[ARM] Merge most of the PXA work for initial merge
[linux-ginger.git] / drivers / ata / libata-sff.c
blob215d18672a5a9c62a00c43d5b3678b3bc5638242
1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/libata.h>
38 #include <linux/highmem.h>
40 #include "libata.h"
42 const struct ata_port_operations ata_sff_port_ops = {
43 .inherits = &ata_base_port_ops,
45 .qc_prep = ata_sff_qc_prep,
46 .qc_issue = ata_sff_qc_issue,
47 .qc_fill_rtf = ata_sff_qc_fill_rtf,
49 .freeze = ata_sff_freeze,
50 .thaw = ata_sff_thaw,
51 .prereset = ata_sff_prereset,
52 .softreset = ata_sff_softreset,
53 .hardreset = sata_sff_hardreset,
54 .postreset = ata_sff_postreset,
55 .error_handler = ata_sff_error_handler,
56 .post_internal_cmd = ata_sff_post_internal_cmd,
58 .sff_dev_select = ata_sff_dev_select,
59 .sff_check_status = ata_sff_check_status,
60 .sff_tf_load = ata_sff_tf_load,
61 .sff_tf_read = ata_sff_tf_read,
62 .sff_exec_command = ata_sff_exec_command,
63 .sff_data_xfer = ata_sff_data_xfer,
64 .sff_irq_on = ata_sff_irq_on,
65 .sff_irq_clear = ata_sff_irq_clear,
67 .port_start = ata_sff_port_start,
70 const struct ata_port_operations ata_bmdma_port_ops = {
71 .inherits = &ata_sff_port_ops,
73 .mode_filter = ata_bmdma_mode_filter,
75 .bmdma_setup = ata_bmdma_setup,
76 .bmdma_start = ata_bmdma_start,
77 .bmdma_stop = ata_bmdma_stop,
78 .bmdma_status = ata_bmdma_status,
81 /**
82 * ata_fill_sg - Fill PCI IDE PRD table
83 * @qc: Metadata associated with taskfile to be transferred
85 * Fill PCI IDE PRD (scatter-gather) table with segments
86 * associated with the current disk command.
88 * LOCKING:
89 * spin_lock_irqsave(host lock)
92 static void ata_fill_sg(struct ata_queued_cmd *qc)
94 struct ata_port *ap = qc->ap;
95 struct scatterlist *sg;
96 unsigned int si, pi;
98 pi = 0;
99 for_each_sg(qc->sg, sg, qc->n_elem, si) {
100 u32 addr, offset;
101 u32 sg_len, len;
103 /* determine if physical DMA addr spans 64K boundary.
104 * Note h/w doesn't support 64-bit, so we unconditionally
105 * truncate dma_addr_t to u32.
107 addr = (u32) sg_dma_address(sg);
108 sg_len = sg_dma_len(sg);
110 while (sg_len) {
111 offset = addr & 0xffff;
112 len = sg_len;
113 if ((offset + sg_len) > 0x10000)
114 len = 0x10000 - offset;
116 ap->prd[pi].addr = cpu_to_le32(addr);
117 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
118 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
120 pi++;
121 sg_len -= len;
122 addr += len;
126 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
130 * ata_fill_sg_dumb - Fill PCI IDE PRD table
131 * @qc: Metadata associated with taskfile to be transferred
133 * Fill PCI IDE PRD (scatter-gather) table with segments
134 * associated with the current disk command. Perform the fill
135 * so that we avoid writing any length 64K records for
136 * controllers that don't follow the spec.
138 * LOCKING:
139 * spin_lock_irqsave(host lock)
142 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
144 struct ata_port *ap = qc->ap;
145 struct scatterlist *sg;
146 unsigned int si, pi;
148 pi = 0;
149 for_each_sg(qc->sg, sg, qc->n_elem, si) {
150 u32 addr, offset;
151 u32 sg_len, len, blen;
153 /* determine if physical DMA addr spans 64K boundary.
154 * Note h/w doesn't support 64-bit, so we unconditionally
155 * truncate dma_addr_t to u32.
157 addr = (u32) sg_dma_address(sg);
158 sg_len = sg_dma_len(sg);
160 while (sg_len) {
161 offset = addr & 0xffff;
162 len = sg_len;
163 if ((offset + sg_len) > 0x10000)
164 len = 0x10000 - offset;
166 blen = len & 0xffff;
167 ap->prd[pi].addr = cpu_to_le32(addr);
168 if (blen == 0) {
169 /* Some PATA chipsets like the CS5530 can't
170 cope with 0x0000 meaning 64K as the spec says */
171 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
172 blen = 0x8000;
173 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
175 ap->prd[pi].flags_len = cpu_to_le32(blen);
176 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
178 pi++;
179 sg_len -= len;
180 addr += len;
184 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
188 * ata_sff_qc_prep - Prepare taskfile for submission
189 * @qc: Metadata associated with taskfile to be prepared
191 * Prepare ATA taskfile for submission.
193 * LOCKING:
194 * spin_lock_irqsave(host lock)
196 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
198 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
199 return;
201 ata_fill_sg(qc);
205 * ata_sff_dumb_qc_prep - Prepare taskfile for submission
206 * @qc: Metadata associated with taskfile to be prepared
208 * Prepare ATA taskfile for submission.
210 * LOCKING:
211 * spin_lock_irqsave(host lock)
213 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
215 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
216 return;
218 ata_fill_sg_dumb(qc);
222 * ata_sff_check_status - Read device status reg & clear interrupt
223 * @ap: port where the device is
225 * Reads ATA taskfile status register for currently-selected device
226 * and return its value. This also clears pending interrupts
227 * from this device
229 * LOCKING:
230 * Inherited from caller.
232 u8 ata_sff_check_status(struct ata_port *ap)
234 return ioread8(ap->ioaddr.status_addr);
238 * ata_sff_altstatus - Read device alternate status reg
239 * @ap: port where the device is
241 * Reads ATA taskfile alternate status register for
242 * currently-selected device and return its value.
244 * Note: may NOT be used as the check_altstatus() entry in
245 * ata_port_operations.
247 * LOCKING:
248 * Inherited from caller.
250 static u8 ata_sff_altstatus(struct ata_port *ap)
252 if (ap->ops->sff_check_altstatus)
253 return ap->ops->sff_check_altstatus(ap);
255 return ioread8(ap->ioaddr.altstatus_addr);
259 * ata_sff_irq_status - Check if the device is busy
260 * @ap: port where the device is
262 * Determine if the port is currently busy. Uses altstatus
263 * if available in order to avoid clearing shared IRQ status
264 * when finding an IRQ source. Non ctl capable devices don't
265 * share interrupt lines fortunately for us.
267 * LOCKING:
268 * Inherited from caller.
270 static u8 ata_sff_irq_status(struct ata_port *ap)
272 u8 status;
274 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
275 status = ata_sff_altstatus(ap);
276 /* Not us: We are busy */
277 if (status & ATA_BUSY)
278 return status;
280 /* Clear INTRQ latch */
281 status = ap->ops->sff_check_status(ap);
282 return status;
286 * ata_sff_sync - Flush writes
287 * @ap: Port to wait for.
289 * CAUTION:
290 * If we have an mmio device with no ctl and no altstatus
291 * method this will fail. No such devices are known to exist.
293 * LOCKING:
294 * Inherited from caller.
297 static void ata_sff_sync(struct ata_port *ap)
299 if (ap->ops->sff_check_altstatus)
300 ap->ops->sff_check_altstatus(ap);
301 else if (ap->ioaddr.altstatus_addr)
302 ioread8(ap->ioaddr.altstatus_addr);
306 * ata_sff_pause - Flush writes and wait 400nS
307 * @ap: Port to pause for.
309 * CAUTION:
310 * If we have an mmio device with no ctl and no altstatus
311 * method this will fail. No such devices are known to exist.
313 * LOCKING:
314 * Inherited from caller.
317 void ata_sff_pause(struct ata_port *ap)
319 ata_sff_sync(ap);
320 ndelay(400);
324 * ata_sff_dma_pause - Pause before commencing DMA
325 * @ap: Port to pause for.
327 * Perform I/O fencing and ensure sufficient cycle delays occur
328 * for the HDMA1:0 transition
331 void ata_sff_dma_pause(struct ata_port *ap)
333 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
334 /* An altstatus read will cause the needed delay without
335 messing up the IRQ status */
336 ata_sff_altstatus(ap);
337 return;
339 /* There are no DMA controllers without ctl. BUG here to ensure
340 we never violate the HDMA1:0 transition timing and risk
341 corruption. */
342 BUG();
346 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
347 * @ap: port containing status register to be polled
348 * @tmout_pat: impatience timeout
349 * @tmout: overall timeout
351 * Sleep until ATA Status register bit BSY clears,
352 * or a timeout occurs.
354 * LOCKING:
355 * Kernel thread context (may sleep).
357 * RETURNS:
358 * 0 on success, -errno otherwise.
360 int ata_sff_busy_sleep(struct ata_port *ap,
361 unsigned long tmout_pat, unsigned long tmout)
363 unsigned long timer_start, timeout;
364 u8 status;
366 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
367 timer_start = jiffies;
368 timeout = timer_start + tmout_pat;
369 while (status != 0xff && (status & ATA_BUSY) &&
370 time_before(jiffies, timeout)) {
371 msleep(50);
372 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
375 if (status != 0xff && (status & ATA_BUSY))
376 ata_port_printk(ap, KERN_WARNING,
377 "port is slow to respond, please be patient "
378 "(Status 0x%x)\n", status);
380 timeout = timer_start + tmout;
381 while (status != 0xff && (status & ATA_BUSY) &&
382 time_before(jiffies, timeout)) {
383 msleep(50);
384 status = ap->ops->sff_check_status(ap);
387 if (status == 0xff)
388 return -ENODEV;
390 if (status & ATA_BUSY) {
391 ata_port_printk(ap, KERN_ERR, "port failed to respond "
392 "(%lu secs, Status 0x%x)\n",
393 tmout / HZ, status);
394 return -EBUSY;
397 return 0;
400 static int ata_sff_check_ready(struct ata_link *link)
402 u8 status = link->ap->ops->sff_check_status(link->ap);
404 return ata_check_ready(status);
408 * ata_sff_wait_ready - sleep until BSY clears, or timeout
409 * @link: SFF link to wait ready status for
410 * @deadline: deadline jiffies for the operation
412 * Sleep until ATA Status register bit BSY clears, or timeout
413 * occurs.
415 * LOCKING:
416 * Kernel thread context (may sleep).
418 * RETURNS:
419 * 0 on success, -errno otherwise.
421 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
423 return ata_wait_ready(link, deadline, ata_sff_check_ready);
427 * ata_sff_dev_select - Select device 0/1 on ATA bus
428 * @ap: ATA channel to manipulate
429 * @device: ATA device (numbered from zero) to select
431 * Use the method defined in the ATA specification to
432 * make either device 0, or device 1, active on the
433 * ATA channel. Works with both PIO and MMIO.
435 * May be used as the dev_select() entry in ata_port_operations.
437 * LOCKING:
438 * caller.
440 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
442 u8 tmp;
444 if (device == 0)
445 tmp = ATA_DEVICE_OBS;
446 else
447 tmp = ATA_DEVICE_OBS | ATA_DEV1;
449 iowrite8(tmp, ap->ioaddr.device_addr);
450 ata_sff_pause(ap); /* needed; also flushes, for mmio */
454 * ata_dev_select - Select device 0/1 on ATA bus
455 * @ap: ATA channel to manipulate
456 * @device: ATA device (numbered from zero) to select
457 * @wait: non-zero to wait for Status register BSY bit to clear
458 * @can_sleep: non-zero if context allows sleeping
460 * Use the method defined in the ATA specification to
461 * make either device 0, or device 1, active on the
462 * ATA channel.
464 * This is a high-level version of ata_sff_dev_select(), which
465 * additionally provides the services of inserting the proper
466 * pauses and status polling, where needed.
468 * LOCKING:
469 * caller.
471 void ata_dev_select(struct ata_port *ap, unsigned int device,
472 unsigned int wait, unsigned int can_sleep)
474 if (ata_msg_probe(ap))
475 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
476 "device %u, wait %u\n", device, wait);
478 if (wait)
479 ata_wait_idle(ap);
481 ap->ops->sff_dev_select(ap, device);
483 if (wait) {
484 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
485 msleep(150);
486 ata_wait_idle(ap);
491 * ata_sff_irq_on - Enable interrupts on a port.
492 * @ap: Port on which interrupts are enabled.
494 * Enable interrupts on a legacy IDE device using MMIO or PIO,
495 * wait for idle, clear any pending interrupts.
497 * LOCKING:
498 * Inherited from caller.
500 u8 ata_sff_irq_on(struct ata_port *ap)
502 struct ata_ioports *ioaddr = &ap->ioaddr;
503 u8 tmp;
505 ap->ctl &= ~ATA_NIEN;
506 ap->last_ctl = ap->ctl;
508 if (ioaddr->ctl_addr)
509 iowrite8(ap->ctl, ioaddr->ctl_addr);
510 tmp = ata_wait_idle(ap);
512 ap->ops->sff_irq_clear(ap);
514 return tmp;
518 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
519 * @ap: Port associated with this ATA transaction.
521 * Clear interrupt and error flags in DMA status register.
523 * May be used as the irq_clear() entry in ata_port_operations.
525 * LOCKING:
526 * spin_lock_irqsave(host lock)
528 void ata_sff_irq_clear(struct ata_port *ap)
530 void __iomem *mmio = ap->ioaddr.bmdma_addr;
532 if (!mmio)
533 return;
535 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
539 * ata_sff_tf_load - send taskfile registers to host controller
540 * @ap: Port to which output is sent
541 * @tf: ATA taskfile register set
543 * Outputs ATA taskfile to standard ATA host controller.
545 * LOCKING:
546 * Inherited from caller.
548 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
550 struct ata_ioports *ioaddr = &ap->ioaddr;
551 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
553 if (tf->ctl != ap->last_ctl) {
554 if (ioaddr->ctl_addr)
555 iowrite8(tf->ctl, ioaddr->ctl_addr);
556 ap->last_ctl = tf->ctl;
557 ata_wait_idle(ap);
560 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
561 WARN_ON(!ioaddr->ctl_addr);
562 iowrite8(tf->hob_feature, ioaddr->feature_addr);
563 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
564 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
565 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
566 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
567 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
568 tf->hob_feature,
569 tf->hob_nsect,
570 tf->hob_lbal,
571 tf->hob_lbam,
572 tf->hob_lbah);
575 if (is_addr) {
576 iowrite8(tf->feature, ioaddr->feature_addr);
577 iowrite8(tf->nsect, ioaddr->nsect_addr);
578 iowrite8(tf->lbal, ioaddr->lbal_addr);
579 iowrite8(tf->lbam, ioaddr->lbam_addr);
580 iowrite8(tf->lbah, ioaddr->lbah_addr);
581 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
582 tf->feature,
583 tf->nsect,
584 tf->lbal,
585 tf->lbam,
586 tf->lbah);
589 if (tf->flags & ATA_TFLAG_DEVICE) {
590 iowrite8(tf->device, ioaddr->device_addr);
591 VPRINTK("device 0x%X\n", tf->device);
594 ata_wait_idle(ap);
598 * ata_sff_tf_read - input device's ATA taskfile shadow registers
599 * @ap: Port from which input is read
600 * @tf: ATA taskfile register set for storing input
602 * Reads ATA taskfile registers for currently-selected device
603 * into @tf. Assumes the device has a fully SFF compliant task file
604 * layout and behaviour. If you device does not (eg has a different
605 * status method) then you will need to provide a replacement tf_read
607 * LOCKING:
608 * Inherited from caller.
610 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
612 struct ata_ioports *ioaddr = &ap->ioaddr;
614 tf->command = ata_sff_check_status(ap);
615 tf->feature = ioread8(ioaddr->error_addr);
616 tf->nsect = ioread8(ioaddr->nsect_addr);
617 tf->lbal = ioread8(ioaddr->lbal_addr);
618 tf->lbam = ioread8(ioaddr->lbam_addr);
619 tf->lbah = ioread8(ioaddr->lbah_addr);
620 tf->device = ioread8(ioaddr->device_addr);
622 if (tf->flags & ATA_TFLAG_LBA48) {
623 if (likely(ioaddr->ctl_addr)) {
624 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
625 tf->hob_feature = ioread8(ioaddr->error_addr);
626 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
627 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
628 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
629 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
630 iowrite8(tf->ctl, ioaddr->ctl_addr);
631 ap->last_ctl = tf->ctl;
632 } else
633 WARN_ON(1);
638 * ata_sff_exec_command - issue ATA command to host controller
639 * @ap: port to which command is being issued
640 * @tf: ATA taskfile register set
642 * Issues ATA command, with proper synchronization with interrupt
643 * handler / other threads.
645 * LOCKING:
646 * spin_lock_irqsave(host lock)
648 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
650 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
652 iowrite8(tf->command, ap->ioaddr.command_addr);
653 ata_sff_pause(ap);
657 * ata_tf_to_host - issue ATA taskfile to host controller
658 * @ap: port to which command is being issued
659 * @tf: ATA taskfile register set
661 * Issues ATA taskfile register set to ATA host controller,
662 * with proper synchronization with interrupt handler and
663 * other threads.
665 * LOCKING:
666 * spin_lock_irqsave(host lock)
668 static inline void ata_tf_to_host(struct ata_port *ap,
669 const struct ata_taskfile *tf)
671 ap->ops->sff_tf_load(ap, tf);
672 ap->ops->sff_exec_command(ap, tf);
676 * ata_sff_data_xfer - Transfer data by PIO
677 * @dev: device to target
678 * @buf: data buffer
679 * @buflen: buffer length
680 * @rw: read/write
682 * Transfer data from/to the device data register by PIO.
684 * LOCKING:
685 * Inherited from caller.
687 * RETURNS:
688 * Bytes consumed.
690 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
691 unsigned int buflen, int rw)
693 struct ata_port *ap = dev->link->ap;
694 void __iomem *data_addr = ap->ioaddr.data_addr;
695 unsigned int words = buflen >> 1;
697 /* Transfer multiple of 2 bytes */
698 if (rw == READ)
699 ioread16_rep(data_addr, buf, words);
700 else
701 iowrite16_rep(data_addr, buf, words);
703 /* Transfer trailing 1 byte, if any. */
704 if (unlikely(buflen & 0x01)) {
705 __le16 align_buf[1] = { 0 };
706 unsigned char *trailing_buf = buf + buflen - 1;
708 if (rw == READ) {
709 align_buf[0] = cpu_to_le16(ioread16(data_addr));
710 memcpy(trailing_buf, align_buf, 1);
711 } else {
712 memcpy(align_buf, trailing_buf, 1);
713 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
715 words++;
718 return words << 1;
722 * ata_sff_data_xfer_noirq - Transfer data by PIO
723 * @dev: device to target
724 * @buf: data buffer
725 * @buflen: buffer length
726 * @rw: read/write
728 * Transfer data from/to the device data register by PIO. Do the
729 * transfer with interrupts disabled.
731 * LOCKING:
732 * Inherited from caller.
734 * RETURNS:
735 * Bytes consumed.
737 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
738 unsigned int buflen, int rw)
740 unsigned long flags;
741 unsigned int consumed;
743 local_irq_save(flags);
744 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
745 local_irq_restore(flags);
747 return consumed;
751 * ata_pio_sector - Transfer a sector of data.
752 * @qc: Command on going
754 * Transfer qc->sect_size bytes of data from/to the ATA device.
756 * LOCKING:
757 * Inherited from caller.
759 static void ata_pio_sector(struct ata_queued_cmd *qc)
761 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
762 struct ata_port *ap = qc->ap;
763 struct page *page;
764 unsigned int offset;
765 unsigned char *buf;
767 if (qc->curbytes == qc->nbytes - qc->sect_size)
768 ap->hsm_task_state = HSM_ST_LAST;
770 page = sg_page(qc->cursg);
771 offset = qc->cursg->offset + qc->cursg_ofs;
773 /* get the current page and offset */
774 page = nth_page(page, (offset >> PAGE_SHIFT));
775 offset %= PAGE_SIZE;
777 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
779 if (PageHighMem(page)) {
780 unsigned long flags;
782 /* FIXME: use a bounce buffer */
783 local_irq_save(flags);
784 buf = kmap_atomic(page, KM_IRQ0);
786 /* do the actual data transfer */
787 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
788 do_write);
790 kunmap_atomic(buf, KM_IRQ0);
791 local_irq_restore(flags);
792 } else {
793 buf = page_address(page);
794 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
795 do_write);
798 qc->curbytes += qc->sect_size;
799 qc->cursg_ofs += qc->sect_size;
801 if (qc->cursg_ofs == qc->cursg->length) {
802 qc->cursg = sg_next(qc->cursg);
803 qc->cursg_ofs = 0;
808 * ata_pio_sectors - Transfer one or many sectors.
809 * @qc: Command on going
811 * Transfer one or many sectors of data from/to the
812 * ATA device for the DRQ request.
814 * LOCKING:
815 * Inherited from caller.
817 static void ata_pio_sectors(struct ata_queued_cmd *qc)
819 if (is_multi_taskfile(&qc->tf)) {
820 /* READ/WRITE MULTIPLE */
821 unsigned int nsect;
823 WARN_ON(qc->dev->multi_count == 0);
825 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
826 qc->dev->multi_count);
827 while (nsect--)
828 ata_pio_sector(qc);
829 } else
830 ata_pio_sector(qc);
832 ata_sff_sync(qc->ap); /* flush */
836 * atapi_send_cdb - Write CDB bytes to hardware
837 * @ap: Port to which ATAPI device is attached.
838 * @qc: Taskfile currently active
840 * When device has indicated its readiness to accept
841 * a CDB, this function is called. Send the CDB.
843 * LOCKING:
844 * caller.
846 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
848 /* send SCSI cdb */
849 DPRINTK("send cdb\n");
850 WARN_ON(qc->dev->cdb_len < 12);
852 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
853 ata_sff_sync(ap);
854 /* FIXME: If the CDB is for DMA do we need to do the transition delay
855 or is bmdma_start guaranteed to do it ? */
856 switch (qc->tf.protocol) {
857 case ATAPI_PROT_PIO:
858 ap->hsm_task_state = HSM_ST;
859 break;
860 case ATAPI_PROT_NODATA:
861 ap->hsm_task_state = HSM_ST_LAST;
862 break;
863 case ATAPI_PROT_DMA:
864 ap->hsm_task_state = HSM_ST_LAST;
865 /* initiate bmdma */
866 ap->ops->bmdma_start(qc);
867 break;
872 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
873 * @qc: Command on going
874 * @bytes: number of bytes
876 * Transfer Transfer data from/to the ATAPI device.
878 * LOCKING:
879 * Inherited from caller.
882 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
884 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
885 struct ata_port *ap = qc->ap;
886 struct ata_device *dev = qc->dev;
887 struct ata_eh_info *ehi = &dev->link->eh_info;
888 struct scatterlist *sg;
889 struct page *page;
890 unsigned char *buf;
891 unsigned int offset, count, consumed;
893 next_sg:
894 sg = qc->cursg;
895 if (unlikely(!sg)) {
896 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
897 "buf=%u cur=%u bytes=%u",
898 qc->nbytes, qc->curbytes, bytes);
899 return -1;
902 page = sg_page(sg);
903 offset = sg->offset + qc->cursg_ofs;
905 /* get the current page and offset */
906 page = nth_page(page, (offset >> PAGE_SHIFT));
907 offset %= PAGE_SIZE;
909 /* don't overrun current sg */
910 count = min(sg->length - qc->cursg_ofs, bytes);
912 /* don't cross page boundaries */
913 count = min(count, (unsigned int)PAGE_SIZE - offset);
915 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
917 if (PageHighMem(page)) {
918 unsigned long flags;
920 /* FIXME: use bounce buffer */
921 local_irq_save(flags);
922 buf = kmap_atomic(page, KM_IRQ0);
924 /* do the actual data transfer */
925 consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw);
927 kunmap_atomic(buf, KM_IRQ0);
928 local_irq_restore(flags);
929 } else {
930 buf = page_address(page);
931 consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw);
934 bytes -= min(bytes, consumed);
935 qc->curbytes += count;
936 qc->cursg_ofs += count;
938 if (qc->cursg_ofs == sg->length) {
939 qc->cursg = sg_next(qc->cursg);
940 qc->cursg_ofs = 0;
943 /* consumed can be larger than count only for the last transfer */
944 WARN_ON(qc->cursg && count != consumed);
946 if (bytes)
947 goto next_sg;
948 return 0;
952 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
953 * @qc: Command on going
955 * Transfer Transfer data from/to the ATAPI device.
957 * LOCKING:
958 * Inherited from caller.
960 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
962 struct ata_port *ap = qc->ap;
963 struct ata_device *dev = qc->dev;
964 struct ata_eh_info *ehi = &dev->link->eh_info;
965 unsigned int ireason, bc_lo, bc_hi, bytes;
966 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
968 /* Abuse qc->result_tf for temp storage of intermediate TF
969 * here to save some kernel stack usage.
970 * For normal completion, qc->result_tf is not relevant. For
971 * error, qc->result_tf is later overwritten by ata_qc_complete().
972 * So, the correctness of qc->result_tf is not affected.
974 ap->ops->sff_tf_read(ap, &qc->result_tf);
975 ireason = qc->result_tf.nsect;
976 bc_lo = qc->result_tf.lbam;
977 bc_hi = qc->result_tf.lbah;
978 bytes = (bc_hi << 8) | bc_lo;
980 /* shall be cleared to zero, indicating xfer of data */
981 if (unlikely(ireason & (1 << 0)))
982 goto atapi_check;
984 /* make sure transfer direction matches expected */
985 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
986 if (unlikely(do_write != i_write))
987 goto atapi_check;
989 if (unlikely(!bytes))
990 goto atapi_check;
992 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
994 if (unlikely(__atapi_pio_bytes(qc, bytes)))
995 goto err_out;
996 ata_sff_sync(ap); /* flush */
998 return;
1000 atapi_check:
1001 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1002 ireason, bytes);
1003 err_out:
1004 qc->err_mask |= AC_ERR_HSM;
1005 ap->hsm_task_state = HSM_ST_ERR;
1009 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1010 * @ap: the target ata_port
1011 * @qc: qc on going
1013 * RETURNS:
1014 * 1 if ok in workqueue, 0 otherwise.
1016 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1018 if (qc->tf.flags & ATA_TFLAG_POLLING)
1019 return 1;
1021 if (ap->hsm_task_state == HSM_ST_FIRST) {
1022 if (qc->tf.protocol == ATA_PROT_PIO &&
1023 (qc->tf.flags & ATA_TFLAG_WRITE))
1024 return 1;
1026 if (ata_is_atapi(qc->tf.protocol) &&
1027 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1028 return 1;
1031 return 0;
1035 * ata_hsm_qc_complete - finish a qc running on standard HSM
1036 * @qc: Command to complete
1037 * @in_wq: 1 if called from workqueue, 0 otherwise
1039 * Finish @qc which is running on standard HSM.
1041 * LOCKING:
1042 * If @in_wq is zero, spin_lock_irqsave(host lock).
1043 * Otherwise, none on entry and grabs host lock.
1045 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1047 struct ata_port *ap = qc->ap;
1048 unsigned long flags;
1050 if (ap->ops->error_handler) {
1051 if (in_wq) {
1052 spin_lock_irqsave(ap->lock, flags);
1054 /* EH might have kicked in while host lock is
1055 * released.
1057 qc = ata_qc_from_tag(ap, qc->tag);
1058 if (qc) {
1059 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1060 ap->ops->sff_irq_on(ap);
1061 ata_qc_complete(qc);
1062 } else
1063 ata_port_freeze(ap);
1066 spin_unlock_irqrestore(ap->lock, flags);
1067 } else {
1068 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1069 ata_qc_complete(qc);
1070 else
1071 ata_port_freeze(ap);
1073 } else {
1074 if (in_wq) {
1075 spin_lock_irqsave(ap->lock, flags);
1076 ap->ops->sff_irq_on(ap);
1077 ata_qc_complete(qc);
1078 spin_unlock_irqrestore(ap->lock, flags);
1079 } else
1080 ata_qc_complete(qc);
1085 * ata_sff_hsm_move - move the HSM to the next state.
1086 * @ap: the target ata_port
1087 * @qc: qc on going
1088 * @status: current device status
1089 * @in_wq: 1 if called from workqueue, 0 otherwise
1091 * RETURNS:
1092 * 1 when poll next status needed, 0 otherwise.
1094 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1095 u8 status, int in_wq)
1097 unsigned long flags = 0;
1098 int poll_next;
1100 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1102 /* Make sure ata_sff_qc_issue() does not throw things
1103 * like DMA polling into the workqueue. Notice that
1104 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1106 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
1108 fsm_start:
1109 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1110 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1112 switch (ap->hsm_task_state) {
1113 case HSM_ST_FIRST:
1114 /* Send first data block or PACKET CDB */
1116 /* If polling, we will stay in the work queue after
1117 * sending the data. Otherwise, interrupt handler
1118 * takes over after sending the data.
1120 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1122 /* check device status */
1123 if (unlikely((status & ATA_DRQ) == 0)) {
1124 /* handle BSY=0, DRQ=0 as error */
1125 if (likely(status & (ATA_ERR | ATA_DF)))
1126 /* device stops HSM for abort/error */
1127 qc->err_mask |= AC_ERR_DEV;
1128 else
1129 /* HSM violation. Let EH handle this */
1130 qc->err_mask |= AC_ERR_HSM;
1132 ap->hsm_task_state = HSM_ST_ERR;
1133 goto fsm_start;
1136 /* Device should not ask for data transfer (DRQ=1)
1137 * when it finds something wrong.
1138 * We ignore DRQ here and stop the HSM by
1139 * changing hsm_task_state to HSM_ST_ERR and
1140 * let the EH abort the command or reset the device.
1142 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1143 /* Some ATAPI tape drives forget to clear the ERR bit
1144 * when doing the next command (mostly request sense).
1145 * We ignore ERR here to workaround and proceed sending
1146 * the CDB.
1148 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1149 ata_port_printk(ap, KERN_WARNING,
1150 "DRQ=1 with device error, "
1151 "dev_stat 0x%X\n", status);
1152 qc->err_mask |= AC_ERR_HSM;
1153 ap->hsm_task_state = HSM_ST_ERR;
1154 goto fsm_start;
1158 /* Send the CDB (atapi) or the first data block (ata pio out).
1159 * During the state transition, interrupt handler shouldn't
1160 * be invoked before the data transfer is complete and
1161 * hsm_task_state is changed. Hence, the following locking.
1163 if (in_wq)
1164 spin_lock_irqsave(ap->lock, flags);
1166 if (qc->tf.protocol == ATA_PROT_PIO) {
1167 /* PIO data out protocol.
1168 * send first data block.
1171 /* ata_pio_sectors() might change the state
1172 * to HSM_ST_LAST. so, the state is changed here
1173 * before ata_pio_sectors().
1175 ap->hsm_task_state = HSM_ST;
1176 ata_pio_sectors(qc);
1177 } else
1178 /* send CDB */
1179 atapi_send_cdb(ap, qc);
1181 if (in_wq)
1182 spin_unlock_irqrestore(ap->lock, flags);
1184 /* if polling, ata_pio_task() handles the rest.
1185 * otherwise, interrupt handler takes over from here.
1187 break;
1189 case HSM_ST:
1190 /* complete command or read/write the data register */
1191 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1192 /* ATAPI PIO protocol */
1193 if ((status & ATA_DRQ) == 0) {
1194 /* No more data to transfer or device error.
1195 * Device error will be tagged in HSM_ST_LAST.
1197 ap->hsm_task_state = HSM_ST_LAST;
1198 goto fsm_start;
1201 /* Device should not ask for data transfer (DRQ=1)
1202 * when it finds something wrong.
1203 * We ignore DRQ here and stop the HSM by
1204 * changing hsm_task_state to HSM_ST_ERR and
1205 * let the EH abort the command or reset the device.
1207 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1208 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
1209 "device error, dev_stat 0x%X\n",
1210 status);
1211 qc->err_mask |= AC_ERR_HSM;
1212 ap->hsm_task_state = HSM_ST_ERR;
1213 goto fsm_start;
1216 atapi_pio_bytes(qc);
1218 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1219 /* bad ireason reported by device */
1220 goto fsm_start;
1222 } else {
1223 /* ATA PIO protocol */
1224 if (unlikely((status & ATA_DRQ) == 0)) {
1225 /* handle BSY=0, DRQ=0 as error */
1226 if (likely(status & (ATA_ERR | ATA_DF)))
1227 /* device stops HSM for abort/error */
1228 qc->err_mask |= AC_ERR_DEV;
1229 else
1230 /* HSM violation. Let EH handle this.
1231 * Phantom devices also trigger this
1232 * condition. Mark hint.
1234 qc->err_mask |= AC_ERR_HSM |
1235 AC_ERR_NODEV_HINT;
1237 ap->hsm_task_state = HSM_ST_ERR;
1238 goto fsm_start;
1241 /* For PIO reads, some devices may ask for
1242 * data transfer (DRQ=1) alone with ERR=1.
1243 * We respect DRQ here and transfer one
1244 * block of junk data before changing the
1245 * hsm_task_state to HSM_ST_ERR.
1247 * For PIO writes, ERR=1 DRQ=1 doesn't make
1248 * sense since the data block has been
1249 * transferred to the device.
1251 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1252 /* data might be corrputed */
1253 qc->err_mask |= AC_ERR_DEV;
1255 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1256 ata_pio_sectors(qc);
1257 status = ata_wait_idle(ap);
1260 if (status & (ATA_BUSY | ATA_DRQ))
1261 qc->err_mask |= AC_ERR_HSM;
1263 /* ata_pio_sectors() might change the
1264 * state to HSM_ST_LAST. so, the state
1265 * is changed after ata_pio_sectors().
1267 ap->hsm_task_state = HSM_ST_ERR;
1268 goto fsm_start;
1271 ata_pio_sectors(qc);
1273 if (ap->hsm_task_state == HSM_ST_LAST &&
1274 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1275 /* all data read */
1276 status = ata_wait_idle(ap);
1277 goto fsm_start;
1281 poll_next = 1;
1282 break;
1284 case HSM_ST_LAST:
1285 if (unlikely(!ata_ok(status))) {
1286 qc->err_mask |= __ac_err_mask(status);
1287 ap->hsm_task_state = HSM_ST_ERR;
1288 goto fsm_start;
1291 /* no more data to transfer */
1292 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1293 ap->print_id, qc->dev->devno, status);
1295 WARN_ON(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1297 ap->hsm_task_state = HSM_ST_IDLE;
1299 /* complete taskfile transaction */
1300 ata_hsm_qc_complete(qc, in_wq);
1302 poll_next = 0;
1303 break;
1305 case HSM_ST_ERR:
1306 /* make sure qc->err_mask is available to
1307 * know what's wrong and recover
1309 WARN_ON(!(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)));
1311 ap->hsm_task_state = HSM_ST_IDLE;
1313 /* complete taskfile transaction */
1314 ata_hsm_qc_complete(qc, in_wq);
1316 poll_next = 0;
1317 break;
1318 default:
1319 poll_next = 0;
1320 BUG();
1323 return poll_next;
1326 void ata_pio_task(struct work_struct *work)
1328 struct ata_port *ap =
1329 container_of(work, struct ata_port, port_task.work);
1330 struct ata_queued_cmd *qc = ap->port_task_data;
1331 u8 status;
1332 int poll_next;
1334 fsm_start:
1335 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
1338 * This is purely heuristic. This is a fast path.
1339 * Sometimes when we enter, BSY will be cleared in
1340 * a chk-status or two. If not, the drive is probably seeking
1341 * or something. Snooze for a couple msecs, then
1342 * chk-status again. If still busy, queue delayed work.
1344 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1345 if (status & ATA_BUSY) {
1346 msleep(2);
1347 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1348 if (status & ATA_BUSY) {
1349 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1350 return;
1354 /* move the HSM */
1355 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1357 /* another command or interrupt handler
1358 * may be running at this point.
1360 if (poll_next)
1361 goto fsm_start;
1365 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1366 * @qc: command to issue to device
1368 * Using various libata functions and hooks, this function
1369 * starts an ATA command. ATA commands are grouped into
1370 * classes called "protocols", and issuing each type of protocol
1371 * is slightly different.
1373 * May be used as the qc_issue() entry in ata_port_operations.
1375 * LOCKING:
1376 * spin_lock_irqsave(host lock)
1378 * RETURNS:
1379 * Zero on success, AC_ERR_* mask on failure
1381 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1383 struct ata_port *ap = qc->ap;
1385 /* Use polling pio if the LLD doesn't handle
1386 * interrupt driven pio and atapi CDB interrupt.
1388 if (ap->flags & ATA_FLAG_PIO_POLLING) {
1389 switch (qc->tf.protocol) {
1390 case ATA_PROT_PIO:
1391 case ATA_PROT_NODATA:
1392 case ATAPI_PROT_PIO:
1393 case ATAPI_PROT_NODATA:
1394 qc->tf.flags |= ATA_TFLAG_POLLING;
1395 break;
1396 case ATAPI_PROT_DMA:
1397 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1398 /* see ata_dma_blacklisted() */
1399 BUG();
1400 break;
1401 default:
1402 break;
1406 /* select the device */
1407 ata_dev_select(ap, qc->dev->devno, 1, 0);
1409 /* start the command */
1410 switch (qc->tf.protocol) {
1411 case ATA_PROT_NODATA:
1412 if (qc->tf.flags & ATA_TFLAG_POLLING)
1413 ata_qc_set_polling(qc);
1415 ata_tf_to_host(ap, &qc->tf);
1416 ap->hsm_task_state = HSM_ST_LAST;
1418 if (qc->tf.flags & ATA_TFLAG_POLLING)
1419 ata_pio_queue_task(ap, qc, 0);
1421 break;
1423 case ATA_PROT_DMA:
1424 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
1426 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1427 ap->ops->bmdma_setup(qc); /* set up bmdma */
1428 ap->ops->bmdma_start(qc); /* initiate bmdma */
1429 ap->hsm_task_state = HSM_ST_LAST;
1430 break;
1432 case ATA_PROT_PIO:
1433 if (qc->tf.flags & ATA_TFLAG_POLLING)
1434 ata_qc_set_polling(qc);
1436 ata_tf_to_host(ap, &qc->tf);
1438 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1439 /* PIO data out protocol */
1440 ap->hsm_task_state = HSM_ST_FIRST;
1441 ata_pio_queue_task(ap, qc, 0);
1443 /* always send first data block using
1444 * the ata_pio_task() codepath.
1446 } else {
1447 /* PIO data in protocol */
1448 ap->hsm_task_state = HSM_ST;
1450 if (qc->tf.flags & ATA_TFLAG_POLLING)
1451 ata_pio_queue_task(ap, qc, 0);
1453 /* if polling, ata_pio_task() handles the rest.
1454 * otherwise, interrupt handler takes over from here.
1458 break;
1460 case ATAPI_PROT_PIO:
1461 case ATAPI_PROT_NODATA:
1462 if (qc->tf.flags & ATA_TFLAG_POLLING)
1463 ata_qc_set_polling(qc);
1465 ata_tf_to_host(ap, &qc->tf);
1467 ap->hsm_task_state = HSM_ST_FIRST;
1469 /* send cdb by polling if no cdb interrupt */
1470 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1471 (qc->tf.flags & ATA_TFLAG_POLLING))
1472 ata_pio_queue_task(ap, qc, 0);
1473 break;
1475 case ATAPI_PROT_DMA:
1476 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
1478 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1479 ap->ops->bmdma_setup(qc); /* set up bmdma */
1480 ap->hsm_task_state = HSM_ST_FIRST;
1482 /* send cdb by polling if no cdb interrupt */
1483 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1484 ata_pio_queue_task(ap, qc, 0);
1485 break;
1487 default:
1488 WARN_ON(1);
1489 return AC_ERR_SYSTEM;
1492 return 0;
1496 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1497 * @qc: qc to fill result TF for
1499 * @qc is finished and result TF needs to be filled. Fill it
1500 * using ->sff_tf_read.
1502 * LOCKING:
1503 * spin_lock_irqsave(host lock)
1505 * RETURNS:
1506 * true indicating that result TF is successfully filled.
1508 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1510 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1511 return true;
1515 * ata_sff_host_intr - Handle host interrupt for given (port, task)
1516 * @ap: Port on which interrupt arrived (possibly...)
1517 * @qc: Taskfile currently active in engine
1519 * Handle host interrupt for given queued command. Currently,
1520 * only DMA interrupts are handled. All other commands are
1521 * handled via polling with interrupts disabled (nIEN bit).
1523 * LOCKING:
1524 * spin_lock_irqsave(host lock)
1526 * RETURNS:
1527 * One if interrupt was handled, zero if not (shared irq).
1529 inline unsigned int ata_sff_host_intr(struct ata_port *ap,
1530 struct ata_queued_cmd *qc)
1532 struct ata_eh_info *ehi = &ap->link.eh_info;
1533 u8 status, host_stat = 0;
1535 VPRINTK("ata%u: protocol %d task_state %d\n",
1536 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1538 /* Check whether we are expecting interrupt in this state */
1539 switch (ap->hsm_task_state) {
1540 case HSM_ST_FIRST:
1541 /* Some pre-ATAPI-4 devices assert INTRQ
1542 * at this state when ready to receive CDB.
1545 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1546 * The flag was turned on only for atapi devices. No
1547 * need to check ata_is_atapi(qc->tf.protocol) again.
1549 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1550 goto idle_irq;
1551 break;
1552 case HSM_ST_LAST:
1553 if (qc->tf.protocol == ATA_PROT_DMA ||
1554 qc->tf.protocol == ATAPI_PROT_DMA) {
1555 /* check status of DMA engine */
1556 host_stat = ap->ops->bmdma_status(ap);
1557 VPRINTK("ata%u: host_stat 0x%X\n",
1558 ap->print_id, host_stat);
1560 /* if it's not our irq... */
1561 if (!(host_stat & ATA_DMA_INTR))
1562 goto idle_irq;
1564 /* before we do anything else, clear DMA-Start bit */
1565 ap->ops->bmdma_stop(qc);
1567 if (unlikely(host_stat & ATA_DMA_ERR)) {
1568 /* error when transfering data to/from memory */
1569 qc->err_mask |= AC_ERR_HOST_BUS;
1570 ap->hsm_task_state = HSM_ST_ERR;
1573 break;
1574 case HSM_ST:
1575 break;
1576 default:
1577 goto idle_irq;
1581 /* check main status, clearing INTRQ if needed */
1582 status = ata_sff_irq_status(ap);
1583 if (status & ATA_BUSY)
1584 goto idle_irq;
1586 /* ack bmdma irq events */
1587 ap->ops->sff_irq_clear(ap);
1589 ata_sff_hsm_move(ap, qc, status, 0);
1591 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1592 qc->tf.protocol == ATAPI_PROT_DMA))
1593 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1595 return 1; /* irq handled */
1597 idle_irq:
1598 ap->stats.idle_irq++;
1600 #ifdef ATA_IRQ_TRAP
1601 if ((ap->stats.idle_irq % 1000) == 0) {
1602 ap->ops->sff_check_status(ap);
1603 ap->ops->sff_irq_clear(ap);
1604 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1605 return 1;
1607 #endif
1608 return 0; /* irq not handled */
1612 * ata_sff_interrupt - Default ATA host interrupt handler
1613 * @irq: irq line (unused)
1614 * @dev_instance: pointer to our ata_host information structure
1616 * Default interrupt handler for PCI IDE devices. Calls
1617 * ata_sff_host_intr() for each port that is not disabled.
1619 * LOCKING:
1620 * Obtains host lock during operation.
1622 * RETURNS:
1623 * IRQ_NONE or IRQ_HANDLED.
1625 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1627 struct ata_host *host = dev_instance;
1628 unsigned int i;
1629 unsigned int handled = 0;
1630 unsigned long flags;
1632 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1633 spin_lock_irqsave(&host->lock, flags);
1635 for (i = 0; i < host->n_ports; i++) {
1636 struct ata_port *ap;
1638 ap = host->ports[i];
1639 if (ap &&
1640 !(ap->flags & ATA_FLAG_DISABLED)) {
1641 struct ata_queued_cmd *qc;
1643 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1644 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
1645 (qc->flags & ATA_QCFLAG_ACTIVE))
1646 handled |= ata_sff_host_intr(ap, qc);
1650 spin_unlock_irqrestore(&host->lock, flags);
1652 return IRQ_RETVAL(handled);
1656 * ata_sff_freeze - Freeze SFF controller port
1657 * @ap: port to freeze
1659 * Freeze BMDMA controller port.
1661 * LOCKING:
1662 * Inherited from caller.
1664 void ata_sff_freeze(struct ata_port *ap)
1666 struct ata_ioports *ioaddr = &ap->ioaddr;
1668 ap->ctl |= ATA_NIEN;
1669 ap->last_ctl = ap->ctl;
1671 if (ioaddr->ctl_addr)
1672 iowrite8(ap->ctl, ioaddr->ctl_addr);
1674 /* Under certain circumstances, some controllers raise IRQ on
1675 * ATA_NIEN manipulation. Also, many controllers fail to mask
1676 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1678 ap->ops->sff_check_status(ap);
1680 ap->ops->sff_irq_clear(ap);
1684 * ata_sff_thaw - Thaw SFF controller port
1685 * @ap: port to thaw
1687 * Thaw SFF controller port.
1689 * LOCKING:
1690 * Inherited from caller.
1692 void ata_sff_thaw(struct ata_port *ap)
1694 /* clear & re-enable interrupts */
1695 ap->ops->sff_check_status(ap);
1696 ap->ops->sff_irq_clear(ap);
1697 ap->ops->sff_irq_on(ap);
1701 * ata_sff_prereset - prepare SFF link for reset
1702 * @link: SFF link to be reset
1703 * @deadline: deadline jiffies for the operation
1705 * SFF link @link is about to be reset. Initialize it. It first
1706 * calls ata_std_prereset() and wait for !BSY if the port is
1707 * being softreset.
1709 * LOCKING:
1710 * Kernel thread context (may sleep)
1712 * RETURNS:
1713 * 0 on success, -errno otherwise.
1715 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1717 struct ata_eh_context *ehc = &link->eh_context;
1718 int rc;
1720 rc = ata_std_prereset(link, deadline);
1721 if (rc)
1722 return rc;
1724 /* if we're about to do hardreset, nothing more to do */
1725 if (ehc->i.action & ATA_EH_HARDRESET)
1726 return 0;
1728 /* wait for !BSY if we don't know that no device is attached */
1729 if (!ata_link_offline(link)) {
1730 rc = ata_sff_wait_ready(link, deadline);
1731 if (rc && rc != -ENODEV) {
1732 ata_link_printk(link, KERN_WARNING, "device not ready "
1733 "(errno=%d), forcing hardreset\n", rc);
1734 ehc->i.action |= ATA_EH_HARDRESET;
1738 return 0;
1742 * ata_devchk - PATA device presence detection
1743 * @ap: ATA channel to examine
1744 * @device: Device to examine (starting at zero)
1746 * This technique was originally described in
1747 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1748 * later found its way into the ATA/ATAPI spec.
1750 * Write a pattern to the ATA shadow registers,
1751 * and if a device is present, it will respond by
1752 * correctly storing and echoing back the
1753 * ATA shadow register contents.
1755 * LOCKING:
1756 * caller.
1758 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1760 struct ata_ioports *ioaddr = &ap->ioaddr;
1761 u8 nsect, lbal;
1763 ap->ops->sff_dev_select(ap, device);
1765 iowrite8(0x55, ioaddr->nsect_addr);
1766 iowrite8(0xaa, ioaddr->lbal_addr);
1768 iowrite8(0xaa, ioaddr->nsect_addr);
1769 iowrite8(0x55, ioaddr->lbal_addr);
1771 iowrite8(0x55, ioaddr->nsect_addr);
1772 iowrite8(0xaa, ioaddr->lbal_addr);
1774 nsect = ioread8(ioaddr->nsect_addr);
1775 lbal = ioread8(ioaddr->lbal_addr);
1777 if ((nsect == 0x55) && (lbal == 0xaa))
1778 return 1; /* we found a device */
1780 return 0; /* nothing found */
1784 * ata_sff_dev_classify - Parse returned ATA device signature
1785 * @dev: ATA device to classify (starting at zero)
1786 * @present: device seems present
1787 * @r_err: Value of error register on completion
1789 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1790 * an ATA/ATAPI-defined set of values is placed in the ATA
1791 * shadow registers, indicating the results of device detection
1792 * and diagnostics.
1794 * Select the ATA device, and read the values from the ATA shadow
1795 * registers. Then parse according to the Error register value,
1796 * and the spec-defined values examined by ata_dev_classify().
1798 * LOCKING:
1799 * caller.
1801 * RETURNS:
1802 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1804 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1805 u8 *r_err)
1807 struct ata_port *ap = dev->link->ap;
1808 struct ata_taskfile tf;
1809 unsigned int class;
1810 u8 err;
1812 ap->ops->sff_dev_select(ap, dev->devno);
1814 memset(&tf, 0, sizeof(tf));
1816 ap->ops->sff_tf_read(ap, &tf);
1817 err = tf.feature;
1818 if (r_err)
1819 *r_err = err;
1821 /* see if device passed diags: continue and warn later */
1822 if (err == 0)
1823 /* diagnostic fail : do nothing _YET_ */
1824 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1825 else if (err == 1)
1826 /* do nothing */ ;
1827 else if ((dev->devno == 0) && (err == 0x81))
1828 /* do nothing */ ;
1829 else
1830 return ATA_DEV_NONE;
1832 /* determine if device is ATA or ATAPI */
1833 class = ata_dev_classify(&tf);
1835 if (class == ATA_DEV_UNKNOWN) {
1836 /* If the device failed diagnostic, it's likely to
1837 * have reported incorrect device signature too.
1838 * Assume ATA device if the device seems present but
1839 * device signature is invalid with diagnostic
1840 * failure.
1842 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1843 class = ATA_DEV_ATA;
1844 else
1845 class = ATA_DEV_NONE;
1846 } else if ((class == ATA_DEV_ATA) &&
1847 (ap->ops->sff_check_status(ap) == 0))
1848 class = ATA_DEV_NONE;
1850 return class;
1854 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1855 * @link: SFF link which is just reset
1856 * @devmask: mask of present devices
1857 * @deadline: deadline jiffies for the operation
1859 * Wait devices attached to SFF @link to become ready after
1860 * reset. It contains preceding 150ms wait to avoid accessing TF
1861 * status register too early.
1863 * LOCKING:
1864 * Kernel thread context (may sleep).
1866 * RETURNS:
1867 * 0 on success, -ENODEV if some or all of devices in @devmask
1868 * don't seem to exist. -errno on other errors.
1870 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1871 unsigned long deadline)
1873 struct ata_port *ap = link->ap;
1874 struct ata_ioports *ioaddr = &ap->ioaddr;
1875 unsigned int dev0 = devmask & (1 << 0);
1876 unsigned int dev1 = devmask & (1 << 1);
1877 int rc, ret = 0;
1879 msleep(ATA_WAIT_AFTER_RESET_MSECS);
1881 /* always check readiness of the master device */
1882 rc = ata_sff_wait_ready(link, deadline);
1883 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1884 * and TF status is 0xff, bail out on it too.
1886 if (rc)
1887 return rc;
1889 /* if device 1 was found in ata_devchk, wait for register
1890 * access briefly, then wait for BSY to clear.
1892 if (dev1) {
1893 int i;
1895 ap->ops->sff_dev_select(ap, 1);
1897 /* Wait for register access. Some ATAPI devices fail
1898 * to set nsect/lbal after reset, so don't waste too
1899 * much time on it. We're gonna wait for !BSY anyway.
1901 for (i = 0; i < 2; i++) {
1902 u8 nsect, lbal;
1904 nsect = ioread8(ioaddr->nsect_addr);
1905 lbal = ioread8(ioaddr->lbal_addr);
1906 if ((nsect == 1) && (lbal == 1))
1907 break;
1908 msleep(50); /* give drive a breather */
1911 rc = ata_sff_wait_ready(link, deadline);
1912 if (rc) {
1913 if (rc != -ENODEV)
1914 return rc;
1915 ret = rc;
1919 /* is all this really necessary? */
1920 ap->ops->sff_dev_select(ap, 0);
1921 if (dev1)
1922 ap->ops->sff_dev_select(ap, 1);
1923 if (dev0)
1924 ap->ops->sff_dev_select(ap, 0);
1926 return ret;
1929 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1930 unsigned long deadline)
1932 struct ata_ioports *ioaddr = &ap->ioaddr;
1934 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1936 /* software reset. causes dev0 to be selected */
1937 iowrite8(ap->ctl, ioaddr->ctl_addr);
1938 udelay(20); /* FIXME: flush */
1939 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1940 udelay(20); /* FIXME: flush */
1941 iowrite8(ap->ctl, ioaddr->ctl_addr);
1943 /* wait the port to become ready */
1944 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1948 * ata_sff_softreset - reset host port via ATA SRST
1949 * @link: ATA link to reset
1950 * @classes: resulting classes of attached devices
1951 * @deadline: deadline jiffies for the operation
1953 * Reset host port using ATA SRST.
1955 * LOCKING:
1956 * Kernel thread context (may sleep)
1958 * RETURNS:
1959 * 0 on success, -errno otherwise.
1961 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1962 unsigned long deadline)
1964 struct ata_port *ap = link->ap;
1965 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1966 unsigned int devmask = 0;
1967 int rc;
1968 u8 err;
1970 DPRINTK("ENTER\n");
1972 /* determine if device 0/1 are present */
1973 if (ata_devchk(ap, 0))
1974 devmask |= (1 << 0);
1975 if (slave_possible && ata_devchk(ap, 1))
1976 devmask |= (1 << 1);
1978 /* select device 0 again */
1979 ap->ops->sff_dev_select(ap, 0);
1981 /* issue bus reset */
1982 DPRINTK("about to softreset, devmask=%x\n", devmask);
1983 rc = ata_bus_softreset(ap, devmask, deadline);
1984 /* if link is occupied, -ENODEV too is an error */
1985 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1986 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
1987 return rc;
1990 /* determine by signature whether we have ATA or ATAPI devices */
1991 classes[0] = ata_sff_dev_classify(&link->device[0],
1992 devmask & (1 << 0), &err);
1993 if (slave_possible && err != 0x81)
1994 classes[1] = ata_sff_dev_classify(&link->device[1],
1995 devmask & (1 << 1), &err);
1997 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
1998 return 0;
2002 * sata_sff_hardreset - reset host port via SATA phy reset
2003 * @link: link to reset
2004 * @class: resulting class of attached device
2005 * @deadline: deadline jiffies for the operation
2007 * SATA phy-reset host port using DET bits of SControl register,
2008 * wait for !BSY and classify the attached device.
2010 * LOCKING:
2011 * Kernel thread context (may sleep)
2013 * RETURNS:
2014 * 0 on success, -errno otherwise.
2016 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2017 unsigned long deadline)
2019 struct ata_eh_context *ehc = &link->eh_context;
2020 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2021 bool online;
2022 int rc;
2024 rc = sata_link_hardreset(link, timing, deadline, &online,
2025 ata_sff_check_ready);
2026 if (online)
2027 *class = ata_sff_dev_classify(link->device, 1, NULL);
2029 DPRINTK("EXIT, class=%u\n", *class);
2030 return rc;
2034 * ata_sff_postreset - SFF postreset callback
2035 * @link: the target SFF ata_link
2036 * @classes: classes of attached devices
2038 * This function is invoked after a successful reset. It first
2039 * calls ata_std_postreset() and performs SFF specific postreset
2040 * processing.
2042 * LOCKING:
2043 * Kernel thread context (may sleep)
2045 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2047 struct ata_port *ap = link->ap;
2049 ata_std_postreset(link, classes);
2051 /* is double-select really necessary? */
2052 if (classes[0] != ATA_DEV_NONE)
2053 ap->ops->sff_dev_select(ap, 1);
2054 if (classes[1] != ATA_DEV_NONE)
2055 ap->ops->sff_dev_select(ap, 0);
2057 /* bail out if no device is present */
2058 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2059 DPRINTK("EXIT, no device\n");
2060 return;
2063 /* set up device control */
2064 if (ap->ioaddr.ctl_addr)
2065 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
2069 * ata_sff_error_handler - Stock error handler for BMDMA controller
2070 * @ap: port to handle error for
2072 * Stock error handler for SFF controller. It can handle both
2073 * PATA and SATA controllers. Many controllers should be able to
2074 * use this EH as-is or with some added handling before and
2075 * after.
2077 * LOCKING:
2078 * Kernel thread context (may sleep)
2080 void ata_sff_error_handler(struct ata_port *ap)
2082 ata_reset_fn_t softreset = ap->ops->softreset;
2083 ata_reset_fn_t hardreset = ap->ops->hardreset;
2084 struct ata_queued_cmd *qc;
2085 unsigned long flags;
2086 int thaw = 0;
2088 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2089 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2090 qc = NULL;
2092 /* reset PIO HSM and stop DMA engine */
2093 spin_lock_irqsave(ap->lock, flags);
2095 ap->hsm_task_state = HSM_ST_IDLE;
2097 if (ap->ioaddr.bmdma_addr &&
2098 qc && (qc->tf.protocol == ATA_PROT_DMA ||
2099 qc->tf.protocol == ATAPI_PROT_DMA)) {
2100 u8 host_stat;
2102 host_stat = ap->ops->bmdma_status(ap);
2104 /* BMDMA controllers indicate host bus error by
2105 * setting DMA_ERR bit and timing out. As it wasn't
2106 * really a timeout event, adjust error mask and
2107 * cancel frozen state.
2109 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2110 qc->err_mask = AC_ERR_HOST_BUS;
2111 thaw = 1;
2114 ap->ops->bmdma_stop(qc);
2117 ata_sff_sync(ap); /* FIXME: We don't need this */
2118 ap->ops->sff_check_status(ap);
2119 ap->ops->sff_irq_clear(ap);
2121 spin_unlock_irqrestore(ap->lock, flags);
2123 if (thaw)
2124 ata_eh_thaw_port(ap);
2126 /* PIO and DMA engines have been stopped, perform recovery */
2128 /* Ignore ata_sff_softreset if ctl isn't accessible and
2129 * built-in hardresets if SCR access isn't available.
2131 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2132 softreset = NULL;
2133 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
2134 hardreset = NULL;
2136 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2137 ap->ops->postreset);
2141 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2142 * @qc: internal command to clean up
2144 * LOCKING:
2145 * Kernel thread context (may sleep)
2147 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2149 if (qc->ap->ioaddr.bmdma_addr)
2150 ata_bmdma_stop(qc);
2154 * ata_sff_port_start - Set port up for dma.
2155 * @ap: Port to initialize
2157 * Called just after data structures for each port are
2158 * initialized. Allocates space for PRD table if the device
2159 * is DMA capable SFF.
2161 * May be used as the port_start() entry in ata_port_operations.
2163 * LOCKING:
2164 * Inherited from caller.
2166 int ata_sff_port_start(struct ata_port *ap)
2168 if (ap->ioaddr.bmdma_addr)
2169 return ata_port_start(ap);
2170 return 0;
2174 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2175 * @ioaddr: IO address structure to be initialized
2177 * Utility function which initializes data_addr, error_addr,
2178 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2179 * device_addr, status_addr, and command_addr to standard offsets
2180 * relative to cmd_addr.
2182 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2184 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2186 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2187 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2188 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2189 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2190 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2191 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2192 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2193 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2194 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2195 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2198 unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2199 unsigned long xfer_mask)
2201 /* Filter out DMA modes if the device has been configured by
2202 the BIOS as PIO only */
2204 if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2205 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2206 return xfer_mask;
2210 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2211 * @qc: Info associated with this ATA transaction.
2213 * LOCKING:
2214 * spin_lock_irqsave(host lock)
2216 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2218 struct ata_port *ap = qc->ap;
2219 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2220 u8 dmactl;
2222 /* load PRD table addr. */
2223 mb(); /* make sure PRD table writes are visible to controller */
2224 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2226 /* specify data direction, triple-check start bit is clear */
2227 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2228 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2229 if (!rw)
2230 dmactl |= ATA_DMA_WR;
2231 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2233 /* issue r/w command */
2234 ap->ops->sff_exec_command(ap, &qc->tf);
2238 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2239 * @qc: Info associated with this ATA transaction.
2241 * LOCKING:
2242 * spin_lock_irqsave(host lock)
2244 void ata_bmdma_start(struct ata_queued_cmd *qc)
2246 struct ata_port *ap = qc->ap;
2247 u8 dmactl;
2249 /* start host DMA transaction */
2250 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2251 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2253 /* Strictly, one may wish to issue an ioread8() here, to
2254 * flush the mmio write. However, control also passes
2255 * to the hardware at this point, and it will interrupt
2256 * us when we are to resume control. So, in effect,
2257 * we don't care when the mmio write flushes.
2258 * Further, a read of the DMA status register _immediately_
2259 * following the write may not be what certain flaky hardware
2260 * is expected, so I think it is best to not add a readb()
2261 * without first all the MMIO ATA cards/mobos.
2262 * Or maybe I'm just being paranoid.
2264 * FIXME: The posting of this write means I/O starts are
2265 * unneccessarily delayed for MMIO
2270 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2271 * @qc: Command we are ending DMA for
2273 * Clears the ATA_DMA_START flag in the dma control register
2275 * May be used as the bmdma_stop() entry in ata_port_operations.
2277 * LOCKING:
2278 * spin_lock_irqsave(host lock)
2280 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2282 struct ata_port *ap = qc->ap;
2283 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2285 /* clear start/stop bit */
2286 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2287 mmio + ATA_DMA_CMD);
2289 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2290 ata_sff_dma_pause(ap);
2294 * ata_bmdma_status - Read PCI IDE BMDMA status
2295 * @ap: Port associated with this ATA transaction.
2297 * Read and return BMDMA status register.
2299 * May be used as the bmdma_status() entry in ata_port_operations.
2301 * LOCKING:
2302 * spin_lock_irqsave(host lock)
2304 u8 ata_bmdma_status(struct ata_port *ap)
2306 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2310 * ata_bus_reset - reset host port and associated ATA channel
2311 * @ap: port to reset
2313 * This is typically the first time we actually start issuing
2314 * commands to the ATA channel. We wait for BSY to clear, then
2315 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2316 * result. Determine what devices, if any, are on the channel
2317 * by looking at the device 0/1 error register. Look at the signature
2318 * stored in each device's taskfile registers, to determine if
2319 * the device is ATA or ATAPI.
2321 * LOCKING:
2322 * PCI/etc. bus probe sem.
2323 * Obtains host lock.
2325 * SIDE EFFECTS:
2326 * Sets ATA_FLAG_DISABLED if bus reset fails.
2328 * DEPRECATED:
2329 * This function is only for drivers which still use old EH and
2330 * will be removed soon.
2332 void ata_bus_reset(struct ata_port *ap)
2334 struct ata_device *device = ap->link.device;
2335 struct ata_ioports *ioaddr = &ap->ioaddr;
2336 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2337 u8 err;
2338 unsigned int dev0, dev1 = 0, devmask = 0;
2339 int rc;
2341 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2343 /* determine if device 0/1 are present */
2344 if (ap->flags & ATA_FLAG_SATA_RESET)
2345 dev0 = 1;
2346 else {
2347 dev0 = ata_devchk(ap, 0);
2348 if (slave_possible)
2349 dev1 = ata_devchk(ap, 1);
2352 if (dev0)
2353 devmask |= (1 << 0);
2354 if (dev1)
2355 devmask |= (1 << 1);
2357 /* select device 0 again */
2358 ap->ops->sff_dev_select(ap, 0);
2360 /* issue bus reset */
2361 if (ap->flags & ATA_FLAG_SRST) {
2362 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
2363 if (rc && rc != -ENODEV)
2364 goto err_out;
2368 * determine by signature whether we have ATA or ATAPI devices
2370 device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
2371 if ((slave_possible) && (err != 0x81))
2372 device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
2374 /* is double-select really necessary? */
2375 if (device[1].class != ATA_DEV_NONE)
2376 ap->ops->sff_dev_select(ap, 1);
2377 if (device[0].class != ATA_DEV_NONE)
2378 ap->ops->sff_dev_select(ap, 0);
2380 /* if no devices were detected, disable this port */
2381 if ((device[0].class == ATA_DEV_NONE) &&
2382 (device[1].class == ATA_DEV_NONE))
2383 goto err_out;
2385 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2386 /* set up device control for ATA_FLAG_SATA_RESET */
2387 iowrite8(ap->ctl, ioaddr->ctl_addr);
2390 DPRINTK("EXIT\n");
2391 return;
2393 err_out:
2394 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2395 ata_port_disable(ap);
2397 DPRINTK("EXIT\n");
2400 #ifdef CONFIG_PCI
2403 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
2404 * @pdev: PCI device
2406 * Some PCI ATA devices report simplex mode but in fact can be told to
2407 * enter non simplex mode. This implements the necessary logic to
2408 * perform the task on such devices. Calling it on other devices will
2409 * have -undefined- behaviour.
2411 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2413 unsigned long bmdma = pci_resource_start(pdev, 4);
2414 u8 simplex;
2416 if (bmdma == 0)
2417 return -ENOENT;
2419 simplex = inb(bmdma + 0x02);
2420 outb(simplex & 0x60, bmdma + 0x02);
2421 simplex = inb(bmdma + 0x02);
2422 if (simplex & 0x80)
2423 return -EOPNOTSUPP;
2424 return 0;
2428 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
2429 * @host: target ATA host
2431 * Acquire PCI BMDMA resources and initialize @host accordingly.
2433 * LOCKING:
2434 * Inherited from calling layer (may sleep).
2436 * RETURNS:
2437 * 0 on success, -errno otherwise.
2439 int ata_pci_bmdma_init(struct ata_host *host)
2441 struct device *gdev = host->dev;
2442 struct pci_dev *pdev = to_pci_dev(gdev);
2443 int i, rc;
2445 /* No BAR4 allocation: No DMA */
2446 if (pci_resource_start(pdev, 4) == 0)
2447 return 0;
2449 /* TODO: If we get no DMA mask we should fall back to PIO */
2450 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2451 if (rc)
2452 return rc;
2453 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2454 if (rc)
2455 return rc;
2457 /* request and iomap DMA region */
2458 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
2459 if (rc) {
2460 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2461 return -ENOMEM;
2463 host->iomap = pcim_iomap_table(pdev);
2465 for (i = 0; i < 2; i++) {
2466 struct ata_port *ap = host->ports[i];
2467 void __iomem *bmdma = host->iomap[4] + 8 * i;
2469 if (ata_port_is_dummy(ap))
2470 continue;
2472 ap->ioaddr.bmdma_addr = bmdma;
2473 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2474 (ioread8(bmdma + 2) & 0x80))
2475 host->flags |= ATA_HOST_SIMPLEX;
2477 ata_port_desc(ap, "bmdma 0x%llx",
2478 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
2481 return 0;
2484 static int ata_resources_present(struct pci_dev *pdev, int port)
2486 int i;
2488 /* Check the PCI resources for this channel are enabled */
2489 port = port * 2;
2490 for (i = 0; i < 2; i ++) {
2491 if (pci_resource_start(pdev, port + i) == 0 ||
2492 pci_resource_len(pdev, port + i) == 0)
2493 return 0;
2495 return 1;
2499 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2500 * @host: target ATA host
2502 * Acquire native PCI ATA resources for @host and initialize the
2503 * first two ports of @host accordingly. Ports marked dummy are
2504 * skipped and allocation failure makes the port dummy.
2506 * Note that native PCI resources are valid even for legacy hosts
2507 * as we fix up pdev resources array early in boot, so this
2508 * function can be used for both native and legacy SFF hosts.
2510 * LOCKING:
2511 * Inherited from calling layer (may sleep).
2513 * RETURNS:
2514 * 0 if at least one port is initialized, -ENODEV if no port is
2515 * available.
2517 int ata_pci_sff_init_host(struct ata_host *host)
2519 struct device *gdev = host->dev;
2520 struct pci_dev *pdev = to_pci_dev(gdev);
2521 unsigned int mask = 0;
2522 int i, rc;
2524 /* request, iomap BARs and init port addresses accordingly */
2525 for (i = 0; i < 2; i++) {
2526 struct ata_port *ap = host->ports[i];
2527 int base = i * 2;
2528 void __iomem * const *iomap;
2530 if (ata_port_is_dummy(ap))
2531 continue;
2533 /* Discard disabled ports. Some controllers show
2534 * their unused channels this way. Disabled ports are
2535 * made dummy.
2537 if (!ata_resources_present(pdev, i)) {
2538 ap->ops = &ata_dummy_port_ops;
2539 continue;
2542 rc = pcim_iomap_regions(pdev, 0x3 << base,
2543 dev_driver_string(gdev));
2544 if (rc) {
2545 dev_printk(KERN_WARNING, gdev,
2546 "failed to request/iomap BARs for port %d "
2547 "(errno=%d)\n", i, rc);
2548 if (rc == -EBUSY)
2549 pcim_pin_device(pdev);
2550 ap->ops = &ata_dummy_port_ops;
2551 continue;
2553 host->iomap = iomap = pcim_iomap_table(pdev);
2555 ap->ioaddr.cmd_addr = iomap[base];
2556 ap->ioaddr.altstatus_addr =
2557 ap->ioaddr.ctl_addr = (void __iomem *)
2558 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2559 ata_sff_std_ports(&ap->ioaddr);
2561 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2562 (unsigned long long)pci_resource_start(pdev, base),
2563 (unsigned long long)pci_resource_start(pdev, base + 1));
2565 mask |= 1 << i;
2568 if (!mask) {
2569 dev_printk(KERN_ERR, gdev, "no available native port\n");
2570 return -ENODEV;
2573 return 0;
2577 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2578 * @pdev: target PCI device
2579 * @ppi: array of port_info, must be enough for two ports
2580 * @r_host: out argument for the initialized ATA host
2582 * Helper to allocate ATA host for @pdev, acquire all native PCI
2583 * resources and initialize it accordingly in one go.
2585 * LOCKING:
2586 * Inherited from calling layer (may sleep).
2588 * RETURNS:
2589 * 0 on success, -errno otherwise.
2591 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2592 const struct ata_port_info * const * ppi,
2593 struct ata_host **r_host)
2595 struct ata_host *host;
2596 int rc;
2598 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2599 return -ENOMEM;
2601 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2602 if (!host) {
2603 dev_printk(KERN_ERR, &pdev->dev,
2604 "failed to allocate ATA host\n");
2605 rc = -ENOMEM;
2606 goto err_out;
2609 rc = ata_pci_sff_init_host(host);
2610 if (rc)
2611 goto err_out;
2613 /* init DMA related stuff */
2614 rc = ata_pci_bmdma_init(host);
2615 if (rc)
2616 goto err_bmdma;
2618 devres_remove_group(&pdev->dev, NULL);
2619 *r_host = host;
2620 return 0;
2622 err_bmdma:
2623 /* This is necessary because PCI and iomap resources are
2624 * merged and releasing the top group won't release the
2625 * acquired resources if some of those have been acquired
2626 * before entering this function.
2628 pcim_iounmap_regions(pdev, 0xf);
2629 err_out:
2630 devres_release_group(&pdev->dev, NULL);
2631 return rc;
2635 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2636 * @host: target SFF ATA host
2637 * @irq_handler: irq_handler used when requesting IRQ(s)
2638 * @sht: scsi_host_template to use when registering the host
2640 * This is the counterpart of ata_host_activate() for SFF ATA
2641 * hosts. This separate helper is necessary because SFF hosts
2642 * use two separate interrupts in legacy mode.
2644 * LOCKING:
2645 * Inherited from calling layer (may sleep).
2647 * RETURNS:
2648 * 0 on success, -errno otherwise.
2650 int ata_pci_sff_activate_host(struct ata_host *host,
2651 irq_handler_t irq_handler,
2652 struct scsi_host_template *sht)
2654 struct device *dev = host->dev;
2655 struct pci_dev *pdev = to_pci_dev(dev);
2656 const char *drv_name = dev_driver_string(host->dev);
2657 int legacy_mode = 0, rc;
2659 rc = ata_host_start(host);
2660 if (rc)
2661 return rc;
2663 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2664 u8 tmp8, mask;
2666 /* TODO: What if one channel is in native mode ... */
2667 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2668 mask = (1 << 2) | (1 << 0);
2669 if ((tmp8 & mask) != mask)
2670 legacy_mode = 1;
2671 #if defined(CONFIG_NO_ATA_LEGACY)
2672 /* Some platforms with PCI limits cannot address compat
2673 port space. In that case we punt if their firmware has
2674 left a device in compatibility mode */
2675 if (legacy_mode) {
2676 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2677 return -EOPNOTSUPP;
2679 #endif
2682 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2683 return -ENOMEM;
2685 if (!legacy_mode && pdev->irq) {
2686 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2687 IRQF_SHARED, drv_name, host);
2688 if (rc)
2689 goto out;
2691 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2692 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2693 } else if (legacy_mode) {
2694 if (!ata_port_is_dummy(host->ports[0])) {
2695 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2696 irq_handler, IRQF_SHARED,
2697 drv_name, host);
2698 if (rc)
2699 goto out;
2701 ata_port_desc(host->ports[0], "irq %d",
2702 ATA_PRIMARY_IRQ(pdev));
2705 if (!ata_port_is_dummy(host->ports[1])) {
2706 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2707 irq_handler, IRQF_SHARED,
2708 drv_name, host);
2709 if (rc)
2710 goto out;
2712 ata_port_desc(host->ports[1], "irq %d",
2713 ATA_SECONDARY_IRQ(pdev));
2717 rc = ata_host_register(host, sht);
2718 out:
2719 if (rc == 0)
2720 devres_remove_group(dev, NULL);
2721 else
2722 devres_release_group(dev, NULL);
2724 return rc;
2728 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller
2729 * @pdev: Controller to be initialized
2730 * @ppi: array of port_info, must be enough for two ports
2731 * @sht: scsi_host_template to use when registering the host
2732 * @host_priv: host private_data
2734 * This is a helper function which can be called from a driver's
2735 * xxx_init_one() probe function if the hardware uses traditional
2736 * IDE taskfile registers.
2738 * This function calls pci_enable_device(), reserves its register
2739 * regions, sets the dma mask, enables bus master mode, and calls
2740 * ata_device_add()
2742 * ASSUMPTION:
2743 * Nobody makes a single channel controller that appears solely as
2744 * the secondary legacy port on PCI.
2746 * LOCKING:
2747 * Inherited from PCI layer (may sleep).
2749 * RETURNS:
2750 * Zero on success, negative on errno-based value on error.
2752 int ata_pci_sff_init_one(struct pci_dev *pdev,
2753 const struct ata_port_info * const * ppi,
2754 struct scsi_host_template *sht, void *host_priv)
2756 struct device *dev = &pdev->dev;
2757 const struct ata_port_info *pi = NULL;
2758 struct ata_host *host = NULL;
2759 int i, rc;
2761 DPRINTK("ENTER\n");
2763 /* look up the first valid port_info */
2764 for (i = 0; i < 2 && ppi[i]; i++) {
2765 if (ppi[i]->port_ops != &ata_dummy_port_ops) {
2766 pi = ppi[i];
2767 break;
2771 if (!pi) {
2772 dev_printk(KERN_ERR, &pdev->dev,
2773 "no valid port_info specified\n");
2774 return -EINVAL;
2777 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2778 return -ENOMEM;
2780 rc = pcim_enable_device(pdev);
2781 if (rc)
2782 goto out;
2784 /* prepare and activate SFF host */
2785 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2786 if (rc)
2787 goto out;
2788 host->private_data = host_priv;
2790 pci_set_master(pdev);
2791 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2792 out:
2793 if (rc == 0)
2794 devres_remove_group(&pdev->dev, NULL);
2795 else
2796 devres_release_group(&pdev->dev, NULL);
2798 return rc;
2801 #endif /* CONFIG_PCI */
2803 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
2804 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2805 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
2806 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
2807 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
2808 EXPORT_SYMBOL_GPL(ata_sff_check_status);
2809 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
2810 EXPORT_SYMBOL_GPL(ata_sff_pause);
2811 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
2812 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
2813 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
2814 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
2815 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
2816 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
2817 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
2818 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
2819 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
2820 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
2821 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
2822 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
2823 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
2824 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
2825 EXPORT_SYMBOL_GPL(ata_sff_freeze);
2826 EXPORT_SYMBOL_GPL(ata_sff_thaw);
2827 EXPORT_SYMBOL_GPL(ata_sff_prereset);
2828 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
2829 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2830 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2831 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2832 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2833 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2834 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2835 EXPORT_SYMBOL_GPL(ata_sff_port_start);
2836 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2837 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
2838 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2839 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2840 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2841 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2842 EXPORT_SYMBOL_GPL(ata_bus_reset);
2843 #ifdef CONFIG_PCI
2844 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2845 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2846 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2847 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2848 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2849 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2850 #endif /* CONFIG_PCI */