3 * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
5 * Author: Abraham vd Merwe <abraham@2d3d.co.za>
7 * Copyright (c) 2001, 2d3D, Inc.
9 * This code is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
15 * [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
16 * - Order Number: 290644-005
19 * [2] MTD internal API documentation
20 * - http://www.linux-mtd.infradead.org/
24 * Even though this driver is written for 3 Volt Fast Boot
25 * Block Flash Memory, it is rather specific to LART. With
26 * Minor modifications, notably the without data/address line
27 * mangling and different bus settings, etc. it should be
28 * trivial to adapt to other platforms.
30 * If somebody would sponsor me a different board, I'll
37 /* partition support */
38 #define HAVE_PARTITIONS
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/string.h>
46 #include <linux/mtd/mtd.h>
47 #ifdef HAVE_PARTITIONS
48 #include <linux/mtd/partitions.h>
51 #ifndef CONFIG_SA1100_LART
52 #error This is for LART architecture only
55 static char module_name
[] = "lart";
58 * These values is specific to 28Fxxxx3 flash memory.
59 * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
61 #define FLASH_BLOCKSIZE_PARAM (4096 * BUSWIDTH)
62 #define FLASH_NUMBLOCKS_16m_PARAM 8
63 #define FLASH_NUMBLOCKS_8m_PARAM 8
66 * These values is specific to 28Fxxxx3 flash memory.
67 * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
69 #define FLASH_BLOCKSIZE_MAIN (32768 * BUSWIDTH)
70 #define FLASH_NUMBLOCKS_16m_MAIN 31
71 #define FLASH_NUMBLOCKS_8m_MAIN 15
74 * These values are specific to LART
78 #define BUSWIDTH 4 /* don't change this - a lot of the code _will_ break if you change this */
79 #define FLASH_OFFSET 0xe8000000 /* see linux/arch/arm/mach-sa1100/lart.c */
82 #define NUM_BLOB_BLOCKS FLASH_NUMBLOCKS_16m_PARAM
83 #define BLOB_START 0x00000000
84 #define BLOB_LEN (NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
87 #define NUM_KERNEL_BLOCKS 7
88 #define KERNEL_START (BLOB_START + BLOB_LEN)
89 #define KERNEL_LEN (NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
92 #define NUM_INITRD_BLOCKS 24
93 #define INITRD_START (KERNEL_START + KERNEL_LEN)
94 #define INITRD_LEN (NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
97 * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
99 #define READ_ARRAY 0x00FF00FF /* Read Array/Reset */
100 #define READ_ID_CODES 0x00900090 /* Read Identifier Codes */
101 #define ERASE_SETUP 0x00200020 /* Block Erase */
102 #define ERASE_CONFIRM 0x00D000D0 /* Block Erase and Program Resume */
103 #define PGM_SETUP 0x00400040 /* Program */
104 #define STATUS_READ 0x00700070 /* Read Status Register */
105 #define STATUS_CLEAR 0x00500050 /* Clear Status Register */
106 #define STATUS_BUSY 0x00800080 /* Write State Machine Status (WSMS) */
107 #define STATUS_ERASE_ERR 0x00200020 /* Erase Status (ES) */
108 #define STATUS_PGM_ERR 0x00100010 /* Program Status (PS) */
111 * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
113 #define FLASH_MANUFACTURER 0x00890089
114 #define FLASH_DEVICE_8mbit_TOP 0x88f188f1
115 #define FLASH_DEVICE_8mbit_BOTTOM 0x88f288f2
116 #define FLASH_DEVICE_16mbit_TOP 0x88f388f3
117 #define FLASH_DEVICE_16mbit_BOTTOM 0x88f488f4
119 /***************************************************************************************************/
122 * The data line mapping on LART is as follows:
125 * -------------------
144 /* Mangle data (x) */
145 #define DATA_TO_FLASH(x) \
147 (((x) & 0x08009000) >> 11) + \
148 (((x) & 0x00002000) >> 10) + \
149 (((x) & 0x04004000) >> 8) + \
150 (((x) & 0x00000010) >> 4) + \
151 (((x) & 0x91000820) >> 3) + \
152 (((x) & 0x22080080) >> 2) + \
153 ((x) & 0x40000400) + \
154 (((x) & 0x00040040) << 1) + \
155 (((x) & 0x00110000) << 4) + \
156 (((x) & 0x00220100) << 5) + \
157 (((x) & 0x00800208) << 6) + \
158 (((x) & 0x00400004) << 9) + \
159 (((x) & 0x00000001) << 12) + \
160 (((x) & 0x00000002) << 13) \
163 /* Unmangle data (x) */
164 #define FLASH_TO_DATA(x) \
166 (((x) & 0x00010012) << 11) + \
167 (((x) & 0x00000008) << 10) + \
168 (((x) & 0x00040040) << 8) + \
169 (((x) & 0x00000001) << 4) + \
170 (((x) & 0x12200104) << 3) + \
171 (((x) & 0x08820020) << 2) + \
172 ((x) & 0x40000400) + \
173 (((x) & 0x00080080) >> 1) + \
174 (((x) & 0x01100000) >> 4) + \
175 (((x) & 0x04402000) >> 5) + \
176 (((x) & 0x20008200) >> 6) + \
177 (((x) & 0x80000800) >> 9) + \
178 (((x) & 0x00001000) >> 12) + \
179 (((x) & 0x00004000) >> 13) \
183 * The address line mapping on LART is as follows:
186 * -------------------
200 * BOOT BLOCK BOUNDARY
206 * MAIN BLOCK BOUNDARY
214 * As we can see from above, the addresses aren't mangled across
215 * block boundaries, so we don't need to worry about address
216 * translations except for sending/reading commands during
220 /* Mangle address (x) on chip U2 */
221 #define ADDR_TO_FLASH_U2(x) \
223 (((x) & 0x00000f00) >> 4) + \
224 (((x) & 0x00042000) << 1) + \
225 (((x) & 0x0009c003) << 2) + \
226 (((x) & 0x00021080) << 3) + \
227 (((x) & 0x00000010) << 4) + \
228 (((x) & 0x00000040) << 5) + \
229 (((x) & 0x00000024) << 7) + \
230 (((x) & 0x00000008) << 10) \
233 /* Unmangle address (x) on chip U2 */
234 #define FLASH_U2_TO_ADDR(x) \
236 (((x) << 4) & 0x00000f00) + \
237 (((x) >> 1) & 0x00042000) + \
238 (((x) >> 2) & 0x0009c003) + \
239 (((x) >> 3) & 0x00021080) + \
240 (((x) >> 4) & 0x00000010) + \
241 (((x) >> 5) & 0x00000040) + \
242 (((x) >> 7) & 0x00000024) + \
243 (((x) >> 10) & 0x00000008) \
246 /* Mangle address (x) on chip U3 */
247 #define ADDR_TO_FLASH_U3(x) \
249 (((x) & 0x00000080) >> 3) + \
250 (((x) & 0x00000040) >> 1) + \
251 (((x) & 0x00052020) << 1) + \
252 (((x) & 0x00084f03) << 2) + \
253 (((x) & 0x00029010) << 3) + \
254 (((x) & 0x00000008) << 5) + \
255 (((x) & 0x00000004) << 7) \
258 /* Unmangle address (x) on chip U3 */
259 #define FLASH_U3_TO_ADDR(x) \
261 (((x) << 3) & 0x00000080) + \
262 (((x) << 1) & 0x00000040) + \
263 (((x) >> 1) & 0x00052020) + \
264 (((x) >> 2) & 0x00084f03) + \
265 (((x) >> 3) & 0x00029010) + \
266 (((x) >> 5) & 0x00000008) + \
267 (((x) >> 7) & 0x00000004) \
270 /***************************************************************************************************/
272 static __u8
read8 (__u32 offset
)
274 volatile __u8
*data
= (__u8
*) (FLASH_OFFSET
+ offset
);
276 printk (KERN_DEBUG
"%s(): 0x%.8x -> 0x%.2x\n", __func__
, offset
, *data
);
281 static __u32
read32 (__u32 offset
)
283 volatile __u32
*data
= (__u32
*) (FLASH_OFFSET
+ offset
);
285 printk (KERN_DEBUG
"%s(): 0x%.8x -> 0x%.8x\n", __func__
, offset
, *data
);
290 static void write32 (__u32 x
,__u32 offset
)
292 volatile __u32
*data
= (__u32
*) (FLASH_OFFSET
+ offset
);
295 printk (KERN_DEBUG
"%s(): 0x%.8x <- 0x%.8x\n", __func__
, offset
, *data
);
299 /***************************************************************************************************/
302 * Probe for 16mbit flash memory on a LART board without doing
303 * too much damage. Since we need to write 1 dword to memory,
304 * we're f**cked if this happens to be DRAM since we can't
305 * restore the memory (otherwise we might exit Read Array mode).
307 * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
309 static int flash_probe (void)
311 __u32 manufacturer
,devtype
;
313 /* setup "Read Identifier Codes" mode */
314 write32 (DATA_TO_FLASH (READ_ID_CODES
),0x00000000);
316 /* probe U2. U2/U3 returns the same data since the first 3
317 * address lines is mangled in the same way */
318 manufacturer
= FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
319 devtype
= FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
321 /* put the flash back into command mode */
322 write32 (DATA_TO_FLASH (READ_ARRAY
),0x00000000);
324 return (manufacturer
== FLASH_MANUFACTURER
&& (devtype
== FLASH_DEVICE_16mbit_TOP
|| devtype
== FLASH_DEVICE_16mbit_BOTTOM
));
328 * Erase one block of flash memory at offset ``offset'' which is any
329 * address within the block which should be erased.
331 * Returns 1 if successful, 0 otherwise.
333 static inline int erase_block (__u32 offset
)
338 printk (KERN_DEBUG
"%s(): 0x%.8x\n", __func__
, offset
);
341 /* erase and confirm */
342 write32 (DATA_TO_FLASH (ERASE_SETUP
),offset
);
343 write32 (DATA_TO_FLASH (ERASE_CONFIRM
),offset
);
345 /* wait for block erase to finish */
348 write32 (DATA_TO_FLASH (STATUS_READ
),offset
);
349 status
= FLASH_TO_DATA (read32 (offset
));
351 while ((~status
& STATUS_BUSY
) != 0);
353 /* put the flash back into command mode */
354 write32 (DATA_TO_FLASH (READ_ARRAY
),offset
);
356 /* was the erase successful? */
357 if ((status
& STATUS_ERASE_ERR
))
359 printk (KERN_WARNING
"%s: erase error at address 0x%.8x.\n",module_name
,offset
);
366 static int flash_erase (struct mtd_info
*mtd
,struct erase_info
*instr
)
372 printk (KERN_DEBUG
"%s(addr = 0x%.8x, len = %d)\n", __func__
, instr
->addr
, instr
->len
);
376 if (instr
->addr
+ instr
->len
> mtd
->size
) return (-EINVAL
);
379 * check that both start and end of the requested erase are
380 * aligned with the erasesize at the appropriate addresses.
382 * skip all erase regions which are ended before the start of
383 * the requested erase. Actually, to save on the calculations,
384 * we skip to the first erase region which starts after the
385 * start of the requested erase, and then go back one.
387 for (i
= 0; i
< mtd
->numeraseregions
&& instr
->addr
>= mtd
->eraseregions
[i
].offset
; i
++) ;
391 * ok, now i is pointing at the erase region in which this
392 * erase request starts. Check the start of the requested
393 * erase range is aligned with the erase size which is in
396 if (i
< 0 || (instr
->addr
& (mtd
->eraseregions
[i
].erasesize
- 1)))
399 /* Remember the erase region we start on */
403 * next, check that the end of the requested erase is aligned
404 * with the erase region at that address.
406 * as before, drop back one to point at the region in which
407 * the address actually falls
409 for (; i
< mtd
->numeraseregions
&& instr
->addr
+ instr
->len
>= mtd
->eraseregions
[i
].offset
; i
++) ;
412 /* is the end aligned on a block boundary? */
413 if (i
< 0 || ((instr
->addr
+ instr
->len
) & (mtd
->eraseregions
[i
].erasesize
- 1)))
421 /* now erase those blocks */
424 if (!erase_block (addr
))
426 instr
->state
= MTD_ERASE_FAILED
;
430 addr
+= mtd
->eraseregions
[i
].erasesize
;
431 len
-= mtd
->eraseregions
[i
].erasesize
;
433 if (addr
== mtd
->eraseregions
[i
].offset
+ (mtd
->eraseregions
[i
].erasesize
* mtd
->eraseregions
[i
].numblocks
)) i
++;
436 instr
->state
= MTD_ERASE_DONE
;
437 mtd_erase_callback(instr
);
442 static int flash_read (struct mtd_info
*mtd
,loff_t from
,size_t len
,size_t *retlen
,u_char
*buf
)
445 printk (KERN_DEBUG
"%s(from = 0x%.8x, len = %d)\n", __func__
, (__u32
)from
, len
);
449 if (!len
) return (0);
450 if (from
+ len
> mtd
->size
) return (-EINVAL
);
452 /* we always read len bytes */
455 /* first, we read bytes until we reach a dword boundary */
456 if (from
& (BUSWIDTH
- 1))
458 int gap
= BUSWIDTH
- (from
& (BUSWIDTH
- 1));
460 while (len
&& gap
--) *buf
++ = read8 (from
++), len
--;
463 /* now we read dwords until we reach a non-dword boundary */
464 while (len
>= BUSWIDTH
)
466 *((__u32
*) buf
) = read32 (from
);
473 /* top up the last unaligned bytes */
474 if (len
& (BUSWIDTH
- 1))
475 while (len
--) *buf
++ = read8 (from
++);
481 * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
482 * must be 32 bits, i.e. it must be on a dword boundary.
484 * Returns 1 if successful, 0 otherwise.
486 static inline int write_dword (__u32 offset
,__u32 x
)
491 printk (KERN_DEBUG
"%s(): 0x%.8x <- 0x%.8x\n", __func__
, offset
, x
);
495 write32 (DATA_TO_FLASH (PGM_SETUP
),offset
);
500 /* wait for the write to finish */
503 write32 (DATA_TO_FLASH (STATUS_READ
),offset
);
504 status
= FLASH_TO_DATA (read32 (offset
));
506 while ((~status
& STATUS_BUSY
) != 0);
508 /* put the flash back into command mode */
509 write32 (DATA_TO_FLASH (READ_ARRAY
),offset
);
511 /* was the write successful? */
512 if ((status
& STATUS_PGM_ERR
) || read32 (offset
) != x
)
514 printk (KERN_WARNING
"%s: write error at address 0x%.8x.\n",module_name
,offset
);
521 static int flash_write (struct mtd_info
*mtd
,loff_t to
,size_t len
,size_t *retlen
,const u_char
*buf
)
527 printk (KERN_DEBUG
"%s(to = 0x%.8x, len = %d)\n", __func__
, (__u32
)to
, len
);
533 if (!len
) return (0);
534 if (to
+ len
> mtd
->size
) return (-EINVAL
);
536 /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
537 if (to
& (BUSWIDTH
- 1))
539 __u32 aligned
= to
& ~(BUSWIDTH
- 1);
540 int gap
= to
- aligned
;
544 while (gap
--) tmp
[i
++] = 0xFF;
545 while (len
&& i
< BUSWIDTH
) tmp
[i
++] = buf
[n
++], len
--;
546 while (i
< BUSWIDTH
) tmp
[i
++] = 0xFF;
548 if (!write_dword (aligned
,*((__u32
*) tmp
))) return (-EIO
);
555 /* now we write dwords until we reach a non-dword boundary */
556 while (len
>= BUSWIDTH
)
558 if (!write_dword (to
,*((__u32
*) buf
))) return (-EIO
);
566 /* top up the last unaligned bytes, padded with 0xFF.... */
567 if (len
& (BUSWIDTH
- 1))
571 while (len
--) tmp
[i
++] = buf
[n
++];
572 while (i
< BUSWIDTH
) tmp
[i
++] = 0xFF;
574 if (!write_dword (to
,*((__u32
*) tmp
))) return (-EIO
);
582 /***************************************************************************************************/
584 static struct mtd_info mtd
;
586 static struct mtd_erase_region_info erase_regions
[] = {
587 /* parameter blocks */
589 .offset
= 0x00000000,
590 .erasesize
= FLASH_BLOCKSIZE_PARAM
,
591 .numblocks
= FLASH_NUMBLOCKS_16m_PARAM
,
595 .offset
= FLASH_BLOCKSIZE_PARAM
* FLASH_NUMBLOCKS_16m_PARAM
,
596 .erasesize
= FLASH_BLOCKSIZE_MAIN
,
597 .numblocks
= FLASH_NUMBLOCKS_16m_MAIN
,
601 #ifdef HAVE_PARTITIONS
602 static struct mtd_partition lart_partitions
[] = {
606 .offset
= BLOB_START
,
612 .offset
= KERNEL_START
, /* MTDPART_OFS_APPEND */
615 /* initial ramdisk / file system */
617 .name
= "file system",
618 .offset
= INITRD_START
, /* MTDPART_OFS_APPEND */
619 .size
= INITRD_LEN
, /* MTDPART_SIZ_FULL */
624 static int __init
lart_flash_init (void)
627 memset (&mtd
,0,sizeof (mtd
));
628 printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
629 printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name
);
632 printk (KERN_WARNING
"%s: Found no LART compatible flash device\n",module_name
);
635 printk ("%s: This looks like a LART board to me.\n",module_name
);
636 mtd
.name
= module_name
;
637 mtd
.type
= MTD_NORFLASH
;
639 mtd
.flags
= MTD_CAP_NORFLASH
;
640 mtd
.size
= FLASH_BLOCKSIZE_PARAM
* FLASH_NUMBLOCKS_16m_PARAM
+ FLASH_BLOCKSIZE_MAIN
* FLASH_NUMBLOCKS_16m_MAIN
;
641 mtd
.erasesize
= FLASH_BLOCKSIZE_MAIN
;
642 mtd
.numeraseregions
= ARRAY_SIZE(erase_regions
);
643 mtd
.eraseregions
= erase_regions
;
644 mtd
.erase
= flash_erase
;
645 mtd
.read
= flash_read
;
646 mtd
.write
= flash_write
;
647 mtd
.owner
= THIS_MODULE
;
652 "mtd.size = 0x%.8x (%uM)\n"
653 "mtd.erasesize = 0x%.8x (%uK)\n"
654 "mtd.numeraseregions = %d\n",
656 mtd
.size
,mtd
.size
/ (1024*1024),
657 mtd
.erasesize
,mtd
.erasesize
/ 1024,
658 mtd
.numeraseregions
);
660 if (mtd
.numeraseregions
)
661 for (result
= 0; result
< mtd
.numeraseregions
; result
++)
664 "mtd.eraseregions[%d].offset = 0x%.8x\n"
665 "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
666 "mtd.eraseregions[%d].numblocks = %d\n",
667 result
,mtd
.eraseregions
[result
].offset
,
668 result
,mtd
.eraseregions
[result
].erasesize
,mtd
.eraseregions
[result
].erasesize
/ 1024,
669 result
,mtd
.eraseregions
[result
].numblocks
);
671 #ifdef HAVE_PARTITIONS
672 printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions
));
674 for (result
= 0; result
< ARRAY_SIZE(lart_partitions
); result
++)
677 "lart_partitions[%d].name = %s\n"
678 "lart_partitions[%d].offset = 0x%.8x\n"
679 "lart_partitions[%d].size = 0x%.8x (%uK)\n",
680 result
,lart_partitions
[result
].name
,
681 result
,lart_partitions
[result
].offset
,
682 result
,lart_partitions
[result
].size
,lart_partitions
[result
].size
/ 1024);
686 #ifndef HAVE_PARTITIONS
687 result
= mtd_device_register(&mtd
, NULL
, 0);
689 result
= mtd_device_register(&mtd
, lart_partitions
,
690 ARRAY_SIZE(lart_partitions
));
696 static void __exit
lart_flash_exit (void)
698 #ifndef HAVE_PARTITIONS
699 mtd_device_unregister(&mtd
);
701 mtd_device_unregister(&mtd
);
705 module_init (lart_flash_init
);
706 module_exit (lart_flash_exit
);
708 MODULE_LICENSE("GPL");
709 MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
710 MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");