Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / drivers / mtd / devices / m25p80.c
blob35180e475c4c565fded31dc91d6fe05c91aec805
1 /*
2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
4 * Author: Mike Lavender, mike@steroidmicros.com
6 * Copyright (c) 2005, Intec Automation Inc.
8 * Some parts are based on lart.c by Abraham Van Der Merwe
10 * Cleaned up and generalized based on mtd_dataflash.c
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
18 #include <linux/init.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/interrupt.h>
24 #include <linux/mutex.h>
25 #include <linux/math64.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/mod_devicetable.h>
30 #include <linux/mtd/cfi.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/partitions.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/flash.h>
37 /* Flash opcodes. */
38 #define OPCODE_WREN 0x06 /* Write enable */
39 #define OPCODE_RDSR 0x05 /* Read status register */
40 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
41 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
42 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
43 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
44 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
45 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
46 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
47 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
48 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
50 /* Used for SST flashes only. */
51 #define OPCODE_BP 0x02 /* Byte program */
52 #define OPCODE_WRDI 0x04 /* Write disable */
53 #define OPCODE_AAI_WP 0xad /* Auto address increment word program */
55 /* Used for Macronix flashes only. */
56 #define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
57 #define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
59 /* Used for Spansion flashes only. */
60 #define OPCODE_BRWR 0x17 /* Bank register write */
62 /* Status Register bits. */
63 #define SR_WIP 1 /* Write in progress */
64 #define SR_WEL 2 /* Write enable latch */
65 /* meaning of other SR_* bits may differ between vendors */
66 #define SR_BP0 4 /* Block protect 0 */
67 #define SR_BP1 8 /* Block protect 1 */
68 #define SR_BP2 0x10 /* Block protect 2 */
69 #define SR_SRWD 0x80 /* SR write protect */
71 /* Define max times to check status register before we give up. */
72 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
73 #define MAX_CMD_SIZE 5
75 #ifdef CONFIG_M25PXX_USE_FAST_READ
76 #define OPCODE_READ OPCODE_FAST_READ
77 #define FAST_READ_DUMMY_BYTE 1
78 #else
79 #define OPCODE_READ OPCODE_NORM_READ
80 #define FAST_READ_DUMMY_BYTE 0
81 #endif
83 #define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
85 /****************************************************************************/
87 struct m25p {
88 struct spi_device *spi;
89 struct mutex lock;
90 struct mtd_info mtd;
91 unsigned partitioned:1;
92 u16 page_size;
93 u16 addr_width;
94 u8 erase_opcode;
95 u8 *command;
98 static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
100 return container_of(mtd, struct m25p, mtd);
103 /****************************************************************************/
106 * Internal helper functions
110 * Read the status register, returning its value in the location
111 * Return the status register value.
112 * Returns negative if error occurred.
114 static int read_sr(struct m25p *flash)
116 ssize_t retval;
117 u8 code = OPCODE_RDSR;
118 u8 val;
120 retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
122 if (retval < 0) {
123 dev_err(&flash->spi->dev, "error %d reading SR\n",
124 (int) retval);
125 return retval;
128 return val;
132 * Write status register 1 byte
133 * Returns negative if error occurred.
135 static int write_sr(struct m25p *flash, u8 val)
137 flash->command[0] = OPCODE_WRSR;
138 flash->command[1] = val;
140 return spi_write(flash->spi, flash->command, 2);
144 * Set write enable latch with Write Enable command.
145 * Returns negative if error occurred.
147 static inline int write_enable(struct m25p *flash)
149 u8 code = OPCODE_WREN;
151 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
155 * Send write disble instruction to the chip.
157 static inline int write_disable(struct m25p *flash)
159 u8 code = OPCODE_WRDI;
161 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
165 * Enable/disable 4-byte addressing mode.
167 static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
169 switch (JEDEC_MFR(jedec_id)) {
170 case CFI_MFR_MACRONIX:
171 flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
172 return spi_write(flash->spi, flash->command, 1);
173 default:
174 /* Spansion style */
175 flash->command[0] = OPCODE_BRWR;
176 flash->command[1] = enable << 7;
177 return spi_write(flash->spi, flash->command, 2);
182 * Service routine to read status register until ready, or timeout occurs.
183 * Returns non-zero if error.
185 static int wait_till_ready(struct m25p *flash)
187 unsigned long deadline;
188 int sr;
190 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
192 do {
193 if ((sr = read_sr(flash)) < 0)
194 break;
195 else if (!(sr & SR_WIP))
196 return 0;
198 cond_resched();
200 } while (!time_after_eq(jiffies, deadline));
202 return 1;
206 * Erase the whole flash memory
208 * Returns 0 if successful, non-zero otherwise.
210 static int erase_chip(struct m25p *flash)
212 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
213 dev_name(&flash->spi->dev), __func__,
214 (long long)(flash->mtd.size >> 10));
216 /* Wait until finished previous write command. */
217 if (wait_till_ready(flash))
218 return 1;
220 /* Send write enable, then erase commands. */
221 write_enable(flash);
223 /* Set up command buffer. */
224 flash->command[0] = OPCODE_CHIP_ERASE;
226 spi_write(flash->spi, flash->command, 1);
228 return 0;
231 static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
233 /* opcode is in cmd[0] */
234 cmd[1] = addr >> (flash->addr_width * 8 - 8);
235 cmd[2] = addr >> (flash->addr_width * 8 - 16);
236 cmd[3] = addr >> (flash->addr_width * 8 - 24);
237 cmd[4] = addr >> (flash->addr_width * 8 - 32);
240 static int m25p_cmdsz(struct m25p *flash)
242 return 1 + flash->addr_width;
246 * Erase one sector of flash memory at offset ``offset'' which is any
247 * address within the sector which should be erased.
249 * Returns 0 if successful, non-zero otherwise.
251 static int erase_sector(struct m25p *flash, u32 offset)
253 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
254 dev_name(&flash->spi->dev), __func__,
255 flash->mtd.erasesize / 1024, offset);
257 /* Wait until finished previous write command. */
258 if (wait_till_ready(flash))
259 return 1;
261 /* Send write enable, then erase commands. */
262 write_enable(flash);
264 /* Set up command buffer. */
265 flash->command[0] = flash->erase_opcode;
266 m25p_addr2cmd(flash, offset, flash->command);
268 spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
270 return 0;
273 /****************************************************************************/
276 * MTD implementation
280 * Erase an address range on the flash chip. The address range may extend
281 * one or more erase sectors. Return an error is there is a problem erasing.
283 static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
285 struct m25p *flash = mtd_to_m25p(mtd);
286 u32 addr,len;
287 uint32_t rem;
289 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
290 dev_name(&flash->spi->dev), __func__, "at",
291 (long long)instr->addr, (long long)instr->len);
293 /* sanity checks */
294 if (instr->addr + instr->len > flash->mtd.size)
295 return -EINVAL;
296 div_u64_rem(instr->len, mtd->erasesize, &rem);
297 if (rem)
298 return -EINVAL;
300 addr = instr->addr;
301 len = instr->len;
303 mutex_lock(&flash->lock);
305 /* whole-chip erase? */
306 if (len == flash->mtd.size) {
307 if (erase_chip(flash)) {
308 instr->state = MTD_ERASE_FAILED;
309 mutex_unlock(&flash->lock);
310 return -EIO;
313 /* REVISIT in some cases we could speed up erasing large regions
314 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
315 * to use "small sector erase", but that's not always optimal.
318 /* "sector"-at-a-time erase */
319 } else {
320 while (len) {
321 if (erase_sector(flash, addr)) {
322 instr->state = MTD_ERASE_FAILED;
323 mutex_unlock(&flash->lock);
324 return -EIO;
327 addr += mtd->erasesize;
328 len -= mtd->erasesize;
332 mutex_unlock(&flash->lock);
334 instr->state = MTD_ERASE_DONE;
335 mtd_erase_callback(instr);
337 return 0;
341 * Read an address range from the flash chip. The address range
342 * may be any size provided it is within the physical boundaries.
344 static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
345 size_t *retlen, u_char *buf)
347 struct m25p *flash = mtd_to_m25p(mtd);
348 struct spi_transfer t[2];
349 struct spi_message m;
351 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
352 dev_name(&flash->spi->dev), __func__, "from",
353 (u32)from, len);
355 /* sanity checks */
356 if (!len)
357 return 0;
359 if (from + len > flash->mtd.size)
360 return -EINVAL;
362 spi_message_init(&m);
363 memset(t, 0, (sizeof t));
365 /* NOTE:
366 * OPCODE_FAST_READ (if available) is faster.
367 * Should add 1 byte DUMMY_BYTE.
369 t[0].tx_buf = flash->command;
370 t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
371 spi_message_add_tail(&t[0], &m);
373 t[1].rx_buf = buf;
374 t[1].len = len;
375 spi_message_add_tail(&t[1], &m);
377 /* Byte count starts at zero. */
378 *retlen = 0;
380 mutex_lock(&flash->lock);
382 /* Wait till previous write/erase is done. */
383 if (wait_till_ready(flash)) {
384 /* REVISIT status return?? */
385 mutex_unlock(&flash->lock);
386 return 1;
389 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
390 * clocks; and at this writing, every chip this driver handles
391 * supports that opcode.
394 /* Set up the write data buffer. */
395 flash->command[0] = OPCODE_READ;
396 m25p_addr2cmd(flash, from, flash->command);
398 spi_sync(flash->spi, &m);
400 *retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
402 mutex_unlock(&flash->lock);
404 return 0;
408 * Write an address range to the flash chip. Data must be written in
409 * FLASH_PAGESIZE chunks. The address range may be any size provided
410 * it is within the physical boundaries.
412 static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
413 size_t *retlen, const u_char *buf)
415 struct m25p *flash = mtd_to_m25p(mtd);
416 u32 page_offset, page_size;
417 struct spi_transfer t[2];
418 struct spi_message m;
420 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
421 dev_name(&flash->spi->dev), __func__, "to",
422 (u32)to, len);
424 *retlen = 0;
426 /* sanity checks */
427 if (!len)
428 return(0);
430 if (to + len > flash->mtd.size)
431 return -EINVAL;
433 spi_message_init(&m);
434 memset(t, 0, (sizeof t));
436 t[0].tx_buf = flash->command;
437 t[0].len = m25p_cmdsz(flash);
438 spi_message_add_tail(&t[0], &m);
440 t[1].tx_buf = buf;
441 spi_message_add_tail(&t[1], &m);
443 mutex_lock(&flash->lock);
445 /* Wait until finished previous write command. */
446 if (wait_till_ready(flash)) {
447 mutex_unlock(&flash->lock);
448 return 1;
451 write_enable(flash);
453 /* Set up the opcode in the write buffer. */
454 flash->command[0] = OPCODE_PP;
455 m25p_addr2cmd(flash, to, flash->command);
457 page_offset = to & (flash->page_size - 1);
459 /* do all the bytes fit onto one page? */
460 if (page_offset + len <= flash->page_size) {
461 t[1].len = len;
463 spi_sync(flash->spi, &m);
465 *retlen = m.actual_length - m25p_cmdsz(flash);
466 } else {
467 u32 i;
469 /* the size of data remaining on the first page */
470 page_size = flash->page_size - page_offset;
472 t[1].len = page_size;
473 spi_sync(flash->spi, &m);
475 *retlen = m.actual_length - m25p_cmdsz(flash);
477 /* write everything in flash->page_size chunks */
478 for (i = page_size; i < len; i += page_size) {
479 page_size = len - i;
480 if (page_size > flash->page_size)
481 page_size = flash->page_size;
483 /* write the next page to flash */
484 m25p_addr2cmd(flash, to + i, flash->command);
486 t[1].tx_buf = buf + i;
487 t[1].len = page_size;
489 wait_till_ready(flash);
491 write_enable(flash);
493 spi_sync(flash->spi, &m);
495 *retlen += m.actual_length - m25p_cmdsz(flash);
499 mutex_unlock(&flash->lock);
501 return 0;
504 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
505 size_t *retlen, const u_char *buf)
507 struct m25p *flash = mtd_to_m25p(mtd);
508 struct spi_transfer t[2];
509 struct spi_message m;
510 size_t actual;
511 int cmd_sz, ret;
513 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
514 dev_name(&flash->spi->dev), __func__, "to",
515 (u32)to, len);
517 *retlen = 0;
519 /* sanity checks */
520 if (!len)
521 return 0;
523 if (to + len > flash->mtd.size)
524 return -EINVAL;
526 spi_message_init(&m);
527 memset(t, 0, (sizeof t));
529 t[0].tx_buf = flash->command;
530 t[0].len = m25p_cmdsz(flash);
531 spi_message_add_tail(&t[0], &m);
533 t[1].tx_buf = buf;
534 spi_message_add_tail(&t[1], &m);
536 mutex_lock(&flash->lock);
538 /* Wait until finished previous write command. */
539 ret = wait_till_ready(flash);
540 if (ret)
541 goto time_out;
543 write_enable(flash);
545 actual = to % 2;
546 /* Start write from odd address. */
547 if (actual) {
548 flash->command[0] = OPCODE_BP;
549 m25p_addr2cmd(flash, to, flash->command);
551 /* write one byte. */
552 t[1].len = 1;
553 spi_sync(flash->spi, &m);
554 ret = wait_till_ready(flash);
555 if (ret)
556 goto time_out;
557 *retlen += m.actual_length - m25p_cmdsz(flash);
559 to += actual;
561 flash->command[0] = OPCODE_AAI_WP;
562 m25p_addr2cmd(flash, to, flash->command);
564 /* Write out most of the data here. */
565 cmd_sz = m25p_cmdsz(flash);
566 for (; actual < len - 1; actual += 2) {
567 t[0].len = cmd_sz;
568 /* write two bytes. */
569 t[1].len = 2;
570 t[1].tx_buf = buf + actual;
572 spi_sync(flash->spi, &m);
573 ret = wait_till_ready(flash);
574 if (ret)
575 goto time_out;
576 *retlen += m.actual_length - cmd_sz;
577 cmd_sz = 1;
578 to += 2;
580 write_disable(flash);
581 ret = wait_till_ready(flash);
582 if (ret)
583 goto time_out;
585 /* Write out trailing byte if it exists. */
586 if (actual != len) {
587 write_enable(flash);
588 flash->command[0] = OPCODE_BP;
589 m25p_addr2cmd(flash, to, flash->command);
590 t[0].len = m25p_cmdsz(flash);
591 t[1].len = 1;
592 t[1].tx_buf = buf + actual;
594 spi_sync(flash->spi, &m);
595 ret = wait_till_ready(flash);
596 if (ret)
597 goto time_out;
598 *retlen += m.actual_length - m25p_cmdsz(flash);
599 write_disable(flash);
602 time_out:
603 mutex_unlock(&flash->lock);
604 return ret;
607 /****************************************************************************/
610 * SPI device driver setup and teardown
613 struct flash_info {
614 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
615 * a high byte of zero plus three data bytes: the manufacturer id,
616 * then a two byte device id.
618 u32 jedec_id;
619 u16 ext_id;
621 /* The size listed here is what works with OPCODE_SE, which isn't
622 * necessarily called a "sector" by the vendor.
624 unsigned sector_size;
625 u16 n_sectors;
627 u16 page_size;
628 u16 addr_width;
630 u16 flags;
631 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
632 #define M25P_NO_ERASE 0x02 /* No erase command needed */
635 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
636 ((kernel_ulong_t)&(struct flash_info) { \
637 .jedec_id = (_jedec_id), \
638 .ext_id = (_ext_id), \
639 .sector_size = (_sector_size), \
640 .n_sectors = (_n_sectors), \
641 .page_size = 256, \
642 .flags = (_flags), \
645 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
646 ((kernel_ulong_t)&(struct flash_info) { \
647 .sector_size = (_sector_size), \
648 .n_sectors = (_n_sectors), \
649 .page_size = (_page_size), \
650 .addr_width = (_addr_width), \
651 .flags = M25P_NO_ERASE, \
654 /* NOTE: double check command sets and memory organization when you add
655 * more flash chips. This current list focusses on newer chips, which
656 * have been converging on command sets which including JEDEC ID.
658 static const struct spi_device_id m25p_ids[] = {
659 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
660 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
661 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
663 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
664 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
666 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
667 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
668 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
669 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
671 /* EON -- en25xxx */
672 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
673 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
674 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
676 /* Intel/Numonyx -- xxxs33b */
677 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
678 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
679 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
681 /* Macronix */
682 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
683 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
684 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
685 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
686 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
687 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
688 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
689 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
690 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
692 /* Spansion -- single (large) sector size only, at least
693 * for the chips listed here (without boot sectors).
695 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
696 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
697 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
698 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
699 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SECT_4K) },
700 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
701 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
702 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, 0) },
703 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
704 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
705 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
706 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
707 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
708 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
709 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
710 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
712 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
713 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) },
714 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
715 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
716 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
717 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) },
718 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) },
719 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) },
720 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) },
722 /* ST Microelectronics -- newer production may have feature updates */
723 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
724 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
725 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
726 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
727 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
728 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
729 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
730 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
731 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
733 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
734 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
735 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
736 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
737 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
738 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
739 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
740 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
741 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
743 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
744 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
745 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
747 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
748 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
750 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
751 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
752 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
753 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
755 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
756 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
757 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
758 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
759 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
760 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
761 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
762 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
763 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
764 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
766 /* Catalyst / On Semiconductor -- non-JEDEC */
767 { "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
768 { "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
769 { "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
770 { "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
771 { "cat25128", CAT25_INFO(2048, 8, 64, 2) },
772 { },
774 MODULE_DEVICE_TABLE(spi, m25p_ids);
776 static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
778 int tmp;
779 u8 code = OPCODE_RDID;
780 u8 id[5];
781 u32 jedec;
782 u16 ext_jedec;
783 struct flash_info *info;
785 /* JEDEC also defines an optional "extended device information"
786 * string for after vendor-specific data, after the three bytes
787 * we use here. Supporting some chips might require using it.
789 tmp = spi_write_then_read(spi, &code, 1, id, 5);
790 if (tmp < 0) {
791 DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
792 dev_name(&spi->dev), tmp);
793 return ERR_PTR(tmp);
795 jedec = id[0];
796 jedec = jedec << 8;
797 jedec |= id[1];
798 jedec = jedec << 8;
799 jedec |= id[2];
801 ext_jedec = id[3] << 8 | id[4];
803 for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
804 info = (void *)m25p_ids[tmp].driver_data;
805 if (info->jedec_id == jedec) {
806 if (info->ext_id != 0 && info->ext_id != ext_jedec)
807 continue;
808 return &m25p_ids[tmp];
811 dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
812 return ERR_PTR(-ENODEV);
817 * board specific setup should have ensured the SPI clock used here
818 * matches what the READ command supports, at least until this driver
819 * understands FAST_READ (for clocks over 25 MHz).
821 static int __devinit m25p_probe(struct spi_device *spi)
823 const struct spi_device_id *id = spi_get_device_id(spi);
824 struct flash_platform_data *data;
825 struct m25p *flash;
826 struct flash_info *info;
827 unsigned i;
828 struct mtd_partition *parts = NULL;
829 int nr_parts = 0;
831 /* Platform data helps sort out which chip type we have, as
832 * well as how this board partitions it. If we don't have
833 * a chip ID, try the JEDEC id commands; they'll work for most
834 * newer chips, even if we don't recognize the particular chip.
836 data = spi->dev.platform_data;
837 if (data && data->type) {
838 const struct spi_device_id *plat_id;
840 for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
841 plat_id = &m25p_ids[i];
842 if (strcmp(data->type, plat_id->name))
843 continue;
844 break;
847 if (i < ARRAY_SIZE(m25p_ids) - 1)
848 id = plat_id;
849 else
850 dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
853 info = (void *)id->driver_data;
855 if (info->jedec_id) {
856 const struct spi_device_id *jid;
858 jid = jedec_probe(spi);
859 if (IS_ERR(jid)) {
860 return PTR_ERR(jid);
861 } else if (jid != id) {
863 * JEDEC knows better, so overwrite platform ID. We
864 * can't trust partitions any longer, but we'll let
865 * mtd apply them anyway, since some partitions may be
866 * marked read-only, and we don't want to lose that
867 * information, even if it's not 100% accurate.
869 dev_warn(&spi->dev, "found %s, expected %s\n",
870 jid->name, id->name);
871 id = jid;
872 info = (void *)jid->driver_data;
876 flash = kzalloc(sizeof *flash, GFP_KERNEL);
877 if (!flash)
878 return -ENOMEM;
879 flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
880 if (!flash->command) {
881 kfree(flash);
882 return -ENOMEM;
885 flash->spi = spi;
886 mutex_init(&flash->lock);
887 dev_set_drvdata(&spi->dev, flash);
890 * Atmel, SST and Intel/Numonyx serial flash tend to power
891 * up with the software protection bits set
894 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
895 JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
896 JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
897 write_enable(flash);
898 write_sr(flash, 0);
901 if (data && data->name)
902 flash->mtd.name = data->name;
903 else
904 flash->mtd.name = dev_name(&spi->dev);
906 flash->mtd.type = MTD_NORFLASH;
907 flash->mtd.writesize = 1;
908 flash->mtd.flags = MTD_CAP_NORFLASH;
909 flash->mtd.size = info->sector_size * info->n_sectors;
910 flash->mtd.erase = m25p80_erase;
911 flash->mtd.read = m25p80_read;
913 /* sst flash chips use AAI word program */
914 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
915 flash->mtd.write = sst_write;
916 else
917 flash->mtd.write = m25p80_write;
919 /* prefer "small sector" erase if possible */
920 if (info->flags & SECT_4K) {
921 flash->erase_opcode = OPCODE_BE_4K;
922 flash->mtd.erasesize = 4096;
923 } else {
924 flash->erase_opcode = OPCODE_SE;
925 flash->mtd.erasesize = info->sector_size;
928 if (info->flags & M25P_NO_ERASE)
929 flash->mtd.flags |= MTD_NO_ERASE;
931 flash->mtd.dev.parent = &spi->dev;
932 flash->page_size = info->page_size;
934 if (info->addr_width)
935 flash->addr_width = info->addr_width;
936 else {
937 /* enable 4-byte addressing if the device exceeds 16MiB */
938 if (flash->mtd.size > 0x1000000) {
939 flash->addr_width = 4;
940 set_4byte(flash, info->jedec_id, 1);
941 } else
942 flash->addr_width = 3;
945 dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
946 (long long)flash->mtd.size >> 10);
948 DEBUG(MTD_DEBUG_LEVEL2,
949 "mtd .name = %s, .size = 0x%llx (%lldMiB) "
950 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
951 flash->mtd.name,
952 (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
953 flash->mtd.erasesize, flash->mtd.erasesize / 1024,
954 flash->mtd.numeraseregions);
956 if (flash->mtd.numeraseregions)
957 for (i = 0; i < flash->mtd.numeraseregions; i++)
958 DEBUG(MTD_DEBUG_LEVEL2,
959 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
960 ".erasesize = 0x%.8x (%uKiB), "
961 ".numblocks = %d }\n",
962 i, (long long)flash->mtd.eraseregions[i].offset,
963 flash->mtd.eraseregions[i].erasesize,
964 flash->mtd.eraseregions[i].erasesize / 1024,
965 flash->mtd.eraseregions[i].numblocks);
968 /* partitions should match sector boundaries; and it may be good to
969 * use readonly partitions for writeprotected sectors (BP2..BP0).
971 if (mtd_has_cmdlinepart()) {
972 static const char *part_probes[]
973 = { "cmdlinepart", NULL, };
975 nr_parts = parse_mtd_partitions(&flash->mtd,
976 part_probes, &parts, 0);
979 if (nr_parts <= 0 && data && data->parts) {
980 parts = data->parts;
981 nr_parts = data->nr_parts;
984 #ifdef CONFIG_MTD_OF_PARTS
985 if (nr_parts <= 0 && spi->dev.of_node) {
986 nr_parts = of_mtd_parse_partitions(&spi->dev,
987 spi->dev.of_node, &parts);
989 #endif
991 if (nr_parts > 0) {
992 for (i = 0; i < nr_parts; i++) {
993 DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
994 "{.name = %s, .offset = 0x%llx, "
995 ".size = 0x%llx (%lldKiB) }\n",
996 i, parts[i].name,
997 (long long)parts[i].offset,
998 (long long)parts[i].size,
999 (long long)(parts[i].size >> 10));
1001 flash->partitioned = 1;
1004 return mtd_device_register(&flash->mtd, parts, nr_parts) == 1 ?
1005 -ENODEV : 0;
1009 static int __devexit m25p_remove(struct spi_device *spi)
1011 struct m25p *flash = dev_get_drvdata(&spi->dev);
1012 int status;
1014 /* Clean up MTD stuff. */
1015 status = mtd_device_unregister(&flash->mtd);
1016 if (status == 0) {
1017 kfree(flash->command);
1018 kfree(flash);
1020 return 0;
1024 static struct spi_driver m25p80_driver = {
1025 .driver = {
1026 .name = "m25p80",
1027 .bus = &spi_bus_type,
1028 .owner = THIS_MODULE,
1030 .id_table = m25p_ids,
1031 .probe = m25p_probe,
1032 .remove = __devexit_p(m25p_remove),
1034 /* REVISIT: many of these chips have deep power-down modes, which
1035 * should clearly be entered on suspend() to minimize power use.
1036 * And also when they're otherwise idle...
1041 static int __init m25p80_init(void)
1043 return spi_register_driver(&m25p80_driver);
1047 static void __exit m25p80_exit(void)
1049 spi_unregister_driver(&m25p80_driver);
1053 module_init(m25p80_init);
1054 module_exit(m25p80_exit);
1056 MODULE_LICENSE("GPL");
1057 MODULE_AUTHOR("Mike Lavender");
1058 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");