2 * arch/arm/kernel/kprobes.c
6 * Abhishek Sagar <sagar.abhishek@gmail.com>
7 * Copyright (C) 2006, 2007 Motorola Inc.
9 * Nicolas Pitre <nico@marvell.com>
10 * Copyright (C) 2007 Marvell Ltd.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/stringify.h>
28 #include <asm/traps.h>
29 #include <asm/cacheflush.h>
33 #define MIN_STACK_SIZE(addr) \
34 min((unsigned long)MAX_STACK_SIZE, \
35 (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
37 #define flush_insns(addr, size) \
38 flush_icache_range((unsigned long)(addr), \
39 (unsigned long)(addr) + \
42 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
43 #define JPROBE_MAGIC_ADDR 0xffffffff
45 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
46 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
49 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
52 kprobe_opcode_t tmp_insn
[MAX_INSN_SIZE
];
53 unsigned long addr
= (unsigned long)p
->addr
;
55 kprobe_decode_insn_t
*decode_insn
;
58 if (in_exception_text(addr
))
61 #ifdef CONFIG_THUMB2_KERNEL
63 addr
&= ~1; /* Bit 0 would normally be set to indicate Thumb code */
64 insn
= ((u16
*)addr
)[0];
65 if (is_wide_instruction(insn
)) {
67 insn
|= ((u16
*)addr
)[1];
68 decode_insn
= thumb32_kprobe_decode_insn
;
70 decode_insn
= thumb16_kprobe_decode_insn
;
71 #else /* !CONFIG_THUMB2_KERNEL */
76 decode_insn
= arm_kprobe_decode_insn
;
80 p
->ainsn
.insn
= tmp_insn
;
82 switch ((*decode_insn
)(insn
, &p
->ainsn
)) {
83 case INSN_REJECTED
: /* not supported */
86 case INSN_GOOD
: /* instruction uses slot */
87 p
->ainsn
.insn
= get_insn_slot();
90 for (is
= 0; is
< MAX_INSN_SIZE
; ++is
)
91 p
->ainsn
.insn
[is
] = tmp_insn
[is
];
92 flush_insns(p
->ainsn
.insn
,
93 sizeof(p
->ainsn
.insn
[0]) * MAX_INSN_SIZE
);
94 p
->ainsn
.insn_fn
= (kprobe_insn_fn_t
*)
95 ((uintptr_t)p
->ainsn
.insn
| thumb
);
98 case INSN_GOOD_NO_SLOT
: /* instruction doesn't need insn slot */
106 #ifdef CONFIG_THUMB2_KERNEL
109 * For a 32-bit Thumb breakpoint spanning two memory words we need to take
110 * special precautions to insert the breakpoint atomically, especially on SMP
111 * systems. This is achieved by calling this arming function using stop_machine.
113 static int __kprobes
set_t32_breakpoint(void *addr
)
115 ((u16
*)addr
)[0] = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION
>> 16;
116 ((u16
*)addr
)[1] = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION
& 0xffff;
117 flush_insns(addr
, 2*sizeof(u16
));
121 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
123 uintptr_t addr
= (uintptr_t)p
->addr
& ~1; /* Remove any Thumb flag */
125 if (!is_wide_instruction(p
->opcode
)) {
126 *(u16
*)addr
= KPROBE_THUMB16_BREAKPOINT_INSTRUCTION
;
127 flush_insns(addr
, sizeof(u16
));
128 } else if (addr
& 2) {
129 /* A 32-bit instruction spanning two words needs special care */
130 stop_machine(set_t32_breakpoint
, (void *)addr
, &cpu_online_map
);
132 /* Word aligned 32-bit instruction can be written atomically */
133 u32 bkp
= KPROBE_THUMB32_BREAKPOINT_INSTRUCTION
;
134 #ifndef __ARMEB__ /* Swap halfwords for little-endian */
135 bkp
= (bkp
>> 16) | (bkp
<< 16);
138 flush_insns(addr
, sizeof(u32
));
142 #else /* !CONFIG_THUMB2_KERNEL */
144 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
146 kprobe_opcode_t insn
= p
->opcode
;
147 kprobe_opcode_t brkp
= KPROBE_ARM_BREAKPOINT_INSTRUCTION
;
148 if (insn
>= 0xe0000000)
149 brkp
|= 0xe0000000; /* Unconditional instruction */
151 brkp
|= insn
& 0xf0000000; /* Copy condition from insn */
153 flush_insns(p
->addr
, sizeof(p
->addr
[0]));
156 #endif /* !CONFIG_THUMB2_KERNEL */
159 * The actual disarming is done here on each CPU and synchronized using
160 * stop_machine. This synchronization is necessary on SMP to avoid removing
161 * a probe between the moment the 'Undefined Instruction' exception is raised
162 * and the moment the exception handler reads the faulting instruction from
163 * memory. It is also needed to atomically set the two half-words of a 32-bit
166 int __kprobes
__arch_disarm_kprobe(void *p
)
168 struct kprobe
*kp
= p
;
169 #ifdef CONFIG_THUMB2_KERNEL
170 u16
*addr
= (u16
*)((uintptr_t)kp
->addr
& ~1);
171 kprobe_opcode_t insn
= kp
->opcode
;
174 if (is_wide_instruction(insn
)) {
175 ((u16
*)addr
)[0] = insn
>>16;
176 ((u16
*)addr
)[1] = insn
;
179 ((u16
*)addr
)[0] = insn
;
182 flush_insns(addr
, len
);
184 #else /* !CONFIG_THUMB2_KERNEL */
185 *kp
->addr
= kp
->opcode
;
186 flush_insns(kp
->addr
, sizeof(kp
->addr
[0]));
191 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
193 stop_machine(__arch_disarm_kprobe
, p
, &cpu_online_map
);
196 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
199 free_insn_slot(p
->ainsn
.insn
, 0);
200 p
->ainsn
.insn
= NULL
;
204 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
206 kcb
->prev_kprobe
.kp
= kprobe_running();
207 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
210 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
212 __get_cpu_var(current_kprobe
) = kcb
->prev_kprobe
.kp
;
213 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
216 static void __kprobes
set_current_kprobe(struct kprobe
*p
)
218 __get_cpu_var(current_kprobe
) = p
;
221 static void __kprobes
222 singlestep_skip(struct kprobe
*p
, struct pt_regs
*regs
)
224 #ifdef CONFIG_THUMB2_KERNEL
225 regs
->ARM_cpsr
= it_advance(regs
->ARM_cpsr
);
226 if (is_wide_instruction(p
->opcode
))
235 static inline void __kprobes
236 singlestep(struct kprobe
*p
, struct pt_regs
*regs
, struct kprobe_ctlblk
*kcb
)
238 p
->ainsn
.insn_singlestep(p
, regs
);
242 * Called with IRQs disabled. IRQs must remain disabled from that point
243 * all the way until processing this kprobe is complete. The current
244 * kprobes implementation cannot process more than one nested level of
245 * kprobe, and that level is reserved for user kprobe handlers, so we can't
246 * risk encountering a new kprobe in an interrupt handler.
248 void __kprobes
kprobe_handler(struct pt_regs
*regs
)
250 struct kprobe
*p
, *cur
;
251 struct kprobe_ctlblk
*kcb
;
253 kcb
= get_kprobe_ctlblk();
254 cur
= kprobe_running();
256 #ifdef CONFIG_THUMB2_KERNEL
258 * First look for a probe which was registered using an address with
259 * bit 0 set, this is the usual situation for pointers to Thumb code.
260 * If not found, fallback to looking for one with bit 0 clear.
262 p
= get_kprobe((kprobe_opcode_t
*)(regs
->ARM_pc
| 1));
264 p
= get_kprobe((kprobe_opcode_t
*)regs
->ARM_pc
);
266 #else /* ! CONFIG_THUMB2_KERNEL */
267 p
= get_kprobe((kprobe_opcode_t
*)regs
->ARM_pc
);
272 /* Kprobe is pending, so we're recursing. */
273 switch (kcb
->kprobe_status
) {
274 case KPROBE_HIT_ACTIVE
:
275 case KPROBE_HIT_SSDONE
:
276 /* A pre- or post-handler probe got us here. */
277 kprobes_inc_nmissed_count(p
);
278 save_previous_kprobe(kcb
);
279 set_current_kprobe(p
);
280 kcb
->kprobe_status
= KPROBE_REENTER
;
281 singlestep(p
, regs
, kcb
);
282 restore_previous_kprobe(kcb
);
285 /* impossible cases */
288 } else if (p
->ainsn
.insn_check_cc(regs
->ARM_cpsr
)) {
289 /* Probe hit and conditional execution check ok. */
290 set_current_kprobe(p
);
291 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
294 * If we have no pre-handler or it returned 0, we
295 * continue with normal processing. If we have a
296 * pre-handler and it returned non-zero, it prepped
297 * for calling the break_handler below on re-entry,
298 * so get out doing nothing more here.
300 if (!p
->pre_handler
|| !p
->pre_handler(p
, regs
)) {
301 kcb
->kprobe_status
= KPROBE_HIT_SS
;
302 singlestep(p
, regs
, kcb
);
303 if (p
->post_handler
) {
304 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
305 p
->post_handler(p
, regs
, 0);
307 reset_current_kprobe();
311 * Probe hit but conditional execution check failed,
312 * so just skip the instruction and continue as if
313 * nothing had happened.
315 singlestep_skip(p
, regs
);
318 /* We probably hit a jprobe. Call its break handler. */
319 if (cur
->break_handler
&& cur
->break_handler(cur
, regs
)) {
320 kcb
->kprobe_status
= KPROBE_HIT_SS
;
321 singlestep(cur
, regs
, kcb
);
322 if (cur
->post_handler
) {
323 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
324 cur
->post_handler(cur
, regs
, 0);
327 reset_current_kprobe();
330 * The probe was removed and a race is in progress.
331 * There is nothing we can do about it. Let's restart
332 * the instruction. By the time we can restart, the
333 * real instruction will be there.
338 static int __kprobes
kprobe_trap_handler(struct pt_regs
*regs
, unsigned int instr
)
341 local_irq_save(flags
);
342 kprobe_handler(regs
);
343 local_irq_restore(flags
);
347 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, unsigned int fsr
)
349 struct kprobe
*cur
= kprobe_running();
350 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
352 switch (kcb
->kprobe_status
) {
356 * We are here because the instruction being single
357 * stepped caused a page fault. We reset the current
358 * kprobe and the PC to point back to the probe address
359 * and allow the page fault handler to continue as a
362 regs
->ARM_pc
= (long)cur
->addr
;
363 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
364 restore_previous_kprobe(kcb
);
366 reset_current_kprobe();
370 case KPROBE_HIT_ACTIVE
:
371 case KPROBE_HIT_SSDONE
:
373 * We increment the nmissed count for accounting,
374 * we can also use npre/npostfault count for accounting
375 * these specific fault cases.
377 kprobes_inc_nmissed_count(cur
);
380 * We come here because instructions in the pre/post
381 * handler caused the page_fault, this could happen
382 * if handler tries to access user space by
383 * copy_from_user(), get_user() etc. Let the
384 * user-specified handler try to fix it.
386 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, fsr
))
397 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
398 unsigned long val
, void *data
)
401 * notify_die() is currently never called on ARM,
402 * so this callback is currently empty.
408 * When a retprobed function returns, trampoline_handler() is called,
409 * calling the kretprobe's handler. We construct a struct pt_regs to
410 * give a view of registers r0-r11 to the user return-handler. This is
411 * not a complete pt_regs structure, but that should be plenty sufficient
412 * for kretprobe handlers which should normally be interested in r0 only
415 void __naked __kprobes
kretprobe_trampoline(void)
417 __asm__
__volatile__ (
418 "stmdb sp!, {r0 - r11} \n\t"
420 "bl trampoline_handler \n\t"
422 "ldmia sp!, {r0 - r11} \n\t"
423 #ifdef CONFIG_THUMB2_KERNEL
431 /* Called from kretprobe_trampoline */
432 static __used __kprobes
void *trampoline_handler(struct pt_regs
*regs
)
434 struct kretprobe_instance
*ri
= NULL
;
435 struct hlist_head
*head
, empty_rp
;
436 struct hlist_node
*node
, *tmp
;
437 unsigned long flags
, orig_ret_address
= 0;
438 unsigned long trampoline_address
= (unsigned long)&kretprobe_trampoline
;
440 INIT_HLIST_HEAD(&empty_rp
);
441 kretprobe_hash_lock(current
, &head
, &flags
);
444 * It is possible to have multiple instances associated with a given
445 * task either because multiple functions in the call path have
446 * a return probe installed on them, and/or more than one return
447 * probe was registered for a target function.
449 * We can handle this because:
450 * - instances are always inserted at the head of the list
451 * - when multiple return probes are registered for the same
452 * function, the first instance's ret_addr will point to the
453 * real return address, and all the rest will point to
454 * kretprobe_trampoline
456 hlist_for_each_entry_safe(ri
, node
, tmp
, head
, hlist
) {
457 if (ri
->task
!= current
)
458 /* another task is sharing our hash bucket */
461 if (ri
->rp
&& ri
->rp
->handler
) {
462 __get_cpu_var(current_kprobe
) = &ri
->rp
->kp
;
463 get_kprobe_ctlblk()->kprobe_status
= KPROBE_HIT_ACTIVE
;
464 ri
->rp
->handler(ri
, regs
);
465 __get_cpu_var(current_kprobe
) = NULL
;
468 orig_ret_address
= (unsigned long)ri
->ret_addr
;
469 recycle_rp_inst(ri
, &empty_rp
);
471 if (orig_ret_address
!= trampoline_address
)
473 * This is the real return address. Any other
474 * instances associated with this task are for
475 * other calls deeper on the call stack
480 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
481 kretprobe_hash_unlock(current
, &flags
);
483 hlist_for_each_entry_safe(ri
, node
, tmp
, &empty_rp
, hlist
) {
484 hlist_del(&ri
->hlist
);
488 return (void *)orig_ret_address
;
491 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
492 struct pt_regs
*regs
)
494 ri
->ret_addr
= (kprobe_opcode_t
*)regs
->ARM_lr
;
496 /* Replace the return addr with trampoline addr. */
497 regs
->ARM_lr
= (unsigned long)&kretprobe_trampoline
;
500 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
502 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
503 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
504 long sp_addr
= regs
->ARM_sp
;
507 kcb
->jprobe_saved_regs
= *regs
;
508 memcpy(kcb
->jprobes_stack
, (void *)sp_addr
, MIN_STACK_SIZE(sp_addr
));
509 regs
->ARM_pc
= (long)jp
->entry
;
511 cpsr
= regs
->ARM_cpsr
| PSR_I_BIT
;
512 #ifdef CONFIG_THUMB2_KERNEL
513 /* Set correct Thumb state in cpsr */
514 if (regs
->ARM_pc
& 1)
519 regs
->ARM_cpsr
= cpsr
;
525 void __kprobes
jprobe_return(void)
527 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
529 __asm__
__volatile__ (
531 * Setup an empty pt_regs. Fill SP and PC fields as
532 * they're needed by longjmp_break_handler.
534 * We allocate some slack between the original SP and start of
535 * our fabricated regs. To be precise we want to have worst case
536 * covered which is STMFD with all 16 regs so we allocate 2 *
537 * sizeof(struct_pt_regs)).
539 * This is to prevent any simulated instruction from writing
540 * over the regs when they are accessing the stack.
542 #ifdef CONFIG_THUMB2_KERNEL
543 "sub r0, %0, %1 \n\t"
546 "sub sp, %0, %1 \n\t"
548 "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR
)"\n\t"
549 "str %0, [sp, %2] \n\t"
550 "str r0, [sp, %3] \n\t"
552 "bl kprobe_handler \n\t"
555 * Return to the context saved by setjmp_pre_handler
556 * and restored by longjmp_break_handler.
558 #ifdef CONFIG_THUMB2_KERNEL
559 "ldr lr, [sp, %2] \n\t" /* lr = saved sp */
560 "ldrd r0, r1, [sp, %5] \n\t" /* r0,r1 = saved lr,pc */
561 "ldr r2, [sp, %4] \n\t" /* r2 = saved psr */
562 "stmdb lr!, {r0, r1, r2} \n\t" /* push saved lr and */
564 "ldmia sp, {r0 - r12} \n\t"
566 "ldr lr, [sp], #4 \n\t"
569 "ldr r0, [sp, %4] \n\t"
570 "msr cpsr_cxsf, r0 \n\t"
571 "ldmia sp, {r0 - pc} \n\t"
574 : "r" (kcb
->jprobe_saved_regs
.ARM_sp
),
575 "I" (sizeof(struct pt_regs
) * 2),
576 "J" (offsetof(struct pt_regs
, ARM_sp
)),
577 "J" (offsetof(struct pt_regs
, ARM_pc
)),
578 "J" (offsetof(struct pt_regs
, ARM_cpsr
)),
579 "J" (offsetof(struct pt_regs
, ARM_lr
))
583 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
585 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
586 long stack_addr
= kcb
->jprobe_saved_regs
.ARM_sp
;
587 long orig_sp
= regs
->ARM_sp
;
588 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
590 if (regs
->ARM_pc
== JPROBE_MAGIC_ADDR
) {
591 if (orig_sp
!= stack_addr
) {
592 struct pt_regs
*saved_regs
=
593 (struct pt_regs
*)kcb
->jprobe_saved_regs
.ARM_sp
;
594 printk("current sp %lx does not match saved sp %lx\n",
595 orig_sp
, stack_addr
);
596 printk("Saved registers for jprobe %p\n", jp
);
597 show_regs(saved_regs
);
598 printk("Current registers\n");
602 *regs
= kcb
->jprobe_saved_regs
;
603 memcpy((void *)stack_addr
, kcb
->jprobes_stack
,
604 MIN_STACK_SIZE(stack_addr
));
605 preempt_enable_no_resched();
611 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)
616 #ifdef CONFIG_THUMB2_KERNEL
618 static struct undef_hook kprobes_thumb16_break_hook
= {
619 .instr_mask
= 0xffff,
620 .instr_val
= KPROBE_THUMB16_BREAKPOINT_INSTRUCTION
,
621 .cpsr_mask
= MODE_MASK
,
622 .cpsr_val
= SVC_MODE
,
623 .fn
= kprobe_trap_handler
,
626 static struct undef_hook kprobes_thumb32_break_hook
= {
627 .instr_mask
= 0xffffffff,
628 .instr_val
= KPROBE_THUMB32_BREAKPOINT_INSTRUCTION
,
629 .cpsr_mask
= MODE_MASK
,
630 .cpsr_val
= SVC_MODE
,
631 .fn
= kprobe_trap_handler
,
634 #else /* !CONFIG_THUMB2_KERNEL */
636 static struct undef_hook kprobes_arm_break_hook
= {
637 .instr_mask
= 0x0fffffff,
638 .instr_val
= KPROBE_ARM_BREAKPOINT_INSTRUCTION
,
639 .cpsr_mask
= MODE_MASK
,
640 .cpsr_val
= SVC_MODE
,
641 .fn
= kprobe_trap_handler
,
644 #endif /* !CONFIG_THUMB2_KERNEL */
646 int __init
arch_init_kprobes()
648 arm_kprobe_decode_init();
649 #ifdef CONFIG_THUMB2_KERNEL
650 register_undef_hook(&kprobes_thumb16_break_hook
);
651 register_undef_hook(&kprobes_thumb32_break_hook
);
653 register_undef_hook(&kprobes_arm_break_hook
);