Merge branch 'for-linus' of git://git.infradead.org/users/sameo/mfd-2.6
[linux-btrfs-devel.git] / drivers / net / pxa168_eth.c
blobd17d0624c5e63d13689673ba16295c51aefb1297
1 /*
2 * PXA168 ethernet driver.
3 * Most of the code is derived from mv643xx ethernet driver.
5 * Copyright (C) 2010 Marvell International Ltd.
6 * Sachin Sanap <ssanap@marvell.com>
7 * Zhangfei Gao <zgao6@marvell.com>
8 * Philip Rakity <prakity@marvell.com>
9 * Mark Brown <markb@marvell.com>
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version 2
14 * of the License, or (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 #include <linux/init.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/in.h>
29 #include <linux/ip.h>
30 #include <linux/tcp.h>
31 #include <linux/udp.h>
32 #include <linux/etherdevice.h>
33 #include <linux/bitops.h>
34 #include <linux/delay.h>
35 #include <linux/ethtool.h>
36 #include <linux/platform_device.h>
37 #include <linux/module.h>
38 #include <linux/kernel.h>
39 #include <linux/workqueue.h>
40 #include <linux/clk.h>
41 #include <linux/phy.h>
42 #include <linux/io.h>
43 #include <linux/interrupt.h>
44 #include <linux/types.h>
45 #include <asm/pgtable.h>
46 #include <asm/system.h>
47 #include <asm/cacheflush.h>
48 #include <linux/pxa168_eth.h>
50 #define DRIVER_NAME "pxa168-eth"
51 #define DRIVER_VERSION "0.3"
54 * Registers
57 #define PHY_ADDRESS 0x0000
58 #define SMI 0x0010
59 #define PORT_CONFIG 0x0400
60 #define PORT_CONFIG_EXT 0x0408
61 #define PORT_COMMAND 0x0410
62 #define PORT_STATUS 0x0418
63 #define HTPR 0x0428
64 #define SDMA_CONFIG 0x0440
65 #define SDMA_CMD 0x0448
66 #define INT_CAUSE 0x0450
67 #define INT_W_CLEAR 0x0454
68 #define INT_MASK 0x0458
69 #define ETH_F_RX_DESC_0 0x0480
70 #define ETH_C_RX_DESC_0 0x04A0
71 #define ETH_C_TX_DESC_1 0x04E4
73 /* smi register */
74 #define SMI_BUSY (1 << 28) /* 0 - Write, 1 - Read */
75 #define SMI_R_VALID (1 << 27) /* 0 - Write, 1 - Read */
76 #define SMI_OP_W (0 << 26) /* Write operation */
77 #define SMI_OP_R (1 << 26) /* Read operation */
79 #define PHY_WAIT_ITERATIONS 10
81 #define PXA168_ETH_PHY_ADDR_DEFAULT 0
82 /* RX & TX descriptor command */
83 #define BUF_OWNED_BY_DMA (1 << 31)
85 /* RX descriptor status */
86 #define RX_EN_INT (1 << 23)
87 #define RX_FIRST_DESC (1 << 17)
88 #define RX_LAST_DESC (1 << 16)
89 #define RX_ERROR (1 << 15)
91 /* TX descriptor command */
92 #define TX_EN_INT (1 << 23)
93 #define TX_GEN_CRC (1 << 22)
94 #define TX_ZERO_PADDING (1 << 18)
95 #define TX_FIRST_DESC (1 << 17)
96 #define TX_LAST_DESC (1 << 16)
97 #define TX_ERROR (1 << 15)
99 /* SDMA_CMD */
100 #define SDMA_CMD_AT (1 << 31)
101 #define SDMA_CMD_TXDL (1 << 24)
102 #define SDMA_CMD_TXDH (1 << 23)
103 #define SDMA_CMD_AR (1 << 15)
104 #define SDMA_CMD_ERD (1 << 7)
106 /* Bit definitions of the Port Config Reg */
107 #define PCR_HS (1 << 12)
108 #define PCR_EN (1 << 7)
109 #define PCR_PM (1 << 0)
111 /* Bit definitions of the Port Config Extend Reg */
112 #define PCXR_2BSM (1 << 28)
113 #define PCXR_DSCP_EN (1 << 21)
114 #define PCXR_MFL_1518 (0 << 14)
115 #define PCXR_MFL_1536 (1 << 14)
116 #define PCXR_MFL_2048 (2 << 14)
117 #define PCXR_MFL_64K (3 << 14)
118 #define PCXR_FLP (1 << 11)
119 #define PCXR_PRIO_TX_OFF 3
120 #define PCXR_TX_HIGH_PRI (7 << PCXR_PRIO_TX_OFF)
122 /* Bit definitions of the SDMA Config Reg */
123 #define SDCR_BSZ_OFF 12
124 #define SDCR_BSZ8 (3 << SDCR_BSZ_OFF)
125 #define SDCR_BSZ4 (2 << SDCR_BSZ_OFF)
126 #define SDCR_BSZ2 (1 << SDCR_BSZ_OFF)
127 #define SDCR_BSZ1 (0 << SDCR_BSZ_OFF)
128 #define SDCR_BLMR (1 << 6)
129 #define SDCR_BLMT (1 << 7)
130 #define SDCR_RIFB (1 << 9)
131 #define SDCR_RC_OFF 2
132 #define SDCR_RC_MAX_RETRANS (0xf << SDCR_RC_OFF)
135 * Bit definitions of the Interrupt Cause Reg
136 * and Interrupt MASK Reg is the same
138 #define ICR_RXBUF (1 << 0)
139 #define ICR_TXBUF_H (1 << 2)
140 #define ICR_TXBUF_L (1 << 3)
141 #define ICR_TXEND_H (1 << 6)
142 #define ICR_TXEND_L (1 << 7)
143 #define ICR_RXERR (1 << 8)
144 #define ICR_TXERR_H (1 << 10)
145 #define ICR_TXERR_L (1 << 11)
146 #define ICR_TX_UDR (1 << 13)
147 #define ICR_MII_CH (1 << 28)
149 #define ALL_INTS (ICR_TXBUF_H | ICR_TXBUF_L | ICR_TX_UDR |\
150 ICR_TXERR_H | ICR_TXERR_L |\
151 ICR_TXEND_H | ICR_TXEND_L |\
152 ICR_RXBUF | ICR_RXERR | ICR_MII_CH)
154 #define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */
156 #define NUM_RX_DESCS 64
157 #define NUM_TX_DESCS 64
159 #define HASH_ADD 0
160 #define HASH_DELETE 1
161 #define HASH_ADDR_TABLE_SIZE 0x4000 /* 16K (1/2K address - PCR_HS == 1) */
162 #define HOP_NUMBER 12
164 /* Bit definitions for Port status */
165 #define PORT_SPEED_100 (1 << 0)
166 #define FULL_DUPLEX (1 << 1)
167 #define FLOW_CONTROL_ENABLED (1 << 2)
168 #define LINK_UP (1 << 3)
170 /* Bit definitions for work to be done */
171 #define WORK_LINK (1 << 0)
172 #define WORK_TX_DONE (1 << 1)
175 * Misc definitions.
177 #define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
179 struct rx_desc {
180 u32 cmd_sts; /* Descriptor command status */
181 u16 byte_cnt; /* Descriptor buffer byte count */
182 u16 buf_size; /* Buffer size */
183 u32 buf_ptr; /* Descriptor buffer pointer */
184 u32 next_desc_ptr; /* Next descriptor pointer */
187 struct tx_desc {
188 u32 cmd_sts; /* Command/status field */
189 u16 reserved;
190 u16 byte_cnt; /* buffer byte count */
191 u32 buf_ptr; /* pointer to buffer for this descriptor */
192 u32 next_desc_ptr; /* Pointer to next descriptor */
195 struct pxa168_eth_private {
196 int port_num; /* User Ethernet port number */
198 int rx_resource_err; /* Rx ring resource error flag */
200 /* Next available and first returning Rx resource */
201 int rx_curr_desc_q, rx_used_desc_q;
203 /* Next available and first returning Tx resource */
204 int tx_curr_desc_q, tx_used_desc_q;
206 struct rx_desc *p_rx_desc_area;
207 dma_addr_t rx_desc_dma;
208 int rx_desc_area_size;
209 struct sk_buff **rx_skb;
211 struct tx_desc *p_tx_desc_area;
212 dma_addr_t tx_desc_dma;
213 int tx_desc_area_size;
214 struct sk_buff **tx_skb;
216 struct work_struct tx_timeout_task;
218 struct net_device *dev;
219 struct napi_struct napi;
220 u8 work_todo;
221 int skb_size;
223 struct net_device_stats stats;
224 /* Size of Tx Ring per queue */
225 int tx_ring_size;
226 /* Number of tx descriptors in use */
227 int tx_desc_count;
228 /* Size of Rx Ring per queue */
229 int rx_ring_size;
230 /* Number of rx descriptors in use */
231 int rx_desc_count;
234 * Used in case RX Ring is empty, which can occur when
235 * system does not have resources (skb's)
237 struct timer_list timeout;
238 struct mii_bus *smi_bus;
239 struct phy_device *phy;
241 /* clock */
242 struct clk *clk;
243 struct pxa168_eth_platform_data *pd;
245 * Ethernet controller base address.
247 void __iomem *base;
249 /* Pointer to the hardware address filter table */
250 void *htpr;
251 dma_addr_t htpr_dma;
254 struct addr_table_entry {
255 __le32 lo;
256 __le32 hi;
259 /* Bit fields of a Hash Table Entry */
260 enum hash_table_entry {
261 HASH_ENTRY_VALID = 1,
262 SKIP = 2,
263 HASH_ENTRY_RECEIVE_DISCARD = 4,
264 HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
267 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
268 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
269 static int pxa168_init_hw(struct pxa168_eth_private *pep);
270 static void eth_port_reset(struct net_device *dev);
271 static void eth_port_start(struct net_device *dev);
272 static int pxa168_eth_open(struct net_device *dev);
273 static int pxa168_eth_stop(struct net_device *dev);
274 static int ethernet_phy_setup(struct net_device *dev);
276 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
278 return readl(pep->base + offset);
281 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
283 writel(data, pep->base + offset);
286 static void abort_dma(struct pxa168_eth_private *pep)
288 int delay;
289 int max_retries = 40;
291 do {
292 wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
293 udelay(100);
295 delay = 10;
296 while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
297 && delay-- > 0) {
298 udelay(10);
300 } while (max_retries-- > 0 && delay <= 0);
302 if (max_retries <= 0)
303 printk(KERN_ERR "%s : DMA Stuck\n", __func__);
306 static int ethernet_phy_get(struct pxa168_eth_private *pep)
308 unsigned int reg_data;
310 reg_data = rdl(pep, PHY_ADDRESS);
312 return (reg_data >> (5 * pep->port_num)) & 0x1f;
315 static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr)
317 u32 reg_data;
318 int addr_shift = 5 * pep->port_num;
320 reg_data = rdl(pep, PHY_ADDRESS);
321 reg_data &= ~(0x1f << addr_shift);
322 reg_data |= (phy_addr & 0x1f) << addr_shift;
323 wrl(pep, PHY_ADDRESS, reg_data);
326 static void ethernet_phy_reset(struct pxa168_eth_private *pep)
328 int data;
330 data = phy_read(pep->phy, MII_BMCR);
331 if (data < 0)
332 return;
334 data |= BMCR_RESET;
335 if (phy_write(pep->phy, MII_BMCR, data) < 0)
336 return;
338 do {
339 data = phy_read(pep->phy, MII_BMCR);
340 } while (data >= 0 && data & BMCR_RESET);
343 static void rxq_refill(struct net_device *dev)
345 struct pxa168_eth_private *pep = netdev_priv(dev);
346 struct sk_buff *skb;
347 struct rx_desc *p_used_rx_desc;
348 int used_rx_desc;
350 while (pep->rx_desc_count < pep->rx_ring_size) {
351 int size;
353 skb = dev_alloc_skb(pep->skb_size);
354 if (!skb)
355 break;
356 if (SKB_DMA_REALIGN)
357 skb_reserve(skb, SKB_DMA_REALIGN);
358 pep->rx_desc_count++;
359 /* Get 'used' Rx descriptor */
360 used_rx_desc = pep->rx_used_desc_q;
361 p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
362 size = skb->end - skb->data;
363 p_used_rx_desc->buf_ptr = dma_map_single(NULL,
364 skb->data,
365 size,
366 DMA_FROM_DEVICE);
367 p_used_rx_desc->buf_size = size;
368 pep->rx_skb[used_rx_desc] = skb;
370 /* Return the descriptor to DMA ownership */
371 wmb();
372 p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
373 wmb();
375 /* Move the used descriptor pointer to the next descriptor */
376 pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
378 /* Any Rx return cancels the Rx resource error status */
379 pep->rx_resource_err = 0;
381 skb_reserve(skb, ETH_HW_IP_ALIGN);
385 * If RX ring is empty of SKB, set a timer to try allocating
386 * again at a later time.
388 if (pep->rx_desc_count == 0) {
389 pep->timeout.expires = jiffies + (HZ / 10);
390 add_timer(&pep->timeout);
394 static inline void rxq_refill_timer_wrapper(unsigned long data)
396 struct pxa168_eth_private *pep = (void *)data;
397 napi_schedule(&pep->napi);
400 static inline u8 flip_8_bits(u8 x)
402 return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
403 | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
404 | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
405 | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
408 static void nibble_swap_every_byte(unsigned char *mac_addr)
410 int i;
411 for (i = 0; i < ETH_ALEN; i++) {
412 mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
413 ((mac_addr[i] & 0xf0) >> 4);
417 static void inverse_every_nibble(unsigned char *mac_addr)
419 int i;
420 for (i = 0; i < ETH_ALEN; i++)
421 mac_addr[i] = flip_8_bits(mac_addr[i]);
425 * ----------------------------------------------------------------------------
426 * This function will calculate the hash function of the address.
427 * Inputs
428 * mac_addr_orig - MAC address.
429 * Outputs
430 * return the calculated entry.
432 static u32 hash_function(unsigned char *mac_addr_orig)
434 u32 hash_result;
435 u32 addr0;
436 u32 addr1;
437 u32 addr2;
438 u32 addr3;
439 unsigned char mac_addr[ETH_ALEN];
441 /* Make a copy of MAC address since we are going to performe bit
442 * operations on it
444 memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
446 nibble_swap_every_byte(mac_addr);
447 inverse_every_nibble(mac_addr);
449 addr0 = (mac_addr[5] >> 2) & 0x3f;
450 addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
451 addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
452 addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
454 hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
455 hash_result = hash_result & 0x07ff;
456 return hash_result;
460 * ----------------------------------------------------------------------------
461 * This function will add/del an entry to the address table.
462 * Inputs
463 * pep - ETHERNET .
464 * mac_addr - MAC address.
465 * skip - if 1, skip this address.Used in case of deleting an entry which is a
466 * part of chain in the hash table.We can't just delete the entry since
467 * that will break the chain.We need to defragment the tables time to
468 * time.
469 * rd - 0 Discard packet upon match.
470 * - 1 Receive packet upon match.
471 * Outputs
472 * address table entry is added/deleted.
473 * 0 if success.
474 * -ENOSPC if table full
476 static int add_del_hash_entry(struct pxa168_eth_private *pep,
477 unsigned char *mac_addr,
478 u32 rd, u32 skip, int del)
480 struct addr_table_entry *entry, *start;
481 u32 new_high;
482 u32 new_low;
483 u32 i;
485 new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
486 | (((mac_addr[1] >> 0) & 0xf) << 11)
487 | (((mac_addr[0] >> 4) & 0xf) << 7)
488 | (((mac_addr[0] >> 0) & 0xf) << 3)
489 | (((mac_addr[3] >> 4) & 0x1) << 31)
490 | (((mac_addr[3] >> 0) & 0xf) << 27)
491 | (((mac_addr[2] >> 4) & 0xf) << 23)
492 | (((mac_addr[2] >> 0) & 0xf) << 19)
493 | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
494 | HASH_ENTRY_VALID;
496 new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
497 | (((mac_addr[5] >> 0) & 0xf) << 11)
498 | (((mac_addr[4] >> 4) & 0xf) << 7)
499 | (((mac_addr[4] >> 0) & 0xf) << 3)
500 | (((mac_addr[3] >> 5) & 0x7) << 0);
503 * Pick the appropriate table, start scanning for free/reusable
504 * entries at the index obtained by hashing the specified MAC address
506 start = pep->htpr;
507 entry = start + hash_function(mac_addr);
508 for (i = 0; i < HOP_NUMBER; i++) {
509 if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
510 break;
511 } else {
512 /* if same address put in same position */
513 if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
514 (new_low & 0xfffffff8)) &&
515 (le32_to_cpu(entry->hi) == new_high)) {
516 break;
519 if (entry == start + 0x7ff)
520 entry = start;
521 else
522 entry++;
525 if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
526 (le32_to_cpu(entry->hi) != new_high) && del)
527 return 0;
529 if (i == HOP_NUMBER) {
530 if (!del) {
531 printk(KERN_INFO "%s: table section is full, need to "
532 "move to 16kB implementation?\n",
533 __FILE__);
534 return -ENOSPC;
535 } else
536 return 0;
540 * Update the selected entry
542 if (del) {
543 entry->hi = 0;
544 entry->lo = 0;
545 } else {
546 entry->hi = cpu_to_le32(new_high);
547 entry->lo = cpu_to_le32(new_low);
550 return 0;
554 * ----------------------------------------------------------------------------
555 * Create an addressTable entry from MAC address info
556 * found in the specifed net_device struct
558 * Input : pointer to ethernet interface network device structure
559 * Output : N/A
561 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
562 unsigned char *oaddr,
563 unsigned char *addr)
565 /* Delete old entry */
566 if (oaddr)
567 add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
568 /* Add new entry */
569 add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
572 static int init_hash_table(struct pxa168_eth_private *pep)
575 * Hardware expects CPU to build a hash table based on a predefined
576 * hash function and populate it based on hardware address. The
577 * location of the hash table is identified by 32-bit pointer stored
578 * in HTPR internal register. Two possible sizes exists for the hash
579 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
580 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
581 * 1/2kB.
583 /* TODO: Add support for 8kB hash table and alternative hash
584 * function.Driver can dynamically switch to them if the 1/2kB hash
585 * table is full.
587 if (pep->htpr == NULL) {
588 pep->htpr = dma_alloc_coherent(pep->dev->dev.parent,
589 HASH_ADDR_TABLE_SIZE,
590 &pep->htpr_dma, GFP_KERNEL);
591 if (pep->htpr == NULL)
592 return -ENOMEM;
594 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
595 wrl(pep, HTPR, pep->htpr_dma);
596 return 0;
599 static void pxa168_eth_set_rx_mode(struct net_device *dev)
601 struct pxa168_eth_private *pep = netdev_priv(dev);
602 struct netdev_hw_addr *ha;
603 u32 val;
605 val = rdl(pep, PORT_CONFIG);
606 if (dev->flags & IFF_PROMISC)
607 val |= PCR_PM;
608 else
609 val &= ~PCR_PM;
610 wrl(pep, PORT_CONFIG, val);
613 * Remove the old list of MAC address and add dev->addr
614 * and multicast address.
616 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
617 update_hash_table_mac_address(pep, NULL, dev->dev_addr);
619 netdev_for_each_mc_addr(ha, dev)
620 update_hash_table_mac_address(pep, NULL, ha->addr);
623 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
625 struct sockaddr *sa = addr;
626 struct pxa168_eth_private *pep = netdev_priv(dev);
627 unsigned char oldMac[ETH_ALEN];
629 if (!is_valid_ether_addr(sa->sa_data))
630 return -EINVAL;
631 memcpy(oldMac, dev->dev_addr, ETH_ALEN);
632 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
633 netif_addr_lock_bh(dev);
634 update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
635 netif_addr_unlock_bh(dev);
636 return 0;
639 static void eth_port_start(struct net_device *dev)
641 unsigned int val = 0;
642 struct pxa168_eth_private *pep = netdev_priv(dev);
643 int tx_curr_desc, rx_curr_desc;
645 /* Perform PHY reset, if there is a PHY. */
646 if (pep->phy != NULL) {
647 struct ethtool_cmd cmd;
649 pxa168_get_settings(pep->dev, &cmd);
650 ethernet_phy_reset(pep);
651 pxa168_set_settings(pep->dev, &cmd);
654 /* Assignment of Tx CTRP of given queue */
655 tx_curr_desc = pep->tx_curr_desc_q;
656 wrl(pep, ETH_C_TX_DESC_1,
657 (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
659 /* Assignment of Rx CRDP of given queue */
660 rx_curr_desc = pep->rx_curr_desc_q;
661 wrl(pep, ETH_C_RX_DESC_0,
662 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
664 wrl(pep, ETH_F_RX_DESC_0,
665 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
667 /* Clear all interrupts */
668 wrl(pep, INT_CAUSE, 0);
670 /* Enable all interrupts for receive, transmit and error. */
671 wrl(pep, INT_MASK, ALL_INTS);
673 val = rdl(pep, PORT_CONFIG);
674 val |= PCR_EN;
675 wrl(pep, PORT_CONFIG, val);
677 /* Start RX DMA engine */
678 val = rdl(pep, SDMA_CMD);
679 val |= SDMA_CMD_ERD;
680 wrl(pep, SDMA_CMD, val);
683 static void eth_port_reset(struct net_device *dev)
685 struct pxa168_eth_private *pep = netdev_priv(dev);
686 unsigned int val = 0;
688 /* Stop all interrupts for receive, transmit and error. */
689 wrl(pep, INT_MASK, 0);
691 /* Clear all interrupts */
692 wrl(pep, INT_CAUSE, 0);
694 /* Stop RX DMA */
695 val = rdl(pep, SDMA_CMD);
696 val &= ~SDMA_CMD_ERD; /* abort dma command */
698 /* Abort any transmit and receive operations and put DMA
699 * in idle state.
701 abort_dma(pep);
703 /* Disable port */
704 val = rdl(pep, PORT_CONFIG);
705 val &= ~PCR_EN;
706 wrl(pep, PORT_CONFIG, val);
710 * txq_reclaim - Free the tx desc data for completed descriptors
711 * If force is non-zero, frees uncompleted descriptors as well
713 static int txq_reclaim(struct net_device *dev, int force)
715 struct pxa168_eth_private *pep = netdev_priv(dev);
716 struct tx_desc *desc;
717 u32 cmd_sts;
718 struct sk_buff *skb;
719 int tx_index;
720 dma_addr_t addr;
721 int count;
722 int released = 0;
724 netif_tx_lock(dev);
726 pep->work_todo &= ~WORK_TX_DONE;
727 while (pep->tx_desc_count > 0) {
728 tx_index = pep->tx_used_desc_q;
729 desc = &pep->p_tx_desc_area[tx_index];
730 cmd_sts = desc->cmd_sts;
731 if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
732 if (released > 0) {
733 goto txq_reclaim_end;
734 } else {
735 released = -1;
736 goto txq_reclaim_end;
739 pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
740 pep->tx_desc_count--;
741 addr = desc->buf_ptr;
742 count = desc->byte_cnt;
743 skb = pep->tx_skb[tx_index];
744 if (skb)
745 pep->tx_skb[tx_index] = NULL;
747 if (cmd_sts & TX_ERROR) {
748 if (net_ratelimit())
749 printk(KERN_ERR "%s: Error in TX\n", dev->name);
750 dev->stats.tx_errors++;
752 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
753 if (skb)
754 dev_kfree_skb_irq(skb);
755 released++;
757 txq_reclaim_end:
758 netif_tx_unlock(dev);
759 return released;
762 static void pxa168_eth_tx_timeout(struct net_device *dev)
764 struct pxa168_eth_private *pep = netdev_priv(dev);
766 printk(KERN_INFO "%s: TX timeout desc_count %d\n",
767 dev->name, pep->tx_desc_count);
769 schedule_work(&pep->tx_timeout_task);
772 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
774 struct pxa168_eth_private *pep = container_of(work,
775 struct pxa168_eth_private,
776 tx_timeout_task);
777 struct net_device *dev = pep->dev;
778 pxa168_eth_stop(dev);
779 pxa168_eth_open(dev);
782 static int rxq_process(struct net_device *dev, int budget)
784 struct pxa168_eth_private *pep = netdev_priv(dev);
785 struct net_device_stats *stats = &dev->stats;
786 unsigned int received_packets = 0;
787 struct sk_buff *skb;
789 while (budget-- > 0) {
790 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
791 struct rx_desc *rx_desc;
792 unsigned int cmd_sts;
794 /* Do not process Rx ring in case of Rx ring resource error */
795 if (pep->rx_resource_err)
796 break;
797 rx_curr_desc = pep->rx_curr_desc_q;
798 rx_used_desc = pep->rx_used_desc_q;
799 rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
800 cmd_sts = rx_desc->cmd_sts;
801 rmb();
802 if (cmd_sts & (BUF_OWNED_BY_DMA))
803 break;
804 skb = pep->rx_skb[rx_curr_desc];
805 pep->rx_skb[rx_curr_desc] = NULL;
807 rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
808 pep->rx_curr_desc_q = rx_next_curr_desc;
810 /* Rx descriptors exhausted. */
811 /* Set the Rx ring resource error flag */
812 if (rx_next_curr_desc == rx_used_desc)
813 pep->rx_resource_err = 1;
814 pep->rx_desc_count--;
815 dma_unmap_single(NULL, rx_desc->buf_ptr,
816 rx_desc->buf_size,
817 DMA_FROM_DEVICE);
818 received_packets++;
820 * Update statistics.
821 * Note byte count includes 4 byte CRC count
823 stats->rx_packets++;
824 stats->rx_bytes += rx_desc->byte_cnt;
826 * In case received a packet without first / last bits on OR
827 * the error summary bit is on, the packets needs to be droped.
829 if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
830 (RX_FIRST_DESC | RX_LAST_DESC))
831 || (cmd_sts & RX_ERROR)) {
833 stats->rx_dropped++;
834 if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
835 (RX_FIRST_DESC | RX_LAST_DESC)) {
836 if (net_ratelimit())
837 printk(KERN_ERR
838 "%s: Rx pkt on multiple desc\n",
839 dev->name);
841 if (cmd_sts & RX_ERROR)
842 stats->rx_errors++;
843 dev_kfree_skb_irq(skb);
844 } else {
846 * The -4 is for the CRC in the trailer of the
847 * received packet
849 skb_put(skb, rx_desc->byte_cnt - 4);
850 skb->protocol = eth_type_trans(skb, dev);
851 netif_receive_skb(skb);
854 /* Fill RX ring with skb's */
855 rxq_refill(dev);
856 return received_packets;
859 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
860 struct net_device *dev)
862 u32 icr;
863 int ret = 0;
865 icr = rdl(pep, INT_CAUSE);
866 if (icr == 0)
867 return IRQ_NONE;
869 wrl(pep, INT_CAUSE, ~icr);
870 if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
871 pep->work_todo |= WORK_TX_DONE;
872 ret = 1;
874 if (icr & ICR_RXBUF)
875 ret = 1;
876 if (icr & ICR_MII_CH) {
877 pep->work_todo |= WORK_LINK;
878 ret = 1;
880 return ret;
883 static void handle_link_event(struct pxa168_eth_private *pep)
885 struct net_device *dev = pep->dev;
886 u32 port_status;
887 int speed;
888 int duplex;
889 int fc;
891 port_status = rdl(pep, PORT_STATUS);
892 if (!(port_status & LINK_UP)) {
893 if (netif_carrier_ok(dev)) {
894 printk(KERN_INFO "%s: link down\n", dev->name);
895 netif_carrier_off(dev);
896 txq_reclaim(dev, 1);
898 return;
900 if (port_status & PORT_SPEED_100)
901 speed = 100;
902 else
903 speed = 10;
905 duplex = (port_status & FULL_DUPLEX) ? 1 : 0;
906 fc = (port_status & FLOW_CONTROL_ENABLED) ? 1 : 0;
907 printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
908 "flow control %sabled\n", dev->name,
909 speed, duplex ? "full" : "half", fc ? "en" : "dis");
910 if (!netif_carrier_ok(dev))
911 netif_carrier_on(dev);
914 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
916 struct net_device *dev = (struct net_device *)dev_id;
917 struct pxa168_eth_private *pep = netdev_priv(dev);
919 if (unlikely(!pxa168_eth_collect_events(pep, dev)))
920 return IRQ_NONE;
921 /* Disable interrupts */
922 wrl(pep, INT_MASK, 0);
923 napi_schedule(&pep->napi);
924 return IRQ_HANDLED;
927 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
929 int skb_size;
932 * Reserve 2+14 bytes for an ethernet header (the hardware
933 * automatically prepends 2 bytes of dummy data to each
934 * received packet), 16 bytes for up to four VLAN tags, and
935 * 4 bytes for the trailing FCS -- 36 bytes total.
937 skb_size = pep->dev->mtu + 36;
940 * Make sure that the skb size is a multiple of 8 bytes, as
941 * the lower three bits of the receive descriptor's buffer
942 * size field are ignored by the hardware.
944 pep->skb_size = (skb_size + 7) & ~7;
947 * If NET_SKB_PAD is smaller than a cache line,
948 * netdev_alloc_skb() will cause skb->data to be misaligned
949 * to a cache line boundary. If this is the case, include
950 * some extra space to allow re-aligning the data area.
952 pep->skb_size += SKB_DMA_REALIGN;
956 static int set_port_config_ext(struct pxa168_eth_private *pep)
958 int skb_size;
960 pxa168_eth_recalc_skb_size(pep);
961 if (pep->skb_size <= 1518)
962 skb_size = PCXR_MFL_1518;
963 else if (pep->skb_size <= 1536)
964 skb_size = PCXR_MFL_1536;
965 else if (pep->skb_size <= 2048)
966 skb_size = PCXR_MFL_2048;
967 else
968 skb_size = PCXR_MFL_64K;
970 /* Extended Port Configuration */
971 wrl(pep,
972 PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */
973 PCXR_DSCP_EN | /* Enable DSCP in IP */
974 skb_size | PCXR_FLP | /* do not force link pass */
975 PCXR_TX_HIGH_PRI); /* Transmit - high priority queue */
977 return 0;
980 static int pxa168_init_hw(struct pxa168_eth_private *pep)
982 int err = 0;
984 /* Disable interrupts */
985 wrl(pep, INT_MASK, 0);
986 wrl(pep, INT_CAUSE, 0);
987 /* Write to ICR to clear interrupts. */
988 wrl(pep, INT_W_CLEAR, 0);
989 /* Abort any transmit and receive operations and put DMA
990 * in idle state.
992 abort_dma(pep);
993 /* Initialize address hash table */
994 err = init_hash_table(pep);
995 if (err)
996 return err;
997 /* SDMA configuration */
998 wrl(pep, SDMA_CONFIG, SDCR_BSZ8 | /* Burst size = 32 bytes */
999 SDCR_RIFB | /* Rx interrupt on frame */
1000 SDCR_BLMT | /* Little endian transmit */
1001 SDCR_BLMR | /* Little endian receive */
1002 SDCR_RC_MAX_RETRANS); /* Max retransmit count */
1003 /* Port Configuration */
1004 wrl(pep, PORT_CONFIG, PCR_HS); /* Hash size is 1/2kb */
1005 set_port_config_ext(pep);
1007 return err;
1010 static int rxq_init(struct net_device *dev)
1012 struct pxa168_eth_private *pep = netdev_priv(dev);
1013 struct rx_desc *p_rx_desc;
1014 int size = 0, i = 0;
1015 int rx_desc_num = pep->rx_ring_size;
1017 /* Allocate RX skb rings */
1018 pep->rx_skb = kmalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1019 GFP_KERNEL);
1020 if (!pep->rx_skb) {
1021 printk(KERN_ERR "%s: Cannot alloc RX skb ring\n", dev->name);
1022 return -ENOMEM;
1024 /* Allocate RX ring */
1025 pep->rx_desc_count = 0;
1026 size = pep->rx_ring_size * sizeof(struct rx_desc);
1027 pep->rx_desc_area_size = size;
1028 pep->p_rx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1029 &pep->rx_desc_dma, GFP_KERNEL);
1030 if (!pep->p_rx_desc_area) {
1031 printk(KERN_ERR "%s: Cannot alloc RX ring (size %d bytes)\n",
1032 dev->name, size);
1033 goto out;
1035 memset((void *)pep->p_rx_desc_area, 0, size);
1036 /* initialize the next_desc_ptr links in the Rx descriptors ring */
1037 p_rx_desc = (struct rx_desc *)pep->p_rx_desc_area;
1038 for (i = 0; i < rx_desc_num; i++) {
1039 p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1040 ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1042 /* Save Rx desc pointer to driver struct. */
1043 pep->rx_curr_desc_q = 0;
1044 pep->rx_used_desc_q = 0;
1045 pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1046 return 0;
1047 out:
1048 kfree(pep->rx_skb);
1049 return -ENOMEM;
1052 static void rxq_deinit(struct net_device *dev)
1054 struct pxa168_eth_private *pep = netdev_priv(dev);
1055 int curr;
1057 /* Free preallocated skb's on RX rings */
1058 for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1059 if (pep->rx_skb[curr]) {
1060 dev_kfree_skb(pep->rx_skb[curr]);
1061 pep->rx_desc_count--;
1064 if (pep->rx_desc_count)
1065 printk(KERN_ERR
1066 "Error in freeing Rx Ring. %d skb's still\n",
1067 pep->rx_desc_count);
1068 /* Free RX ring */
1069 if (pep->p_rx_desc_area)
1070 dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1071 pep->p_rx_desc_area, pep->rx_desc_dma);
1072 kfree(pep->rx_skb);
1075 static int txq_init(struct net_device *dev)
1077 struct pxa168_eth_private *pep = netdev_priv(dev);
1078 struct tx_desc *p_tx_desc;
1079 int size = 0, i = 0;
1080 int tx_desc_num = pep->tx_ring_size;
1082 pep->tx_skb = kmalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1083 GFP_KERNEL);
1084 if (!pep->tx_skb) {
1085 printk(KERN_ERR "%s: Cannot alloc TX skb ring\n", dev->name);
1086 return -ENOMEM;
1088 /* Allocate TX ring */
1089 pep->tx_desc_count = 0;
1090 size = pep->tx_ring_size * sizeof(struct tx_desc);
1091 pep->tx_desc_area_size = size;
1092 pep->p_tx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1093 &pep->tx_desc_dma, GFP_KERNEL);
1094 if (!pep->p_tx_desc_area) {
1095 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
1096 dev->name, size);
1097 goto out;
1099 memset((void *)pep->p_tx_desc_area, 0, pep->tx_desc_area_size);
1100 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1101 p_tx_desc = (struct tx_desc *)pep->p_tx_desc_area;
1102 for (i = 0; i < tx_desc_num; i++) {
1103 p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1104 ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1106 pep->tx_curr_desc_q = 0;
1107 pep->tx_used_desc_q = 0;
1108 pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1109 return 0;
1110 out:
1111 kfree(pep->tx_skb);
1112 return -ENOMEM;
1115 static void txq_deinit(struct net_device *dev)
1117 struct pxa168_eth_private *pep = netdev_priv(dev);
1119 /* Free outstanding skb's on TX ring */
1120 txq_reclaim(dev, 1);
1121 BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1122 /* Free TX ring */
1123 if (pep->p_tx_desc_area)
1124 dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1125 pep->p_tx_desc_area, pep->tx_desc_dma);
1126 kfree(pep->tx_skb);
1129 static int pxa168_eth_open(struct net_device *dev)
1131 struct pxa168_eth_private *pep = netdev_priv(dev);
1132 int err;
1134 err = request_irq(dev->irq, pxa168_eth_int_handler,
1135 IRQF_DISABLED, dev->name, dev);
1136 if (err) {
1137 dev_printk(KERN_ERR, &dev->dev, "can't assign irq\n");
1138 return -EAGAIN;
1140 pep->rx_resource_err = 0;
1141 err = rxq_init(dev);
1142 if (err != 0)
1143 goto out_free_irq;
1144 err = txq_init(dev);
1145 if (err != 0)
1146 goto out_free_rx_skb;
1147 pep->rx_used_desc_q = 0;
1148 pep->rx_curr_desc_q = 0;
1150 /* Fill RX ring with skb's */
1151 rxq_refill(dev);
1152 pep->rx_used_desc_q = 0;
1153 pep->rx_curr_desc_q = 0;
1154 netif_carrier_off(dev);
1155 eth_port_start(dev);
1156 napi_enable(&pep->napi);
1157 return 0;
1158 out_free_rx_skb:
1159 rxq_deinit(dev);
1160 out_free_irq:
1161 free_irq(dev->irq, dev);
1162 return err;
1165 static int pxa168_eth_stop(struct net_device *dev)
1167 struct pxa168_eth_private *pep = netdev_priv(dev);
1168 eth_port_reset(dev);
1170 /* Disable interrupts */
1171 wrl(pep, INT_MASK, 0);
1172 wrl(pep, INT_CAUSE, 0);
1173 /* Write to ICR to clear interrupts. */
1174 wrl(pep, INT_W_CLEAR, 0);
1175 napi_disable(&pep->napi);
1176 del_timer_sync(&pep->timeout);
1177 netif_carrier_off(dev);
1178 free_irq(dev->irq, dev);
1179 rxq_deinit(dev);
1180 txq_deinit(dev);
1182 return 0;
1185 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1187 int retval;
1188 struct pxa168_eth_private *pep = netdev_priv(dev);
1190 if ((mtu > 9500) || (mtu < 68))
1191 return -EINVAL;
1193 dev->mtu = mtu;
1194 retval = set_port_config_ext(pep);
1196 if (!netif_running(dev))
1197 return 0;
1200 * Stop and then re-open the interface. This will allocate RX
1201 * skbs of the new MTU.
1202 * There is a possible danger that the open will not succeed,
1203 * due to memory being full.
1205 pxa168_eth_stop(dev);
1206 if (pxa168_eth_open(dev)) {
1207 dev_printk(KERN_ERR, &dev->dev,
1208 "fatal error on re-opening device after "
1209 "MTU change\n");
1212 return 0;
1215 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1217 int tx_desc_curr;
1219 tx_desc_curr = pep->tx_curr_desc_q;
1220 pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1221 BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1222 pep->tx_desc_count++;
1224 return tx_desc_curr;
1227 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1229 struct pxa168_eth_private *pep =
1230 container_of(napi, struct pxa168_eth_private, napi);
1231 struct net_device *dev = pep->dev;
1232 int work_done = 0;
1234 if (unlikely(pep->work_todo & WORK_LINK)) {
1235 pep->work_todo &= ~(WORK_LINK);
1236 handle_link_event(pep);
1239 * We call txq_reclaim every time since in NAPI interupts are disabled
1240 * and due to this we miss the TX_DONE interrupt,which is not updated in
1241 * interrupt status register.
1243 txq_reclaim(dev, 0);
1244 if (netif_queue_stopped(dev)
1245 && pep->tx_ring_size - pep->tx_desc_count > 1) {
1246 netif_wake_queue(dev);
1248 work_done = rxq_process(dev, budget);
1249 if (work_done < budget) {
1250 napi_complete(napi);
1251 wrl(pep, INT_MASK, ALL_INTS);
1254 return work_done;
1257 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1259 struct pxa168_eth_private *pep = netdev_priv(dev);
1260 struct net_device_stats *stats = &dev->stats;
1261 struct tx_desc *desc;
1262 int tx_index;
1263 int length;
1265 tx_index = eth_alloc_tx_desc_index(pep);
1266 desc = &pep->p_tx_desc_area[tx_index];
1267 length = skb->len;
1268 pep->tx_skb[tx_index] = skb;
1269 desc->byte_cnt = length;
1270 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1272 skb_tx_timestamp(skb);
1274 wmb();
1275 desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1276 TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1277 wmb();
1278 wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1280 stats->tx_bytes += length;
1281 stats->tx_packets++;
1282 dev->trans_start = jiffies;
1283 if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1284 /* We handled the current skb, but now we are out of space.*/
1285 netif_stop_queue(dev);
1288 return NETDEV_TX_OK;
1291 static int smi_wait_ready(struct pxa168_eth_private *pep)
1293 int i = 0;
1295 /* wait for the SMI register to become available */
1296 for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1297 if (i == PHY_WAIT_ITERATIONS)
1298 return -ETIMEDOUT;
1299 msleep(10);
1302 return 0;
1305 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1307 struct pxa168_eth_private *pep = bus->priv;
1308 int i = 0;
1309 int val;
1311 if (smi_wait_ready(pep)) {
1312 printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1313 return -ETIMEDOUT;
1315 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1316 /* now wait for the data to be valid */
1317 for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1318 if (i == PHY_WAIT_ITERATIONS) {
1319 printk(KERN_WARNING
1320 "pxa168_eth: SMI bus read not valid\n");
1321 return -ENODEV;
1323 msleep(10);
1326 return val & 0xffff;
1329 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1330 u16 value)
1332 struct pxa168_eth_private *pep = bus->priv;
1334 if (smi_wait_ready(pep)) {
1335 printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1336 return -ETIMEDOUT;
1339 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1340 SMI_OP_W | (value & 0xffff));
1342 if (smi_wait_ready(pep)) {
1343 printk(KERN_ERR "pxa168_eth: SMI bus busy timeout\n");
1344 return -ETIMEDOUT;
1347 return 0;
1350 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1351 int cmd)
1353 struct pxa168_eth_private *pep = netdev_priv(dev);
1354 if (pep->phy != NULL)
1355 return phy_mii_ioctl(pep->phy, ifr, cmd);
1357 return -EOPNOTSUPP;
1360 static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr)
1362 struct mii_bus *bus = pep->smi_bus;
1363 struct phy_device *phydev;
1364 int start;
1365 int num;
1366 int i;
1368 if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) {
1369 /* Scan entire range */
1370 start = ethernet_phy_get(pep);
1371 num = 32;
1372 } else {
1373 /* Use phy addr specific to platform */
1374 start = phy_addr & 0x1f;
1375 num = 1;
1377 phydev = NULL;
1378 for (i = 0; i < num; i++) {
1379 int addr = (start + i) & 0x1f;
1380 if (bus->phy_map[addr] == NULL)
1381 mdiobus_scan(bus, addr);
1383 if (phydev == NULL) {
1384 phydev = bus->phy_map[addr];
1385 if (phydev != NULL)
1386 ethernet_phy_set_addr(pep, addr);
1390 return phydev;
1393 static void phy_init(struct pxa168_eth_private *pep, int speed, int duplex)
1395 struct phy_device *phy = pep->phy;
1396 ethernet_phy_reset(pep);
1398 phy_attach(pep->dev, dev_name(&phy->dev), 0, PHY_INTERFACE_MODE_MII);
1400 if (speed == 0) {
1401 phy->autoneg = AUTONEG_ENABLE;
1402 phy->speed = 0;
1403 phy->duplex = 0;
1404 phy->supported &= PHY_BASIC_FEATURES;
1405 phy->advertising = phy->supported | ADVERTISED_Autoneg;
1406 } else {
1407 phy->autoneg = AUTONEG_DISABLE;
1408 phy->advertising = 0;
1409 phy->speed = speed;
1410 phy->duplex = duplex;
1412 phy_start_aneg(phy);
1415 static int ethernet_phy_setup(struct net_device *dev)
1417 struct pxa168_eth_private *pep = netdev_priv(dev);
1419 if (pep->pd->init)
1420 pep->pd->init();
1421 pep->phy = phy_scan(pep, pep->pd->phy_addr & 0x1f);
1422 if (pep->phy != NULL)
1423 phy_init(pep, pep->pd->speed, pep->pd->duplex);
1424 update_hash_table_mac_address(pep, NULL, dev->dev_addr);
1426 return 0;
1429 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1431 struct pxa168_eth_private *pep = netdev_priv(dev);
1432 int err;
1434 err = phy_read_status(pep->phy);
1435 if (err == 0)
1436 err = phy_ethtool_gset(pep->phy, cmd);
1438 return err;
1441 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1443 struct pxa168_eth_private *pep = netdev_priv(dev);
1445 return phy_ethtool_sset(pep->phy, cmd);
1448 static void pxa168_get_drvinfo(struct net_device *dev,
1449 struct ethtool_drvinfo *info)
1451 strncpy(info->driver, DRIVER_NAME, 32);
1452 strncpy(info->version, DRIVER_VERSION, 32);
1453 strncpy(info->fw_version, "N/A", 32);
1454 strncpy(info->bus_info, "N/A", 32);
1457 static const struct ethtool_ops pxa168_ethtool_ops = {
1458 .get_settings = pxa168_get_settings,
1459 .set_settings = pxa168_set_settings,
1460 .get_drvinfo = pxa168_get_drvinfo,
1461 .get_link = ethtool_op_get_link,
1464 static const struct net_device_ops pxa168_eth_netdev_ops = {
1465 .ndo_open = pxa168_eth_open,
1466 .ndo_stop = pxa168_eth_stop,
1467 .ndo_start_xmit = pxa168_eth_start_xmit,
1468 .ndo_set_rx_mode = pxa168_eth_set_rx_mode,
1469 .ndo_set_mac_address = pxa168_eth_set_mac_address,
1470 .ndo_validate_addr = eth_validate_addr,
1471 .ndo_do_ioctl = pxa168_eth_do_ioctl,
1472 .ndo_change_mtu = pxa168_eth_change_mtu,
1473 .ndo_tx_timeout = pxa168_eth_tx_timeout,
1476 static int pxa168_eth_probe(struct platform_device *pdev)
1478 struct pxa168_eth_private *pep = NULL;
1479 struct net_device *dev = NULL;
1480 struct resource *res;
1481 struct clk *clk;
1482 int err;
1484 printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1486 clk = clk_get(&pdev->dev, "MFUCLK");
1487 if (IS_ERR(clk)) {
1488 printk(KERN_ERR "%s: Fast Ethernet failed to get clock\n",
1489 DRIVER_NAME);
1490 return -ENODEV;
1492 clk_enable(clk);
1494 dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1495 if (!dev) {
1496 err = -ENOMEM;
1497 goto err_clk;
1500 platform_set_drvdata(pdev, dev);
1501 pep = netdev_priv(dev);
1502 pep->dev = dev;
1503 pep->clk = clk;
1504 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1505 if (res == NULL) {
1506 err = -ENODEV;
1507 goto err_netdev;
1509 pep->base = ioremap(res->start, resource_size(res));
1510 if (pep->base == NULL) {
1511 err = -ENOMEM;
1512 goto err_netdev;
1514 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1515 BUG_ON(!res);
1516 dev->irq = res->start;
1517 dev->netdev_ops = &pxa168_eth_netdev_ops;
1518 dev->watchdog_timeo = 2 * HZ;
1519 dev->base_addr = 0;
1520 SET_ETHTOOL_OPS(dev, &pxa168_ethtool_ops);
1522 INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1524 printk(KERN_INFO "%s:Using random mac address\n", DRIVER_NAME);
1525 random_ether_addr(dev->dev_addr);
1527 pep->pd = pdev->dev.platform_data;
1528 pep->rx_ring_size = NUM_RX_DESCS;
1529 if (pep->pd->rx_queue_size)
1530 pep->rx_ring_size = pep->pd->rx_queue_size;
1532 pep->tx_ring_size = NUM_TX_DESCS;
1533 if (pep->pd->tx_queue_size)
1534 pep->tx_ring_size = pep->pd->tx_queue_size;
1536 pep->port_num = pep->pd->port_number;
1537 /* Hardware supports only 3 ports */
1538 BUG_ON(pep->port_num > 2);
1539 netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1541 memset(&pep->timeout, 0, sizeof(struct timer_list));
1542 init_timer(&pep->timeout);
1543 pep->timeout.function = rxq_refill_timer_wrapper;
1544 pep->timeout.data = (unsigned long)pep;
1546 pep->smi_bus = mdiobus_alloc();
1547 if (pep->smi_bus == NULL) {
1548 err = -ENOMEM;
1549 goto err_base;
1551 pep->smi_bus->priv = pep;
1552 pep->smi_bus->name = "pxa168_eth smi";
1553 pep->smi_bus->read = pxa168_smi_read;
1554 pep->smi_bus->write = pxa168_smi_write;
1555 snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%d", pdev->id);
1556 pep->smi_bus->parent = &pdev->dev;
1557 pep->smi_bus->phy_mask = 0xffffffff;
1558 err = mdiobus_register(pep->smi_bus);
1559 if (err)
1560 goto err_free_mdio;
1562 pxa168_init_hw(pep);
1563 err = ethernet_phy_setup(dev);
1564 if (err)
1565 goto err_mdiobus;
1566 SET_NETDEV_DEV(dev, &pdev->dev);
1567 err = register_netdev(dev);
1568 if (err)
1569 goto err_mdiobus;
1570 return 0;
1572 err_mdiobus:
1573 mdiobus_unregister(pep->smi_bus);
1574 err_free_mdio:
1575 mdiobus_free(pep->smi_bus);
1576 err_base:
1577 iounmap(pep->base);
1578 err_netdev:
1579 free_netdev(dev);
1580 err_clk:
1581 clk_disable(clk);
1582 clk_put(clk);
1583 return err;
1586 static int pxa168_eth_remove(struct platform_device *pdev)
1588 struct net_device *dev = platform_get_drvdata(pdev);
1589 struct pxa168_eth_private *pep = netdev_priv(dev);
1591 if (pep->htpr) {
1592 dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1593 pep->htpr, pep->htpr_dma);
1594 pep->htpr = NULL;
1596 if (pep->clk) {
1597 clk_disable(pep->clk);
1598 clk_put(pep->clk);
1599 pep->clk = NULL;
1601 if (pep->phy != NULL)
1602 phy_detach(pep->phy);
1604 iounmap(pep->base);
1605 pep->base = NULL;
1606 mdiobus_unregister(pep->smi_bus);
1607 mdiobus_free(pep->smi_bus);
1608 unregister_netdev(dev);
1609 cancel_work_sync(&pep->tx_timeout_task);
1610 free_netdev(dev);
1611 platform_set_drvdata(pdev, NULL);
1612 return 0;
1615 static void pxa168_eth_shutdown(struct platform_device *pdev)
1617 struct net_device *dev = platform_get_drvdata(pdev);
1618 eth_port_reset(dev);
1621 #ifdef CONFIG_PM
1622 static int pxa168_eth_resume(struct platform_device *pdev)
1624 return -ENOSYS;
1627 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1629 return -ENOSYS;
1632 #else
1633 #define pxa168_eth_resume NULL
1634 #define pxa168_eth_suspend NULL
1635 #endif
1637 static struct platform_driver pxa168_eth_driver = {
1638 .probe = pxa168_eth_probe,
1639 .remove = pxa168_eth_remove,
1640 .shutdown = pxa168_eth_shutdown,
1641 .resume = pxa168_eth_resume,
1642 .suspend = pxa168_eth_suspend,
1643 .driver = {
1644 .name = DRIVER_NAME,
1648 static int __init pxa168_init_module(void)
1650 return platform_driver_register(&pxa168_eth_driver);
1653 static void __exit pxa168_cleanup_module(void)
1655 platform_driver_unregister(&pxa168_eth_driver);
1658 module_init(pxa168_init_module);
1659 module_exit(pxa168_cleanup_module);
1661 MODULE_LICENSE("GPL");
1662 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1663 MODULE_ALIAS("platform:pxa168_eth");