoneg seems to match ethtool nicely */
156 ecmd
->advertising
|= hw
->phy
.autoneg_advertised
;
159 ecmd
->port
= PORT_TP
;
160 ecmd
->phy_address
= hw
->phy
.addr
;
162 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
166 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
170 ecmd
->port
= PORT_FIBRE
;
173 ecmd
->transceiver
= XCVR_INTERNAL
;
175 status
= rd32(E1000_STATUS
);
177 if (status
& E1000_STATUS_LU
) {
179 if ((status
& E1000_STATUS_SPEED_1000
) ||
180 hw
->phy
.media_type
!= e1000_media_type_copper
)
181 ethtool_cmd_speed_set(ecmd
, SPEED_1000
);
182 else if (status
& E1000_STATUS_SPEED_100
)
183 ethtool_cmd_speed_set(ecmd
, SPEED_100
);
185 ethtool_cmd_speed_set(ecmd
, SPEED_10
);
187 if ((status
& E1000_STATUS_FD
) ||
188 hw
->phy
.media_type
!= e1000_media_type_copper
)
189 ecmd
->duplex
= DUPLEX_FULL
;
191 ecmd
->duplex
= DUPLEX_HALF
;
193 ethtool_cmd_speed_set(ecmd
, -1);
197 ecmd
->autoneg
= hw
->mac
.autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
201 static int igb_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
203 struct igb_adapter
*adapter
= netdev_priv(netdev
);
204 struct e1000_hw
*hw
= &adapter
->hw
;
206 /* When SoL/IDER sessions are active, autoneg/speed/duplex
207 * cannot be changed */
208 if (igb_check_reset_block(hw
)) {
209 dev_err(&adapter
->pdev
->dev
, "Cannot change link "
210 "characteristics when SoL/IDER is active.\n");
214 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
217 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
219 hw
->phy
.autoneg_advertised
= ecmd
->advertising
|
222 ecmd
->advertising
= hw
->phy
.autoneg_advertised
;
223 if (adapter
->fc_autoneg
)
224 hw
->fc
.requested_mode
= e1000_fc_default
;
226 u32 speed
= ethtool_cmd_speed(ecmd
);
227 if (igb_set_spd_dplx(adapter
, speed
, ecmd
->duplex
)) {
228 clear_bit(__IGB_RESETTING
, &adapter
->state
);
234 if (netif_running(adapter
->netdev
)) {
240 clear_bit(__IGB_RESETTING
, &adapter
->state
);
244 static u32
igb_get_link(struct net_device
*netdev
)
246 struct igb_adapter
*adapter
= netdev_priv(netdev
);
247 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
250 * If the link is not reported up to netdev, interrupts are disabled,
251 * and so the physical link state may have changed since we last
252 * looked. Set get_link_status to make sure that the true link
253 * state is interrogated, rather than pulling a cached and possibly
254 * stale link state from the driver.
256 if (!netif_carrier_ok(netdev
))
257 mac
->get_link_status
= 1;
259 return igb_has_link(adapter
);
262 static void igb_get_pauseparam(struct net_device
*netdev
,
263 struct ethtool_pauseparam
*pause
)
265 struct igb_adapter
*adapter
= netdev_priv(netdev
);
266 struct e1000_hw
*hw
= &adapter
->hw
;
269 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
271 if (hw
->fc
.current_mode
== e1000_fc_rx_pause
)
273 else if (hw
->fc
.current_mode
== e1000_fc_tx_pause
)
275 else if (hw
->fc
.current_mode
== e1000_fc_full
) {
281 static int igb_set_pauseparam(struct net_device
*netdev
,
282 struct ethtool_pauseparam
*pause
)
284 struct igb_adapter
*adapter
= netdev_priv(netdev
);
285 struct e1000_hw
*hw
= &adapter
->hw
;
288 adapter
->fc_autoneg
= pause
->autoneg
;
290 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
293 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
294 hw
->fc
.requested_mode
= e1000_fc_default
;
295 if (netif_running(adapter
->netdev
)) {
302 if (pause
->rx_pause
&& pause
->tx_pause
)
303 hw
->fc
.requested_mode
= e1000_fc_full
;
304 else if (pause
->rx_pause
&& !pause
->tx_pause
)
305 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
306 else if (!pause
->rx_pause
&& pause
->tx_pause
)
307 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
308 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
309 hw
->fc
.requested_mode
= e1000_fc_none
;
311 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
313 retval
= ((hw
->phy
.media_type
== e1000_media_type_copper
) ?
314 igb_force_mac_fc(hw
) : igb_setup_link(hw
));
317 clear_bit(__IGB_RESETTING
, &adapter
->state
);
321 static u32
igb_get_msglevel(struct net_device
*netdev
)
323 struct igb_adapter
*adapter
= netdev_priv(netdev
);
324 return adapter
->msg_enable
;
327 static void igb_set_msglevel(struct net_device
*netdev
, u32 data
)
329 struct igb_adapter
*adapter
= netdev_priv(netdev
);
330 adapter
->msg_enable
= data
;
333 static int igb_get_regs_len(struct net_device
*netdev
)
335 #define IGB_REGS_LEN 551
336 return IGB_REGS_LEN
* sizeof(u32
);
339 static void igb_get_regs(struct net_device
*netdev
,
340 struct ethtool_regs
*regs
, void *p
)
342 struct igb_adapter
*adapter
= netdev_priv(netdev
);
343 struct e1000_hw
*hw
= &adapter
->hw
;
347 memset(p
, 0, IGB_REGS_LEN
* sizeof(u32
));
349 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
351 /* General Registers */
352 regs_buff
[0] = rd32(E1000_CTRL
);
353 regs_buff
[1] = rd32(E1000_STATUS
);
354 regs_buff
[2] = rd32(E1000_CTRL_EXT
);
355 regs_buff
[3] = rd32(E1000_MDIC
);
356 regs_buff
[4] = rd32(E1000_SCTL
);
357 regs_buff
[5] = rd32(E1000_CONNSW
);
358 regs_buff
[6] = rd32(E1000_VET
);
359 regs_buff
[7] = rd32(E1000_LEDCTL
);
360 regs_buff
[8] = rd32(E1000_PBA
);
361 regs_buff
[9] = rd32(E1000_PBS
);
362 regs_buff
[10] = rd32(E1000_FRTIMER
);
363 regs_buff
[11] = rd32(E1000_TCPTIMER
);
366 regs_buff
[12] = rd32(E1000_EECD
);
369 /* Reading EICS for EICR because they read the
370 * same but EICS does not clear on read */
371 regs_buff
[13] = rd32(E1000_EICS
);
372 regs_buff
[14] = rd32(E1000_EICS
);
373 regs_buff
[15] = rd32(E1000_EIMS
);
374 regs_buff
[16] = rd32(E1000_EIMC
);
375 regs_buff
[17] = rd32(E1000_EIAC
);
376 regs_buff
[18] = rd32(E1000_EIAM
);
377 /* Reading ICS for ICR because they read the
378 * same but ICS does not clear on read */
379 regs_buff
[19] = rd32(E1000_ICS
);
380 regs_buff
[20] = rd32(E1000_ICS
);
381 regs_buff
[21] = rd32(E1000_IMS
);
382 regs_buff
[22] = rd32(E1000_IMC
);
383 regs_buff
[23] = rd32(E1000_IAC
);
384 regs_buff
[24] = rd32(E1000_IAM
);
385 regs_buff
[25] = rd32(E1000_IMIRVP
);
388 regs_buff
[26] = rd32(E1000_FCAL
);
389 regs_buff
[27] = rd32(E1000_FCAH
);
390 regs_buff
[28] = rd32(E1000_FCTTV
);
391 regs_buff
[29] = rd32(E1000_FCRTL
);
392 regs_buff
[30] = rd32(E1000_FCRTH
);
393 regs_buff
[31] = rd32(E1000_FCRTV
);
396 regs_buff
[32] = rd32(E1000_RCTL
);
397 regs_buff
[33] = rd32(E1000_RXCSUM
);
398 regs_buff
[34] = rd32(E1000_RLPML
);
399 regs_buff
[35] = rd32(E1000_RFCTL
);
400 regs_buff
[36] = rd32(E1000_MRQC
);
401 regs_buff
[37] = rd32(E1000_VT_CTL
);
404 regs_buff
[38] = rd32(E1000_TCTL
);
405 regs_buff
[39] = rd32(E1000_TCTL_EXT
);
406 regs_buff
[40] = rd32(E1000_TIPG
);
407 regs_buff
[41] = rd32(E1000_DTXCTL
);
410 regs_buff
[42] = rd32(E1000_WUC
);
411 regs_buff
[43] = rd32(E1000_WUFC
);
412 regs_buff
[44] = rd32(E1000_WUS
);
413 regs_buff
[45] = rd32(E1000_IPAV
);
414 regs_buff
[46] = rd32(E1000_WUPL
);
417 regs_buff
[47] = rd32(E1000_PCS_CFG0
);
418 regs_buff
[48] = rd32(E1000_PCS_LCTL
);
419 regs_buff
[49] = rd32(E1000_PCS_LSTAT
);
420 regs_buff
[50] = rd32(E1000_PCS_ANADV
);
421 regs_buff
[51] = rd32(E1000_PCS_LPAB
);
422 regs_buff
[52] = rd32(E1000_PCS_NPTX
);
423 regs_buff
[53] = rd32(E1000_PCS_LPABNP
);
426 regs_buff
[54] = adapter
->stats
.crcerrs
;
427 regs_buff
[55] = adapter
->stats
.algnerrc
;
428 regs_buff
[56] = adapter
->stats
.symerrs
;
429 regs_buff
[57] = adapter
->stats
.rxerrc
;
430 regs_buff
[58] = adapter
->stats
.mpc
;
431 regs_buff
[59] = adapter
->stats
.scc
;
432 regs_buff
[60] = adapter
->stats
.ecol
;
433 regs_buff
[61] = adapter
->stats
.mcc
;
434 regs_buff
[62] = adapter
->stats
.latecol
;
435 regs_buff
[63] = adapter
->stats
.colc
;
436 regs_buff
[64] = adapter
->stats
.dc
;
437 regs_buff
[65] = adapter
->stats
.tncrs
;
438 regs_buff
[66] = adapter
->stats
.sec
;
439 regs_buff
[67] = adapter
->stats
.htdpmc
;
440 regs_buff
[68] = adapter
->stats
.rlec
;
441 regs_buff
[69] = adapter
->stats
.xonrxc
;
442 regs_buff
[70] = adapter
->stats
.xontxc
;
443 regs_buff
[71] = adapter
->stats
.xoffrxc
;
444 regs_buff
[72] = adapter
->stats
.xofftxc
;
445 regs_buff
[73] = adapter
->stats
.fcruc
;
446 regs_buff
[74] = adapter
->stats
.prc64
;
447 regs_buff
[75] = adapter
->stats
.prc127
;
448 regs_buff
[76] = adapter
->stats
.prc255
;
449 regs_buff
[77] = adapter
->stats
.prc511
;
450 regs_buff
[78] = adapter
->stats
.prc1023
;
451 regs_buff
[79] = adapter
->stats
.prc1522
;
452 regs_buff
[80] = adapter
->stats
.gprc
;
453 regs_buff
[81] = adapter
->stats
.bprc
;
454 regs_buff
[82] = adapter
->stats
.mprc
;
455 regs_buff
[83] = adapter
->stats
.gptc
;
456 regs_buff
[84] = adapter
->stats
.gorc
;
457 regs_buff
[86] = adapter
->stats
.gotc
;
458 regs_buff
[88] = adapter
->stats
.rnbc
;
459 regs_buff
[89] = adapter
->stats
.ruc
;
460 regs_buff
[90] = adapter
->stats
.rfc
;
461 regs_buff
[91] = adapter
->stats
.roc
;
462 regs_buff
[92] = adapter
->stats
.rjc
;
463 regs_buff
[93] = adapter
->stats
.mgprc
;
464 regs_buff
[94] = adapter
->stats
.mgpdc
;
465 regs_buff
[95] = adapter
->stats
.mgptc
;
466 regs_buff
[96] = adapter
->stats
.tor
;
467 regs_buff
[98] = adapter
->stats
.tot
;
468 regs_buff
[100] = adapter
->stats
.tpr
;
469 regs_buff
[101] = adapter
->stats
.tpt
;
470 regs_buff
[102] = adapter
->stats
.ptc64
;
471 regs_buff
[103] = adapter
->stats
.ptc127
;
472 regs_buff
[104] = adapter
->stats
.ptc255
;
473 regs_buff
[105] = adapter
->stats
.ptc511
;
474 regs_buff
[106] = adapter
->stats
.ptc1023
;
475 regs_buff
[107] = adapter
->stats
.ptc1522
;
476 regs_buff
[108] = adapter
->stats
.mptc
;
477 regs_buff
[109] = adapter
->stats
.bptc
;
478 regs_buff
[110] = adapter
->stats
.tsctc
;
479 regs_buff
[111] = adapter
->stats
.iac
;
480 regs_buff
[112] = adapter
->stats
.rpthc
;
481 regs_buff
[113] = adapter
->stats
.hgptc
;
482 regs_buff
[114] = adapter
->stats
.hgorc
;
483 regs_buff
[116] = adapter
->stats
.hgotc
;
484 regs_buff
[118] = adapter
->stats
.lenerrs
;
485 regs_buff
[119] = adapter
->stats
.scvpc
;
486 regs_buff
[120] = adapter
->stats
.hrmpc
;
488 for (i
= 0; i
< 4; i
++)
489 regs_buff
[121 + i
] = rd32(E1000_SRRCTL(i
));
490 for (i
= 0; i
< 4; i
++)
491 regs_buff
[125 + i
] = rd32(E1000_PSRTYPE(i
));
492 for (i
= 0; i
< 4; i
++)
493 regs_buff
[129 + i
] = rd32(E1000_RDBAL(i
));
494 for (i
= 0; i
< 4; i
++)
495 regs_buff
[133 + i
] = rd32(E1000_RDBAH(i
));
496 for (i
= 0; i
< 4; i
++)
497 regs_buff
[137 + i
] = rd32(E1000_RDLEN(i
));
498 for (i
= 0; i
< 4; i
++)
499 regs_buff
[141 + i
] = rd32(E1000_RDH(i
));
500 for (i
= 0; i
< 4; i
++)
501 regs_buff
[145 + i
] = rd32(E1000_RDT(i
));
502 for (i
= 0; i
< 4; i
++)
503 regs_buff
[149 + i
] = rd32(E1000_RXDCTL(i
));
505 for (i
= 0; i
< 10; i
++)
506 regs_buff
[153 + i
] = rd32(E1000_EITR(i
));
507 for (i
= 0; i
< 8; i
++)
508 regs_buff
[163 + i
] = rd32(E1000_IMIR(i
));
509 for (i
= 0; i
< 8; i
++)
510 regs_buff
[171 + i
] = rd32(E1000_IMIREXT(i
));
511 for (i
= 0; i
< 16; i
++)
512 regs_buff
[179 + i
] = rd32(E1000_RAL(i
));
513 for (i
= 0; i
< 16; i
++)
514 regs_buff
[195 + i
] = rd32(E1000_RAH(i
));
516 for (i
= 0; i
< 4; i
++)
517 regs_buff
[211 + i
] = rd32(E1000_TDBAL(i
));
518 for (i
= 0; i
< 4; i
++)
519 regs_buff
[215 + i
] = rd32(E1000_TDBAH(i
));
520 for (i
= 0; i
< 4; i
++)
521 regs_buff
[219 + i
] = rd32(E1000_TDLEN(i
));
522 for (i
= 0; i
< 4; i
++)
523 regs_buff
[223 + i
] = rd32(E1000_TDH(i
));
524 for (i
= 0; i
< 4; i
++)
525 regs_buff
[227 + i
] = rd32(E1000_TDT(i
));
526 for (i
= 0; i
< 4; i
++)
527 regs_buff
[231 + i
] = rd32(E1000_TXDCTL(i
));
528 for (i
= 0; i
< 4; i
++)
529 regs_buff
[235 + i
] = rd32(E1000_TDWBAL(i
));
530 for (i
= 0; i
< 4; i
++)
531 regs_buff
[239 + i
] = rd32(E1000_TDWBAH(i
));
532 for (i
= 0; i
< 4; i
++)
533 regs_buff
[243 + i
] = rd32(E1000_DCA_TXCTRL(i
));
535 for (i
= 0; i
< 4; i
++)
536 regs_buff
[247 + i
] = rd32(E1000_IP4AT_REG(i
));
537 for (i
= 0; i
< 4; i
++)
538 regs_buff
[251 + i
] = rd32(E1000_IP6AT_REG(i
));
539 for (i
= 0; i
< 32; i
++)
540 regs_buff
[255 + i
] = rd32(E1000_WUPM_REG(i
));
541 for (i
= 0; i
< 128; i
++)
542 regs_buff
[287 + i
] = rd32(E1000_FFMT_REG(i
));
543 for (i
= 0; i
< 128; i
++)
544 regs_buff
[415 + i
] = rd32(E1000_FFVT_REG(i
));
545 for (i
= 0; i
< 4; i
++)
546 regs_buff
[543 + i
] = rd32(E1000_FFLT_REG(i
));
548 regs_buff
[547] = rd32(E1000_TDFH
);
549 regs_buff
[548] = rd32(E1000_TDFT
);
550 regs_buff
[549] = rd32(E1000_TDFHS
);
551 regs_buff
[550] = rd32(E1000_TDFPC
);
552 regs_buff
[551] = adapter
->stats
.o2bgptc
;
553 regs_buff
[552] = adapter
->stats
.b2ospc
;
554 regs_buff
[553] = adapter
->stats
.o2bspc
;
555 regs_buff
[554] = adapter
->stats
.b2ogprc
;
558 static int igb_get_eeprom_len(struct net_device
*netdev
)
560 struct igb_adapter
*adapter
= netdev_priv(netdev
);
561 return adapter
->hw
.nvm
.word_size
* 2;
564 static int igb_get_eeprom(struct net_device
*netdev
,
565 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
567 struct igb_adapter
*adapter
= netdev_priv(netdev
);
568 struct e1000_hw
*hw
= &adapter
->hw
;
570 int first_word
, last_word
;
574 if (eeprom
->len
== 0)
577 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
579 first_word
= eeprom
->offset
>> 1;
580 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
582 eeprom_buff
= kmalloc(sizeof(u16
) *
583 (last_word
- first_word
+ 1), GFP_KERNEL
);
587 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
)
588 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
,
589 last_word
- first_word
+ 1,
592 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
593 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
+ i
, 1,
600 /* Device's eeprom is always little-endian, word addressable */
601 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
602 le16_to_cpus(&eeprom_buff
[i
]);
604 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1),
611 static int igb_set_eeprom(struct net_device
*netdev
,
612 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
614 struct igb_adapter
*adapter
= netdev_priv(netdev
);
615 struct e1000_hw
*hw
= &adapter
->hw
;
618 int max_len
, first_word
, last_word
, ret_val
= 0;
621 if (eeprom
->len
== 0)
624 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
627 max_len
= hw
->nvm
.word_size
* 2;
629 first_word
= eeprom
->offset
>> 1;
630 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
631 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
635 ptr
= (void *)eeprom_buff
;
637 if (eeprom
->offset
& 1) {
638 /* need read/modify/write of first changed EEPROM word */
639 /* only the second byte of the word is being modified */
640 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
, 1,
644 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
645 /* need read/modify/write of last changed EEPROM word */
646 /* only the first byte of the word is being modified */
647 ret_val
= hw
->nvm
.ops
.read(hw
, last_word
, 1,
648 &eeprom_buff
[last_word
- first_word
]);
651 /* Device's eeprom is always little-endian, word addressable */
652 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
653 le16_to_cpus(&eeprom_buff
[i
]);
655 memcpy(ptr
, bytes
, eeprom
->len
);
657 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
658 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
660 ret_val
= hw
->nvm
.ops
.write(hw
, first_word
,
661 last_word
- first_word
+ 1, eeprom_buff
);
663 /* Update the checksum over the first part of the EEPROM if needed
664 * and flush shadow RAM for 82573 controllers */
665 if ((ret_val
== 0) && ((first_word
<= NVM_CHECKSUM_REG
)))
666 hw
->nvm
.ops
.update(hw
);
672 static void igb_get_drvinfo(struct net_device
*netdev
,
673 struct ethtool_drvinfo
*drvinfo
)
675 struct igb_adapter
*adapter
= netdev_priv(netdev
);
676 char firmware_version
[32];
679 strncpy(drvinfo
->driver
, igb_driver_name
, sizeof(drvinfo
->driver
) - 1);
680 strncpy(drvinfo
->version
, igb_driver_version
,
681 sizeof(drvinfo
->version
) - 1);
683 /* EEPROM image version # is reported as firmware version # for
684 * 82575 controllers */
685 adapter
->hw
.nvm
.ops
.read(&adapter
->hw
, 5, 1, &eeprom_data
);
686 sprintf(firmware_version
, "%d.%d-%d",
687 (eeprom_data
& 0xF000) >> 12,
688 (eeprom_data
& 0x0FF0) >> 4,
689 eeprom_data
& 0x000F);
691 strncpy(drvinfo
->fw_version
, firmware_version
,
692 sizeof(drvinfo
->fw_version
) - 1);
693 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
),
694 sizeof(drvinfo
->bus_info
) - 1);
695 drvinfo
->n_stats
= IGB_STATS_LEN
;
696 drvinfo
->testinfo_len
= IGB_TEST_LEN
;
697 drvinfo
->regdump_len
= igb_get_regs_len(netdev
);
698 drvinfo
->eedump_len
= igb_get_eeprom_len(netdev
);
701 static void igb_get_ringparam(struct net_device
*netdev
,
702 struct ethtool_ringparam
*ring
)
704 struct igb_adapter
*adapter
= netdev_priv(netdev
);
706 ring
->rx_max_pending
= IGB_MAX_RXD
;
707 ring
->tx_max_pending
= IGB_MAX_TXD
;
708 ring
->rx_mini_max_pending
= 0;
709 ring
->rx_jumbo_max_pending
= 0;
710 ring
->rx_pending
= adapter
->rx_ring_count
;
711 ring
->tx_pending
= adapter
->tx_ring_count
;
712 ring
->rx_mini_pending
= 0;
713 ring
->rx_jumbo_pending
= 0;
716 static int igb_set_ringparam(struct net_device
*netdev
,
717 struct ethtool_ringparam
*ring
)
719 struct igb_adapter
*adapter
= netdev_priv(netdev
);
720 struct igb_ring
*temp_ring
;
722 u16 new_rx_count
, new_tx_count
;
724 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
727 new_rx_count
= min_t(u32
, ring
->rx_pending
, IGB_MAX_RXD
);
728 new_rx_count
= max_t(u16
, new_rx_count
, IGB_MIN_RXD
);
729 new_rx_count
= ALIGN(new_rx_count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
731 new_tx_count
= min_t(u32
, ring
->tx_pending
, IGB_MAX_TXD
);
732 new_tx_count
= max_t(u16
, new_tx_count
, IGB_MIN_TXD
);
733 new_tx_count
= ALIGN(new_tx_count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
735 if ((new_tx_count
== adapter
->tx_ring_count
) &&
736 (new_rx_count
== adapter
->rx_ring_count
)) {
741 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
744 if (!netif_running(adapter
->netdev
)) {
745 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
746 adapter
->tx_ring
[i
]->count
= new_tx_count
;
747 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
748 adapter
->rx_ring
[i
]->count
= new_rx_count
;
749 adapter
->tx_ring_count
= new_tx_count
;
750 adapter
->rx_ring_count
= new_rx_count
;
754 if (adapter
->num_tx_queues
> adapter
->num_rx_queues
)
755 temp_ring
= vmalloc(adapter
->num_tx_queues
* sizeof(struct igb_ring
));
757 temp_ring
= vmalloc(adapter
->num_rx_queues
* sizeof(struct igb_ring
));
767 * We can't just free everything and then setup again,
768 * because the ISRs in MSI-X mode get passed pointers
769 * to the tx and rx ring structs.
771 if (new_tx_count
!= adapter
->tx_ring_count
) {
772 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
773 memcpy(&temp_ring
[i
], adapter
->tx_ring
[i
],
774 sizeof(struct igb_ring
));
776 temp_ring
[i
].count
= new_tx_count
;
777 err
= igb_setup_tx_resources(&temp_ring
[i
]);
781 igb_free_tx_resources(&temp_ring
[i
]);
787 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
788 igb_free_tx_resources(adapter
->tx_ring
[i
]);
790 memcpy(adapter
->tx_ring
[i
], &temp_ring
[i
],
791 sizeof(struct igb_ring
));
794 adapter
->tx_ring_count
= new_tx_count
;
797 if (new_rx_count
!= adapter
->rx_ring_count
) {
798 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
799 memcpy(&temp_ring
[i
], adapter
->rx_ring
[i
],
800 sizeof(struct igb_ring
));
802 temp_ring
[i
].count
= new_rx_count
;
803 err
= igb_setup_rx_resources(&temp_ring
[i
]);
807 igb_free_rx_resources(&temp_ring
[i
]);
814 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
815 igb_free_rx_resources(adapter
->rx_ring
[i
]);
817 memcpy(adapter
->rx_ring
[i
], &temp_ring
[i
],
818 sizeof(struct igb_ring
));
821 adapter
->rx_ring_count
= new_rx_count
;
827 clear_bit(__IGB_RESETTING
, &adapter
->state
);
831 /* ethtool register test data */
832 struct igb_reg_test
{
841 /* In the hardware, registers are laid out either singly, in arrays
842 * spaced 0x100 bytes apart, or in contiguous tables. We assume
843 * most tests take place on arrays or single registers (handled
844 * as a single-element array) and special-case the tables.
845 * Table tests are always pattern tests.
847 * We also make provision for some required setup steps by specifying
848 * registers to be written without any read-back testing.
851 #define PATTERN_TEST 1
852 #define SET_READ_TEST 2
853 #define WRITE_NO_TEST 3
854 #define TABLE32_TEST 4
855 #define TABLE64_TEST_LO 5
856 #define TABLE64_TEST_HI 6
859 static struct igb_reg_test reg_test_i350
[] = {
860 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
861 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
862 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
863 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFF0000, 0xFFFF0000 },
864 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
865 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
866 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
867 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
868 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
869 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
870 /* RDH is read-only for i350, only test RDT. */
871 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
872 { E1000_RDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
873 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
874 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
875 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
876 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
877 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
878 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
879 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
880 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
881 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
882 { E1000_TDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
883 { E1000_TDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
884 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
885 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
886 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
887 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
888 { E1000_RA
, 0, 16, TABLE64_TEST_LO
,
889 0xFFFFFFFF, 0xFFFFFFFF },
890 { E1000_RA
, 0, 16, TABLE64_TEST_HI
,
891 0xC3FFFFFF, 0xFFFFFFFF },
892 { E1000_RA2
, 0, 16, TABLE64_TEST_LO
,
893 0xFFFFFFFF, 0xFFFFFFFF },
894 { E1000_RA2
, 0, 16, TABLE64_TEST_HI
,
895 0xC3FFFFFF, 0xFFFFFFFF },
896 { E1000_MTA
, 0, 128, TABLE32_TEST
,
897 0xFFFFFFFF, 0xFFFFFFFF },
902 static struct igb_reg_test reg_test_82580
[] = {
903 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
904 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
905 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
906 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
907 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
908 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
909 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
910 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
911 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
912 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
913 /* RDH is read-only for 82580, only test RDT. */
914 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
915 { E1000_RDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
916 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
917 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
918 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
919 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
920 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
921 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
922 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
923 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
924 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
925 { E1000_TDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
926 { E1000_TDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
927 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
928 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
929 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
930 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
931 { E1000_RA
, 0, 16, TABLE64_TEST_LO
,
932 0xFFFFFFFF, 0xFFFFFFFF },
933 { E1000_RA
, 0, 16, TABLE64_TEST_HI
,
934 0x83FFFFFF, 0xFFFFFFFF },
935 { E1000_RA2
, 0, 8, TABLE64_TEST_LO
,
936 0xFFFFFFFF, 0xFFFFFFFF },
937 { E1000_RA2
, 0, 8, TABLE64_TEST_HI
,
938 0x83FFFFFF, 0xFFFFFFFF },
939 { E1000_MTA
, 0, 128, TABLE32_TEST
,
940 0xFFFFFFFF, 0xFFFFFFFF },
945 static struct igb_reg_test reg_test_82576
[] = {
946 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
947 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
948 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
949 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
950 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
951 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
952 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
953 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
954 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
955 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
956 /* Enable all RX queues before testing. */
957 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, E1000_RXDCTL_QUEUE_ENABLE
},
958 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST
, 0, E1000_RXDCTL_QUEUE_ENABLE
},
959 /* RDH is read-only for 82576, only test RDT. */
960 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
961 { E1000_RDT(4), 0x40, 12, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
962 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, 0 },
963 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST
, 0, 0 },
964 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
965 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
966 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
967 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
968 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
969 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
970 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
971 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
972 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
973 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
974 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
975 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
976 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
977 { E1000_RA
, 0, 16, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
978 { E1000_RA
, 0, 16, TABLE64_TEST_HI
, 0x83FFFFFF, 0xFFFFFFFF },
979 { E1000_RA2
, 0, 8, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
980 { E1000_RA2
, 0, 8, TABLE64_TEST_HI
, 0x83FFFFFF, 0xFFFFFFFF },
981 { E1000_MTA
, 0, 128,TABLE32_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
985 /* 82575 register test */
986 static struct igb_reg_test reg_test_82575
[] = {
987 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
988 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
989 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
990 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
991 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
992 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
993 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
994 /* Enable all four RX queues before testing. */
995 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, E1000_RXDCTL_QUEUE_ENABLE
},
996 /* RDH is read-only for 82575, only test RDT. */
997 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
998 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, 0 },
999 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1000 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1001 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1002 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1003 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1004 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1005 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1006 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB3FE, 0x003FFFFB },
1007 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB3FE, 0xFFFFFFFF },
1008 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1009 { E1000_TXCW
, 0x100, 1, PATTERN_TEST
, 0xC000FFFF, 0x0000FFFF },
1010 { E1000_RA
, 0, 16, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
1011 { E1000_RA
, 0, 16, TABLE64_TEST_HI
, 0x800FFFFF, 0xFFFFFFFF },
1012 { E1000_MTA
, 0, 128, TABLE32_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1016 static bool reg_pattern_test(struct igb_adapter
*adapter
, u64
*data
,
1017 int reg
, u32 mask
, u32 write
)
1019 struct e1000_hw
*hw
= &adapter
->hw
;
1021 static const u32 _test
[] =
1022 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1023 for (pat
= 0; pat
< ARRAY_SIZE(_test
); pat
++) {
1024 wr32(reg
, (_test
[pat
] & write
));
1025 val
= rd32(reg
) & mask
;
1026 if (val
!= (_test
[pat
] & write
& mask
)) {
1027 dev_err(&adapter
->pdev
->dev
, "pattern test reg %04X "
1028 "failed: got 0x%08X expected 0x%08X\n",
1029 reg
, val
, (_test
[pat
] & write
& mask
));
1038 static bool reg_set_and_check(struct igb_adapter
*adapter
, u64
*data
,
1039 int reg
, u32 mask
, u32 write
)
1041 struct e1000_hw
*hw
= &adapter
->hw
;
1043 wr32(reg
, write
& mask
);
1045 if ((write
& mask
) != (val
& mask
)) {
1046 dev_err(&adapter
->pdev
->dev
, "set/check reg %04X test failed:"
1047 " got 0x%08X expected 0x%08X\n", reg
,
1048 (val
& mask
), (write
& mask
));
1056 #define REG_PATTERN_TEST(reg, mask, write) \
1058 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1062 #define REG_SET_AND_CHECK(reg, mask, write) \
1064 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1068 static int igb_reg_test(struct igb_adapter
*adapter
, u64
*data
)
1070 struct e1000_hw
*hw
= &adapter
->hw
;
1071 struct igb_reg_test
*test
;
1072 u32 value
, before
, after
;
1075 switch (adapter
->hw
.mac
.type
) {
1077 test
= reg_test_i350
;
1078 toggle
= 0x7FEFF3FF;
1081 test
= reg_test_82580
;
1082 toggle
= 0x7FEFF3FF;
1085 test
= reg_test_82576
;
1086 toggle
= 0x7FFFF3FF;
1089 test
= reg_test_82575
;
1090 toggle
= 0x7FFFF3FF;
1094 /* Because the status register is such a special case,
1095 * we handle it separately from the rest of the register
1096 * tests. Some bits are read-only, some toggle, and some
1097 * are writable on newer MACs.
1099 before
= rd32(E1000_STATUS
);
1100 value
= (rd32(E1000_STATUS
) & toggle
);
1101 wr32(E1000_STATUS
, toggle
);
1102 after
= rd32(E1000_STATUS
) & toggle
;
1103 if (value
!= after
) {
1104 dev_err(&adapter
->pdev
->dev
, "failed STATUS register test "
1105 "got: 0x%08X expected: 0x%08X\n", after
, value
);
1109 /* restore previous status */
1110 wr32(E1000_STATUS
, before
);
1112 /* Perform the remainder of the register test, looping through
1113 * the test table until we either fail or reach the null entry.
1116 for (i
= 0; i
< test
->array_len
; i
++) {
1117 switch (test
->test_type
) {
1119 REG_PATTERN_TEST(test
->reg
+
1120 (i
* test
->reg_offset
),
1125 REG_SET_AND_CHECK(test
->reg
+
1126 (i
* test
->reg_offset
),
1132 (adapter
->hw
.hw_addr
+ test
->reg
)
1133 + (i
* test
->reg_offset
));
1136 REG_PATTERN_TEST(test
->reg
+ (i
* 4),
1140 case TABLE64_TEST_LO
:
1141 REG_PATTERN_TEST(test
->reg
+ (i
* 8),
1145 case TABLE64_TEST_HI
:
1146 REG_PATTERN_TEST((test
->reg
+ 4) + (i
* 8),
1159 static int igb_eeprom_test(struct igb_adapter
*adapter
, u64
*data
)
1166 /* Read and add up the contents of the EEPROM */
1167 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
1168 if ((adapter
->hw
.nvm
.ops
.read(&adapter
->hw
, i
, 1, &temp
)) < 0) {
1175 /* If Checksum is not Correct return error else test passed */
1176 if ((checksum
!= (u16
) NVM_SUM
) && !(*data
))
1182 static irqreturn_t
igb_test_intr(int irq
, void *data
)
1184 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
1185 struct e1000_hw
*hw
= &adapter
->hw
;
1187 adapter
->test_icr
|= rd32(E1000_ICR
);
1192 static int igb_intr_test(struct igb_adapter
*adapter
, u64
*data
)
1194 struct e1000_hw
*hw
= &adapter
->hw
;
1195 struct net_device
*netdev
= adapter
->netdev
;
1196 u32 mask
, ics_mask
, i
= 0, shared_int
= true;
1197 u32 irq
= adapter
->pdev
->irq
;
1201 /* Hook up test interrupt handler just for this test */
1202 if (adapter
->msix_entries
) {
1203 if (request_irq(adapter
->msix_entries
[0].vector
,
1204 igb_test_intr
, 0, netdev
->name
, adapter
)) {
1208 } else if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
1210 if (request_irq(irq
,
1211 igb_test_intr
, 0, netdev
->name
, adapter
)) {
1215 } else if (!request_irq(irq
, igb_test_intr
, IRQF_PROBE_SHARED
,
1216 netdev
->name
, adapter
)) {
1218 } else if (request_irq(irq
, igb_test_intr
, IRQF_SHARED
,
1219 netdev
->name
, adapter
)) {
1223 dev_info(&adapter
->pdev
->dev
, "testing %s interrupt\n",
1224 (shared_int
? "shared" : "unshared"));
1226 /* Disable all the interrupts */
1227 wr32(E1000_IMC
, ~0);
1231 /* Define all writable bits for ICS */
1232 switch (hw
->mac
.type
) {
1234 ics_mask
= 0x37F47EDD;
1237 ics_mask
= 0x77D4FBFD;
1240 ics_mask
= 0x77DCFED5;
1243 ics_mask
= 0x77DCFED5;
1246 ics_mask
= 0x7FFFFFFF;
1250 /* Test each interrupt */
1251 for (; i
< 31; i
++) {
1252 /* Interrupt to test */
1255 if (!(mask
& ics_mask
))
1259 /* Disable the interrupt to be reported in
1260 * the cause register and then force the same
1261 * interrupt and see if one gets posted. If
1262 * an interrupt was posted to the bus, the
1265 adapter
->test_icr
= 0;
1267 /* Flush any pending interrupts */
1268 wr32(E1000_ICR
, ~0);
1270 wr32(E1000_IMC
, mask
);
1271 wr32(E1000_ICS
, mask
);
1275 if (adapter
->test_icr
& mask
) {
1281 /* Enable the interrupt to be reported in
1282 * the cause register and then force the same
1283 * interrupt and see if one gets posted. If
1284 * an interrupt was not posted to the bus, the
1287 adapter
->test_icr
= 0;
1289 /* Flush any pending interrupts */
1290 wr32(E1000_ICR
, ~0);
1292 wr32(E1000_IMS
, mask
);
1293 wr32(E1000_ICS
, mask
);
1297 if (!(adapter
->test_icr
& mask
)) {
1303 /* Disable the other interrupts to be reported in
1304 * the cause register and then force the other
1305 * interrupts and see if any get posted. If
1306 * an interrupt was posted to the bus, the
1309 adapter
->test_icr
= 0;
1311 /* Flush any pending interrupts */
1312 wr32(E1000_ICR
, ~0);
1314 wr32(E1000_IMC
, ~mask
);
1315 wr32(E1000_ICS
, ~mask
);
1319 if (adapter
->test_icr
& mask
) {
1326 /* Disable all the interrupts */
1327 wr32(E1000_IMC
, ~0);
1331 /* Unhook test interrupt handler */
1332 if (adapter
->msix_entries
)
1333 free_irq(adapter
->msix_entries
[0].vector
, adapter
);
1335 free_irq(irq
, adapter
);
1340 static void igb_free_desc_rings(struct igb_adapter
*adapter
)
1342 igb_free_tx_resources(&adapter
->test_tx_ring
);
1343 igb_free_rx_resources(&adapter
->test_rx_ring
);
1346 static int igb_setup_desc_rings(struct igb_adapter
*adapter
)
1348 struct igb_ring
*tx_ring
= &adapter
->test_tx_ring
;
1349 struct igb_ring
*rx_ring
= &adapter
->test_rx_ring
;
1350 struct e1000_hw
*hw
= &adapter
->hw
;
1353 /* Setup Tx descriptor ring and Tx buffers */
1354 tx_ring
->count
= IGB_DEFAULT_TXD
;
1355 tx_ring
->dev
= &adapter
->pdev
->dev
;
1356 tx_ring
->netdev
= adapter
->netdev
;
1357 tx_ring
->reg_idx
= adapter
->vfs_allocated_count
;
1359 if (igb_setup_tx_resources(tx_ring
)) {
1364 igb_setup_tctl(adapter
);
1365 igb_configure_tx_ring(adapter
, tx_ring
);
1367 /* Setup Rx descriptor ring and Rx buffers */
1368 rx_ring
->count
= IGB_DEFAULT_RXD
;
1369 rx_ring
->dev
= &adapter
->pdev
->dev
;
1370 rx_ring
->netdev
= adapter
->netdev
;
1371 rx_ring
->rx_buffer_len
= IGB_RXBUFFER_2048
;
1372 rx_ring
->reg_idx
= adapter
->vfs_allocated_count
;
1374 if (igb_setup_rx_resources(rx_ring
)) {
1379 /* set the default queue to queue 0 of PF */
1380 wr32(E1000_MRQC
, adapter
->vfs_allocated_count
<< 3);
1382 /* enable receive ring */
1383 igb_setup_rctl(adapter
);
1384 igb_configure_rx_ring(adapter
, rx_ring
);
1386 igb_alloc_rx_buffers_adv(rx_ring
, igb_desc_unused(rx_ring
));
1391 igb_free_desc_rings(adapter
);
1395 static void igb_phy_disable_receiver(struct igb_adapter
*adapter
)
1397 struct e1000_hw
*hw
= &adapter
->hw
;
1399 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1400 igb_write_phy_reg(hw
, 29, 0x001F);
1401 igb_write_phy_reg(hw
, 30, 0x8FFC);
1402 igb_write_phy_reg(hw
, 29, 0x001A);
1403 igb_write_phy_reg(hw
, 30, 0x8FF0);
1406 static int igb_integrated_phy_loopback(struct igb_adapter
*adapter
)
1408 struct e1000_hw
*hw
= &adapter
->hw
;
1411 hw
->mac
.autoneg
= false;
1413 if (hw
->phy
.type
== e1000_phy_m88
) {
1414 /* Auto-MDI/MDIX Off */
1415 igb_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1416 /* reset to update Auto-MDI/MDIX */
1417 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x9140);
1419 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x8140);
1420 } else if (hw
->phy
.type
== e1000_phy_82580
) {
1421 /* enable MII loopback */
1422 igb_write_phy_reg(hw
, I82580_PHY_LBK_CTRL
, 0x8041);
1425 ctrl_reg
= rd32(E1000_CTRL
);
1427 /* force 1000, set loopback */
1428 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x4140);
1430 /* Now set up the MAC to the same speed/duplex as the PHY. */
1431 ctrl_reg
= rd32(E1000_CTRL
);
1432 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1433 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1434 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1435 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1436 E1000_CTRL_FD
| /* Force Duplex to FULL */
1437 E1000_CTRL_SLU
); /* Set link up enable bit */
1439 if (hw
->phy
.type
== e1000_phy_m88
)
1440 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1442 wr32(E1000_CTRL
, ctrl_reg
);
1444 /* Disable the receiver on the PHY so when a cable is plugged in, the
1445 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1447 if (hw
->phy
.type
== e1000_phy_m88
)
1448 igb_phy_disable_receiver(adapter
);
1455 static int igb_set_phy_loopback(struct igb_adapter
*adapter
)
1457 return igb_integrated_phy_loopback(adapter
);
1460 static int igb_setup_loopback_test(struct igb_adapter
*adapter
)
1462 struct e1000_hw
*hw
= &adapter
->hw
;
1465 reg
= rd32(E1000_CTRL_EXT
);
1467 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1468 if (reg
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
1469 if ((hw
->device_id
== E1000_DEV_ID_DH89XXCC_SGMII
) ||
1470 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SERDES
) ||
1471 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_BACKPLANE
) ||
1472 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SFP
)) {
1474 /* Enable DH89xxCC MPHY for near end loopback */
1475 reg
= rd32(E1000_MPHY_ADDR_CTL
);
1476 reg
= (reg
& E1000_MPHY_ADDR_CTL_OFFSET_MASK
) |
1477 E1000_MPHY_PCS_CLK_REG_OFFSET
;
1478 wr32(E1000_MPHY_ADDR_CTL
, reg
);
1480 reg
= rd32(E1000_MPHY_DATA
);
1481 reg
|= E1000_MPHY_PCS_CLK_REG_DIGINELBEN
;
1482 wr32(E1000_MPHY_DATA
, reg
);
1485 reg
= rd32(E1000_RCTL
);
1486 reg
|= E1000_RCTL_LBM_TCVR
;
1487 wr32(E1000_RCTL
, reg
);
1489 wr32(E1000_SCTL
, E1000_ENABLE_SERDES_LOOPBACK
);
1491 reg
= rd32(E1000_CTRL
);
1492 reg
&= ~(E1000_CTRL_RFCE
|
1495 reg
|= E1000_CTRL_SLU
|
1497 wr32(E1000_CTRL
, reg
);
1499 /* Unset switch control to serdes energy detect */
1500 reg
= rd32(E1000_CONNSW
);
1501 reg
&= ~E1000_CONNSW_ENRGSRC
;
1502 wr32(E1000_CONNSW
, reg
);
1504 /* Set PCS register for forced speed */
1505 reg
= rd32(E1000_PCS_LCTL
);
1506 reg
&= ~E1000_PCS_LCTL_AN_ENABLE
; /* Disable Autoneg*/
1507 reg
|= E1000_PCS_LCTL_FLV_LINK_UP
| /* Force link up */
1508 E1000_PCS_LCTL_FSV_1000
| /* Force 1000 */
1509 E1000_PCS_LCTL_FDV_FULL
| /* SerDes Full duplex */
1510 E1000_PCS_LCTL_FSD
| /* Force Speed */
1511 E1000_PCS_LCTL_FORCE_LINK
; /* Force Link */
1512 wr32(E1000_PCS_LCTL
, reg
);
1517 return igb_set_phy_loopback(adapter
);
1520 static void igb_loopback_cleanup(struct igb_adapter
*adapter
)
1522 struct e1000_hw
*hw
= &adapter
->hw
;
1526 if ((hw
->device_id
== E1000_DEV_ID_DH89XXCC_SGMII
) ||
1527 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SERDES
) ||
1528 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_BACKPLANE
) ||
1529 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SFP
)) {
1532 /* Disable near end loopback on DH89xxCC */
1533 reg
= rd32(E1000_MPHY_ADDR_CTL
);
1534 reg
= (reg
& E1000_MPHY_ADDR_CTL_OFFSET_MASK
) |
1535 E1000_MPHY_PCS_CLK_REG_OFFSET
;
1536 wr32(E1000_MPHY_ADDR_CTL
, reg
);
1538 reg
= rd32(E1000_MPHY_DATA
);
1539 reg
&= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN
;
1540 wr32(E1000_MPHY_DATA
, reg
);
1543 rctl
= rd32(E1000_RCTL
);
1544 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1545 wr32(E1000_RCTL
, rctl
);
1547 hw
->mac
.autoneg
= true;
1548 igb_read_phy_reg(hw
, PHY_CONTROL
, &phy_reg
);
1549 if (phy_reg
& MII_CR_LOOPBACK
) {
1550 phy_reg
&= ~MII_CR_LOOPBACK
;
1551 igb_write_phy_reg(hw
, PHY_CONTROL
, phy_reg
);
1552 igb_phy_sw_reset(hw
);
1556 static void igb_create_lbtest_frame(struct sk_buff
*skb
,
1557 unsigned int frame_size
)
1559 memset(skb
->data
, 0xFF, frame_size
);
1561 memset(&skb
->data
[frame_size
], 0xAA, frame_size
- 1);
1562 memset(&skb
->data
[frame_size
+ 10], 0xBE, 1);
1563 memset(&skb
->data
[frame_size
+ 12], 0xAF, 1);
1566 static int igb_check_lbtest_frame(struct sk_buff
*skb
, unsigned int frame_size
)
1569 if (*(skb
->data
+ 3) == 0xFF) {
1570 if ((*(skb
->data
+ frame_size
+ 10) == 0xBE) &&
1571 (*(skb
->data
+ frame_size
+ 12) == 0xAF)) {
1578 static int igb_clean_test_rings(struct igb_ring
*rx_ring
,
1579 struct igb_ring
*tx_ring
,
1582 union e1000_adv_rx_desc
*rx_desc
;
1583 struct igb_buffer
*buffer_info
;
1584 int rx_ntc
, tx_ntc
, count
= 0;
1587 /* initialize next to clean and descriptor values */
1588 rx_ntc
= rx_ring
->next_to_clean
;
1589 tx_ntc
= tx_ring
->next_to_clean
;
1590 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, rx_ntc
);
1591 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1593 while (staterr
& E1000_RXD_STAT_DD
) {
1594 /* check rx buffer */
1595 buffer_info
= &rx_ring
->buffer_info
[rx_ntc
];
1597 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1598 dma_unmap_single(rx_ring
->dev
,
1600 rx_ring
->rx_buffer_len
,
1602 buffer_info
->dma
= 0;
1604 /* verify contents of skb */
1605 if (!igb_check_lbtest_frame(buffer_info
->skb
, size
))
1608 /* unmap buffer on tx side */
1609 buffer_info
= &tx_ring
->buffer_info
[tx_ntc
];
1610 igb_unmap_and_free_tx_resource(tx_ring
, buffer_info
);
1612 /* increment rx/tx next to clean counters */
1614 if (rx_ntc
== rx_ring
->count
)
1617 if (tx_ntc
== tx_ring
->count
)
1620 /* fetch next descriptor */
1621 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, rx_ntc
);
1622 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1625 /* re-map buffers to ring, store next to clean values */
1626 igb_alloc_rx_buffers_adv(rx_ring
, count
);
1627 rx_ring
->next_to_clean
= rx_ntc
;
1628 tx_ring
->next_to_clean
= tx_ntc
;
1633 static int igb_run_loopback_test(struct igb_adapter
*adapter
)
1635 struct igb_ring
*tx_ring
= &adapter
->test_tx_ring
;
1636 struct igb_ring
*rx_ring
= &adapter
->test_rx_ring
;
1637 int i
, j
, lc
, good_cnt
, ret_val
= 0;
1638 unsigned int size
= 1024;
1639 netdev_tx_t tx_ret_val
;
1640 struct sk_buff
*skb
;
1642 /* allocate test skb */
1643 skb
= alloc_skb(size
, GFP_KERNEL
);
1647 /* place data into test skb */
1648 igb_create_lbtest_frame(skb
, size
);
1652 * Calculate the loop count based on the largest descriptor ring
1653 * The idea is to wrap the largest ring a number of times using 64
1654 * send/receive pairs during each loop
1657 if (rx_ring
->count
<= tx_ring
->count
)
1658 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1660 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1662 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1663 /* reset count of good packets */
1666 /* place 64 packets on the transmit queue*/
1667 for (i
= 0; i
< 64; i
++) {
1669 tx_ret_val
= igb_xmit_frame_ring_adv(skb
, tx_ring
);
1670 if (tx_ret_val
== NETDEV_TX_OK
)
1674 if (good_cnt
!= 64) {
1679 /* allow 200 milliseconds for packets to go from tx to rx */
1682 good_cnt
= igb_clean_test_rings(rx_ring
, tx_ring
, size
);
1683 if (good_cnt
!= 64) {
1687 } /* end loop count loop */
1689 /* free the original skb */
1695 static int igb_loopback_test(struct igb_adapter
*adapter
, u64
*data
)
1697 /* PHY loopback cannot be performed if SoL/IDER
1698 * sessions are active */
1699 if (igb_check_reset_block(&adapter
->hw
)) {
1700 dev_err(&adapter
->pdev
->dev
,
1701 "Cannot do PHY loopback test "
1702 "when SoL/IDER is active.\n");
1706 *data
= igb_setup_desc_rings(adapter
);
1709 *data
= igb_setup_loopback_test(adapter
);
1712 *data
= igb_run_loopback_test(adapter
);
1713 igb_loopback_cleanup(adapter
);
1716 igb_free_desc_rings(adapter
);
1721 static int igb_link_test(struct igb_adapter
*adapter
, u64
*data
)
1723 struct e1000_hw
*hw
= &adapter
->hw
;
1725 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1727 hw
->mac
.serdes_has_link
= false;
1729 /* On some blade server designs, link establishment
1730 * could take as long as 2-3 minutes */
1732 hw
->mac
.ops
.check_for_link(&adapter
->hw
);
1733 if (hw
->mac
.serdes_has_link
)
1736 } while (i
++ < 3750);
1740 hw
->mac
.ops
.check_for_link(&adapter
->hw
);
1741 if (hw
->mac
.autoneg
)
1744 if (!(rd32(E1000_STATUS
) & E1000_STATUS_LU
))
1750 static void igb_diag_test(struct net_device
*netdev
,
1751 struct ethtool_test
*eth_test
, u64
*data
)
1753 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1754 u16 autoneg_advertised
;
1755 u8 forced_speed_duplex
, autoneg
;
1756 bool if_running
= netif_running(netdev
);
1758 set_bit(__IGB_TESTING
, &adapter
->state
);
1759 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1762 /* save speed, duplex, autoneg settings */
1763 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
1764 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
1765 autoneg
= adapter
->hw
.mac
.autoneg
;
1767 dev_info(&adapter
->pdev
->dev
, "offline testing starting\n");
1769 /* power up link for link test */
1770 igb_power_up_link(adapter
);
1772 /* Link test performed before hardware reset so autoneg doesn't
1773 * interfere with test result */
1774 if (igb_link_test(adapter
, &data
[4]))
1775 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1778 /* indicate we're in test mode */
1783 if (igb_reg_test(adapter
, &data
[0]))
1784 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1787 if (igb_eeprom_test(adapter
, &data
[1]))
1788 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1791 if (igb_intr_test(adapter
, &data
[2]))
1792 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1795 /* power up link for loopback test */
1796 igb_power_up_link(adapter
);
1797 if (igb_loopback_test(adapter
, &data
[3]))
1798 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1800 /* restore speed, duplex, autoneg settings */
1801 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
1802 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
1803 adapter
->hw
.mac
.autoneg
= autoneg
;
1805 /* force this routine to wait until autoneg complete/timeout */
1806 adapter
->hw
.phy
.autoneg_wait_to_complete
= true;
1808 adapter
->hw
.phy
.autoneg_wait_to_complete
= false;
1810 clear_bit(__IGB_TESTING
, &adapter
->state
);
1814 dev_info(&adapter
->pdev
->dev
, "online testing starting\n");
1816 /* PHY is powered down when interface is down */
1817 if (if_running
&& igb_link_test(adapter
, &data
[4]))
1818 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1822 /* Online tests aren't run; pass by default */
1828 clear_bit(__IGB_TESTING
, &adapter
->state
);
1830 msleep_interruptible(4 * 1000);
1833 static int igb_wol_exclusion(struct igb_adapter
*adapter
,
1834 struct ethtool_wolinfo
*wol
)
1836 struct e1000_hw
*hw
= &adapter
->hw
;
1837 int retval
= 1; /* fail by default */
1839 switch (hw
->device_id
) {
1840 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1841 /* WoL not supported */
1844 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1845 case E1000_DEV_ID_82576_FIBER
:
1846 case E1000_DEV_ID_82576_SERDES
:
1847 /* Wake events not supported on port B */
1848 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
) {
1852 /* return success for non excluded adapter ports */
1855 case E1000_DEV_ID_82576_QUAD_COPPER
:
1856 case E1000_DEV_ID_82576_QUAD_COPPER_ET2
:
1857 /* quad port adapters only support WoL on port A */
1858 if (!(adapter
->flags
& IGB_FLAG_QUAD_PORT_A
)) {
1862 /* return success for non excluded adapter ports */
1866 /* dual port cards only support WoL on port A from now on
1867 * unless it was enabled in the eeprom for port B
1868 * so exclude FUNC_1 ports from having WoL enabled */
1869 if ((rd32(E1000_STATUS
) & E1000_STATUS_FUNC_MASK
) &&
1870 !adapter
->eeprom_wol
) {
1881 static void igb_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1883 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1885 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1886 WAKE_BCAST
| WAKE_MAGIC
|
1890 /* this function will set ->supported = 0 and return 1 if wol is not
1891 * supported by this hardware */
1892 if (igb_wol_exclusion(adapter
, wol
) ||
1893 !device_can_wakeup(&adapter
->pdev
->dev
))
1896 /* apply any specific unsupported masks here */
1897 switch (adapter
->hw
.device_id
) {
1902 if (adapter
->wol
& E1000_WUFC_EX
)
1903 wol
->wolopts
|= WAKE_UCAST
;
1904 if (adapter
->wol
& E1000_WUFC_MC
)
1905 wol
->wolopts
|= WAKE_MCAST
;
1906 if (adapter
->wol
& E1000_WUFC_BC
)
1907 wol
->wolopts
|= WAKE_BCAST
;
1908 if (adapter
->wol
& E1000_WUFC_MAG
)
1909 wol
->wolopts
|= WAKE_MAGIC
;
1910 if (adapter
->wol
& E1000_WUFC_LNKC
)
1911 wol
->wolopts
|= WAKE_PHY
;
1914 static int igb_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1916 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1918 if (wol
->wolopts
& (WAKE_ARP
| WAKE_MAGICSECURE
))
1921 if (igb_wol_exclusion(adapter
, wol
) ||
1922 !device_can_wakeup(&adapter
->pdev
->dev
))
1923 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1925 /* these settings will always override what we currently have */
1928 if (wol
->wolopts
& WAKE_UCAST
)
1929 adapter
->wol
|= E1000_WUFC_EX
;
1930 if (wol
->wolopts
& WAKE_MCAST
)
1931 adapter
->wol
|= E1000_WUFC_MC
;
1932 if (wol
->wolopts
& WAKE_BCAST
)
1933 adapter
->wol
|= E1000_WUFC_BC
;
1934 if (wol
->wolopts
& WAKE_MAGIC
)
1935 adapter
->wol
|= E1000_WUFC_MAG
;
1936 if (wol
->wolopts
& WAKE_PHY
)
1937 adapter
->wol
|= E1000_WUFC_LNKC
;
1938 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1943 /* bit defines for adapter->led_status */
1944 #define IGB_LED_ON 0
1946 static int igb_set_phys_id(struct net_device
*netdev
,
1947 enum ethtool_phys_id_state state
)
1949 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1950 struct e1000_hw
*hw
= &adapter
->hw
;
1953 case ETHTOOL_ID_ACTIVE
:
1959 case ETHTOOL_ID_OFF
:
1962 case ETHTOOL_ID_INACTIVE
:
1964 clear_bit(IGB_LED_ON
, &adapter
->led_status
);
1965 igb_cleanup_led(hw
);
1972 static int igb_set_coalesce(struct net_device
*netdev
,
1973 struct ethtool_coalesce
*ec
)
1975 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1978 if ((ec
->rx_coalesce_usecs
> IGB_MAX_ITR_USECS
) ||
1979 ((ec
->rx_coalesce_usecs
> 3) &&
1980 (ec
->rx_coalesce_usecs
< IGB_MIN_ITR_USECS
)) ||
1981 (ec
->rx_coalesce_usecs
== 2))
1984 if ((ec
->tx_coalesce_usecs
> IGB_MAX_ITR_USECS
) ||
1985 ((ec
->tx_coalesce_usecs
> 3) &&
1986 (ec
->tx_coalesce_usecs
< IGB_MIN_ITR_USECS
)) ||
1987 (ec
->tx_coalesce_usecs
== 2))
1990 if ((adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
) && ec
->tx_coalesce_usecs
)
1993 /* If ITR is disabled, disable DMAC */
1994 if (ec
->rx_coalesce_usecs
== 0) {
1995 if (adapter
->flags
& IGB_FLAG_DMAC
)
1996 adapter
->flags
&= ~IGB_FLAG_DMAC
;
1999 /* convert to rate of irq's per second */
2000 if (ec
->rx_coalesce_usecs
&& ec
->rx_coalesce_usecs
<= 3)
2001 adapter
->rx_itr_setting
= ec
->rx_coalesce_usecs
;
2003 adapter
->rx_itr_setting
= ec
->rx_coalesce_usecs
<< 2;
2005 /* convert to rate of irq's per second */
2006 if (adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
)
2007 adapter
->tx_itr_setting
= adapter
->rx_itr_setting
;
2008 else if (ec
->tx_coalesce_usecs
&& ec
->tx_coalesce_usecs
<= 3)
2009 adapter
->tx_itr_setting
= ec
->tx_coalesce_usecs
;
2011 adapter
->tx_itr_setting
= ec
->tx_coalesce_usecs
<< 2;
2013 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
2014 struct igb_q_vector
*q_vector
= adapter
->q_vector
[i
];
2015 if (q_vector
->rx_ring
)
2016 q_vector
->itr_val
= adapter
->rx_itr_setting
;
2018 q_vector
->itr_val
= adapter
->tx_itr_setting
;
2019 if (q_vector
->itr_val
&& q_vector
->itr_val
<= 3)
2020 q_vector
->itr_val
= IGB_START_ITR
;
2021 q_vector
->set_itr
= 1;
2027 static int igb_get_coalesce(struct net_device
*netdev
,
2028 struct ethtool_coalesce
*ec
)
2030 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2032 if (adapter
->rx_itr_setting
<= 3)
2033 ec
->rx_coalesce_usecs
= adapter
->rx_itr_setting
;
2035 ec
->rx_coalesce_usecs
= adapter
->rx_itr_setting
>> 2;
2037 if (!(adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
)) {
2038 if (adapter
->tx_itr_setting
<= 3)
2039 ec
->tx_coalesce_usecs
= adapter
->tx_itr_setting
;
2041 ec
->tx_coalesce_usecs
= adapter
->tx_itr_setting
>> 2;
2047 static int igb_nway_reset(struct net_device
*netdev
)
2049 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2050 if (netif_running(netdev
))
2051 igb_reinit_locked(adapter
);
2055 static int igb_get_sset_count(struct net_device
*netdev
, int sset
)
2059 return IGB_STATS_LEN
;
2061 return IGB_TEST_LEN
;
2067 static void igb_get_ethtool_stats(struct net_device
*netdev
,
2068 struct ethtool_stats
*stats
, u64
*data
)
2070 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2071 struct rtnl_link_stats64
*net_stats
= &adapter
->stats64
;
2073 struct igb_ring
*ring
;
2077 spin_lock(&adapter
->stats64_lock
);
2078 igb_update_stats(adapter
, net_stats
);
2080 for (i
= 0; i
< IGB_GLOBAL_STATS_LEN
; i
++) {
2081 p
= (char *)adapter
+ igb_gstrings_stats
[i
].stat_offset
;
2082 data
[i
] = (igb_gstrings_stats
[i
].sizeof_stat
==
2083 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
2085 for (j
= 0; j
< IGB_NETDEV_STATS_LEN
; j
++, i
++) {
2086 p
= (char *)net_stats
+ igb_gstrings_net_stats
[j
].stat_offset
;
2087 data
[i
] = (igb_gstrings_net_stats
[j
].sizeof_stat
==
2088 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
2090 for (j
= 0; j
< adapter
->num_tx_queues
; j
++) {
2093 ring
= adapter
->tx_ring
[j
];
2095 start
= u64_stats_fetch_begin_bh(&ring
->tx_syncp
);
2096 data
[i
] = ring
->tx_stats
.packets
;
2097 data
[i
+1] = ring
->tx_stats
.bytes
;
2098 data
[i
+2] = ring
->tx_stats
.restart_queue
;
2099 } while (u64_stats_fetch_retry_bh(&ring
->tx_syncp
, start
));
2101 start
= u64_stats_fetch_begin_bh(&ring
->tx_syncp2
);
2102 restart2
= ring
->tx_stats
.restart_queue2
;
2103 } while (u64_stats_fetch_retry_bh(&ring
->tx_syncp2
, start
));
2104 data
[i
+2] += restart2
;
2106 i
+= IGB_TX_QUEUE_STATS_LEN
;
2108 for (j
= 0; j
< adapter
->num_rx_queues
; j
++) {
2109 ring
= adapter
->rx_ring
[j
];
2111 start
= u64_stats_fetch_begin_bh(&ring
->rx_syncp
);
2112 data
[i
] = ring
->rx_stats
.packets
;
2113 data
[i
+1] = ring
->rx_stats
.bytes
;
2114 data
[i
+2] = ring
->rx_stats
.drops
;
2115 data
[i
+3] = ring
->rx_stats
.csum_err
;
2116 data
[i
+4] = ring
->rx_stats
.alloc_failed
;
2117 } while (u64_stats_fetch_retry_bh(&ring
->rx_syncp
, start
));
2118 i
+= IGB_RX_QUEUE_STATS_LEN
;
2120 spin_unlock(&adapter
->stats64_lock
);
2123 static void igb_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2125 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2129 switch (stringset
) {
2131 memcpy(data
, *igb_gstrings_test
,
2132 IGB_TEST_LEN
*ETH_GSTRING_LEN
);
2135 for (i
= 0; i
< IGB_GLOBAL_STATS_LEN
; i
++) {
2136 memcpy(p
, igb_gstrings_stats
[i
].stat_string
,
2138 p
+= ETH_GSTRING_LEN
;
2140 for (i
= 0; i
< IGB_NETDEV_STATS_LEN
; i
++) {
2141 memcpy(p
, igb_gstrings_net_stats
[i
].stat_string
,
2143 p
+= ETH_GSTRING_LEN
;
2145 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
2146 sprintf(p
, "tx_queue_%u_packets", i
);
2147 p
+= ETH_GSTRING_LEN
;
2148 sprintf(p
, "tx_queue_%u_bytes", i
);
2149 p
+= ETH_GSTRING_LEN
;
2150 sprintf(p
, "tx_queue_%u_restart", i
);
2151 p
+= ETH_GSTRING_LEN
;
2153 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2154 sprintf(p
, "rx_queue_%u_packets", i
);
2155 p
+= ETH_GSTRING_LEN
;
2156 sprintf(p
, "rx_queue_%u_bytes", i
);
2157 p
+= ETH_GSTRING_LEN
;
2158 sprintf(p
, "rx_queue_%u_drops", i
);
2159 p
+= ETH_GSTRING_LEN
;
2160 sprintf(p
, "rx_queue_%u_csum_err", i
);
2161 p
+= ETH_GSTRING_LEN
;
2162 sprintf(p
, "rx_queue_%u_alloc_failed", i
);
2163 p
+= ETH_GSTRING_LEN
;
2165 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2170 static const struct ethtool_ops igb_ethtool_ops
= {
2171 .get_settings
= igb_get_settings
,
2172 .set_settings
= igb_set_settings
,
2173 .get_drvinfo
= igb_get_drvinfo
,
2174 .get_regs_len
= igb_get_regs_len
,
2175 .get_regs
= igb_get_regs
,
2176 .get_wol
= igb_get_wol
,
2177 .set_wol
= igb_set_wol
,
2178 .get_msglevel
= igb_get_msglevel
,
2179 .set_msglevel
= igb_set_msglevel
,
2180 .nway_reset
= igb_nway_reset
,
2181 .get_link
= igb_get_link
,
2182 .get_eeprom_len
= igb_get_eeprom_len
,
2183 .get_eeprom
= igb_get_eeprom
,
2184 .set_eeprom
= igb_set_eeprom
,
2185 .get_ringparam
= igb_get_ringparam
,
2186 .set_ringparam
= igb_set_ringparam
,
2187 .get_pauseparam
= igb_get_pauseparam
,
2188 .set_pauseparam
= igb_set_pauseparam
,
2189 .self_test
= igb_diag_test
,
2190 .get_strings
= igb_get_strings
,
2191 .set_phys_id
= igb_set_phys_id
,
2192 .get_sset_count
= igb_get_sset_count
,
2193 .get_ethtool_stats
= igb_get_ethtool_stats
,
2194 .get_coalesce
= igb_get_coalesce
,
2195 .set_coalesce
= igb_set_coalesce
,
2198 void igb_set_ethtool_ops(struct net_device
*netdev
)
2200 SET_ETHTOOL_OPS(netdev
, &igb_ethtool_ops
);