2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
27 #include <net/inet_common.h>
30 int sysctl_tcp_syncookies __read_mostly
= 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies
);
33 int sysctl_tcp_abort_on_overflow __read_mostly
;
35 struct inet_timewait_death_row tcp_death_row
= {
36 .sysctl_max_tw_buckets
= NR_FILE
* 2,
37 .period
= TCP_TIMEWAIT_LEN
/ INET_TWDR_TWKILL_SLOTS
,
38 .death_lock
= __SPIN_LOCK_UNLOCKED(tcp_death_row
.death_lock
),
39 .hashinfo
= &tcp_hashinfo
,
40 .tw_timer
= TIMER_INITIALIZER(inet_twdr_hangman
, 0,
41 (unsigned long)&tcp_death_row
),
42 .twkill_work
= __WORK_INITIALIZER(tcp_death_row
.twkill_work
,
43 inet_twdr_twkill_work
),
44 /* Short-time timewait calendar */
47 .twcal_timer
= TIMER_INITIALIZER(inet_twdr_twcal_tick
, 0,
48 (unsigned long)&tcp_death_row
),
50 EXPORT_SYMBOL_GPL(tcp_death_row
);
52 /* VJ's idea. Save last timestamp seen from this destination
53 * and hold it at least for normal timewait interval to use for duplicate
54 * segment detection in subsequent connections, before they enter synchronized
58 static int tcp_remember_stamp(struct sock
*sk
)
60 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
61 struct tcp_sock
*tp
= tcp_sk(sk
);
62 struct inet_peer
*peer
;
65 peer
= icsk
->icsk_af_ops
->get_peer(sk
, &release_it
);
67 if ((s32
)(peer
->tcp_ts
- tp
->rx_opt
.ts_recent
) <= 0 ||
68 ((u32
)get_seconds() - peer
->tcp_ts_stamp
> TCP_PAWS_MSL
&&
69 peer
->tcp_ts_stamp
<= (u32
)tp
->rx_opt
.ts_recent_stamp
)) {
70 peer
->tcp_ts_stamp
= (u32
)tp
->rx_opt
.ts_recent_stamp
;
71 peer
->tcp_ts
= tp
->rx_opt
.ts_recent
;
81 static int tcp_tw_remember_stamp(struct inet_timewait_sock
*tw
)
83 struct sock
*sk
= (struct sock
*) tw
;
84 struct inet_peer
*peer
;
86 peer
= twsk_getpeer(sk
);
88 const struct tcp_timewait_sock
*tcptw
= tcp_twsk(sk
);
90 if ((s32
)(peer
->tcp_ts
- tcptw
->tw_ts_recent
) <= 0 ||
91 ((u32
)get_seconds() - peer
->tcp_ts_stamp
> TCP_PAWS_MSL
&&
92 peer
->tcp_ts_stamp
<= (u32
)tcptw
->tw_ts_recent_stamp
)) {
93 peer
->tcp_ts_stamp
= (u32
)tcptw
->tw_ts_recent_stamp
;
94 peer
->tcp_ts
= tcptw
->tw_ts_recent
;
102 static __inline__
int tcp_in_window(u32 seq
, u32 end_seq
, u32 s_win
, u32 e_win
)
106 if (after(end_seq
, s_win
) && before(seq
, e_win
))
108 return seq
== e_win
&& seq
== end_seq
;
112 * * Main purpose of TIME-WAIT state is to close connection gracefully,
113 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
114 * (and, probably, tail of data) and one or more our ACKs are lost.
115 * * What is TIME-WAIT timeout? It is associated with maximal packet
116 * lifetime in the internet, which results in wrong conclusion, that
117 * it is set to catch "old duplicate segments" wandering out of their path.
118 * It is not quite correct. This timeout is calculated so that it exceeds
119 * maximal retransmission timeout enough to allow to lose one (or more)
120 * segments sent by peer and our ACKs. This time may be calculated from RTO.
121 * * When TIME-WAIT socket receives RST, it means that another end
122 * finally closed and we are allowed to kill TIME-WAIT too.
123 * * Second purpose of TIME-WAIT is catching old duplicate segments.
124 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
125 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
126 * * If we invented some more clever way to catch duplicates
127 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
129 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
130 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
131 * from the very beginning.
133 * NOTE. With recycling (and later with fin-wait-2) TW bucket
134 * is _not_ stateless. It means, that strictly speaking we must
135 * spinlock it. I do not want! Well, probability of misbehaviour
136 * is ridiculously low and, seems, we could use some mb() tricks
137 * to avoid misread sequence numbers, states etc. --ANK
140 tcp_timewait_state_process(struct inet_timewait_sock
*tw
, struct sk_buff
*skb
,
141 const struct tcphdr
*th
)
143 struct tcp_options_received tmp_opt
;
144 const u8
*hash_location
;
145 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
148 tmp_opt
.saw_tstamp
= 0;
149 if (th
->doff
> (sizeof(*th
) >> 2) && tcptw
->tw_ts_recent_stamp
) {
150 tcp_parse_options(skb
, &tmp_opt
, &hash_location
, 0);
152 if (tmp_opt
.saw_tstamp
) {
153 tmp_opt
.ts_recent
= tcptw
->tw_ts_recent
;
154 tmp_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
155 paws_reject
= tcp_paws_reject(&tmp_opt
, th
->rst
);
159 if (tw
->tw_substate
== TCP_FIN_WAIT2
) {
160 /* Just repeat all the checks of tcp_rcv_state_process() */
162 /* Out of window, send ACK */
164 !tcp_in_window(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
,
166 tcptw
->tw_rcv_nxt
+ tcptw
->tw_rcv_wnd
))
172 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tcptw
->tw_rcv_nxt
))
177 !after(TCP_SKB_CB(skb
)->end_seq
, tcptw
->tw_rcv_nxt
) ||
178 TCP_SKB_CB(skb
)->end_seq
== TCP_SKB_CB(skb
)->seq
) {
180 return TCP_TW_SUCCESS
;
183 /* New data or FIN. If new data arrive after half-duplex close,
187 TCP_SKB_CB(skb
)->end_seq
!= tcptw
->tw_rcv_nxt
+ 1) {
189 inet_twsk_deschedule(tw
, &tcp_death_row
);
194 /* FIN arrived, enter true time-wait state. */
195 tw
->tw_substate
= TCP_TIME_WAIT
;
196 tcptw
->tw_rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
197 if (tmp_opt
.saw_tstamp
) {
198 tcptw
->tw_ts_recent_stamp
= get_seconds();
199 tcptw
->tw_ts_recent
= tmp_opt
.rcv_tsval
;
202 if (tcp_death_row
.sysctl_tw_recycle
&&
203 tcptw
->tw_ts_recent_stamp
&&
204 tcp_tw_remember_stamp(tw
))
205 inet_twsk_schedule(tw
, &tcp_death_row
, tw
->tw_timeout
,
208 inet_twsk_schedule(tw
, &tcp_death_row
, TCP_TIMEWAIT_LEN
,
214 * Now real TIME-WAIT state.
217 * "When a connection is [...] on TIME-WAIT state [...]
218 * [a TCP] MAY accept a new SYN from the remote TCP to
219 * reopen the connection directly, if it:
221 * (1) assigns its initial sequence number for the new
222 * connection to be larger than the largest sequence
223 * number it used on the previous connection incarnation,
226 * (2) returns to TIME-WAIT state if the SYN turns out
227 * to be an old duplicate".
231 (TCP_SKB_CB(skb
)->seq
== tcptw
->tw_rcv_nxt
&&
232 (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
|| th
->rst
))) {
233 /* In window segment, it may be only reset or bare ack. */
236 /* This is TIME_WAIT assassination, in two flavors.
237 * Oh well... nobody has a sufficient solution to this
240 if (sysctl_tcp_rfc1337
== 0) {
242 inet_twsk_deschedule(tw
, &tcp_death_row
);
244 return TCP_TW_SUCCESS
;
247 inet_twsk_schedule(tw
, &tcp_death_row
, TCP_TIMEWAIT_LEN
,
250 if (tmp_opt
.saw_tstamp
) {
251 tcptw
->tw_ts_recent
= tmp_opt
.rcv_tsval
;
252 tcptw
->tw_ts_recent_stamp
= get_seconds();
256 return TCP_TW_SUCCESS
;
259 /* Out of window segment.
261 All the segments are ACKed immediately.
263 The only exception is new SYN. We accept it, if it is
264 not old duplicate and we are not in danger to be killed
265 by delayed old duplicates. RFC check is that it has
266 newer sequence number works at rates <40Mbit/sec.
267 However, if paws works, it is reliable AND even more,
268 we even may relax silly seq space cutoff.
270 RED-PEN: we violate main RFC requirement, if this SYN will appear
271 old duplicate (i.e. we receive RST in reply to SYN-ACK),
272 we must return socket to time-wait state. It is not good,
276 if (th
->syn
&& !th
->rst
&& !th
->ack
&& !paws_reject
&&
277 (after(TCP_SKB_CB(skb
)->seq
, tcptw
->tw_rcv_nxt
) ||
278 (tmp_opt
.saw_tstamp
&&
279 (s32
)(tcptw
->tw_ts_recent
- tmp_opt
.rcv_tsval
) < 0))) {
280 u32 isn
= tcptw
->tw_snd_nxt
+ 65535 + 2;
283 TCP_SKB_CB(skb
)->when
= isn
;
288 NET_INC_STATS_BH(twsk_net(tw
), LINUX_MIB_PAWSESTABREJECTED
);
291 /* In this case we must reset the TIMEWAIT timer.
293 * If it is ACKless SYN it may be both old duplicate
294 * and new good SYN with random sequence number <rcv_nxt.
295 * Do not reschedule in the last case.
297 if (paws_reject
|| th
->ack
)
298 inet_twsk_schedule(tw
, &tcp_death_row
, TCP_TIMEWAIT_LEN
,
301 /* Send ACK. Note, we do not put the bucket,
302 * it will be released by caller.
307 return TCP_TW_SUCCESS
;
309 EXPORT_SYMBOL(tcp_timewait_state_process
);
312 * Move a socket to time-wait or dead fin-wait-2 state.
314 void tcp_time_wait(struct sock
*sk
, int state
, int timeo
)
316 struct inet_timewait_sock
*tw
= NULL
;
317 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
318 const struct tcp_sock
*tp
= tcp_sk(sk
);
321 if (tcp_death_row
.sysctl_tw_recycle
&& tp
->rx_opt
.ts_recent_stamp
)
322 recycle_ok
= tcp_remember_stamp(sk
);
324 if (tcp_death_row
.tw_count
< tcp_death_row
.sysctl_max_tw_buckets
)
325 tw
= inet_twsk_alloc(sk
, state
);
328 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
329 const int rto
= (icsk
->icsk_rto
<< 2) - (icsk
->icsk_rto
>> 1);
331 tw
->tw_transparent
= inet_sk(sk
)->transparent
;
332 tw
->tw_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
333 tcptw
->tw_rcv_nxt
= tp
->rcv_nxt
;
334 tcptw
->tw_snd_nxt
= tp
->snd_nxt
;
335 tcptw
->tw_rcv_wnd
= tcp_receive_window(tp
);
336 tcptw
->tw_ts_recent
= tp
->rx_opt
.ts_recent
;
337 tcptw
->tw_ts_recent_stamp
= tp
->rx_opt
.ts_recent_stamp
;
339 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
340 if (tw
->tw_family
== PF_INET6
) {
341 struct ipv6_pinfo
*np
= inet6_sk(sk
);
342 struct inet6_timewait_sock
*tw6
;
344 tw
->tw_ipv6_offset
= inet6_tw_offset(sk
->sk_prot
);
345 tw6
= inet6_twsk((struct sock
*)tw
);
346 ipv6_addr_copy(&tw6
->tw_v6_daddr
, &np
->daddr
);
347 ipv6_addr_copy(&tw6
->tw_v6_rcv_saddr
, &np
->rcv_saddr
);
348 tw
->tw_ipv6only
= np
->ipv6only
;
352 #ifdef CONFIG_TCP_MD5SIG
354 * The timewait bucket does not have the key DB from the
355 * sock structure. We just make a quick copy of the
356 * md5 key being used (if indeed we are using one)
357 * so the timewait ack generating code has the key.
360 struct tcp_md5sig_key
*key
;
361 memset(tcptw
->tw_md5_key
, 0, sizeof(tcptw
->tw_md5_key
));
362 tcptw
->tw_md5_keylen
= 0;
363 key
= tp
->af_specific
->md5_lookup(sk
, sk
);
365 memcpy(&tcptw
->tw_md5_key
, key
->key
, key
->keylen
);
366 tcptw
->tw_md5_keylen
= key
->keylen
;
367 if (tcp_alloc_md5sig_pool(sk
) == NULL
)
373 /* Linkage updates. */
374 __inet_twsk_hashdance(tw
, sk
, &tcp_hashinfo
);
376 /* Get the TIME_WAIT timeout firing. */
381 tw
->tw_timeout
= rto
;
383 tw
->tw_timeout
= TCP_TIMEWAIT_LEN
;
384 if (state
== TCP_TIME_WAIT
)
385 timeo
= TCP_TIMEWAIT_LEN
;
388 inet_twsk_schedule(tw
, &tcp_death_row
, timeo
,
392 /* Sorry, if we're out of memory, just CLOSE this
393 * socket up. We've got bigger problems than
394 * non-graceful socket closings.
396 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPTIMEWAITOVERFLOW
);
399 tcp_update_metrics(sk
);
403 void tcp_twsk_destructor(struct sock
*sk
)
405 #ifdef CONFIG_TCP_MD5SIG
406 struct tcp_timewait_sock
*twsk
= tcp_twsk(sk
);
407 if (twsk
->tw_md5_keylen
)
408 tcp_free_md5sig_pool();
411 EXPORT_SYMBOL_GPL(tcp_twsk_destructor
);
413 static inline void TCP_ECN_openreq_child(struct tcp_sock
*tp
,
414 struct request_sock
*req
)
416 tp
->ecn_flags
= inet_rsk(req
)->ecn_ok
? TCP_ECN_OK
: 0;
419 /* This is not only more efficient than what we used to do, it eliminates
420 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
422 * Actually, we could lots of memory writes here. tp of listening
423 * socket contains all necessary default parameters.
425 struct sock
*tcp_create_openreq_child(struct sock
*sk
, struct request_sock
*req
, struct sk_buff
*skb
)
427 struct sock
*newsk
= inet_csk_clone(sk
, req
, GFP_ATOMIC
);
430 const struct inet_request_sock
*ireq
= inet_rsk(req
);
431 struct tcp_request_sock
*treq
= tcp_rsk(req
);
432 struct inet_connection_sock
*newicsk
= inet_csk(newsk
);
433 struct tcp_sock
*newtp
= tcp_sk(newsk
);
434 struct tcp_sock
*oldtp
= tcp_sk(sk
);
435 struct tcp_cookie_values
*oldcvp
= oldtp
->cookie_values
;
437 /* TCP Cookie Transactions require space for the cookie pair,
438 * as it differs for each connection. There is no need to
439 * copy any s_data_payload stored at the original socket.
440 * Failure will prevent resuming the connection.
442 * Presumed copied, in order of appearance:
443 * cookie_in_always, cookie_out_never
445 if (oldcvp
!= NULL
) {
446 struct tcp_cookie_values
*newcvp
=
447 kzalloc(sizeof(*newtp
->cookie_values
),
450 if (newcvp
!= NULL
) {
451 kref_init(&newcvp
->kref
);
452 newcvp
->cookie_desired
=
453 oldcvp
->cookie_desired
;
454 newtp
->cookie_values
= newcvp
;
456 /* Not Yet Implemented */
457 newtp
->cookie_values
= NULL
;
461 /* Now setup tcp_sock */
462 newtp
->pred_flags
= 0;
464 newtp
->rcv_wup
= newtp
->copied_seq
=
465 newtp
->rcv_nxt
= treq
->rcv_isn
+ 1;
467 newtp
->snd_sml
= newtp
->snd_una
=
468 newtp
->snd_nxt
= newtp
->snd_up
=
469 treq
->snt_isn
+ 1 + tcp_s_data_size(oldtp
);
471 tcp_prequeue_init(newtp
);
473 tcp_init_wl(newtp
, treq
->rcv_isn
);
476 newtp
->mdev
= TCP_TIMEOUT_INIT
;
477 newicsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
479 newtp
->packets_out
= 0;
480 newtp
->retrans_out
= 0;
481 newtp
->sacked_out
= 0;
482 newtp
->fackets_out
= 0;
483 newtp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
485 /* So many TCP implementations out there (incorrectly) count the
486 * initial SYN frame in their delayed-ACK and congestion control
487 * algorithms that we must have the following bandaid to talk
488 * efficiently to them. -DaveM
490 newtp
->snd_cwnd
= TCP_INIT_CWND
;
491 newtp
->snd_cwnd_cnt
= 0;
492 newtp
->bytes_acked
= 0;
494 newtp
->frto_counter
= 0;
495 newtp
->frto_highmark
= 0;
497 newicsk
->icsk_ca_ops
= &tcp_init_congestion_ops
;
499 tcp_set_ca_state(newsk
, TCP_CA_Open
);
500 tcp_init_xmit_timers(newsk
);
501 skb_queue_head_init(&newtp
->out_of_order_queue
);
502 newtp
->write_seq
= newtp
->pushed_seq
=
503 treq
->snt_isn
+ 1 + tcp_s_data_size(oldtp
);
505 newtp
->rx_opt
.saw_tstamp
= 0;
507 newtp
->rx_opt
.dsack
= 0;
508 newtp
->rx_opt
.num_sacks
= 0;
512 if (sock_flag(newsk
, SOCK_KEEPOPEN
))
513 inet_csk_reset_keepalive_timer(newsk
,
514 keepalive_time_when(newtp
));
516 newtp
->rx_opt
.tstamp_ok
= ireq
->tstamp_ok
;
517 if ((newtp
->rx_opt
.sack_ok
= ireq
->sack_ok
) != 0) {
519 tcp_enable_fack(newtp
);
521 newtp
->window_clamp
= req
->window_clamp
;
522 newtp
->rcv_ssthresh
= req
->rcv_wnd
;
523 newtp
->rcv_wnd
= req
->rcv_wnd
;
524 newtp
->rx_opt
.wscale_ok
= ireq
->wscale_ok
;
525 if (newtp
->rx_opt
.wscale_ok
) {
526 newtp
->rx_opt
.snd_wscale
= ireq
->snd_wscale
;
527 newtp
->rx_opt
.rcv_wscale
= ireq
->rcv_wscale
;
529 newtp
->rx_opt
.snd_wscale
= newtp
->rx_opt
.rcv_wscale
= 0;
530 newtp
->window_clamp
= min(newtp
->window_clamp
, 65535U);
532 newtp
->snd_wnd
= (ntohs(tcp_hdr(skb
)->window
) <<
533 newtp
->rx_opt
.snd_wscale
);
534 newtp
->max_window
= newtp
->snd_wnd
;
536 if (newtp
->rx_opt
.tstamp_ok
) {
537 newtp
->rx_opt
.ts_recent
= req
->ts_recent
;
538 newtp
->rx_opt
.ts_recent_stamp
= get_seconds();
539 newtp
->tcp_header_len
= sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
541 newtp
->rx_opt
.ts_recent_stamp
= 0;
542 newtp
->tcp_header_len
= sizeof(struct tcphdr
);
544 #ifdef CONFIG_TCP_MD5SIG
545 newtp
->md5sig_info
= NULL
; /*XXX*/
546 if (newtp
->af_specific
->md5_lookup(sk
, newsk
))
547 newtp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
549 if (skb
->len
>= TCP_MSS_DEFAULT
+ newtp
->tcp_header_len
)
550 newicsk
->icsk_ack
.last_seg_size
= skb
->len
- newtp
->tcp_header_len
;
551 newtp
->rx_opt
.mss_clamp
= req
->mss
;
552 TCP_ECN_openreq_child(newtp
, req
);
554 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_PASSIVEOPENS
);
558 EXPORT_SYMBOL(tcp_create_openreq_child
);
561 * Process an incoming packet for SYN_RECV sockets represented
565 struct sock
*tcp_check_req(struct sock
*sk
, struct sk_buff
*skb
,
566 struct request_sock
*req
,
567 struct request_sock
**prev
)
569 struct tcp_options_received tmp_opt
;
570 const u8
*hash_location
;
572 const struct tcphdr
*th
= tcp_hdr(skb
);
573 __be32 flg
= tcp_flag_word(th
) & (TCP_FLAG_RST
|TCP_FLAG_SYN
|TCP_FLAG_ACK
);
576 tmp_opt
.saw_tstamp
= 0;
577 if (th
->doff
> (sizeof(struct tcphdr
)>>2)) {
578 tcp_parse_options(skb
, &tmp_opt
, &hash_location
, 0);
580 if (tmp_opt
.saw_tstamp
) {
581 tmp_opt
.ts_recent
= req
->ts_recent
;
582 /* We do not store true stamp, but it is not required,
583 * it can be estimated (approximately)
586 tmp_opt
.ts_recent_stamp
= get_seconds() - ((TCP_TIMEOUT_INIT
/HZ
)<<req
->retrans
);
587 paws_reject
= tcp_paws_reject(&tmp_opt
, th
->rst
);
591 /* Check for pure retransmitted SYN. */
592 if (TCP_SKB_CB(skb
)->seq
== tcp_rsk(req
)->rcv_isn
&&
593 flg
== TCP_FLAG_SYN
&&
596 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
597 * this case on figure 6 and figure 8, but formal
598 * protocol description says NOTHING.
599 * To be more exact, it says that we should send ACK,
600 * because this segment (at least, if it has no data)
603 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
604 * describe SYN-RECV state. All the description
605 * is wrong, we cannot believe to it and should
606 * rely only on common sense and implementation
609 * Enforce "SYN-ACK" according to figure 8, figure 6
610 * of RFC793, fixed by RFC1122.
612 req
->rsk_ops
->rtx_syn_ack(sk
, req
, NULL
);
616 /* Further reproduces section "SEGMENT ARRIVES"
617 for state SYN-RECEIVED of RFC793.
618 It is broken, however, it does not work only
619 when SYNs are crossed.
621 You would think that SYN crossing is impossible here, since
622 we should have a SYN_SENT socket (from connect()) on our end,
623 but this is not true if the crossed SYNs were sent to both
624 ends by a malicious third party. We must defend against this,
625 and to do that we first verify the ACK (as per RFC793, page
626 36) and reset if it is invalid. Is this a true full defense?
627 To convince ourselves, let us consider a way in which the ACK
628 test can still pass in this 'malicious crossed SYNs' case.
629 Malicious sender sends identical SYNs (and thus identical sequence
630 numbers) to both A and B:
635 By our good fortune, both A and B select the same initial
636 send sequence number of seven :-)
638 A: sends SYN|ACK, seq=7, ack_seq=8
639 B: sends SYN|ACK, seq=7, ack_seq=8
641 So we are now A eating this SYN|ACK, ACK test passes. So
642 does sequence test, SYN is truncated, and thus we consider
645 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
646 bare ACK. Otherwise, we create an established connection. Both
647 ends (listening sockets) accept the new incoming connection and try
648 to talk to each other. 8-)
650 Note: This case is both harmless, and rare. Possibility is about the
651 same as us discovering intelligent life on another plant tomorrow.
653 But generally, we should (RFC lies!) to accept ACK
654 from SYNACK both here and in tcp_rcv_state_process().
655 tcp_rcv_state_process() does not, hence, we do not too.
657 Note that the case is absolutely generic:
658 we cannot optimize anything here without
659 violating protocol. All the checks must be made
660 before attempt to create socket.
663 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
664 * and the incoming segment acknowledges something not yet
665 * sent (the segment carries an unacceptable ACK) ...
668 * Invalid ACK: reset will be sent by listening socket
670 if ((flg
& TCP_FLAG_ACK
) &&
671 (TCP_SKB_CB(skb
)->ack_seq
!=
672 tcp_rsk(req
)->snt_isn
+ 1 + tcp_s_data_size(tcp_sk(sk
))))
675 /* Also, it would be not so bad idea to check rcv_tsecr, which
676 * is essentially ACK extension and too early or too late values
677 * should cause reset in unsynchronized states.
680 /* RFC793: "first check sequence number". */
682 if (paws_reject
|| !tcp_in_window(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
,
683 tcp_rsk(req
)->rcv_isn
+ 1, tcp_rsk(req
)->rcv_isn
+ 1 + req
->rcv_wnd
)) {
684 /* Out of window: send ACK and drop. */
685 if (!(flg
& TCP_FLAG_RST
))
686 req
->rsk_ops
->send_ack(sk
, skb
, req
);
688 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
692 /* In sequence, PAWS is OK. */
694 if (tmp_opt
.saw_tstamp
&& !after(TCP_SKB_CB(skb
)->seq
, tcp_rsk(req
)->rcv_isn
+ 1))
695 req
->ts_recent
= tmp_opt
.rcv_tsval
;
697 if (TCP_SKB_CB(skb
)->seq
== tcp_rsk(req
)->rcv_isn
) {
698 /* Truncate SYN, it is out of window starting
699 at tcp_rsk(req)->rcv_isn + 1. */
700 flg
&= ~TCP_FLAG_SYN
;
703 /* RFC793: "second check the RST bit" and
704 * "fourth, check the SYN bit"
706 if (flg
& (TCP_FLAG_RST
|TCP_FLAG_SYN
)) {
707 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
708 goto embryonic_reset
;
711 /* ACK sequence verified above, just make sure ACK is
712 * set. If ACK not set, just silently drop the packet.
714 if (!(flg
& TCP_FLAG_ACK
))
717 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
718 if (req
->retrans
< inet_csk(sk
)->icsk_accept_queue
.rskq_defer_accept
&&
719 TCP_SKB_CB(skb
)->end_seq
== tcp_rsk(req
)->rcv_isn
+ 1) {
720 inet_rsk(req
)->acked
= 1;
721 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDEFERACCEPTDROP
);
724 if (tmp_opt
.saw_tstamp
&& tmp_opt
.rcv_tsecr
)
725 tcp_rsk(req
)->snt_synack
= tmp_opt
.rcv_tsecr
;
726 else if (req
->retrans
) /* don't take RTT sample if retrans && ~TS */
727 tcp_rsk(req
)->snt_synack
= 0;
729 /* OK, ACK is valid, create big socket and
730 * feed this segment to it. It will repeat all
731 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
732 * ESTABLISHED STATE. If it will be dropped after
733 * socket is created, wait for troubles.
735 child
= inet_csk(sk
)->icsk_af_ops
->syn_recv_sock(sk
, skb
, req
, NULL
);
737 goto listen_overflow
;
739 inet_csk_reqsk_queue_unlink(sk
, req
, prev
);
740 inet_csk_reqsk_queue_removed(sk
, req
);
742 inet_csk_reqsk_queue_add(sk
, req
, child
);
746 if (!sysctl_tcp_abort_on_overflow
) {
747 inet_rsk(req
)->acked
= 1;
752 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_EMBRYONICRSTS
);
753 if (!(flg
& TCP_FLAG_RST
))
754 req
->rsk_ops
->send_reset(sk
, skb
);
756 inet_csk_reqsk_queue_drop(sk
, req
, prev
);
759 EXPORT_SYMBOL(tcp_check_req
);
762 * Queue segment on the new socket if the new socket is active,
763 * otherwise we just shortcircuit this and continue with
767 int tcp_child_process(struct sock
*parent
, struct sock
*child
,
771 int state
= child
->sk_state
;
773 if (!sock_owned_by_user(child
)) {
774 ret
= tcp_rcv_state_process(child
, skb
, tcp_hdr(skb
),
776 /* Wakeup parent, send SIGIO */
777 if (state
== TCP_SYN_RECV
&& child
->sk_state
!= state
)
778 parent
->sk_data_ready(parent
, 0);
780 /* Alas, it is possible again, because we do lookup
781 * in main socket hash table and lock on listening
782 * socket does not protect us more.
784 __sk_add_backlog(child
, skb
);
787 bh_unlock_sock(child
);
791 EXPORT_SYMBOL(tcp_child_process
);