2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
4 * Author: Mike Lavender, mike@steroidmicros.com
6 * Copyright (c) 2005, Intec Automation Inc.
8 * Some parts are based on lart.c by Abraham Van Der Merwe
10 * Cleaned up and generalized based on mtd_dataflash.c
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
18 #include <linux/init.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/interrupt.h>
24 #include <linux/mutex.h>
25 #include <linux/math64.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/mod_devicetable.h>
30 #include <linux/mtd/cfi.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/partitions.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/flash.h>
38 #define OPCODE_WREN 0x06 /* Write enable */
39 #define OPCODE_RDSR 0x05 /* Read status register */
40 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
41 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
42 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
43 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
44 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
45 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
46 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
47 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
48 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
50 /* Used for SST flashes only. */
51 #define OPCODE_BP 0x02 /* Byte program */
52 #define OPCODE_WRDI 0x04 /* Write disable */
53 #define OPCODE_AAI_WP 0xad /* Auto address increment word program */
55 /* Used for Macronix flashes only. */
56 #define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
57 #define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
59 /* Used for Spansion flashes only. */
60 #define OPCODE_BRWR 0x17 /* Bank register write */
62 /* Status Register bits. */
63 #define SR_WIP 1 /* Write in progress */
64 #define SR_WEL 2 /* Write enable latch */
65 /* meaning of other SR_* bits may differ between vendors */
66 #define SR_BP0 4 /* Block protect 0 */
67 #define SR_BP1 8 /* Block protect 1 */
68 #define SR_BP2 0x10 /* Block protect 2 */
69 #define SR_SRWD 0x80 /* SR write protect */
71 /* Define max times to check status register before we give up. */
72 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
73 #define MAX_CMD_SIZE 5
75 #ifdef CONFIG_M25PXX_USE_FAST_READ
76 #define OPCODE_READ OPCODE_FAST_READ
77 #define FAST_READ_DUMMY_BYTE 1
79 #define OPCODE_READ OPCODE_NORM_READ
80 #define FAST_READ_DUMMY_BYTE 0
83 #define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
85 /****************************************************************************/
88 struct spi_device
*spi
;
91 unsigned partitioned
:1;
98 static inline struct m25p
*mtd_to_m25p(struct mtd_info
*mtd
)
100 return container_of(mtd
, struct m25p
, mtd
);
103 /****************************************************************************/
106 * Internal helper functions
110 * Read the status register, returning its value in the location
111 * Return the status register value.
112 * Returns negative if error occurred.
114 static int read_sr(struct m25p
*flash
)
117 u8 code
= OPCODE_RDSR
;
120 retval
= spi_write_then_read(flash
->spi
, &code
, 1, &val
, 1);
123 dev_err(&flash
->spi
->dev
, "error %d reading SR\n",
132 * Write status register 1 byte
133 * Returns negative if error occurred.
135 static int write_sr(struct m25p
*flash
, u8 val
)
137 flash
->command
[0] = OPCODE_WRSR
;
138 flash
->command
[1] = val
;
140 return spi_write(flash
->spi
, flash
->command
, 2);
144 * Set write enable latch with Write Enable command.
145 * Returns negative if error occurred.
147 static inline int write_enable(struct m25p
*flash
)
149 u8 code
= OPCODE_WREN
;
151 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
155 * Send write disble instruction to the chip.
157 static inline int write_disable(struct m25p
*flash
)
159 u8 code
= OPCODE_WRDI
;
161 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
165 * Enable/disable 4-byte addressing mode.
167 static inline int set_4byte(struct m25p
*flash
, u32 jedec_id
, int enable
)
169 switch (JEDEC_MFR(jedec_id
)) {
170 case CFI_MFR_MACRONIX
:
171 flash
->command
[0] = enable
? OPCODE_EN4B
: OPCODE_EX4B
;
172 return spi_write(flash
->spi
, flash
->command
, 1);
175 flash
->command
[0] = OPCODE_BRWR
;
176 flash
->command
[1] = enable
<< 7;
177 return spi_write(flash
->spi
, flash
->command
, 2);
182 * Service routine to read status register until ready, or timeout occurs.
183 * Returns non-zero if error.
185 static int wait_till_ready(struct m25p
*flash
)
187 unsigned long deadline
;
190 deadline
= jiffies
+ MAX_READY_WAIT_JIFFIES
;
193 if ((sr
= read_sr(flash
)) < 0)
195 else if (!(sr
& SR_WIP
))
200 } while (!time_after_eq(jiffies
, deadline
));
206 * Erase the whole flash memory
208 * Returns 0 if successful, non-zero otherwise.
210 static int erase_chip(struct m25p
*flash
)
212 DEBUG(MTD_DEBUG_LEVEL3
, "%s: %s %lldKiB\n",
213 dev_name(&flash
->spi
->dev
), __func__
,
214 (long long)(flash
->mtd
.size
>> 10));
216 /* Wait until finished previous write command. */
217 if (wait_till_ready(flash
))
220 /* Send write enable, then erase commands. */
223 /* Set up command buffer. */
224 flash
->command
[0] = OPCODE_CHIP_ERASE
;
226 spi_write(flash
->spi
, flash
->command
, 1);
231 static void m25p_addr2cmd(struct m25p
*flash
, unsigned int addr
, u8
*cmd
)
233 /* opcode is in cmd[0] */
234 cmd
[1] = addr
>> (flash
->addr_width
* 8 - 8);
235 cmd
[2] = addr
>> (flash
->addr_width
* 8 - 16);
236 cmd
[3] = addr
>> (flash
->addr_width
* 8 - 24);
237 cmd
[4] = addr
>> (flash
->addr_width
* 8 - 32);
240 static int m25p_cmdsz(struct m25p
*flash
)
242 return 1 + flash
->addr_width
;
246 * Erase one sector of flash memory at offset ``offset'' which is any
247 * address within the sector which should be erased.
249 * Returns 0 if successful, non-zero otherwise.
251 static int erase_sector(struct m25p
*flash
, u32 offset
)
253 DEBUG(MTD_DEBUG_LEVEL3
, "%s: %s %dKiB at 0x%08x\n",
254 dev_name(&flash
->spi
->dev
), __func__
,
255 flash
->mtd
.erasesize
/ 1024, offset
);
257 /* Wait until finished previous write command. */
258 if (wait_till_ready(flash
))
261 /* Send write enable, then erase commands. */
264 /* Set up command buffer. */
265 flash
->command
[0] = flash
->erase_opcode
;
266 m25p_addr2cmd(flash
, offset
, flash
->command
);
268 spi_write(flash
->spi
, flash
->command
, m25p_cmdsz(flash
));
273 /****************************************************************************/
280 * Erase an address range on the flash chip. The address range may extend
281 * one or more erase sectors. Return an error is there is a problem erasing.
283 static int m25p80_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
285 struct m25p
*flash
= mtd_to_m25p(mtd
);
289 DEBUG(MTD_DEBUG_LEVEL2
, "%s: %s %s 0x%llx, len %lld\n",
290 dev_name(&flash
->spi
->dev
), __func__
, "at",
291 (long long)instr
->addr
, (long long)instr
->len
);
294 if (instr
->addr
+ instr
->len
> flash
->mtd
.size
)
296 div_u64_rem(instr
->len
, mtd
->erasesize
, &rem
);
303 mutex_lock(&flash
->lock
);
305 /* whole-chip erase? */
306 if (len
== flash
->mtd
.size
) {
307 if (erase_chip(flash
)) {
308 instr
->state
= MTD_ERASE_FAILED
;
309 mutex_unlock(&flash
->lock
);
313 /* REVISIT in some cases we could speed up erasing large regions
314 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
315 * to use "small sector erase", but that's not always optimal.
318 /* "sector"-at-a-time erase */
321 if (erase_sector(flash
, addr
)) {
322 instr
->state
= MTD_ERASE_FAILED
;
323 mutex_unlock(&flash
->lock
);
327 addr
+= mtd
->erasesize
;
328 len
-= mtd
->erasesize
;
332 mutex_unlock(&flash
->lock
);
334 instr
->state
= MTD_ERASE_DONE
;
335 mtd_erase_callback(instr
);
341 * Read an address range from the flash chip. The address range
342 * may be any size provided it is within the physical boundaries.
344 static int m25p80_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
345 size_t *retlen
, u_char
*buf
)
347 struct m25p
*flash
= mtd_to_m25p(mtd
);
348 struct spi_transfer t
[2];
349 struct spi_message m
;
351 DEBUG(MTD_DEBUG_LEVEL2
, "%s: %s %s 0x%08x, len %zd\n",
352 dev_name(&flash
->spi
->dev
), __func__
, "from",
359 if (from
+ len
> flash
->mtd
.size
)
362 spi_message_init(&m
);
363 memset(t
, 0, (sizeof t
));
366 * OPCODE_FAST_READ (if available) is faster.
367 * Should add 1 byte DUMMY_BYTE.
369 t
[0].tx_buf
= flash
->command
;
370 t
[0].len
= m25p_cmdsz(flash
) + FAST_READ_DUMMY_BYTE
;
371 spi_message_add_tail(&t
[0], &m
);
375 spi_message_add_tail(&t
[1], &m
);
377 /* Byte count starts at zero. */
380 mutex_lock(&flash
->lock
);
382 /* Wait till previous write/erase is done. */
383 if (wait_till_ready(flash
)) {
384 /* REVISIT status return?? */
385 mutex_unlock(&flash
->lock
);
389 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
390 * clocks; and at this writing, every chip this driver handles
391 * supports that opcode.
394 /* Set up the write data buffer. */
395 flash
->command
[0] = OPCODE_READ
;
396 m25p_addr2cmd(flash
, from
, flash
->command
);
398 spi_sync(flash
->spi
, &m
);
400 *retlen
= m
.actual_length
- m25p_cmdsz(flash
) - FAST_READ_DUMMY_BYTE
;
402 mutex_unlock(&flash
->lock
);
408 * Write an address range to the flash chip. Data must be written in
409 * FLASH_PAGESIZE chunks. The address range may be any size provided
410 * it is within the physical boundaries.
412 static int m25p80_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
413 size_t *retlen
, const u_char
*buf
)
415 struct m25p
*flash
= mtd_to_m25p(mtd
);
416 u32 page_offset
, page_size
;
417 struct spi_transfer t
[2];
418 struct spi_message m
;
420 DEBUG(MTD_DEBUG_LEVEL2
, "%s: %s %s 0x%08x, len %zd\n",
421 dev_name(&flash
->spi
->dev
), __func__
, "to",
430 if (to
+ len
> flash
->mtd
.size
)
433 spi_message_init(&m
);
434 memset(t
, 0, (sizeof t
));
436 t
[0].tx_buf
= flash
->command
;
437 t
[0].len
= m25p_cmdsz(flash
);
438 spi_message_add_tail(&t
[0], &m
);
441 spi_message_add_tail(&t
[1], &m
);
443 mutex_lock(&flash
->lock
);
445 /* Wait until finished previous write command. */
446 if (wait_till_ready(flash
)) {
447 mutex_unlock(&flash
->lock
);
453 /* Set up the opcode in the write buffer. */
454 flash
->command
[0] = OPCODE_PP
;
455 m25p_addr2cmd(flash
, to
, flash
->command
);
457 page_offset
= to
& (flash
->page_size
- 1);
459 /* do all the bytes fit onto one page? */
460 if (page_offset
+ len
<= flash
->page_size
) {
463 spi_sync(flash
->spi
, &m
);
465 *retlen
= m
.actual_length
- m25p_cmdsz(flash
);
469 /* the size of data remaining on the first page */
470 page_size
= flash
->page_size
- page_offset
;
472 t
[1].len
= page_size
;
473 spi_sync(flash
->spi
, &m
);
475 *retlen
= m
.actual_length
- m25p_cmdsz(flash
);
477 /* write everything in flash->page_size chunks */
478 for (i
= page_size
; i
< len
; i
+= page_size
) {
480 if (page_size
> flash
->page_size
)
481 page_size
= flash
->page_size
;
483 /* write the next page to flash */
484 m25p_addr2cmd(flash
, to
+ i
, flash
->command
);
486 t
[1].tx_buf
= buf
+ i
;
487 t
[1].len
= page_size
;
489 wait_till_ready(flash
);
493 spi_sync(flash
->spi
, &m
);
495 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
499 mutex_unlock(&flash
->lock
);
504 static int sst_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
505 size_t *retlen
, const u_char
*buf
)
507 struct m25p
*flash
= mtd_to_m25p(mtd
);
508 struct spi_transfer t
[2];
509 struct spi_message m
;
513 DEBUG(MTD_DEBUG_LEVEL2
, "%s: %s %s 0x%08x, len %zd\n",
514 dev_name(&flash
->spi
->dev
), __func__
, "to",
523 if (to
+ len
> flash
->mtd
.size
)
526 spi_message_init(&m
);
527 memset(t
, 0, (sizeof t
));
529 t
[0].tx_buf
= flash
->command
;
530 t
[0].len
= m25p_cmdsz(flash
);
531 spi_message_add_tail(&t
[0], &m
);
534 spi_message_add_tail(&t
[1], &m
);
536 mutex_lock(&flash
->lock
);
538 /* Wait until finished previous write command. */
539 ret
= wait_till_ready(flash
);
546 /* Start write from odd address. */
548 flash
->command
[0] = OPCODE_BP
;
549 m25p_addr2cmd(flash
, to
, flash
->command
);
551 /* write one byte. */
553 spi_sync(flash
->spi
, &m
);
554 ret
= wait_till_ready(flash
);
557 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
561 flash
->command
[0] = OPCODE_AAI_WP
;
562 m25p_addr2cmd(flash
, to
, flash
->command
);
564 /* Write out most of the data here. */
565 cmd_sz
= m25p_cmdsz(flash
);
566 for (; actual
< len
- 1; actual
+= 2) {
568 /* write two bytes. */
570 t
[1].tx_buf
= buf
+ actual
;
572 spi_sync(flash
->spi
, &m
);
573 ret
= wait_till_ready(flash
);
576 *retlen
+= m
.actual_length
- cmd_sz
;
580 write_disable(flash
);
581 ret
= wait_till_ready(flash
);
585 /* Write out trailing byte if it exists. */
588 flash
->command
[0] = OPCODE_BP
;
589 m25p_addr2cmd(flash
, to
, flash
->command
);
590 t
[0].len
= m25p_cmdsz(flash
);
592 t
[1].tx_buf
= buf
+ actual
;
594 spi_sync(flash
->spi
, &m
);
595 ret
= wait_till_ready(flash
);
598 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
599 write_disable(flash
);
603 mutex_unlock(&flash
->lock
);
607 /****************************************************************************/
610 * SPI device driver setup and teardown
614 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
615 * a high byte of zero plus three data bytes: the manufacturer id,
616 * then a two byte device id.
621 /* The size listed here is what works with OPCODE_SE, which isn't
622 * necessarily called a "sector" by the vendor.
624 unsigned sector_size
;
631 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
632 #define M25P_NO_ERASE 0x02 /* No erase command needed */
635 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
636 ((kernel_ulong_t)&(struct flash_info) { \
637 .jedec_id = (_jedec_id), \
638 .ext_id = (_ext_id), \
639 .sector_size = (_sector_size), \
640 .n_sectors = (_n_sectors), \
645 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
646 ((kernel_ulong_t)&(struct flash_info) { \
647 .sector_size = (_sector_size), \
648 .n_sectors = (_n_sectors), \
649 .page_size = (_page_size), \
650 .addr_width = (_addr_width), \
651 .flags = M25P_NO_ERASE, \
654 /* NOTE: double check command sets and memory organization when you add
655 * more flash chips. This current list focusses on newer chips, which
656 * have been converging on command sets which including JEDEC ID.
658 static const struct spi_device_id m25p_ids
[] = {
659 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
660 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K
) },
661 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K
) },
663 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K
) },
664 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K
) },
666 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K
) },
667 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K
) },
668 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K
) },
669 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K
) },
672 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K
) },
673 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
674 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
676 /* Intel/Numonyx -- xxxs33b */
677 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
678 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
679 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
682 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K
) },
683 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
684 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K
) },
685 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
686 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
687 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
688 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
689 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
690 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
692 /* Spansion -- single (large) sector size only, at least
693 * for the chips listed here (without boot sectors).
695 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
696 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
697 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
698 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
699 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SECT_4K
) },
700 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
701 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
702 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, 0) },
703 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
704 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
705 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
706 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
707 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
708 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
709 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K
) },
710 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
712 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
713 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K
) },
714 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K
) },
715 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K
) },
716 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K
) },
717 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K
) },
718 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K
) },
719 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K
) },
720 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K
) },
722 /* ST Microelectronics -- newer production may have feature updates */
723 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
724 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
725 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
726 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
727 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
728 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
729 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
730 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
731 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
733 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
734 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
735 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
736 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
737 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
738 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
739 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
740 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
741 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
743 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
744 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
745 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
747 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
748 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K
) },
750 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K
) },
751 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K
) },
752 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K
) },
753 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
755 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
756 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K
) },
757 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K
) },
758 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K
) },
759 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K
) },
760 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K
) },
761 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K
) },
762 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K
) },
763 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K
) },
764 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
766 /* Catalyst / On Semiconductor -- non-JEDEC */
767 { "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
768 { "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
769 { "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
770 { "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
771 { "cat25128", CAT25_INFO(2048, 8, 64, 2) },
774 MODULE_DEVICE_TABLE(spi
, m25p_ids
);
776 static const struct spi_device_id
*__devinit
jedec_probe(struct spi_device
*spi
)
779 u8 code
= OPCODE_RDID
;
783 struct flash_info
*info
;
785 /* JEDEC also defines an optional "extended device information"
786 * string for after vendor-specific data, after the three bytes
787 * we use here. Supporting some chips might require using it.
789 tmp
= spi_write_then_read(spi
, &code
, 1, id
, 5);
791 DEBUG(MTD_DEBUG_LEVEL0
, "%s: error %d reading JEDEC ID\n",
792 dev_name(&spi
->dev
), tmp
);
801 ext_jedec
= id
[3] << 8 | id
[4];
803 for (tmp
= 0; tmp
< ARRAY_SIZE(m25p_ids
) - 1; tmp
++) {
804 info
= (void *)m25p_ids
[tmp
].driver_data
;
805 if (info
->jedec_id
== jedec
) {
806 if (info
->ext_id
!= 0 && info
->ext_id
!= ext_jedec
)
808 return &m25p_ids
[tmp
];
811 dev_err(&spi
->dev
, "unrecognized JEDEC id %06x\n", jedec
);
812 return ERR_PTR(-ENODEV
);
817 * board specific setup should have ensured the SPI clock used here
818 * matches what the READ command supports, at least until this driver
819 * understands FAST_READ (for clocks over 25 MHz).
821 static int __devinit
m25p_probe(struct spi_device
*spi
)
823 const struct spi_device_id
*id
= spi_get_device_id(spi
);
824 struct flash_platform_data
*data
;
826 struct flash_info
*info
;
828 struct mtd_partition
*parts
= NULL
;
831 /* Platform data helps sort out which chip type we have, as
832 * well as how this board partitions it. If we don't have
833 * a chip ID, try the JEDEC id commands; they'll work for most
834 * newer chips, even if we don't recognize the particular chip.
836 data
= spi
->dev
.platform_data
;
837 if (data
&& data
->type
) {
838 const struct spi_device_id
*plat_id
;
840 for (i
= 0; i
< ARRAY_SIZE(m25p_ids
) - 1; i
++) {
841 plat_id
= &m25p_ids
[i
];
842 if (strcmp(data
->type
, plat_id
->name
))
847 if (i
< ARRAY_SIZE(m25p_ids
) - 1)
850 dev_warn(&spi
->dev
, "unrecognized id %s\n", data
->type
);
853 info
= (void *)id
->driver_data
;
855 if (info
->jedec_id
) {
856 const struct spi_device_id
*jid
;
858 jid
= jedec_probe(spi
);
861 } else if (jid
!= id
) {
863 * JEDEC knows better, so overwrite platform ID. We
864 * can't trust partitions any longer, but we'll let
865 * mtd apply them anyway, since some partitions may be
866 * marked read-only, and we don't want to lose that
867 * information, even if it's not 100% accurate.
869 dev_warn(&spi
->dev
, "found %s, expected %s\n",
870 jid
->name
, id
->name
);
872 info
= (void *)jid
->driver_data
;
876 flash
= kzalloc(sizeof *flash
, GFP_KERNEL
);
879 flash
->command
= kmalloc(MAX_CMD_SIZE
+ FAST_READ_DUMMY_BYTE
, GFP_KERNEL
);
880 if (!flash
->command
) {
886 mutex_init(&flash
->lock
);
887 dev_set_drvdata(&spi
->dev
, flash
);
890 * Atmel, SST and Intel/Numonyx serial flash tend to power
891 * up with the software protection bits set
894 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_ATMEL
||
895 JEDEC_MFR(info
->jedec_id
) == CFI_MFR_INTEL
||
896 JEDEC_MFR(info
->jedec_id
) == CFI_MFR_SST
) {
901 if (data
&& data
->name
)
902 flash
->mtd
.name
= data
->name
;
904 flash
->mtd
.name
= dev_name(&spi
->dev
);
906 flash
->mtd
.type
= MTD_NORFLASH
;
907 flash
->mtd
.writesize
= 1;
908 flash
->mtd
.flags
= MTD_CAP_NORFLASH
;
909 flash
->mtd
.size
= info
->sector_size
* info
->n_sectors
;
910 flash
->mtd
.erase
= m25p80_erase
;
911 flash
->mtd
.read
= m25p80_read
;
913 /* sst flash chips use AAI word program */
914 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_SST
)
915 flash
->mtd
.write
= sst_write
;
917 flash
->mtd
.write
= m25p80_write
;
919 /* prefer "small sector" erase if possible */
920 if (info
->flags
& SECT_4K
) {
921 flash
->erase_opcode
= OPCODE_BE_4K
;
922 flash
->mtd
.erasesize
= 4096;
924 flash
->erase_opcode
= OPCODE_SE
;
925 flash
->mtd
.erasesize
= info
->sector_size
;
928 if (info
->flags
& M25P_NO_ERASE
)
929 flash
->mtd
.flags
|= MTD_NO_ERASE
;
931 flash
->mtd
.dev
.parent
= &spi
->dev
;
932 flash
->page_size
= info
->page_size
;
934 if (info
->addr_width
)
935 flash
->addr_width
= info
->addr_width
;
937 /* enable 4-byte addressing if the device exceeds 16MiB */
938 if (flash
->mtd
.size
> 0x1000000) {
939 flash
->addr_width
= 4;
940 set_4byte(flash
, info
->jedec_id
, 1);
942 flash
->addr_width
= 3;
945 dev_info(&spi
->dev
, "%s (%lld Kbytes)\n", id
->name
,
946 (long long)flash
->mtd
.size
>> 10);
948 DEBUG(MTD_DEBUG_LEVEL2
,
949 "mtd .name = %s, .size = 0x%llx (%lldMiB) "
950 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
952 (long long)flash
->mtd
.size
, (long long)(flash
->mtd
.size
>> 20),
953 flash
->mtd
.erasesize
, flash
->mtd
.erasesize
/ 1024,
954 flash
->mtd
.numeraseregions
);
956 if (flash
->mtd
.numeraseregions
)
957 for (i
= 0; i
< flash
->mtd
.numeraseregions
; i
++)
958 DEBUG(MTD_DEBUG_LEVEL2
,
959 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
960 ".erasesize = 0x%.8x (%uKiB), "
961 ".numblocks = %d }\n",
962 i
, (long long)flash
->mtd
.eraseregions
[i
].offset
,
963 flash
->mtd
.eraseregions
[i
].erasesize
,
964 flash
->mtd
.eraseregions
[i
].erasesize
/ 1024,
965 flash
->mtd
.eraseregions
[i
].numblocks
);
968 /* partitions should match sector boundaries; and it may be good to
969 * use readonly partitions for writeprotected sectors (BP2..BP0).
971 if (mtd_has_cmdlinepart()) {
972 static const char *part_probes
[]
973 = { "cmdlinepart", NULL
, };
975 nr_parts
= parse_mtd_partitions(&flash
->mtd
,
976 part_probes
, &parts
, 0);
979 if (nr_parts
<= 0 && data
&& data
->parts
) {
981 nr_parts
= data
->nr_parts
;
984 #ifdef CONFIG_MTD_OF_PARTS
985 if (nr_parts
<= 0 && spi
->dev
.of_node
) {
986 nr_parts
= of_mtd_parse_partitions(&spi
->dev
,
987 spi
->dev
.of_node
, &parts
);
992 for (i
= 0; i
< nr_parts
; i
++) {
993 DEBUG(MTD_DEBUG_LEVEL2
, "partitions[%d] = "
994 "{.name = %s, .offset = 0x%llx, "
995 ".size = 0x%llx (%lldKiB) }\n",
997 (long long)parts
[i
].offset
,
998 (long long)parts
[i
].size
,
999 (long long)(parts
[i
].size
>> 10));
1001 flash
->partitioned
= 1;
1004 return mtd_device_register(&flash
->mtd
, parts
, nr_parts
) == 1 ?
1009 static int __devexit
m25p_remove(struct spi_device
*spi
)
1011 struct m25p
*flash
= dev_get_drvdata(&spi
->dev
);
1014 /* Clean up MTD stuff. */
1015 status
= mtd_device_unregister(&flash
->mtd
);
1017 kfree(flash
->command
);
1024 static struct spi_driver m25p80_driver
= {
1027 .bus
= &spi_bus_type
,
1028 .owner
= THIS_MODULE
,
1030 .id_table
= m25p_ids
,
1031 .probe
= m25p_probe
,
1032 .remove
= __devexit_p(m25p_remove
),
1034 /* REVISIT: many of these chips have deep power-down modes, which
1035 * should clearly be entered on suspend() to minimize power use.
1036 * And also when they're otherwise idle...
1041 static int __init
m25p80_init(void)
1043 return spi_register_driver(&m25p80_driver
);
1047 static void __exit
m25p80_exit(void)
1049 spi_unregister_driver(&m25p80_driver
);
1053 module_init(m25p80_init
);
1054 module_exit(m25p80_exit
);
1056 MODULE_LICENSE("GPL");
1057 MODULE_AUTHOR("Mike Lavender");
1058 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");