2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 * Copyright (C) 2008-2009 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/workqueue.h>
33 #include <linux/delay.h>
34 #include <linux/clk.h>
35 #include <linux/err.h>
36 #include <linux/amba/bus.h>
37 #include <linux/amba/pl022.h>
39 #include <linux/slab.h>
40 #include <linux/dmaengine.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/scatterlist.h>
43 #include <linux/pm_runtime.h>
46 * This macro is used to define some register default values.
47 * reg is masked with mask, the OR:ed with an (again masked)
48 * val shifted sb steps to the left.
50 #define SSP_WRITE_BITS(reg, val, mask, sb) \
51 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54 * This macro is also used to define some default values.
55 * It will just shift val by sb steps to the left and mask
56 * the result with mask.
58 #define GEN_MASK_BITS(val, mask, sb) \
59 (((val)<<(sb)) & (mask))
62 #define DO_NOT_DRIVE_TX 1
64 #define DO_NOT_QUEUE_DMA 0
71 * Macros to access SSP Registers with their offsets
73 #define SSP_CR0(r) (r + 0x000)
74 #define SSP_CR1(r) (r + 0x004)
75 #define SSP_DR(r) (r + 0x008)
76 #define SSP_SR(r) (r + 0x00C)
77 #define SSP_CPSR(r) (r + 0x010)
78 #define SSP_IMSC(r) (r + 0x014)
79 #define SSP_RIS(r) (r + 0x018)
80 #define SSP_MIS(r) (r + 0x01C)
81 #define SSP_ICR(r) (r + 0x020)
82 #define SSP_DMACR(r) (r + 0x024)
83 #define SSP_ITCR(r) (r + 0x080)
84 #define SSP_ITIP(r) (r + 0x084)
85 #define SSP_ITOP(r) (r + 0x088)
86 #define SSP_TDR(r) (r + 0x08C)
88 #define SSP_PID0(r) (r + 0xFE0)
89 #define SSP_PID1(r) (r + 0xFE4)
90 #define SSP_PID2(r) (r + 0xFE8)
91 #define SSP_PID3(r) (r + 0xFEC)
93 #define SSP_CID0(r) (r + 0xFF0)
94 #define SSP_CID1(r) (r + 0xFF4)
95 #define SSP_CID2(r) (r + 0xFF8)
96 #define SSP_CID3(r) (r + 0xFFC)
99 * SSP Control Register 0 - SSP_CR0
101 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
102 #define SSP_CR0_MASK_FRF (0x3UL << 4)
103 #define SSP_CR0_MASK_SPO (0x1UL << 6)
104 #define SSP_CR0_MASK_SPH (0x1UL << 7)
105 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
108 * The ST version of this block moves som bits
109 * in SSP_CR0 and extends it to 32 bits
111 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
112 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
113 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
114 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
118 * SSP Control Register 0 - SSP_CR1
120 #define SSP_CR1_MASK_LBM (0x1UL << 0)
121 #define SSP_CR1_MASK_SSE (0x1UL << 1)
122 #define SSP_CR1_MASK_MS (0x1UL << 2)
123 #define SSP_CR1_MASK_SOD (0x1UL << 3)
126 * The ST version of this block adds some bits
129 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
130 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
131 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
132 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
133 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
134 /* This one is only in the PL023 variant */
135 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
138 * SSP Status Register - SSP_SR
140 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
141 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
142 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
143 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
144 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
147 * SSP Clock Prescale Register - SSP_CPSR
149 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
152 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
154 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
155 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
156 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
157 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
160 * SSP Raw Interrupt Status Register - SSP_RIS
162 /* Receive Overrun Raw Interrupt status */
163 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
164 /* Receive Timeout Raw Interrupt status */
165 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
166 /* Receive FIFO Raw Interrupt status */
167 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
168 /* Transmit FIFO Raw Interrupt status */
169 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
172 * SSP Masked Interrupt Status Register - SSP_MIS
174 /* Receive Overrun Masked Interrupt status */
175 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
176 /* Receive Timeout Masked Interrupt status */
177 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
178 /* Receive FIFO Masked Interrupt status */
179 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
180 /* Transmit FIFO Masked Interrupt status */
181 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
184 * SSP Interrupt Clear Register - SSP_ICR
186 /* Receive Overrun Raw Clear Interrupt bit */
187 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
188 /* Receive Timeout Clear Interrupt bit */
189 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
192 * SSP DMA Control Register - SSP_DMACR
194 /* Receive DMA Enable bit */
195 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
196 /* Transmit DMA Enable bit */
197 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
200 * SSP Integration Test control Register - SSP_ITCR
202 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
203 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
206 * SSP Integration Test Input Register - SSP_ITIP
208 #define ITIP_MASK_SSPRXD (0x1UL << 0)
209 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
210 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
211 #define ITIP_MASK_RXDMAC (0x1UL << 3)
212 #define ITIP_MASK_TXDMAC (0x1UL << 4)
213 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
216 * SSP Integration Test output Register - SSP_ITOP
218 #define ITOP_MASK_SSPTXD (0x1UL << 0)
219 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
220 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
221 #define ITOP_MASK_SSPOEn (0x1UL << 3)
222 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
223 #define ITOP_MASK_RORINTR (0x1UL << 5)
224 #define ITOP_MASK_RTINTR (0x1UL << 6)
225 #define ITOP_MASK_RXINTR (0x1UL << 7)
226 #define ITOP_MASK_TXINTR (0x1UL << 8)
227 #define ITOP_MASK_INTR (0x1UL << 9)
228 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
229 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
230 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
231 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
234 * SSP Test Data Register - SSP_TDR
236 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
240 * we use the spi_message.state (void *) pointer to
241 * hold a single state value, that's why all this
242 * (void *) casting is done here.
244 #define STATE_START ((void *) 0)
245 #define STATE_RUNNING ((void *) 1)
246 #define STATE_DONE ((void *) 2)
247 #define STATE_ERROR ((void *) -1)
250 * SSP State - Whether Enabled or Disabled
252 #define SSP_DISABLED (0)
253 #define SSP_ENABLED (1)
256 * SSP DMA State - Whether DMA Enabled or Disabled
258 #define SSP_DMA_DISABLED (0)
259 #define SSP_DMA_ENABLED (1)
264 #define SSP_DEFAULT_CLKRATE 0x2
265 #define SSP_DEFAULT_PRESCALE 0x40
268 * SSP Clock Parameter ranges
270 #define CPSDVR_MIN 0x02
271 #define CPSDVR_MAX 0xFE
276 * SSP Interrupt related Macros
278 #define DEFAULT_SSP_REG_IMSC 0x0UL
279 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
280 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
282 #define CLEAR_ALL_INTERRUPTS 0x3
284 #define SPI_POLLING_TIMEOUT 1000
288 * The type of reading going on on this chip
298 * The type of writing going on on this chip
308 * struct vendor_data - vendor-specific config parameters
309 * for PL022 derivates
310 * @fifodepth: depth of FIFOs (both)
311 * @max_bpw: maximum number of bits per word
312 * @unidir: supports unidirection transfers
313 * @extended_cr: 32 bit wide control register 0 with extra
314 * features and extra features in CR1 as found in the ST variants
315 * @pl023: supports a subset of the ST extensions called "PL023"
327 * struct pl022 - This is the private SSP driver data structure
328 * @adev: AMBA device model hookup
329 * @vendor: vendor data for the IP block
330 * @phybase: the physical memory where the SSP device resides
331 * @virtbase: the virtual memory where the SSP is mapped
332 * @clk: outgoing clock "SPICLK" for the SPI bus
333 * @master: SPI framework hookup
334 * @master_info: controller-specific data from machine setup
335 * @workqueue: a workqueue on which any spi_message request is queued
336 * @pump_messages: work struct for scheduling work to the workqueue
337 * @queue_lock: spinlock to syncronise access to message queue
338 * @queue: message queue
339 * @busy: workqueue is busy
340 * @running: workqueue is running
341 * @pump_transfers: Tasklet used in Interrupt Transfer mode
342 * @cur_msg: Pointer to current spi_message being processed
343 * @cur_transfer: Pointer to current spi_transfer
344 * @cur_chip: pointer to current clients chip(assigned from controller_state)
345 * @tx: current position in TX buffer to be read
346 * @tx_end: end position in TX buffer to be read
347 * @rx: current position in RX buffer to be written
348 * @rx_end: end position in RX buffer to be written
349 * @read: the type of read currently going on
350 * @write: the type of write currently going on
351 * @exp_fifo_level: expected FIFO level
352 * @dma_rx_channel: optional channel for RX DMA
353 * @dma_tx_channel: optional channel for TX DMA
354 * @sgt_rx: scattertable for the RX transfer
355 * @sgt_tx: scattertable for the TX transfer
356 * @dummypage: a dummy page used for driving data on the bus with DMA
359 struct amba_device
*adev
;
360 struct vendor_data
*vendor
;
361 resource_size_t phybase
;
362 void __iomem
*virtbase
;
364 struct spi_master
*master
;
365 struct pl022_ssp_controller
*master_info
;
366 /* Driver message queue */
367 struct workqueue_struct
*workqueue
;
368 struct work_struct pump_messages
;
369 spinlock_t queue_lock
;
370 struct list_head queue
;
373 /* Message transfer pump */
374 struct tasklet_struct pump_transfers
;
375 struct spi_message
*cur_msg
;
376 struct spi_transfer
*cur_transfer
;
377 struct chip_data
*cur_chip
;
382 enum ssp_reading read
;
383 enum ssp_writing write
;
385 enum ssp_rx_level_trig rx_lev_trig
;
386 enum ssp_tx_level_trig tx_lev_trig
;
388 #ifdef CONFIG_DMA_ENGINE
389 struct dma_chan
*dma_rx_channel
;
390 struct dma_chan
*dma_tx_channel
;
391 struct sg_table sgt_rx
;
392 struct sg_table sgt_tx
;
398 * struct chip_data - To maintain runtime state of SSP for each client chip
399 * @cr0: Value of control register CR0 of SSP - on later ST variants this
400 * register is 32 bits wide rather than just 16
401 * @cr1: Value of control register CR1 of SSP
402 * @dmacr: Value of DMA control Register of SSP
403 * @cpsr: Value of Clock prescale register
404 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
405 * @enable_dma: Whether to enable DMA or not
406 * @read: function ptr to be used to read when doing xfer for this chip
407 * @write: function ptr to be used to write when doing xfer for this chip
408 * @cs_control: chip select callback provided by chip
409 * @xfer_type: polling/interrupt/DMA
411 * Runtime state of the SSP controller, maintained per chip,
412 * This would be set according to the current message that would be served
421 enum ssp_reading read
;
422 enum ssp_writing write
;
423 void (*cs_control
) (u32 command
);
428 * null_cs_control - Dummy chip select function
429 * @command: select/delect the chip
431 * If no chip select function is provided by client this is used as dummy
434 static void null_cs_control(u32 command
)
436 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command
);
440 * giveback - current spi_message is over, schedule next message and call
441 * callback of this message. Assumes that caller already
442 * set message->status; dma and pio irqs are blocked
443 * @pl022: SSP driver private data structure
445 static void giveback(struct pl022
*pl022
)
447 struct spi_transfer
*last_transfer
;
449 struct spi_message
*msg
;
450 void (*curr_cs_control
) (u32 command
);
453 * This local reference to the chip select function
454 * is needed because we set curr_chip to NULL
455 * as a step toward termininating the message.
457 curr_cs_control
= pl022
->cur_chip
->cs_control
;
458 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
459 msg
= pl022
->cur_msg
;
460 pl022
->cur_msg
= NULL
;
461 pl022
->cur_transfer
= NULL
;
462 pl022
->cur_chip
= NULL
;
463 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
464 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
466 last_transfer
= list_entry(msg
->transfers
.prev
,
470 /* Delay if requested before any change in chip select */
471 if (last_transfer
->delay_usecs
)
473 * FIXME: This runs in interrupt context.
474 * Is this really smart?
476 udelay(last_transfer
->delay_usecs
);
479 * Drop chip select UNLESS cs_change is true or we are returning
480 * a message with an error, or next message is for another chip
482 if (!last_transfer
->cs_change
)
483 curr_cs_control(SSP_CHIP_DESELECT
);
485 struct spi_message
*next_msg
;
487 /* Holding of cs was hinted, but we need to make sure
488 * the next message is for the same chip. Don't waste
489 * time with the following tests unless this was hinted.
491 * We cannot postpone this until pump_messages, because
492 * after calling msg->complete (below) the driver that
493 * sent the current message could be unloaded, which
494 * could invalidate the cs_control() callback...
497 /* get a pointer to the next message, if any */
498 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
499 if (list_empty(&pl022
->queue
))
502 next_msg
= list_entry(pl022
->queue
.next
,
503 struct spi_message
, queue
);
504 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
506 /* see if the next and current messages point
509 if (next_msg
&& next_msg
->spi
!= msg
->spi
)
511 if (!next_msg
|| msg
->state
== STATE_ERROR
)
512 curr_cs_control(SSP_CHIP_DESELECT
);
516 msg
->complete(msg
->context
);
517 /* This message is completed, so let's turn off the clocks & power */
518 pm_runtime_put(&pl022
->adev
->dev
);
522 * flush - flush the FIFO to reach a clean state
523 * @pl022: SSP driver private data structure
525 static int flush(struct pl022
*pl022
)
527 unsigned long limit
= loops_per_jiffy
<< 1;
529 dev_dbg(&pl022
->adev
->dev
, "flush\n");
531 while (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
532 readw(SSP_DR(pl022
->virtbase
));
533 } while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_BSY
) && limit
--);
535 pl022
->exp_fifo_level
= 0;
541 * restore_state - Load configuration of current chip
542 * @pl022: SSP driver private data structure
544 static void restore_state(struct pl022
*pl022
)
546 struct chip_data
*chip
= pl022
->cur_chip
;
548 if (pl022
->vendor
->extended_cr
)
549 writel(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
551 writew(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
552 writew(chip
->cr1
, SSP_CR1(pl022
->virtbase
));
553 writew(chip
->dmacr
, SSP_DMACR(pl022
->virtbase
));
554 writew(chip
->cpsr
, SSP_CPSR(pl022
->virtbase
));
555 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
556 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
560 * Default SSP Register Values
562 #define DEFAULT_SSP_REG_CR0 ( \
563 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
564 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
565 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
566 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
567 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
570 /* ST versions have slightly different bit layout */
571 #define DEFAULT_SSP_REG_CR0_ST ( \
572 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
573 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
574 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
575 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
576 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
577 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
578 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
581 /* The PL023 version is slightly different again */
582 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
583 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
584 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
585 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
586 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
589 #define DEFAULT_SSP_REG_CR1 ( \
590 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
591 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
592 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
593 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
596 /* ST versions extend this register to use all 16 bits */
597 #define DEFAULT_SSP_REG_CR1_ST ( \
598 DEFAULT_SSP_REG_CR1 | \
599 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
600 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
601 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
602 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
603 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
607 * The PL023 variant has further differences: no loopback mode, no microwire
608 * support, and a new clock feedback delay setting.
610 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
611 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
612 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
613 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
614 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
615 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
616 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
617 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
618 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
621 #define DEFAULT_SSP_REG_CPSR ( \
622 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
625 #define DEFAULT_SSP_REG_DMACR (\
626 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
627 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
631 * load_ssp_default_config - Load default configuration for SSP
632 * @pl022: SSP driver private data structure
634 static void load_ssp_default_config(struct pl022
*pl022
)
636 if (pl022
->vendor
->pl023
) {
637 writel(DEFAULT_SSP_REG_CR0_ST_PL023
, SSP_CR0(pl022
->virtbase
));
638 writew(DEFAULT_SSP_REG_CR1_ST_PL023
, SSP_CR1(pl022
->virtbase
));
639 } else if (pl022
->vendor
->extended_cr
) {
640 writel(DEFAULT_SSP_REG_CR0_ST
, SSP_CR0(pl022
->virtbase
));
641 writew(DEFAULT_SSP_REG_CR1_ST
, SSP_CR1(pl022
->virtbase
));
643 writew(DEFAULT_SSP_REG_CR0
, SSP_CR0(pl022
->virtbase
));
644 writew(DEFAULT_SSP_REG_CR1
, SSP_CR1(pl022
->virtbase
));
646 writew(DEFAULT_SSP_REG_DMACR
, SSP_DMACR(pl022
->virtbase
));
647 writew(DEFAULT_SSP_REG_CPSR
, SSP_CPSR(pl022
->virtbase
));
648 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
649 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
653 * This will write to TX and read from RX according to the parameters
656 static void readwriter(struct pl022
*pl022
)
660 * The FIFO depth is different between primecell variants.
661 * I believe filling in too much in the FIFO might cause
662 * errons in 8bit wide transfers on ARM variants (just 8 words
663 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
665 * To prevent this issue, the TX FIFO is only filled to the
666 * unused RX FIFO fill length, regardless of what the TX
667 * FIFO status flag indicates.
669 dev_dbg(&pl022
->adev
->dev
,
670 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
671 __func__
, pl022
->rx
, pl022
->rx_end
, pl022
->tx
, pl022
->tx_end
);
673 /* Read as much as you can */
674 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
675 && (pl022
->rx
< pl022
->rx_end
)) {
676 switch (pl022
->read
) {
678 readw(SSP_DR(pl022
->virtbase
));
681 *(u8
*) (pl022
->rx
) =
682 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
685 *(u16
*) (pl022
->rx
) =
686 (u16
) readw(SSP_DR(pl022
->virtbase
));
689 *(u32
*) (pl022
->rx
) =
690 readl(SSP_DR(pl022
->virtbase
));
693 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
694 pl022
->exp_fifo_level
--;
697 * Write as much as possible up to the RX FIFO size
699 while ((pl022
->exp_fifo_level
< pl022
->vendor
->fifodepth
)
700 && (pl022
->tx
< pl022
->tx_end
)) {
701 switch (pl022
->write
) {
703 writew(0x0, SSP_DR(pl022
->virtbase
));
706 writew(*(u8
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
709 writew((*(u16
*) (pl022
->tx
)), SSP_DR(pl022
->virtbase
));
712 writel(*(u32
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
715 pl022
->tx
+= (pl022
->cur_chip
->n_bytes
);
716 pl022
->exp_fifo_level
++;
718 * This inner reader takes care of things appearing in the RX
719 * FIFO as we're transmitting. This will happen a lot since the
720 * clock starts running when you put things into the TX FIFO,
721 * and then things are continuously clocked into the RX FIFO.
723 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
724 && (pl022
->rx
< pl022
->rx_end
)) {
725 switch (pl022
->read
) {
727 readw(SSP_DR(pl022
->virtbase
));
730 *(u8
*) (pl022
->rx
) =
731 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
734 *(u16
*) (pl022
->rx
) =
735 (u16
) readw(SSP_DR(pl022
->virtbase
));
738 *(u32
*) (pl022
->rx
) =
739 readl(SSP_DR(pl022
->virtbase
));
742 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
743 pl022
->exp_fifo_level
--;
747 * When we exit here the TX FIFO should be full and the RX FIFO
754 * next_transfer - Move to the Next transfer in the current spi message
755 * @pl022: SSP driver private data structure
757 * This function moves though the linked list of spi transfers in the
758 * current spi message and returns with the state of current spi
759 * message i.e whether its last transfer is done(STATE_DONE) or
760 * Next transfer is ready(STATE_RUNNING)
762 static void *next_transfer(struct pl022
*pl022
)
764 struct spi_message
*msg
= pl022
->cur_msg
;
765 struct spi_transfer
*trans
= pl022
->cur_transfer
;
767 /* Move to next transfer */
768 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
769 pl022
->cur_transfer
=
770 list_entry(trans
->transfer_list
.next
,
771 struct spi_transfer
, transfer_list
);
772 return STATE_RUNNING
;
778 * This DMA functionality is only compiled in if we have
779 * access to the generic DMA devices/DMA engine.
781 #ifdef CONFIG_DMA_ENGINE
782 static void unmap_free_dma_scatter(struct pl022
*pl022
)
784 /* Unmap and free the SG tables */
785 dma_unmap_sg(pl022
->dma_tx_channel
->device
->dev
, pl022
->sgt_tx
.sgl
,
786 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
787 dma_unmap_sg(pl022
->dma_rx_channel
->device
->dev
, pl022
->sgt_rx
.sgl
,
788 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
789 sg_free_table(&pl022
->sgt_rx
);
790 sg_free_table(&pl022
->sgt_tx
);
793 static void dma_callback(void *data
)
795 struct pl022
*pl022
= data
;
796 struct spi_message
*msg
= pl022
->cur_msg
;
798 BUG_ON(!pl022
->sgt_rx
.sgl
);
802 * Optionally dump out buffers to inspect contents, this is
803 * good if you want to convince yourself that the loopback
804 * read/write contents are the same, when adopting to a new
808 struct scatterlist
*sg
;
811 dma_sync_sg_for_cpu(&pl022
->adev
->dev
,
816 for_each_sg(pl022
->sgt_rx
.sgl
, sg
, pl022
->sgt_rx
.nents
, i
) {
817 dev_dbg(&pl022
->adev
->dev
, "SPI RX SG ENTRY: %d", i
);
818 print_hex_dump(KERN_ERR
, "SPI RX: ",
826 for_each_sg(pl022
->sgt_tx
.sgl
, sg
, pl022
->sgt_tx
.nents
, i
) {
827 dev_dbg(&pl022
->adev
->dev
, "SPI TX SG ENTRY: %d", i
);
828 print_hex_dump(KERN_ERR
, "SPI TX: ",
839 unmap_free_dma_scatter(pl022
);
841 /* Update total bytes transferred */
842 msg
->actual_length
+= pl022
->cur_transfer
->len
;
843 if (pl022
->cur_transfer
->cs_change
)
845 cs_control(SSP_CHIP_DESELECT
);
847 /* Move to next transfer */
848 msg
->state
= next_transfer(pl022
);
849 tasklet_schedule(&pl022
->pump_transfers
);
852 static void setup_dma_scatter(struct pl022
*pl022
,
855 struct sg_table
*sgtab
)
857 struct scatterlist
*sg
;
858 int bytesleft
= length
;
864 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
866 * If there are less bytes left than what fits
867 * in the current page (plus page alignment offset)
868 * we just feed in this, else we stuff in as much
871 if (bytesleft
< (PAGE_SIZE
- offset_in_page(bufp
)))
872 mapbytes
= bytesleft
;
874 mapbytes
= PAGE_SIZE
- offset_in_page(bufp
);
875 sg_set_page(sg
, virt_to_page(bufp
),
876 mapbytes
, offset_in_page(bufp
));
878 bytesleft
-= mapbytes
;
879 dev_dbg(&pl022
->adev
->dev
,
880 "set RX/TX target page @ %p, %d bytes, %d left\n",
881 bufp
, mapbytes
, bytesleft
);
884 /* Map the dummy buffer on every page */
885 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
886 if (bytesleft
< PAGE_SIZE
)
887 mapbytes
= bytesleft
;
889 mapbytes
= PAGE_SIZE
;
890 sg_set_page(sg
, virt_to_page(pl022
->dummypage
),
892 bytesleft
-= mapbytes
;
893 dev_dbg(&pl022
->adev
->dev
,
894 "set RX/TX to dummy page %d bytes, %d left\n",
895 mapbytes
, bytesleft
);
903 * configure_dma - configures the channels for the next transfer
904 * @pl022: SSP driver's private data structure
906 static int configure_dma(struct pl022
*pl022
)
908 struct dma_slave_config rx_conf
= {
909 .src_addr
= SSP_DR(pl022
->phybase
),
910 .direction
= DMA_FROM_DEVICE
,
912 struct dma_slave_config tx_conf
= {
913 .dst_addr
= SSP_DR(pl022
->phybase
),
914 .direction
= DMA_TO_DEVICE
,
918 int rx_sglen
, tx_sglen
;
919 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
920 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
921 struct dma_async_tx_descriptor
*rxdesc
;
922 struct dma_async_tx_descriptor
*txdesc
;
924 /* Check that the channels are available */
925 if (!rxchan
|| !txchan
)
929 * If supplied, the DMA burstsize should equal the FIFO trigger level.
930 * Notice that the DMA engine uses one-to-one mapping. Since we can
931 * not trigger on 2 elements this needs explicit mapping rather than
934 switch (pl022
->rx_lev_trig
) {
935 case SSP_RX_1_OR_MORE_ELEM
:
936 rx_conf
.src_maxburst
= 1;
938 case SSP_RX_4_OR_MORE_ELEM
:
939 rx_conf
.src_maxburst
= 4;
941 case SSP_RX_8_OR_MORE_ELEM
:
942 rx_conf
.src_maxburst
= 8;
944 case SSP_RX_16_OR_MORE_ELEM
:
945 rx_conf
.src_maxburst
= 16;
947 case SSP_RX_32_OR_MORE_ELEM
:
948 rx_conf
.src_maxburst
= 32;
951 rx_conf
.src_maxburst
= pl022
->vendor
->fifodepth
>> 1;
955 switch (pl022
->tx_lev_trig
) {
956 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
957 tx_conf
.dst_maxburst
= 1;
959 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
960 tx_conf
.dst_maxburst
= 4;
962 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
963 tx_conf
.dst_maxburst
= 8;
965 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
966 tx_conf
.dst_maxburst
= 16;
968 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
969 tx_conf
.dst_maxburst
= 32;
972 tx_conf
.dst_maxburst
= pl022
->vendor
->fifodepth
>> 1;
976 switch (pl022
->read
) {
978 /* Use the same as for writing */
979 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
982 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
985 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
988 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
992 switch (pl022
->write
) {
994 /* Use the same as for reading */
995 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
998 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
1001 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
1004 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1008 /* SPI pecularity: we need to read and write the same width */
1009 if (rx_conf
.src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
1010 rx_conf
.src_addr_width
= tx_conf
.dst_addr_width
;
1011 if (tx_conf
.dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
1012 tx_conf
.dst_addr_width
= rx_conf
.src_addr_width
;
1013 BUG_ON(rx_conf
.src_addr_width
!= tx_conf
.dst_addr_width
);
1015 dmaengine_slave_config(rxchan
, &rx_conf
);
1016 dmaengine_slave_config(txchan
, &tx_conf
);
1018 /* Create sglists for the transfers */
1019 pages
= (pl022
->cur_transfer
->len
>> PAGE_SHIFT
) + 1;
1020 dev_dbg(&pl022
->adev
->dev
, "using %d pages for transfer\n", pages
);
1022 ret
= sg_alloc_table(&pl022
->sgt_rx
, pages
, GFP_KERNEL
);
1024 goto err_alloc_rx_sg
;
1026 ret
= sg_alloc_table(&pl022
->sgt_tx
, pages
, GFP_KERNEL
);
1028 goto err_alloc_tx_sg
;
1030 /* Fill in the scatterlists for the RX+TX buffers */
1031 setup_dma_scatter(pl022
, pl022
->rx
,
1032 pl022
->cur_transfer
->len
, &pl022
->sgt_rx
);
1033 setup_dma_scatter(pl022
, pl022
->tx
,
1034 pl022
->cur_transfer
->len
, &pl022
->sgt_tx
);
1036 /* Map DMA buffers */
1037 rx_sglen
= dma_map_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1038 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
1042 tx_sglen
= dma_map_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1043 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1047 /* Send both scatterlists */
1048 rxdesc
= rxchan
->device
->device_prep_slave_sg(rxchan
,
1052 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1056 txdesc
= txchan
->device
->device_prep_slave_sg(txchan
,
1060 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1064 /* Put the callback on the RX transfer only, that should finish last */
1065 rxdesc
->callback
= dma_callback
;
1066 rxdesc
->callback_param
= pl022
;
1068 /* Submit and fire RX and TX with TX last so we're ready to read! */
1069 dmaengine_submit(rxdesc
);
1070 dmaengine_submit(txdesc
);
1071 dma_async_issue_pending(rxchan
);
1072 dma_async_issue_pending(txchan
);
1077 dmaengine_terminate_all(txchan
);
1079 dmaengine_terminate_all(rxchan
);
1080 dma_unmap_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1081 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1083 dma_unmap_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1084 pl022
->sgt_tx
.nents
, DMA_FROM_DEVICE
);
1086 sg_free_table(&pl022
->sgt_tx
);
1088 sg_free_table(&pl022
->sgt_rx
);
1093 static int __init
pl022_dma_probe(struct pl022
*pl022
)
1095 dma_cap_mask_t mask
;
1097 /* Try to acquire a generic DMA engine slave channel */
1099 dma_cap_set(DMA_SLAVE
, mask
);
1101 * We need both RX and TX channels to do DMA, else do none
1104 pl022
->dma_rx_channel
= dma_request_channel(mask
,
1105 pl022
->master_info
->dma_filter
,
1106 pl022
->master_info
->dma_rx_param
);
1107 if (!pl022
->dma_rx_channel
) {
1108 dev_dbg(&pl022
->adev
->dev
, "no RX DMA channel!\n");
1112 pl022
->dma_tx_channel
= dma_request_channel(mask
,
1113 pl022
->master_info
->dma_filter
,
1114 pl022
->master_info
->dma_tx_param
);
1115 if (!pl022
->dma_tx_channel
) {
1116 dev_dbg(&pl022
->adev
->dev
, "no TX DMA channel!\n");
1120 pl022
->dummypage
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1121 if (!pl022
->dummypage
) {
1122 dev_dbg(&pl022
->adev
->dev
, "no DMA dummypage!\n");
1123 goto err_no_dummypage
;
1126 dev_info(&pl022
->adev
->dev
, "setup for DMA on RX %s, TX %s\n",
1127 dma_chan_name(pl022
->dma_rx_channel
),
1128 dma_chan_name(pl022
->dma_tx_channel
));
1133 dma_release_channel(pl022
->dma_tx_channel
);
1135 dma_release_channel(pl022
->dma_rx_channel
);
1136 pl022
->dma_rx_channel
= NULL
;
1138 dev_err(&pl022
->adev
->dev
,
1139 "Failed to work in dma mode, work without dma!\n");
1143 static void terminate_dma(struct pl022
*pl022
)
1145 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
1146 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
1148 dmaengine_terminate_all(rxchan
);
1149 dmaengine_terminate_all(txchan
);
1150 unmap_free_dma_scatter(pl022
);
1153 static void pl022_dma_remove(struct pl022
*pl022
)
1156 terminate_dma(pl022
);
1157 if (pl022
->dma_tx_channel
)
1158 dma_release_channel(pl022
->dma_tx_channel
);
1159 if (pl022
->dma_rx_channel
)
1160 dma_release_channel(pl022
->dma_rx_channel
);
1161 kfree(pl022
->dummypage
);
1165 static inline int configure_dma(struct pl022
*pl022
)
1170 static inline int pl022_dma_probe(struct pl022
*pl022
)
1175 static inline void pl022_dma_remove(struct pl022
*pl022
)
1181 * pl022_interrupt_handler - Interrupt handler for SSP controller
1183 * This function handles interrupts generated for an interrupt based transfer.
1184 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1185 * current message's state as STATE_ERROR and schedule the tasklet
1186 * pump_transfers which will do the postprocessing of the current message by
1187 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1188 * more data, and writes data in TX FIFO till it is not full. If we complete
1189 * the transfer we move to the next transfer and schedule the tasklet.
1191 static irqreturn_t
pl022_interrupt_handler(int irq
, void *dev_id
)
1193 struct pl022
*pl022
= dev_id
;
1194 struct spi_message
*msg
= pl022
->cur_msg
;
1198 if (unlikely(!msg
)) {
1199 dev_err(&pl022
->adev
->dev
,
1200 "bad message state in interrupt handler");
1205 /* Read the Interrupt Status Register */
1206 irq_status
= readw(SSP_MIS(pl022
->virtbase
));
1208 if (unlikely(!irq_status
))
1212 * This handles the FIFO interrupts, the timeout
1213 * interrupts are flatly ignored, they cannot be
1216 if (unlikely(irq_status
& SSP_MIS_MASK_RORMIS
)) {
1218 * Overrun interrupt - bail out since our Data has been
1221 dev_err(&pl022
->adev
->dev
, "FIFO overrun\n");
1222 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RFF
)
1223 dev_err(&pl022
->adev
->dev
,
1224 "RXFIFO is full\n");
1225 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_TNF
)
1226 dev_err(&pl022
->adev
->dev
,
1227 "TXFIFO is full\n");
1230 * Disable and clear interrupts, disable SSP,
1231 * mark message with bad status so it can be
1234 writew(DISABLE_ALL_INTERRUPTS
,
1235 SSP_IMSC(pl022
->virtbase
));
1236 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1237 writew((readw(SSP_CR1(pl022
->virtbase
)) &
1238 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
1239 msg
->state
= STATE_ERROR
;
1241 /* Schedule message queue handler */
1242 tasklet_schedule(&pl022
->pump_transfers
);
1248 if ((pl022
->tx
== pl022
->tx_end
) && (flag
== 0)) {
1250 /* Disable Transmit interrupt */
1251 writew(readw(SSP_IMSC(pl022
->virtbase
)) &
1252 (~SSP_IMSC_MASK_TXIM
),
1253 SSP_IMSC(pl022
->virtbase
));
1257 * Since all transactions must write as much as shall be read,
1258 * we can conclude the entire transaction once RX is complete.
1259 * At this point, all TX will always be finished.
1261 if (pl022
->rx
>= pl022
->rx_end
) {
1262 writew(DISABLE_ALL_INTERRUPTS
,
1263 SSP_IMSC(pl022
->virtbase
));
1264 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1265 if (unlikely(pl022
->rx
> pl022
->rx_end
)) {
1266 dev_warn(&pl022
->adev
->dev
, "read %u surplus "
1267 "bytes (did you request an odd "
1268 "number of bytes on a 16bit bus?)\n",
1269 (u32
) (pl022
->rx
- pl022
->rx_end
));
1271 /* Update total bytes transferred */
1272 msg
->actual_length
+= pl022
->cur_transfer
->len
;
1273 if (pl022
->cur_transfer
->cs_change
)
1275 cs_control(SSP_CHIP_DESELECT
);
1276 /* Move to next transfer */
1277 msg
->state
= next_transfer(pl022
);
1278 tasklet_schedule(&pl022
->pump_transfers
);
1286 * This sets up the pointers to memory for the next message to
1287 * send out on the SPI bus.
1289 static int set_up_next_transfer(struct pl022
*pl022
,
1290 struct spi_transfer
*transfer
)
1294 /* Sanity check the message for this bus width */
1295 residue
= pl022
->cur_transfer
->len
% pl022
->cur_chip
->n_bytes
;
1296 if (unlikely(residue
!= 0)) {
1297 dev_err(&pl022
->adev
->dev
,
1298 "message of %u bytes to transmit but the current "
1299 "chip bus has a data width of %u bytes!\n",
1300 pl022
->cur_transfer
->len
,
1301 pl022
->cur_chip
->n_bytes
);
1302 dev_err(&pl022
->adev
->dev
, "skipping this message\n");
1305 pl022
->tx
= (void *)transfer
->tx_buf
;
1306 pl022
->tx_end
= pl022
->tx
+ pl022
->cur_transfer
->len
;
1307 pl022
->rx
= (void *)transfer
->rx_buf
;
1308 pl022
->rx_end
= pl022
->rx
+ pl022
->cur_transfer
->len
;
1310 pl022
->tx
? pl022
->cur_chip
->write
: WRITING_NULL
;
1311 pl022
->read
= pl022
->rx
? pl022
->cur_chip
->read
: READING_NULL
;
1316 * pump_transfers - Tasklet function which schedules next transfer
1317 * when running in interrupt or DMA transfer mode.
1318 * @data: SSP driver private data structure
1321 static void pump_transfers(unsigned long data
)
1323 struct pl022
*pl022
= (struct pl022
*) data
;
1324 struct spi_message
*message
= NULL
;
1325 struct spi_transfer
*transfer
= NULL
;
1326 struct spi_transfer
*previous
= NULL
;
1328 /* Get current state information */
1329 message
= pl022
->cur_msg
;
1330 transfer
= pl022
->cur_transfer
;
1332 /* Handle for abort */
1333 if (message
->state
== STATE_ERROR
) {
1334 message
->status
= -EIO
;
1339 /* Handle end of message */
1340 if (message
->state
== STATE_DONE
) {
1341 message
->status
= 0;
1346 /* Delay if requested at end of transfer before CS change */
1347 if (message
->state
== STATE_RUNNING
) {
1348 previous
= list_entry(transfer
->transfer_list
.prev
,
1349 struct spi_transfer
,
1351 if (previous
->delay_usecs
)
1353 * FIXME: This runs in interrupt context.
1354 * Is this really smart?
1356 udelay(previous
->delay_usecs
);
1358 /* Drop chip select only if cs_change is requested */
1359 if (previous
->cs_change
)
1360 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1363 message
->state
= STATE_RUNNING
;
1366 if (set_up_next_transfer(pl022
, transfer
)) {
1367 message
->state
= STATE_ERROR
;
1368 message
->status
= -EIO
;
1372 /* Flush the FIFOs and let's go! */
1375 if (pl022
->cur_chip
->enable_dma
) {
1376 if (configure_dma(pl022
)) {
1377 dev_dbg(&pl022
->adev
->dev
,
1378 "configuration of DMA failed, fall back to interrupt mode\n");
1379 goto err_config_dma
;
1385 writew(ENABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
1388 static void do_interrupt_dma_transfer(struct pl022
*pl022
)
1390 u32 irqflags
= ENABLE_ALL_INTERRUPTS
;
1392 /* Enable target chip */
1393 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1394 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
1396 pl022
->cur_msg
->state
= STATE_ERROR
;
1397 pl022
->cur_msg
->status
= -EIO
;
1401 /* If we're using DMA, set up DMA here */
1402 if (pl022
->cur_chip
->enable_dma
) {
1403 /* Configure DMA transfer */
1404 if (configure_dma(pl022
)) {
1405 dev_dbg(&pl022
->adev
->dev
,
1406 "configuration of DMA failed, fall back to interrupt mode\n");
1407 goto err_config_dma
;
1409 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1410 irqflags
= DISABLE_ALL_INTERRUPTS
;
1413 /* Enable SSP, turn on interrupts */
1414 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1415 SSP_CR1(pl022
->virtbase
));
1416 writew(irqflags
, SSP_IMSC(pl022
->virtbase
));
1419 static void do_polling_transfer(struct pl022
*pl022
)
1421 struct spi_message
*message
= NULL
;
1422 struct spi_transfer
*transfer
= NULL
;
1423 struct spi_transfer
*previous
= NULL
;
1424 struct chip_data
*chip
;
1425 unsigned long time
, timeout
;
1427 chip
= pl022
->cur_chip
;
1428 message
= pl022
->cur_msg
;
1430 while (message
->state
!= STATE_DONE
) {
1431 /* Handle for abort */
1432 if (message
->state
== STATE_ERROR
)
1434 transfer
= pl022
->cur_transfer
;
1436 /* Delay if requested at end of transfer */
1437 if (message
->state
== STATE_RUNNING
) {
1439 list_entry(transfer
->transfer_list
.prev
,
1440 struct spi_transfer
, transfer_list
);
1441 if (previous
->delay_usecs
)
1442 udelay(previous
->delay_usecs
);
1443 if (previous
->cs_change
)
1444 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1447 message
->state
= STATE_RUNNING
;
1448 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1451 /* Configuration Changing Per Transfer */
1452 if (set_up_next_transfer(pl022
, transfer
)) {
1454 message
->state
= STATE_ERROR
;
1457 /* Flush FIFOs and enable SSP */
1459 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1460 SSP_CR1(pl022
->virtbase
));
1462 dev_dbg(&pl022
->adev
->dev
, "polling transfer ongoing ...\n");
1464 timeout
= jiffies
+ msecs_to_jiffies(SPI_POLLING_TIMEOUT
);
1465 while (pl022
->tx
< pl022
->tx_end
|| pl022
->rx
< pl022
->rx_end
) {
1468 if (time_after(time
, timeout
)) {
1469 dev_warn(&pl022
->adev
->dev
,
1470 "%s: timeout!\n", __func__
);
1471 message
->state
= STATE_ERROR
;
1477 /* Update total byte transferred */
1478 message
->actual_length
+= pl022
->cur_transfer
->len
;
1479 if (pl022
->cur_transfer
->cs_change
)
1480 pl022
->cur_chip
->cs_control(SSP_CHIP_DESELECT
);
1481 /* Move to next transfer */
1482 message
->state
= next_transfer(pl022
);
1485 /* Handle end of message */
1486 if (message
->state
== STATE_DONE
)
1487 message
->status
= 0;
1489 message
->status
= -EIO
;
1496 * pump_messages - Workqueue function which processes spi message queue
1497 * @data: pointer to private data of SSP driver
1499 * This function checks if there is any spi message in the queue that
1500 * needs processing and delegate control to appropriate function
1501 * do_polling_transfer()/do_interrupt_dma_transfer()
1502 * based on the kind of the transfer
1505 static void pump_messages(struct work_struct
*work
)
1507 struct pl022
*pl022
=
1508 container_of(work
, struct pl022
, pump_messages
);
1509 unsigned long flags
;
1511 /* Lock queue and check for queue work */
1512 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1513 if (list_empty(&pl022
->queue
) || !pl022
->running
) {
1514 pl022
->busy
= false;
1515 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1518 /* Make sure we are not already running a message */
1519 if (pl022
->cur_msg
) {
1520 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1523 /* Extract head of queue */
1525 list_entry(pl022
->queue
.next
, struct spi_message
, queue
);
1527 list_del_init(&pl022
->cur_msg
->queue
);
1529 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1531 /* Initial message state */
1532 pl022
->cur_msg
->state
= STATE_START
;
1533 pl022
->cur_transfer
= list_entry(pl022
->cur_msg
->transfers
.next
,
1534 struct spi_transfer
,
1537 /* Setup the SPI using the per chip configuration */
1538 pl022
->cur_chip
= spi_get_ctldata(pl022
->cur_msg
->spi
);
1540 * We enable the core voltage and clocks here, then the clocks
1541 * and core will be disabled when giveback() is called in each method
1542 * (poll/interrupt/DMA)
1544 pm_runtime_get_sync(&pl022
->adev
->dev
);
1545 restore_state(pl022
);
1548 if (pl022
->cur_chip
->xfer_type
== POLLING_TRANSFER
)
1549 do_polling_transfer(pl022
);
1551 do_interrupt_dma_transfer(pl022
);
1555 static int __init
init_queue(struct pl022
*pl022
)
1557 INIT_LIST_HEAD(&pl022
->queue
);
1558 spin_lock_init(&pl022
->queue_lock
);
1560 pl022
->running
= false;
1561 pl022
->busy
= false;
1563 tasklet_init(&pl022
->pump_transfers
,
1564 pump_transfers
, (unsigned long)pl022
);
1566 INIT_WORK(&pl022
->pump_messages
, pump_messages
);
1567 pl022
->workqueue
= create_singlethread_workqueue(
1568 dev_name(pl022
->master
->dev
.parent
));
1569 if (pl022
->workqueue
== NULL
)
1576 static int start_queue(struct pl022
*pl022
)
1578 unsigned long flags
;
1580 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1582 if (pl022
->running
|| pl022
->busy
) {
1583 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1587 pl022
->running
= true;
1588 pl022
->cur_msg
= NULL
;
1589 pl022
->cur_transfer
= NULL
;
1590 pl022
->cur_chip
= NULL
;
1591 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1593 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1599 static int stop_queue(struct pl022
*pl022
)
1601 unsigned long flags
;
1602 unsigned limit
= 500;
1605 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1607 /* This is a bit lame, but is optimized for the common execution path.
1608 * A wait_queue on the pl022->busy could be used, but then the common
1609 * execution path (pump_messages) would be required to call wake_up or
1610 * friends on every SPI message. Do this instead */
1611 while ((!list_empty(&pl022
->queue
) || pl022
->busy
) && limit
--) {
1612 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1614 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1617 if (!list_empty(&pl022
->queue
) || pl022
->busy
)
1620 pl022
->running
= false;
1622 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1627 static int destroy_queue(struct pl022
*pl022
)
1631 status
= stop_queue(pl022
);
1632 /* we are unloading the module or failing to load (only two calls
1633 * to this routine), and neither call can handle a return value.
1634 * However, destroy_workqueue calls flush_workqueue, and that will
1635 * block until all work is done. If the reason that stop_queue
1636 * timed out is that the work will never finish, then it does no
1637 * good to call destroy_workqueue, so return anyway. */
1641 destroy_workqueue(pl022
->workqueue
);
1646 static int verify_controller_parameters(struct pl022
*pl022
,
1647 struct pl022_config_chip
const *chip_info
)
1649 if ((chip_info
->iface
< SSP_INTERFACE_MOTOROLA_SPI
)
1650 || (chip_info
->iface
> SSP_INTERFACE_UNIDIRECTIONAL
)) {
1651 dev_err(&pl022
->adev
->dev
,
1652 "interface is configured incorrectly\n");
1655 if ((chip_info
->iface
== SSP_INTERFACE_UNIDIRECTIONAL
) &&
1656 (!pl022
->vendor
->unidir
)) {
1657 dev_err(&pl022
->adev
->dev
,
1658 "unidirectional mode not supported in this "
1659 "hardware version\n");
1662 if ((chip_info
->hierarchy
!= SSP_MASTER
)
1663 && (chip_info
->hierarchy
!= SSP_SLAVE
)) {
1664 dev_err(&pl022
->adev
->dev
,
1665 "hierarchy is configured incorrectly\n");
1668 if ((chip_info
->com_mode
!= INTERRUPT_TRANSFER
)
1669 && (chip_info
->com_mode
!= DMA_TRANSFER
)
1670 && (chip_info
->com_mode
!= POLLING_TRANSFER
)) {
1671 dev_err(&pl022
->adev
->dev
,
1672 "Communication mode is configured incorrectly\n");
1675 switch (chip_info
->rx_lev_trig
) {
1676 case SSP_RX_1_OR_MORE_ELEM
:
1677 case SSP_RX_4_OR_MORE_ELEM
:
1678 case SSP_RX_8_OR_MORE_ELEM
:
1679 /* These are always OK, all variants can handle this */
1681 case SSP_RX_16_OR_MORE_ELEM
:
1682 if (pl022
->vendor
->fifodepth
< 16) {
1683 dev_err(&pl022
->adev
->dev
,
1684 "RX FIFO Trigger Level is configured incorrectly\n");
1688 case SSP_RX_32_OR_MORE_ELEM
:
1689 if (pl022
->vendor
->fifodepth
< 32) {
1690 dev_err(&pl022
->adev
->dev
,
1691 "RX FIFO Trigger Level is configured incorrectly\n");
1696 dev_err(&pl022
->adev
->dev
,
1697 "RX FIFO Trigger Level is configured incorrectly\n");
1701 switch (chip_info
->tx_lev_trig
) {
1702 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
1703 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
1704 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
1705 /* These are always OK, all variants can handle this */
1707 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
1708 if (pl022
->vendor
->fifodepth
< 16) {
1709 dev_err(&pl022
->adev
->dev
,
1710 "TX FIFO Trigger Level is configured incorrectly\n");
1714 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
1715 if (pl022
->vendor
->fifodepth
< 32) {
1716 dev_err(&pl022
->adev
->dev
,
1717 "TX FIFO Trigger Level is configured incorrectly\n");
1722 dev_err(&pl022
->adev
->dev
,
1723 "TX FIFO Trigger Level is configured incorrectly\n");
1727 if (chip_info
->iface
== SSP_INTERFACE_NATIONAL_MICROWIRE
) {
1728 if ((chip_info
->ctrl_len
< SSP_BITS_4
)
1729 || (chip_info
->ctrl_len
> SSP_BITS_32
)) {
1730 dev_err(&pl022
->adev
->dev
,
1731 "CTRL LEN is configured incorrectly\n");
1734 if ((chip_info
->wait_state
!= SSP_MWIRE_WAIT_ZERO
)
1735 && (chip_info
->wait_state
!= SSP_MWIRE_WAIT_ONE
)) {
1736 dev_err(&pl022
->adev
->dev
,
1737 "Wait State is configured incorrectly\n");
1740 /* Half duplex is only available in the ST Micro version */
1741 if (pl022
->vendor
->extended_cr
) {
1742 if ((chip_info
->duplex
!=
1743 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1744 && (chip_info
->duplex
!=
1745 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX
)) {
1746 dev_err(&pl022
->adev
->dev
,
1747 "Microwire duplex mode is configured incorrectly\n");
1751 if (chip_info
->duplex
!= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1752 dev_err(&pl022
->adev
->dev
,
1753 "Microwire half duplex mode requested,"
1754 " but this is only available in the"
1755 " ST version of PL022\n");
1763 * pl022_transfer - transfer function registered to SPI master framework
1764 * @spi: spi device which is requesting transfer
1765 * @msg: spi message which is to handled is queued to driver queue
1767 * This function is registered to the SPI framework for this SPI master
1768 * controller. It will queue the spi_message in the queue of driver if
1769 * the queue is not stopped and return.
1771 static int pl022_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1773 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1774 unsigned long flags
;
1776 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1778 if (!pl022
->running
) {
1779 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1782 msg
->actual_length
= 0;
1783 msg
->status
= -EINPROGRESS
;
1784 msg
->state
= STATE_START
;
1786 list_add_tail(&msg
->queue
, &pl022
->queue
);
1787 if (pl022
->running
&& !pl022
->busy
)
1788 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1790 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1794 static int calculate_effective_freq(struct pl022
*pl022
,
1796 struct ssp_clock_params
*clk_freq
)
1798 /* Lets calculate the frequency parameters */
1801 bool freq_found
= false;
1806 rate
= clk_get_rate(pl022
->clk
);
1807 /* cpsdvscr = 2 & scr 0 */
1808 max_tclk
= (rate
/ (CPSDVR_MIN
* (1 + SCR_MIN
)));
1809 /* cpsdvsr = 254 & scr = 255 */
1810 min_tclk
= (rate
/ (CPSDVR_MAX
* (1 + SCR_MAX
)));
1812 if ((freq
<= max_tclk
) && (freq
>= min_tclk
)) {
1813 while (cpsdvsr
<= CPSDVR_MAX
&& !freq_found
) {
1814 while (scr
<= SCR_MAX
&& !freq_found
) {
1816 (cpsdvsr
* (1 + scr
))) > freq
)
1820 * This bool is made true when
1821 * effective frequency >=
1822 * target frequency is found
1826 (cpsdvsr
* (1 + scr
))) != freq
) {
1827 if (scr
== SCR_MIN
) {
1841 dev_dbg(&pl022
->adev
->dev
,
1842 "SSP Effective Frequency is %u\n",
1843 (rate
/ (cpsdvsr
* (1 + scr
))));
1844 clk_freq
->cpsdvsr
= (u8
) (cpsdvsr
& 0xFF);
1845 clk_freq
->scr
= (u8
) (scr
& 0xFF);
1846 dev_dbg(&pl022
->adev
->dev
,
1847 "SSP cpsdvsr = %d, scr = %d\n",
1848 clk_freq
->cpsdvsr
, clk_freq
->scr
);
1851 dev_err(&pl022
->adev
->dev
,
1852 "controller data is incorrect: out of range frequency");
1860 * A piece of default chip info unless the platform
1863 static const struct pl022_config_chip pl022_default_chip_info
= {
1864 .com_mode
= POLLING_TRANSFER
,
1865 .iface
= SSP_INTERFACE_MOTOROLA_SPI
,
1866 .hierarchy
= SSP_SLAVE
,
1867 .slave_tx_disable
= DO_NOT_DRIVE_TX
,
1868 .rx_lev_trig
= SSP_RX_1_OR_MORE_ELEM
,
1869 .tx_lev_trig
= SSP_TX_1_OR_MORE_EMPTY_LOC
,
1870 .ctrl_len
= SSP_BITS_8
,
1871 .wait_state
= SSP_MWIRE_WAIT_ZERO
,
1872 .duplex
= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
,
1873 .cs_control
= null_cs_control
,
1878 * pl022_setup - setup function registered to SPI master framework
1879 * @spi: spi device which is requesting setup
1881 * This function is registered to the SPI framework for this SPI master
1882 * controller. If it is the first time when setup is called by this device,
1883 * this function will initialize the runtime state for this chip and save
1884 * the same in the device structure. Else it will update the runtime info
1885 * with the updated chip info. Nothing is really being written to the
1886 * controller hardware here, that is not done until the actual transfer
1889 static int pl022_setup(struct spi_device
*spi
)
1891 struct pl022_config_chip
const *chip_info
;
1892 struct chip_data
*chip
;
1893 struct ssp_clock_params clk_freq
= {0, };
1895 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1896 unsigned int bits
= spi
->bits_per_word
;
1899 if (!spi
->max_speed_hz
)
1902 /* Get controller_state if one is supplied */
1903 chip
= spi_get_ctldata(spi
);
1906 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1909 "cannot allocate controller state\n");
1913 "allocated memory for controller's runtime state\n");
1916 /* Get controller data if one is supplied */
1917 chip_info
= spi
->controller_data
;
1919 if (chip_info
== NULL
) {
1920 chip_info
= &pl022_default_chip_info
;
1921 /* spi_board_info.controller_data not is supplied */
1923 "using default controller_data settings\n");
1926 "using user supplied controller_data settings\n");
1929 * We can override with custom divisors, else we use the board
1932 if ((0 == chip_info
->clk_freq
.cpsdvsr
)
1933 && (0 == chip_info
->clk_freq
.scr
)) {
1934 status
= calculate_effective_freq(pl022
,
1938 goto err_config_params
;
1940 memcpy(&clk_freq
, &chip_info
->clk_freq
, sizeof(clk_freq
));
1941 if ((clk_freq
.cpsdvsr
% 2) != 0)
1943 clk_freq
.cpsdvsr
- 1;
1945 if ((clk_freq
.cpsdvsr
< CPSDVR_MIN
)
1946 || (clk_freq
.cpsdvsr
> CPSDVR_MAX
)) {
1949 "cpsdvsr is configured incorrectly\n");
1950 goto err_config_params
;
1954 status
= verify_controller_parameters(pl022
, chip_info
);
1956 dev_err(&spi
->dev
, "controller data is incorrect");
1957 goto err_config_params
;
1960 pl022
->rx_lev_trig
= chip_info
->rx_lev_trig
;
1961 pl022
->tx_lev_trig
= chip_info
->tx_lev_trig
;
1963 /* Now set controller state based on controller data */
1964 chip
->xfer_type
= chip_info
->com_mode
;
1965 if (!chip_info
->cs_control
) {
1966 chip
->cs_control
= null_cs_control
;
1968 "chip select function is NULL for this chip\n");
1970 chip
->cs_control
= chip_info
->cs_control
;
1973 /* PL022 doesn't support less than 4-bits */
1975 goto err_config_params
;
1976 } else if (bits
<= 8) {
1977 dev_dbg(&spi
->dev
, "4 <= n <=8 bits per word\n");
1979 chip
->read
= READING_U8
;
1980 chip
->write
= WRITING_U8
;
1981 } else if (bits
<= 16) {
1982 dev_dbg(&spi
->dev
, "9 <= n <= 16 bits per word\n");
1984 chip
->read
= READING_U16
;
1985 chip
->write
= WRITING_U16
;
1987 if (pl022
->vendor
->max_bpw
>= 32) {
1988 dev_dbg(&spi
->dev
, "17 <= n <= 32 bits per word\n");
1990 chip
->read
= READING_U32
;
1991 chip
->write
= WRITING_U32
;
1994 "illegal data size for this controller!\n");
1996 "a standard pl022 can only handle "
1997 "1 <= n <= 16 bit words\n");
1999 goto err_config_params
;
2003 /* Now Initialize all register settings required for this chip */
2008 if ((chip_info
->com_mode
== DMA_TRANSFER
)
2009 && ((pl022
->master_info
)->enable_dma
)) {
2010 chip
->enable_dma
= true;
2011 dev_dbg(&spi
->dev
, "DMA mode set in controller state\n");
2012 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
2013 SSP_DMACR_MASK_RXDMAE
, 0);
2014 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
2015 SSP_DMACR_MASK_TXDMAE
, 1);
2017 chip
->enable_dma
= false;
2018 dev_dbg(&spi
->dev
, "DMA mode NOT set in controller state\n");
2019 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
2020 SSP_DMACR_MASK_RXDMAE
, 0);
2021 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
2022 SSP_DMACR_MASK_TXDMAE
, 1);
2025 chip
->cpsr
= clk_freq
.cpsdvsr
;
2027 /* Special setup for the ST micro extended control registers */
2028 if (pl022
->vendor
->extended_cr
) {
2031 if (pl022
->vendor
->pl023
) {
2032 /* These bits are only in the PL023 */
2033 SSP_WRITE_BITS(chip
->cr1
, chip_info
->clkdelay
,
2034 SSP_CR1_MASK_FBCLKDEL_ST
, 13);
2036 /* These bits are in the PL022 but not PL023 */
2037 SSP_WRITE_BITS(chip
->cr0
, chip_info
->duplex
,
2038 SSP_CR0_MASK_HALFDUP_ST
, 5);
2039 SSP_WRITE_BITS(chip
->cr0
, chip_info
->ctrl_len
,
2040 SSP_CR0_MASK_CSS_ST
, 16);
2041 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
2042 SSP_CR0_MASK_FRF_ST
, 21);
2043 SSP_WRITE_BITS(chip
->cr1
, chip_info
->wait_state
,
2044 SSP_CR1_MASK_MWAIT_ST
, 6);
2046 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
2047 SSP_CR0_MASK_DSS_ST
, 0);
2049 if (spi
->mode
& SPI_LSB_FIRST
) {
2056 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_RENDN_ST
, 4);
2057 SSP_WRITE_BITS(chip
->cr1
, etx
, SSP_CR1_MASK_TENDN_ST
, 5);
2058 SSP_WRITE_BITS(chip
->cr1
, chip_info
->rx_lev_trig
,
2059 SSP_CR1_MASK_RXIFLSEL_ST
, 7);
2060 SSP_WRITE_BITS(chip
->cr1
, chip_info
->tx_lev_trig
,
2061 SSP_CR1_MASK_TXIFLSEL_ST
, 10);
2063 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
2064 SSP_CR0_MASK_DSS
, 0);
2065 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
2066 SSP_CR0_MASK_FRF
, 4);
2069 /* Stuff that is common for all versions */
2070 if (spi
->mode
& SPI_CPOL
)
2071 tmp
= SSP_CLK_POL_IDLE_HIGH
;
2073 tmp
= SSP_CLK_POL_IDLE_LOW
;
2074 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPO
, 6);
2076 if (spi
->mode
& SPI_CPHA
)
2077 tmp
= SSP_CLK_SECOND_EDGE
;
2079 tmp
= SSP_CLK_FIRST_EDGE
;
2080 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPH
, 7);
2082 SSP_WRITE_BITS(chip
->cr0
, clk_freq
.scr
, SSP_CR0_MASK_SCR
, 8);
2083 /* Loopback is available on all versions except PL023 */
2084 if (pl022
->vendor
->loopback
) {
2085 if (spi
->mode
& SPI_LOOP
)
2086 tmp
= LOOPBACK_ENABLED
;
2088 tmp
= LOOPBACK_DISABLED
;
2089 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_LBM
, 0);
2091 SSP_WRITE_BITS(chip
->cr1
, SSP_DISABLED
, SSP_CR1_MASK_SSE
, 1);
2092 SSP_WRITE_BITS(chip
->cr1
, chip_info
->hierarchy
, SSP_CR1_MASK_MS
, 2);
2093 SSP_WRITE_BITS(chip
->cr1
, chip_info
->slave_tx_disable
, SSP_CR1_MASK_SOD
, 3);
2095 /* Save controller_state */
2096 spi_set_ctldata(spi
, chip
);
2099 spi_set_ctldata(spi
, NULL
);
2105 * pl022_cleanup - cleanup function registered to SPI master framework
2106 * @spi: spi device which is requesting cleanup
2108 * This function is registered to the SPI framework for this SPI master
2109 * controller. It will free the runtime state of chip.
2111 static void pl022_cleanup(struct spi_device
*spi
)
2113 struct chip_data
*chip
= spi_get_ctldata(spi
);
2115 spi_set_ctldata(spi
, NULL
);
2120 static int __devinit
2121 pl022_probe(struct amba_device
*adev
, const struct amba_id
*id
)
2123 struct device
*dev
= &adev
->dev
;
2124 struct pl022_ssp_controller
*platform_info
= adev
->dev
.platform_data
;
2125 struct spi_master
*master
;
2126 struct pl022
*pl022
= NULL
; /*Data for this driver */
2129 dev_info(&adev
->dev
,
2130 "ARM PL022 driver, device ID: 0x%08x\n", adev
->periphid
);
2131 if (platform_info
== NULL
) {
2132 dev_err(&adev
->dev
, "probe - no platform data supplied\n");
2137 /* Allocate master with space for data */
2138 master
= spi_alloc_master(dev
, sizeof(struct pl022
));
2139 if (master
== NULL
) {
2140 dev_err(&adev
->dev
, "probe - cannot alloc SPI master\n");
2145 pl022
= spi_master_get_devdata(master
);
2146 pl022
->master
= master
;
2147 pl022
->master_info
= platform_info
;
2149 pl022
->vendor
= id
->data
;
2152 * Bus Number Which has been Assigned to this SSP controller
2155 master
->bus_num
= platform_info
->bus_id
;
2156 master
->num_chipselect
= platform_info
->num_chipselect
;
2157 master
->cleanup
= pl022_cleanup
;
2158 master
->setup
= pl022_setup
;
2159 master
->transfer
= pl022_transfer
;
2162 * Supports mode 0-3, loopback, and active low CS. Transfers are
2163 * always MS bit first on the original pl022.
2165 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
2166 if (pl022
->vendor
->extended_cr
)
2167 master
->mode_bits
|= SPI_LSB_FIRST
;
2169 dev_dbg(&adev
->dev
, "BUSNO: %d\n", master
->bus_num
);
2171 status
= amba_request_regions(adev
, NULL
);
2173 goto err_no_ioregion
;
2175 pl022
->phybase
= adev
->res
.start
;
2176 pl022
->virtbase
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
2177 if (pl022
->virtbase
== NULL
) {
2179 goto err_no_ioremap
;
2181 printk(KERN_INFO
"pl022: mapped registers from 0x%08x to %p\n",
2182 adev
->res
.start
, pl022
->virtbase
);
2184 pl022
->clk
= clk_get(&adev
->dev
, NULL
);
2185 if (IS_ERR(pl022
->clk
)) {
2186 status
= PTR_ERR(pl022
->clk
);
2187 dev_err(&adev
->dev
, "could not retrieve SSP/SPI bus clock\n");
2191 status
= clk_prepare(pl022
->clk
);
2193 dev_err(&adev
->dev
, "could not prepare SSP/SPI bus clock\n");
2198 writew((readw(SSP_CR1(pl022
->virtbase
)) & (~SSP_CR1_MASK_SSE
)),
2199 SSP_CR1(pl022
->virtbase
));
2200 load_ssp_default_config(pl022
);
2202 status
= request_irq(adev
->irq
[0], pl022_interrupt_handler
, 0, "pl022",
2205 dev_err(&adev
->dev
, "probe - cannot get IRQ (%d)\n", status
);
2209 /* Get DMA channels */
2210 if (platform_info
->enable_dma
) {
2211 status
= pl022_dma_probe(pl022
);
2213 platform_info
->enable_dma
= 0;
2216 /* Initialize and start queue */
2217 status
= init_queue(pl022
);
2219 dev_err(&adev
->dev
, "probe - problem initializing queue\n");
2220 goto err_init_queue
;
2222 status
= start_queue(pl022
);
2224 dev_err(&adev
->dev
, "probe - problem starting queue\n");
2225 goto err_start_queue
;
2227 /* Register with the SPI framework */
2228 amba_set_drvdata(adev
, pl022
);
2229 status
= spi_register_master(master
);
2232 "probe - problem registering spi master\n");
2233 goto err_spi_register
;
2235 dev_dbg(dev
, "probe succeeded\n");
2237 /* let runtime pm put suspend */
2238 pm_runtime_put(dev
);
2244 destroy_queue(pl022
);
2245 pl022_dma_remove(pl022
);
2246 free_irq(adev
->irq
[0], pl022
);
2248 clk_unprepare(pl022
->clk
);
2250 clk_put(pl022
->clk
);
2252 iounmap(pl022
->virtbase
);
2254 amba_release_regions(adev
);
2256 spi_master_put(master
);
2262 static int __devexit
2263 pl022_remove(struct amba_device
*adev
)
2265 struct pl022
*pl022
= amba_get_drvdata(adev
);
2271 * undo pm_runtime_put() in probe. I assume that we're not
2272 * accessing the primecell here.
2274 pm_runtime_get_noresume(&adev
->dev
);
2276 /* Remove the queue */
2277 if (destroy_queue(pl022
) != 0)
2278 dev_err(&adev
->dev
, "queue remove failed\n");
2279 load_ssp_default_config(pl022
);
2280 pl022_dma_remove(pl022
);
2281 free_irq(adev
->irq
[0], pl022
);
2282 clk_disable(pl022
->clk
);
2283 clk_unprepare(pl022
->clk
);
2284 clk_put(pl022
->clk
);
2285 iounmap(pl022
->virtbase
);
2286 amba_release_regions(adev
);
2287 tasklet_disable(&pl022
->pump_transfers
);
2288 spi_unregister_master(pl022
->master
);
2289 spi_master_put(pl022
->master
);
2290 amba_set_drvdata(adev
, NULL
);
2294 #ifdef CONFIG_SUSPEND
2295 static int pl022_suspend(struct device
*dev
)
2297 struct pl022
*pl022
= dev_get_drvdata(dev
);
2300 status
= stop_queue(pl022
);
2302 dev_warn(dev
, "suspend cannot stop queue\n");
2306 amba_vcore_enable(pl022
->adev
);
2307 amba_pclk_enable(pl022
->adev
);
2308 load_ssp_default_config(pl022
);
2309 amba_pclk_disable(pl022
->adev
);
2310 amba_vcore_disable(pl022
->adev
);
2311 dev_dbg(dev
, "suspended\n");
2315 static int pl022_resume(struct device
*dev
)
2317 struct pl022
*pl022
= dev_get_drvdata(dev
);
2320 /* Start the queue running */
2321 status
= start_queue(pl022
);
2323 dev_err(dev
, "problem starting queue (%d)\n", status
);
2325 dev_dbg(dev
, "resumed\n");
2329 #endif /* CONFIG_PM */
2331 #ifdef CONFIG_PM_RUNTIME
2332 static int pl022_runtime_suspend(struct device
*dev
)
2334 struct pl022
*pl022
= dev_get_drvdata(dev
);
2336 clk_disable(pl022
->clk
);
2337 amba_vcore_disable(pl022
->adev
);
2342 static int pl022_runtime_resume(struct device
*dev
)
2344 struct pl022
*pl022
= dev_get_drvdata(dev
);
2346 amba_vcore_enable(pl022
->adev
);
2347 clk_enable(pl022
->clk
);
2353 static const struct dev_pm_ops pl022_dev_pm_ops
= {
2354 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend
, pl022_resume
)
2355 SET_RUNTIME_PM_OPS(pl022_runtime_suspend
, pl022_runtime_resume
, NULL
)
2358 static struct vendor_data vendor_arm
= {
2362 .extended_cr
= false,
2368 static struct vendor_data vendor_st
= {
2372 .extended_cr
= true,
2377 static struct vendor_data vendor_st_pl023
= {
2381 .extended_cr
= true,
2386 static struct vendor_data vendor_db5500_pl023
= {
2390 .extended_cr
= true,
2395 static struct amba_id pl022_ids
[] = {
2398 * ARM PL022 variant, this has a 16bit wide
2399 * and 8 locations deep TX/RX FIFO
2403 .data
= &vendor_arm
,
2407 * ST Micro derivative, this has 32bit wide
2408 * and 32 locations deep TX/RX FIFO
2416 * ST-Ericsson derivative "PL023" (this is not
2417 * an official ARM number), this is a PL022 SSP block
2418 * stripped to SPI mode only, it has 32bit wide
2419 * and 32 locations deep TX/RX FIFO but no extended
2424 .data
= &vendor_st_pl023
,
2429 .data
= &vendor_db5500_pl023
,
2434 static struct amba_driver pl022_driver
= {
2436 .name
= "ssp-pl022",
2437 .pm
= &pl022_dev_pm_ops
,
2439 .id_table
= pl022_ids
,
2440 .probe
= pl022_probe
,
2441 .remove
= __devexit_p(pl022_remove
),
2445 static int __init
pl022_init(void)
2447 return amba_driver_register(&pl022_driver
);
2450 subsys_initcall(pl022_init
);
2452 static void __exit
pl022_exit(void)
2454 amba_driver_unregister(&pl022_driver
);
2457 module_exit(pl022_exit
);
2459 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2460 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2461 MODULE_LICENSE("GPL");