2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 * --> Errata workaround for NCQ device errors.
30 * --> More errata workarounds for PCI-X.
32 * --> Complete a full errata audit for all chipsets to identify others.
34 * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
36 * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
38 * --> Cache frequently-accessed registers in mv_port_priv to reduce overhead.
40 * --> Develop a low-power-consumption strategy, and implement it.
42 * --> [Experiment, low priority] Investigate interrupt coalescing.
43 * Quite often, especially with PCI Message Signalled Interrupts (MSI),
44 * the overhead reduced by interrupt mitigation is quite often not
45 * worth the latency cost.
47 * --> [Experiment, Marvell value added] Is it possible to use target
48 * mode to cross-connect two Linux boxes with Marvell cards? If so,
49 * creating LibATA target mode support would be very interesting.
51 * Target mode, for those without docs, is the ability to directly
52 * connect two SATA ports.
55 #include <linux/kernel.h>
56 #include <linux/module.h>
57 #include <linux/pci.h>
58 #include <linux/init.h>
59 #include <linux/blkdev.h>
60 #include <linux/delay.h>
61 #include <linux/interrupt.h>
62 #include <linux/dmapool.h>
63 #include <linux/dma-mapping.h>
64 #include <linux/device.h>
65 #include <linux/platform_device.h>
66 #include <linux/ata_platform.h>
67 #include <linux/mbus.h>
68 #include <linux/bitops.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_cmnd.h>
71 #include <scsi/scsi_device.h>
72 #include <linux/libata.h>
74 #define DRV_NAME "sata_mv"
75 #define DRV_VERSION "1.24"
78 /* BAR's are enumerated in terms of pci_resource_start() terms */
79 MV_PRIMARY_BAR
= 0, /* offset 0x10: memory space */
80 MV_IO_BAR
= 2, /* offset 0x18: IO space */
81 MV_MISC_BAR
= 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
83 MV_MAJOR_REG_AREA_SZ
= 0x10000, /* 64KB */
84 MV_MINOR_REG_AREA_SZ
= 0x2000, /* 8KB */
87 MV_IRQ_COAL_REG_BASE
= 0x18000, /* 6xxx part only */
88 MV_IRQ_COAL_CAUSE
= (MV_IRQ_COAL_REG_BASE
+ 0x08),
89 MV_IRQ_COAL_CAUSE_LO
= (MV_IRQ_COAL_REG_BASE
+ 0x88),
90 MV_IRQ_COAL_CAUSE_HI
= (MV_IRQ_COAL_REG_BASE
+ 0x8c),
91 MV_IRQ_COAL_THRESHOLD
= (MV_IRQ_COAL_REG_BASE
+ 0xcc),
92 MV_IRQ_COAL_TIME_THRESHOLD
= (MV_IRQ_COAL_REG_BASE
+ 0xd0),
94 MV_SATAHC0_REG_BASE
= 0x20000,
95 MV_FLASH_CTL_OFS
= 0x1046c,
96 MV_GPIO_PORT_CTL_OFS
= 0x104f0,
97 MV_RESET_CFG_OFS
= 0x180d8,
99 MV_PCI_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
100 MV_SATAHC_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
101 MV_SATAHC_ARBTR_REG_SZ
= MV_MINOR_REG_AREA_SZ
, /* arbiter */
102 MV_PORT_REG_SZ
= MV_MINOR_REG_AREA_SZ
,
105 MV_MAX_Q_DEPTH_MASK
= MV_MAX_Q_DEPTH
- 1,
107 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
108 * CRPB needs alignment on a 256B boundary. Size == 256B
109 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
111 MV_CRQB_Q_SZ
= (32 * MV_MAX_Q_DEPTH
),
112 MV_CRPB_Q_SZ
= (8 * MV_MAX_Q_DEPTH
),
114 MV_SG_TBL_SZ
= (16 * MV_MAX_SG_CT
),
116 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
117 MV_PORT_HC_SHIFT
= 2,
118 MV_PORTS_PER_HC
= (1 << MV_PORT_HC_SHIFT
), /* 4 */
119 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
120 MV_PORT_MASK
= (MV_PORTS_PER_HC
- 1), /* 3 */
123 MV_FLAG_DUAL_HC
= (1 << 30), /* two SATA Host Controllers */
124 MV_FLAG_IRQ_COALESCE
= (1 << 29), /* IRQ coalescing capability */
126 MV_COMMON_FLAGS
= ATA_FLAG_SATA
| ATA_FLAG_NO_LEGACY
|
127 ATA_FLAG_MMIO
| ATA_FLAG_NO_ATAPI
|
128 ATA_FLAG_PIO_POLLING
,
130 MV_6XXX_FLAGS
= MV_FLAG_IRQ_COALESCE
,
132 MV_GENIIE_FLAGS
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
133 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
134 ATA_FLAG_NCQ
| ATA_FLAG_AN
,
136 CRQB_FLAG_READ
= (1 << 0),
138 CRQB_IOID_SHIFT
= 6, /* CRQB Gen-II/IIE IO Id shift */
139 CRQB_PMP_SHIFT
= 12, /* CRQB Gen-II/IIE PMP shift */
140 CRQB_HOSTQ_SHIFT
= 17, /* CRQB Gen-II/IIE HostQueTag shift */
141 CRQB_CMD_ADDR_SHIFT
= 8,
142 CRQB_CMD_CS
= (0x2 << 11),
143 CRQB_CMD_LAST
= (1 << 15),
145 CRPB_FLAG_STATUS_SHIFT
= 8,
146 CRPB_IOID_SHIFT_6
= 5, /* CRPB Gen-II IO Id shift */
147 CRPB_IOID_SHIFT_7
= 7, /* CRPB Gen-IIE IO Id shift */
149 EPRD_FLAG_END_OF_TBL
= (1 << 31),
151 /* PCI interface registers */
153 PCI_COMMAND_OFS
= 0xc00,
154 PCI_COMMAND_MRDTRIG
= (1 << 7), /* PCI Master Read Trigger */
156 PCI_MAIN_CMD_STS_OFS
= 0xd30,
157 STOP_PCI_MASTER
= (1 << 2),
158 PCI_MASTER_EMPTY
= (1 << 3),
159 GLOB_SFT_RST
= (1 << 4),
161 MV_PCI_MODE_OFS
= 0xd00,
162 MV_PCI_MODE_MASK
= 0x30,
164 MV_PCI_EXP_ROM_BAR_CTL
= 0xd2c,
165 MV_PCI_DISC_TIMER
= 0xd04,
166 MV_PCI_MSI_TRIGGER
= 0xc38,
167 MV_PCI_SERR_MASK
= 0xc28,
168 MV_PCI_XBAR_TMOUT_OFS
= 0x1d04,
169 MV_PCI_ERR_LOW_ADDRESS
= 0x1d40,
170 MV_PCI_ERR_HIGH_ADDRESS
= 0x1d44,
171 MV_PCI_ERR_ATTRIBUTE
= 0x1d48,
172 MV_PCI_ERR_COMMAND
= 0x1d50,
174 PCI_IRQ_CAUSE_OFS
= 0x1d58,
175 PCI_IRQ_MASK_OFS
= 0x1d5c,
176 PCI_UNMASK_ALL_IRQS
= 0x7fffff, /* bits 22-0 */
178 PCIE_IRQ_CAUSE_OFS
= 0x1900,
179 PCIE_IRQ_MASK_OFS
= 0x1910,
180 PCIE_UNMASK_ALL_IRQS
= 0x40a, /* assorted bits */
182 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
183 PCI_HC_MAIN_IRQ_CAUSE_OFS
= 0x1d60,
184 PCI_HC_MAIN_IRQ_MASK_OFS
= 0x1d64,
185 SOC_HC_MAIN_IRQ_CAUSE_OFS
= 0x20020,
186 SOC_HC_MAIN_IRQ_MASK_OFS
= 0x20024,
187 ERR_IRQ
= (1 << 0), /* shift by port # */
188 DONE_IRQ
= (1 << 1), /* shift by port # */
189 HC0_IRQ_PEND
= 0x1ff, /* bits 0-8 = HC0's ports */
190 HC_SHIFT
= 9, /* bits 9-17 = HC1's ports */
192 TRAN_LO_DONE
= (1 << 19), /* 6xxx: IRQ coalescing */
193 TRAN_HI_DONE
= (1 << 20), /* 6xxx: IRQ coalescing */
194 PORTS_0_3_COAL_DONE
= (1 << 8),
195 PORTS_4_7_COAL_DONE
= (1 << 17),
196 PORTS_0_7_COAL_DONE
= (1 << 21), /* 6xxx: IRQ coalescing */
197 GPIO_INT
= (1 << 22),
198 SELF_INT
= (1 << 23),
199 TWSI_INT
= (1 << 24),
200 HC_MAIN_RSVD
= (0x7f << 25), /* bits 31-25 */
201 HC_MAIN_RSVD_5
= (0x1fff << 19), /* bits 31-19 */
202 HC_MAIN_RSVD_SOC
= (0x3fffffb << 6), /* bits 31-9, 7-6 */
204 /* SATAHC registers */
207 HC_IRQ_CAUSE_OFS
= 0x14,
208 DMA_IRQ
= (1 << 0), /* shift by port # */
209 HC_COAL_IRQ
= (1 << 4), /* IRQ coalescing */
210 DEV_IRQ
= (1 << 8), /* shift by port # */
212 /* Shadow block registers */
214 SHD_CTL_AST_OFS
= 0x20, /* ofs from SHD_BLK_OFS */
217 SATA_STATUS_OFS
= 0x300, /* ctrl, err regs follow status */
218 SATA_ACTIVE_OFS
= 0x350,
219 SATA_FIS_IRQ_CAUSE_OFS
= 0x364,
220 SATA_FIS_IRQ_AN
= (1 << 9), /* async notification */
223 LTMODE_BIT8
= (1 << 8), /* unknown, but necessary */
227 PHY_MODE4_CFG_MASK
= 0x00000003, /* phy internal config field */
228 PHY_MODE4_CFG_VALUE
= 0x00000001, /* phy internal config field */
229 PHY_MODE4_RSVD_ZEROS
= 0x5de3fffa, /* Gen2e always write zeros */
230 PHY_MODE4_RSVD_ONES
= 0x00000005, /* Gen2e always write ones */
233 SATA_IFCTL_OFS
= 0x344,
234 SATA_TESTCTL_OFS
= 0x348,
235 SATA_IFSTAT_OFS
= 0x34c,
236 VENDOR_UNIQUE_FIS_OFS
= 0x35c,
239 FISCFG_WAIT_DEV_ERR
= (1 << 8), /* wait for host on DevErr */
240 FISCFG_SINGLE_SYNC
= (1 << 16), /* SYNC on DMA activation */
243 MV5_LTMODE_OFS
= 0x30,
244 MV5_PHY_CTL_OFS
= 0x0C,
245 SATA_INTERFACE_CFG_OFS
= 0x050,
247 MV_M2_PREAMP_MASK
= 0x7e0,
251 EDMA_CFG_Q_DEPTH
= 0x1f, /* max device queue depth */
252 EDMA_CFG_NCQ
= (1 << 5), /* for R/W FPDMA queued */
253 EDMA_CFG_NCQ_GO_ON_ERR
= (1 << 14), /* continue on error */
254 EDMA_CFG_RD_BRST_EXT
= (1 << 11), /* read burst 512B */
255 EDMA_CFG_WR_BUFF_LEN
= (1 << 13), /* write buffer 512B */
256 EDMA_CFG_EDMA_FBS
= (1 << 16), /* EDMA FIS-Based Switching */
257 EDMA_CFG_FBS
= (1 << 26), /* FIS-Based Switching */
259 EDMA_ERR_IRQ_CAUSE_OFS
= 0x8,
260 EDMA_ERR_IRQ_MASK_OFS
= 0xc,
261 EDMA_ERR_D_PAR
= (1 << 0), /* UDMA data parity err */
262 EDMA_ERR_PRD_PAR
= (1 << 1), /* UDMA PRD parity err */
263 EDMA_ERR_DEV
= (1 << 2), /* device error */
264 EDMA_ERR_DEV_DCON
= (1 << 3), /* device disconnect */
265 EDMA_ERR_DEV_CON
= (1 << 4), /* device connected */
266 EDMA_ERR_SERR
= (1 << 5), /* SError bits [WBDST] raised */
267 EDMA_ERR_SELF_DIS
= (1 << 7), /* Gen II/IIE self-disable */
268 EDMA_ERR_SELF_DIS_5
= (1 << 8), /* Gen I self-disable */
269 EDMA_ERR_BIST_ASYNC
= (1 << 8), /* BIST FIS or Async Notify */
270 EDMA_ERR_TRANS_IRQ_7
= (1 << 8), /* Gen IIE transprt layer irq */
271 EDMA_ERR_CRQB_PAR
= (1 << 9), /* CRQB parity error */
272 EDMA_ERR_CRPB_PAR
= (1 << 10), /* CRPB parity error */
273 EDMA_ERR_INTRL_PAR
= (1 << 11), /* internal parity error */
274 EDMA_ERR_IORDY
= (1 << 12), /* IORdy timeout */
276 EDMA_ERR_LNK_CTRL_RX
= (0xf << 13), /* link ctrl rx error */
277 EDMA_ERR_LNK_CTRL_RX_0
= (1 << 13), /* transient: CRC err */
278 EDMA_ERR_LNK_CTRL_RX_1
= (1 << 14), /* transient: FIFO err */
279 EDMA_ERR_LNK_CTRL_RX_2
= (1 << 15), /* fatal: caught SYNC */
280 EDMA_ERR_LNK_CTRL_RX_3
= (1 << 16), /* transient: FIS rx err */
282 EDMA_ERR_LNK_DATA_RX
= (0xf << 17), /* link data rx error */
284 EDMA_ERR_LNK_CTRL_TX
= (0x1f << 21), /* link ctrl tx error */
285 EDMA_ERR_LNK_CTRL_TX_0
= (1 << 21), /* transient: CRC err */
286 EDMA_ERR_LNK_CTRL_TX_1
= (1 << 22), /* transient: FIFO err */
287 EDMA_ERR_LNK_CTRL_TX_2
= (1 << 23), /* transient: caught SYNC */
288 EDMA_ERR_LNK_CTRL_TX_3
= (1 << 24), /* transient: caught DMAT */
289 EDMA_ERR_LNK_CTRL_TX_4
= (1 << 25), /* transient: FIS collision */
291 EDMA_ERR_LNK_DATA_TX
= (0x1f << 26), /* link data tx error */
293 EDMA_ERR_TRANS_PROTO
= (1 << 31), /* transport protocol error */
294 EDMA_ERR_OVERRUN_5
= (1 << 5),
295 EDMA_ERR_UNDERRUN_5
= (1 << 6),
297 EDMA_ERR_IRQ_TRANSIENT
= EDMA_ERR_LNK_CTRL_RX_0
|
298 EDMA_ERR_LNK_CTRL_RX_1
|
299 EDMA_ERR_LNK_CTRL_RX_3
|
300 EDMA_ERR_LNK_CTRL_TX
,
302 EDMA_EH_FREEZE
= EDMA_ERR_D_PAR
|
312 EDMA_ERR_LNK_CTRL_RX_2
|
313 EDMA_ERR_LNK_DATA_RX
|
314 EDMA_ERR_LNK_DATA_TX
|
315 EDMA_ERR_TRANS_PROTO
,
317 EDMA_EH_FREEZE_5
= EDMA_ERR_D_PAR
|
322 EDMA_ERR_UNDERRUN_5
|
323 EDMA_ERR_SELF_DIS_5
|
329 EDMA_REQ_Q_BASE_HI_OFS
= 0x10,
330 EDMA_REQ_Q_IN_PTR_OFS
= 0x14, /* also contains BASE_LO */
332 EDMA_REQ_Q_OUT_PTR_OFS
= 0x18,
333 EDMA_REQ_Q_PTR_SHIFT
= 5,
335 EDMA_RSP_Q_BASE_HI_OFS
= 0x1c,
336 EDMA_RSP_Q_IN_PTR_OFS
= 0x20,
337 EDMA_RSP_Q_OUT_PTR_OFS
= 0x24, /* also contains BASE_LO */
338 EDMA_RSP_Q_PTR_SHIFT
= 3,
340 EDMA_CMD_OFS
= 0x28, /* EDMA command register */
341 EDMA_EN
= (1 << 0), /* enable EDMA */
342 EDMA_DS
= (1 << 1), /* disable EDMA; self-negated */
343 EDMA_RESET
= (1 << 2), /* reset eng/trans/link/phy */
345 EDMA_STATUS_OFS
= 0x30, /* EDMA engine status */
346 EDMA_STATUS_CACHE_EMPTY
= (1 << 6), /* GenIIe command cache empty */
347 EDMA_STATUS_IDLE
= (1 << 7), /* GenIIe EDMA enabled/idle */
349 EDMA_IORDY_TMOUT_OFS
= 0x34,
350 EDMA_ARB_CFG_OFS
= 0x38,
352 EDMA_HALTCOND_OFS
= 0x60, /* GenIIe halt conditions */
354 GEN_II_NCQ_MAX_SECTORS
= 256, /* max sects/io on Gen2 w/NCQ */
356 /* Host private flags (hp_flags) */
357 MV_HP_FLAG_MSI
= (1 << 0),
358 MV_HP_ERRATA_50XXB0
= (1 << 1),
359 MV_HP_ERRATA_50XXB2
= (1 << 2),
360 MV_HP_ERRATA_60X1B2
= (1 << 3),
361 MV_HP_ERRATA_60X1C0
= (1 << 4),
362 MV_HP_GEN_I
= (1 << 6), /* Generation I: 50xx */
363 MV_HP_GEN_II
= (1 << 7), /* Generation II: 60xx */
364 MV_HP_GEN_IIE
= (1 << 8), /* Generation IIE: 6042/7042 */
365 MV_HP_PCIE
= (1 << 9), /* PCIe bus/regs: 7042 */
366 MV_HP_CUT_THROUGH
= (1 << 10), /* can use EDMA cut-through */
367 MV_HP_FLAG_SOC
= (1 << 11), /* SystemOnChip, no PCI */
369 /* Port private flags (pp_flags) */
370 MV_PP_FLAG_EDMA_EN
= (1 << 0), /* is EDMA engine enabled? */
371 MV_PP_FLAG_NCQ_EN
= (1 << 1), /* is EDMA set up for NCQ? */
372 MV_PP_FLAG_FBS_EN
= (1 << 2), /* is EDMA set up for FBS? */
373 MV_PP_FLAG_DELAYED_EH
= (1 << 3), /* delayed dev err handling */
376 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
377 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
378 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
379 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
380 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
382 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
383 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
386 /* DMA boundary 0xffff is required by the s/g splitting
387 * we need on /length/ in mv_fill-sg().
389 MV_DMA_BOUNDARY
= 0xffffU
,
391 /* mask of register bits containing lower 32 bits
392 * of EDMA request queue DMA address
394 EDMA_REQ_Q_BASE_LO_MASK
= 0xfffffc00U
,
396 /* ditto, for response queue */
397 EDMA_RSP_Q_BASE_LO_MASK
= 0xffffff00U
,
411 /* Command ReQuest Block: 32B */
427 /* Command ResPonse Block: 8B */
434 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
442 struct mv_port_priv
{
443 struct mv_crqb
*crqb
;
445 struct mv_crpb
*crpb
;
447 struct mv_sg
*sg_tbl
[MV_MAX_Q_DEPTH
];
448 dma_addr_t sg_tbl_dma
[MV_MAX_Q_DEPTH
];
450 unsigned int req_idx
;
451 unsigned int resp_idx
;
454 unsigned int delayed_eh_pmp_map
;
457 struct mv_port_signal
{
462 struct mv_host_priv
{
465 struct mv_port_signal signal
[8];
466 const struct mv_hw_ops
*ops
;
469 void __iomem
*main_irq_cause_addr
;
470 void __iomem
*main_irq_mask_addr
;
475 * These consistent DMA memory pools give us guaranteed
476 * alignment for hardware-accessed data structures,
477 * and less memory waste in accomplishing the alignment.
479 struct dma_pool
*crqb_pool
;
480 struct dma_pool
*crpb_pool
;
481 struct dma_pool
*sg_tbl_pool
;
485 void (*phy_errata
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
487 void (*enable_leds
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
488 void (*read_preamp
)(struct mv_host_priv
*hpriv
, int idx
,
490 int (*reset_hc
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
492 void (*reset_flash
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
493 void (*reset_bus
)(struct ata_host
*host
, void __iomem
*mmio
);
496 static int mv_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
, u32
*val
);
497 static int mv_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
);
498 static int mv5_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
, u32
*val
);
499 static int mv5_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
);
500 static int mv_port_start(struct ata_port
*ap
);
501 static void mv_port_stop(struct ata_port
*ap
);
502 static int mv_qc_defer(struct ata_queued_cmd
*qc
);
503 static void mv_qc_prep(struct ata_queued_cmd
*qc
);
504 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
);
505 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
);
506 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
507 unsigned long deadline
);
508 static void mv_eh_freeze(struct ata_port
*ap
);
509 static void mv_eh_thaw(struct ata_port
*ap
);
510 static void mv6_dev_config(struct ata_device
*dev
);
512 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
514 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
515 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
517 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
519 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
520 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
522 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
524 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
525 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
527 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
529 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
530 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
532 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
534 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
535 void __iomem
*mmio
, unsigned int n_hc
);
536 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
538 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
539 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
);
540 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
541 unsigned int port_no
);
542 static int mv_stop_edma(struct ata_port
*ap
);
543 static int mv_stop_edma_engine(void __iomem
*port_mmio
);
544 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
);
546 static void mv_pmp_select(struct ata_port
*ap
, int pmp
);
547 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
548 unsigned long deadline
);
549 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
550 unsigned long deadline
);
551 static void mv_pmp_error_handler(struct ata_port
*ap
);
552 static void mv_process_crpb_entries(struct ata_port
*ap
,
553 struct mv_port_priv
*pp
);
555 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
556 * because we have to allow room for worst case splitting of
557 * PRDs for 64K boundaries in mv_fill_sg().
559 static struct scsi_host_template mv5_sht
= {
560 ATA_BASE_SHT(DRV_NAME
),
561 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
562 .dma_boundary
= MV_DMA_BOUNDARY
,
565 static struct scsi_host_template mv6_sht
= {
566 ATA_NCQ_SHT(DRV_NAME
),
567 .can_queue
= MV_MAX_Q_DEPTH
- 1,
568 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
569 .dma_boundary
= MV_DMA_BOUNDARY
,
572 static struct ata_port_operations mv5_ops
= {
573 .inherits
= &ata_sff_port_ops
,
575 .qc_defer
= mv_qc_defer
,
576 .qc_prep
= mv_qc_prep
,
577 .qc_issue
= mv_qc_issue
,
579 .freeze
= mv_eh_freeze
,
581 .hardreset
= mv_hardreset
,
582 .error_handler
= ata_std_error_handler
, /* avoid SFF EH */
583 .post_internal_cmd
= ATA_OP_NULL
,
585 .scr_read
= mv5_scr_read
,
586 .scr_write
= mv5_scr_write
,
588 .port_start
= mv_port_start
,
589 .port_stop
= mv_port_stop
,
592 static struct ata_port_operations mv6_ops
= {
593 .inherits
= &mv5_ops
,
594 .dev_config
= mv6_dev_config
,
595 .scr_read
= mv_scr_read
,
596 .scr_write
= mv_scr_write
,
598 .pmp_hardreset
= mv_pmp_hardreset
,
599 .pmp_softreset
= mv_softreset
,
600 .softreset
= mv_softreset
,
601 .error_handler
= mv_pmp_error_handler
,
604 static struct ata_port_operations mv_iie_ops
= {
605 .inherits
= &mv6_ops
,
606 .dev_config
= ATA_OP_NULL
,
607 .qc_prep
= mv_qc_prep_iie
,
610 static const struct ata_port_info mv_port_info
[] = {
612 .flags
= MV_COMMON_FLAGS
,
613 .pio_mask
= 0x1f, /* pio0-4 */
614 .udma_mask
= ATA_UDMA6
,
615 .port_ops
= &mv5_ops
,
618 .flags
= MV_COMMON_FLAGS
| MV_FLAG_DUAL_HC
,
619 .pio_mask
= 0x1f, /* pio0-4 */
620 .udma_mask
= ATA_UDMA6
,
621 .port_ops
= &mv5_ops
,
624 .flags
= MV_COMMON_FLAGS
| MV_FLAG_DUAL_HC
,
625 .pio_mask
= 0x1f, /* pio0-4 */
626 .udma_mask
= ATA_UDMA6
,
627 .port_ops
= &mv5_ops
,
630 .flags
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
631 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
633 .pio_mask
= 0x1f, /* pio0-4 */
634 .udma_mask
= ATA_UDMA6
,
635 .port_ops
= &mv6_ops
,
638 .flags
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
639 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
640 ATA_FLAG_NCQ
| MV_FLAG_DUAL_HC
,
641 .pio_mask
= 0x1f, /* pio0-4 */
642 .udma_mask
= ATA_UDMA6
,
643 .port_ops
= &mv6_ops
,
646 .flags
= MV_GENIIE_FLAGS
,
647 .pio_mask
= 0x1f, /* pio0-4 */
648 .udma_mask
= ATA_UDMA6
,
649 .port_ops
= &mv_iie_ops
,
652 .flags
= MV_GENIIE_FLAGS
,
653 .pio_mask
= 0x1f, /* pio0-4 */
654 .udma_mask
= ATA_UDMA6
,
655 .port_ops
= &mv_iie_ops
,
658 .flags
= MV_GENIIE_FLAGS
,
659 .pio_mask
= 0x1f, /* pio0-4 */
660 .udma_mask
= ATA_UDMA6
,
661 .port_ops
= &mv_iie_ops
,
665 static const struct pci_device_id mv_pci_tbl
[] = {
666 { PCI_VDEVICE(MARVELL
, 0x5040), chip_504x
},
667 { PCI_VDEVICE(MARVELL
, 0x5041), chip_504x
},
668 { PCI_VDEVICE(MARVELL
, 0x5080), chip_5080
},
669 { PCI_VDEVICE(MARVELL
, 0x5081), chip_508x
},
670 /* RocketRAID 1740/174x have different identifiers */
671 { PCI_VDEVICE(TTI
, 0x1740), chip_508x
},
672 { PCI_VDEVICE(TTI
, 0x1742), chip_508x
},
674 { PCI_VDEVICE(MARVELL
, 0x6040), chip_604x
},
675 { PCI_VDEVICE(MARVELL
, 0x6041), chip_604x
},
676 { PCI_VDEVICE(MARVELL
, 0x6042), chip_6042
},
677 { PCI_VDEVICE(MARVELL
, 0x6080), chip_608x
},
678 { PCI_VDEVICE(MARVELL
, 0x6081), chip_608x
},
680 { PCI_VDEVICE(ADAPTEC2
, 0x0241), chip_604x
},
683 { PCI_VDEVICE(ADAPTEC2
, 0x0243), chip_7042
},
685 /* Marvell 7042 support */
686 { PCI_VDEVICE(MARVELL
, 0x7042), chip_7042
},
688 /* Highpoint RocketRAID PCIe series */
689 { PCI_VDEVICE(TTI
, 0x2300), chip_7042
},
690 { PCI_VDEVICE(TTI
, 0x2310), chip_7042
},
692 { } /* terminate list */
695 static const struct mv_hw_ops mv5xxx_ops
= {
696 .phy_errata
= mv5_phy_errata
,
697 .enable_leds
= mv5_enable_leds
,
698 .read_preamp
= mv5_read_preamp
,
699 .reset_hc
= mv5_reset_hc
,
700 .reset_flash
= mv5_reset_flash
,
701 .reset_bus
= mv5_reset_bus
,
704 static const struct mv_hw_ops mv6xxx_ops
= {
705 .phy_errata
= mv6_phy_errata
,
706 .enable_leds
= mv6_enable_leds
,
707 .read_preamp
= mv6_read_preamp
,
708 .reset_hc
= mv6_reset_hc
,
709 .reset_flash
= mv6_reset_flash
,
710 .reset_bus
= mv_reset_pci_bus
,
713 static const struct mv_hw_ops mv_soc_ops
= {
714 .phy_errata
= mv6_phy_errata
,
715 .enable_leds
= mv_soc_enable_leds
,
716 .read_preamp
= mv_soc_read_preamp
,
717 .reset_hc
= mv_soc_reset_hc
,
718 .reset_flash
= mv_soc_reset_flash
,
719 .reset_bus
= mv_soc_reset_bus
,
726 static inline void writelfl(unsigned long data
, void __iomem
*addr
)
729 (void) readl(addr
); /* flush to avoid PCI posted write */
732 static inline unsigned int mv_hc_from_port(unsigned int port
)
734 return port
>> MV_PORT_HC_SHIFT
;
737 static inline unsigned int mv_hardport_from_port(unsigned int port
)
739 return port
& MV_PORT_MASK
;
743 * Consolidate some rather tricky bit shift calculations.
744 * This is hot-path stuff, so not a function.
745 * Simple code, with two return values, so macro rather than inline.
747 * port is the sole input, in range 0..7.
748 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
749 * hardport is the other output, in range 0..3.
751 * Note that port and hardport may be the same variable in some cases.
753 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
755 shift = mv_hc_from_port(port) * HC_SHIFT; \
756 hardport = mv_hardport_from_port(port); \
757 shift += hardport * 2; \
760 static inline void __iomem
*mv_hc_base(void __iomem
*base
, unsigned int hc
)
762 return (base
+ MV_SATAHC0_REG_BASE
+ (hc
* MV_SATAHC_REG_SZ
));
765 static inline void __iomem
*mv_hc_base_from_port(void __iomem
*base
,
768 return mv_hc_base(base
, mv_hc_from_port(port
));
771 static inline void __iomem
*mv_port_base(void __iomem
*base
, unsigned int port
)
773 return mv_hc_base_from_port(base
, port
) +
774 MV_SATAHC_ARBTR_REG_SZ
+
775 (mv_hardport_from_port(port
) * MV_PORT_REG_SZ
);
778 static void __iomem
*mv5_phy_base(void __iomem
*mmio
, unsigned int port
)
780 void __iomem
*hc_mmio
= mv_hc_base_from_port(mmio
, port
);
781 unsigned long ofs
= (mv_hardport_from_port(port
) + 1) * 0x100UL
;
783 return hc_mmio
+ ofs
;
786 static inline void __iomem
*mv_host_base(struct ata_host
*host
)
788 struct mv_host_priv
*hpriv
= host
->private_data
;
792 static inline void __iomem
*mv_ap_base(struct ata_port
*ap
)
794 return mv_port_base(mv_host_base(ap
->host
), ap
->port_no
);
797 static inline int mv_get_hc_count(unsigned long port_flags
)
799 return ((port_flags
& MV_FLAG_DUAL_HC
) ? 2 : 1);
802 static void mv_set_edma_ptrs(void __iomem
*port_mmio
,
803 struct mv_host_priv
*hpriv
,
804 struct mv_port_priv
*pp
)
809 * initialize request queue
811 pp
->req_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
812 index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
814 WARN_ON(pp
->crqb_dma
& 0x3ff);
815 writel((pp
->crqb_dma
>> 16) >> 16, port_mmio
+ EDMA_REQ_Q_BASE_HI_OFS
);
816 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | index
,
817 port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
818 writelfl(index
, port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
);
821 * initialize response queue
823 pp
->resp_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
824 index
= pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
;
826 WARN_ON(pp
->crpb_dma
& 0xff);
827 writel((pp
->crpb_dma
>> 16) >> 16, port_mmio
+ EDMA_RSP_Q_BASE_HI_OFS
);
828 writelfl(index
, port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
);
829 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) | index
,
830 port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
833 static void mv_set_main_irq_mask(struct ata_host
*host
,
834 u32 disable_bits
, u32 enable_bits
)
836 struct mv_host_priv
*hpriv
= host
->private_data
;
837 u32 old_mask
, new_mask
;
839 old_mask
= hpriv
->main_irq_mask
;
840 new_mask
= (old_mask
& ~disable_bits
) | enable_bits
;
841 if (new_mask
!= old_mask
) {
842 hpriv
->main_irq_mask
= new_mask
;
843 writelfl(new_mask
, hpriv
->main_irq_mask_addr
);
847 static void mv_enable_port_irqs(struct ata_port
*ap
,
848 unsigned int port_bits
)
850 unsigned int shift
, hardport
, port
= ap
->port_no
;
851 u32 disable_bits
, enable_bits
;
853 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
855 disable_bits
= (DONE_IRQ
| ERR_IRQ
) << shift
;
856 enable_bits
= port_bits
<< shift
;
857 mv_set_main_irq_mask(ap
->host
, disable_bits
, enable_bits
);
861 * mv_start_dma - Enable eDMA engine
862 * @base: port base address
863 * @pp: port private data
865 * Verify the local cache of the eDMA state is accurate with a
869 * Inherited from caller.
871 static void mv_start_dma(struct ata_port
*ap
, void __iomem
*port_mmio
,
872 struct mv_port_priv
*pp
, u8 protocol
)
874 int want_ncq
= (protocol
== ATA_PROT_NCQ
);
876 if (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) {
877 int using_ncq
= ((pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) != 0);
878 if (want_ncq
!= using_ncq
)
881 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
)) {
882 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
883 int hardport
= mv_hardport_from_port(ap
->port_no
);
884 void __iomem
*hc_mmio
= mv_hc_base_from_port(
885 mv_host_base(ap
->host
), hardport
);
886 u32 hc_irq_cause
, ipending
;
888 /* clear EDMA event indicators, if any */
889 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
891 /* clear EDMA interrupt indicator, if any */
892 hc_irq_cause
= readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
);
893 ipending
= (DEV_IRQ
| DMA_IRQ
) << hardport
;
894 if (hc_irq_cause
& ipending
) {
895 writelfl(hc_irq_cause
& ~ipending
,
896 hc_mmio
+ HC_IRQ_CAUSE_OFS
);
899 mv_edma_cfg(ap
, want_ncq
);
901 /* clear FIS IRQ Cause */
902 if (IS_GEN_IIE(hpriv
))
903 writelfl(0, port_mmio
+ SATA_FIS_IRQ_CAUSE_OFS
);
905 mv_set_edma_ptrs(port_mmio
, hpriv
, pp
);
906 mv_enable_port_irqs(ap
, DONE_IRQ
|ERR_IRQ
);
908 writelfl(EDMA_EN
, port_mmio
+ EDMA_CMD_OFS
);
909 pp
->pp_flags
|= MV_PP_FLAG_EDMA_EN
;
913 static void mv_wait_for_edma_empty_idle(struct ata_port
*ap
)
915 void __iomem
*port_mmio
= mv_ap_base(ap
);
916 const u32 empty_idle
= (EDMA_STATUS_CACHE_EMPTY
| EDMA_STATUS_IDLE
);
917 const int per_loop
= 5, timeout
= (15 * 1000 / per_loop
);
921 * Wait for the EDMA engine to finish transactions in progress.
922 * No idea what a good "timeout" value might be, but measurements
923 * indicate that it often requires hundreds of microseconds
924 * with two drives in-use. So we use the 15msec value above
925 * as a rough guess at what even more drives might require.
927 for (i
= 0; i
< timeout
; ++i
) {
928 u32 edma_stat
= readl(port_mmio
+ EDMA_STATUS_OFS
);
929 if ((edma_stat
& empty_idle
) == empty_idle
)
933 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
937 * mv_stop_edma_engine - Disable eDMA engine
938 * @port_mmio: io base address
941 * Inherited from caller.
943 static int mv_stop_edma_engine(void __iomem
*port_mmio
)
947 /* Disable eDMA. The disable bit auto clears. */
948 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD_OFS
);
950 /* Wait for the chip to confirm eDMA is off. */
951 for (i
= 10000; i
> 0; i
--) {
952 u32 reg
= readl(port_mmio
+ EDMA_CMD_OFS
);
953 if (!(reg
& EDMA_EN
))
960 static int mv_stop_edma(struct ata_port
*ap
)
962 void __iomem
*port_mmio
= mv_ap_base(ap
);
963 struct mv_port_priv
*pp
= ap
->private_data
;
965 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
967 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
968 mv_wait_for_edma_empty_idle(ap
);
969 if (mv_stop_edma_engine(port_mmio
)) {
970 ata_port_printk(ap
, KERN_ERR
, "Unable to stop eDMA\n");
977 static void mv_dump_mem(void __iomem
*start
, unsigned bytes
)
980 for (b
= 0; b
< bytes
; ) {
981 DPRINTK("%p: ", start
+ b
);
982 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
983 printk("%08x ", readl(start
+ b
));
991 static void mv_dump_pci_cfg(struct pci_dev
*pdev
, unsigned bytes
)
996 for (b
= 0; b
< bytes
; ) {
997 DPRINTK("%02x: ", b
);
998 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
999 (void) pci_read_config_dword(pdev
, b
, &dw
);
1000 printk("%08x ", dw
);
1007 static void mv_dump_all_regs(void __iomem
*mmio_base
, int port
,
1008 struct pci_dev
*pdev
)
1011 void __iomem
*hc_base
= mv_hc_base(mmio_base
,
1012 port
>> MV_PORT_HC_SHIFT
);
1013 void __iomem
*port_base
;
1014 int start_port
, num_ports
, p
, start_hc
, num_hcs
, hc
;
1017 start_hc
= start_port
= 0;
1018 num_ports
= 8; /* shld be benign for 4 port devs */
1021 start_hc
= port
>> MV_PORT_HC_SHIFT
;
1023 num_ports
= num_hcs
= 1;
1025 DPRINTK("All registers for port(s) %u-%u:\n", start_port
,
1026 num_ports
> 1 ? num_ports
- 1 : start_port
);
1029 DPRINTK("PCI config space regs:\n");
1030 mv_dump_pci_cfg(pdev
, 0x68);
1032 DPRINTK("PCI regs:\n");
1033 mv_dump_mem(mmio_base
+0xc00, 0x3c);
1034 mv_dump_mem(mmio_base
+0xd00, 0x34);
1035 mv_dump_mem(mmio_base
+0xf00, 0x4);
1036 mv_dump_mem(mmio_base
+0x1d00, 0x6c);
1037 for (hc
= start_hc
; hc
< start_hc
+ num_hcs
; hc
++) {
1038 hc_base
= mv_hc_base(mmio_base
, hc
);
1039 DPRINTK("HC regs (HC %i):\n", hc
);
1040 mv_dump_mem(hc_base
, 0x1c);
1042 for (p
= start_port
; p
< start_port
+ num_ports
; p
++) {
1043 port_base
= mv_port_base(mmio_base
, p
);
1044 DPRINTK("EDMA regs (port %i):\n", p
);
1045 mv_dump_mem(port_base
, 0x54);
1046 DPRINTK("SATA regs (port %i):\n", p
);
1047 mv_dump_mem(port_base
+0x300, 0x60);
1052 static unsigned int mv_scr_offset(unsigned int sc_reg_in
)
1056 switch (sc_reg_in
) {
1060 ofs
= SATA_STATUS_OFS
+ (sc_reg_in
* sizeof(u32
));
1063 ofs
= SATA_ACTIVE_OFS
; /* active is not with the others */
1072 static int mv_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
, u32
*val
)
1074 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1076 if (ofs
!= 0xffffffffU
) {
1077 *val
= readl(mv_ap_base(ap
) + ofs
);
1083 static int mv_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
)
1085 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1087 if (ofs
!= 0xffffffffU
) {
1088 writelfl(val
, mv_ap_base(ap
) + ofs
);
1094 static void mv6_dev_config(struct ata_device
*adev
)
1097 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1099 * Gen-II does not support NCQ over a port multiplier
1100 * (no FIS-based switching).
1102 * We don't have hob_nsect when doing NCQ commands on Gen-II.
1103 * See mv_qc_prep() for more info.
1105 if (adev
->flags
& ATA_DFLAG_NCQ
) {
1106 if (sata_pmp_attached(adev
->link
->ap
)) {
1107 adev
->flags
&= ~ATA_DFLAG_NCQ
;
1108 ata_dev_printk(adev
, KERN_INFO
,
1109 "NCQ disabled for command-based switching\n");
1110 } else if (adev
->max_sectors
> GEN_II_NCQ_MAX_SECTORS
) {
1111 adev
->max_sectors
= GEN_II_NCQ_MAX_SECTORS
;
1112 ata_dev_printk(adev
, KERN_INFO
,
1113 "max_sectors limited to %u for NCQ\n",
1119 static int mv_qc_defer(struct ata_queued_cmd
*qc
)
1121 struct ata_link
*link
= qc
->dev
->link
;
1122 struct ata_port
*ap
= link
->ap
;
1123 struct mv_port_priv
*pp
= ap
->private_data
;
1126 * Don't allow new commands if we're in a delayed EH state
1127 * for NCQ and/or FIS-based switching.
1129 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
1130 return ATA_DEFER_PORT
;
1132 * If the port is completely idle, then allow the new qc.
1134 if (ap
->nr_active_links
== 0)
1137 if (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) {
1139 * The port is operating in host queuing mode (EDMA).
1140 * It can accomodate a new qc if the qc protocol
1141 * is compatible with the current host queue mode.
1143 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) {
1145 * The host queue (EDMA) is in NCQ mode.
1146 * If the new qc is also an NCQ command,
1147 * then allow the new qc.
1149 if (qc
->tf
.protocol
== ATA_PROT_NCQ
)
1153 * The host queue (EDMA) is in non-NCQ, DMA mode.
1154 * If the new qc is also a non-NCQ, DMA command,
1155 * then allow the new qc.
1157 if (qc
->tf
.protocol
== ATA_PROT_DMA
)
1161 return ATA_DEFER_PORT
;
1164 static void mv_config_fbs(void __iomem
*port_mmio
, int want_ncq
, int want_fbs
)
1166 u32 new_fiscfg
, old_fiscfg
;
1167 u32 new_ltmode
, old_ltmode
;
1168 u32 new_haltcond
, old_haltcond
;
1170 old_fiscfg
= readl(port_mmio
+ FISCFG_OFS
);
1171 old_ltmode
= readl(port_mmio
+ LTMODE_OFS
);
1172 old_haltcond
= readl(port_mmio
+ EDMA_HALTCOND_OFS
);
1174 new_fiscfg
= old_fiscfg
& ~(FISCFG_SINGLE_SYNC
| FISCFG_WAIT_DEV_ERR
);
1175 new_ltmode
= old_ltmode
& ~LTMODE_BIT8
;
1176 new_haltcond
= old_haltcond
| EDMA_ERR_DEV
;
1179 new_fiscfg
= old_fiscfg
| FISCFG_SINGLE_SYNC
;
1180 new_ltmode
= old_ltmode
| LTMODE_BIT8
;
1182 new_haltcond
&= ~EDMA_ERR_DEV
;
1184 new_fiscfg
|= FISCFG_WAIT_DEV_ERR
;
1187 if (new_fiscfg
!= old_fiscfg
)
1188 writelfl(new_fiscfg
, port_mmio
+ FISCFG_OFS
);
1189 if (new_ltmode
!= old_ltmode
)
1190 writelfl(new_ltmode
, port_mmio
+ LTMODE_OFS
);
1191 if (new_haltcond
!= old_haltcond
)
1192 writelfl(new_haltcond
, port_mmio
+ EDMA_HALTCOND_OFS
);
1195 static void mv_60x1_errata_sata25(struct ata_port
*ap
, int want_ncq
)
1197 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1200 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1201 old
= readl(hpriv
->base
+ MV_GPIO_PORT_CTL_OFS
);
1203 new = old
| (1 << 22);
1205 new = old
& ~(1 << 22);
1207 writel(new, hpriv
->base
+ MV_GPIO_PORT_CTL_OFS
);
1210 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
)
1213 struct mv_port_priv
*pp
= ap
->private_data
;
1214 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1215 void __iomem
*port_mmio
= mv_ap_base(ap
);
1217 /* set up non-NCQ EDMA configuration */
1218 cfg
= EDMA_CFG_Q_DEPTH
; /* always 0x1f for *all* chips */
1219 pp
->pp_flags
&= ~MV_PP_FLAG_FBS_EN
;
1221 if (IS_GEN_I(hpriv
))
1222 cfg
|= (1 << 8); /* enab config burst size mask */
1224 else if (IS_GEN_II(hpriv
)) {
1225 cfg
|= EDMA_CFG_RD_BRST_EXT
| EDMA_CFG_WR_BUFF_LEN
;
1226 mv_60x1_errata_sata25(ap
, want_ncq
);
1228 } else if (IS_GEN_IIE(hpriv
)) {
1229 int want_fbs
= sata_pmp_attached(ap
);
1231 * Possible future enhancement:
1233 * The chip can use FBS with non-NCQ, if we allow it,
1234 * But first we need to have the error handling in place
1235 * for this mode (datasheet section 7.3.15.4.2.3).
1236 * So disallow non-NCQ FBS for now.
1238 want_fbs
&= want_ncq
;
1240 mv_config_fbs(port_mmio
, want_ncq
, want_fbs
);
1243 pp
->pp_flags
|= MV_PP_FLAG_FBS_EN
;
1244 cfg
|= EDMA_CFG_EDMA_FBS
; /* FIS-based switching */
1247 cfg
|= (1 << 23); /* do not mask PM field in rx'd FIS */
1248 cfg
|= (1 << 22); /* enab 4-entry host queue cache */
1250 cfg
|= (1 << 18); /* enab early completion */
1251 if (hpriv
->hp_flags
& MV_HP_CUT_THROUGH
)
1252 cfg
|= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1256 cfg
|= EDMA_CFG_NCQ
;
1257 pp
->pp_flags
|= MV_PP_FLAG_NCQ_EN
;
1259 pp
->pp_flags
&= ~MV_PP_FLAG_NCQ_EN
;
1261 writelfl(cfg
, port_mmio
+ EDMA_CFG_OFS
);
1264 static void mv_port_free_dma_mem(struct ata_port
*ap
)
1266 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1267 struct mv_port_priv
*pp
= ap
->private_data
;
1271 dma_pool_free(hpriv
->crqb_pool
, pp
->crqb
, pp
->crqb_dma
);
1275 dma_pool_free(hpriv
->crpb_pool
, pp
->crpb
, pp
->crpb_dma
);
1279 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1280 * For later hardware, we have one unique sg_tbl per NCQ tag.
1282 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1283 if (pp
->sg_tbl
[tag
]) {
1284 if (tag
== 0 || !IS_GEN_I(hpriv
))
1285 dma_pool_free(hpriv
->sg_tbl_pool
,
1287 pp
->sg_tbl_dma
[tag
]);
1288 pp
->sg_tbl
[tag
] = NULL
;
1294 * mv_port_start - Port specific init/start routine.
1295 * @ap: ATA channel to manipulate
1297 * Allocate and point to DMA memory, init port private memory,
1301 * Inherited from caller.
1303 static int mv_port_start(struct ata_port
*ap
)
1305 struct device
*dev
= ap
->host
->dev
;
1306 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1307 struct mv_port_priv
*pp
;
1310 pp
= devm_kzalloc(dev
, sizeof(*pp
), GFP_KERNEL
);
1313 ap
->private_data
= pp
;
1315 pp
->crqb
= dma_pool_alloc(hpriv
->crqb_pool
, GFP_KERNEL
, &pp
->crqb_dma
);
1318 memset(pp
->crqb
, 0, MV_CRQB_Q_SZ
);
1320 pp
->crpb
= dma_pool_alloc(hpriv
->crpb_pool
, GFP_KERNEL
, &pp
->crpb_dma
);
1322 goto out_port_free_dma_mem
;
1323 memset(pp
->crpb
, 0, MV_CRPB_Q_SZ
);
1325 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1326 if (hpriv
->hp_flags
& MV_HP_ERRATA_60X1C0
)
1327 ap
->flags
|= ATA_FLAG_AN
;
1329 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1330 * For later hardware, we need one unique sg_tbl per NCQ tag.
1332 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1333 if (tag
== 0 || !IS_GEN_I(hpriv
)) {
1334 pp
->sg_tbl
[tag
] = dma_pool_alloc(hpriv
->sg_tbl_pool
,
1335 GFP_KERNEL
, &pp
->sg_tbl_dma
[tag
]);
1336 if (!pp
->sg_tbl
[tag
])
1337 goto out_port_free_dma_mem
;
1339 pp
->sg_tbl
[tag
] = pp
->sg_tbl
[0];
1340 pp
->sg_tbl_dma
[tag
] = pp
->sg_tbl_dma
[0];
1345 out_port_free_dma_mem
:
1346 mv_port_free_dma_mem(ap
);
1351 * mv_port_stop - Port specific cleanup/stop routine.
1352 * @ap: ATA channel to manipulate
1354 * Stop DMA, cleanup port memory.
1357 * This routine uses the host lock to protect the DMA stop.
1359 static void mv_port_stop(struct ata_port
*ap
)
1362 mv_enable_port_irqs(ap
, 0);
1363 mv_port_free_dma_mem(ap
);
1367 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1368 * @qc: queued command whose SG list to source from
1370 * Populate the SG list and mark the last entry.
1373 * Inherited from caller.
1375 static void mv_fill_sg(struct ata_queued_cmd
*qc
)
1377 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
1378 struct scatterlist
*sg
;
1379 struct mv_sg
*mv_sg
, *last_sg
= NULL
;
1382 mv_sg
= pp
->sg_tbl
[qc
->tag
];
1383 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
1384 dma_addr_t addr
= sg_dma_address(sg
);
1385 u32 sg_len
= sg_dma_len(sg
);
1388 u32 offset
= addr
& 0xffff;
1391 if ((offset
+ sg_len
> 0x10000))
1392 len
= 0x10000 - offset
;
1394 mv_sg
->addr
= cpu_to_le32(addr
& 0xffffffff);
1395 mv_sg
->addr_hi
= cpu_to_le32((addr
>> 16) >> 16);
1396 mv_sg
->flags_size
= cpu_to_le32(len
& 0xffff);
1406 if (likely(last_sg
))
1407 last_sg
->flags_size
|= cpu_to_le32(EPRD_FLAG_END_OF_TBL
);
1410 static void mv_crqb_pack_cmd(__le16
*cmdw
, u8 data
, u8 addr
, unsigned last
)
1412 u16 tmp
= data
| (addr
<< CRQB_CMD_ADDR_SHIFT
) | CRQB_CMD_CS
|
1413 (last
? CRQB_CMD_LAST
: 0);
1414 *cmdw
= cpu_to_le16(tmp
);
1418 * mv_qc_prep - Host specific command preparation.
1419 * @qc: queued command to prepare
1421 * This routine simply redirects to the general purpose routine
1422 * if command is not DMA. Else, it handles prep of the CRQB
1423 * (command request block), does some sanity checking, and calls
1424 * the SG load routine.
1427 * Inherited from caller.
1429 static void mv_qc_prep(struct ata_queued_cmd
*qc
)
1431 struct ata_port
*ap
= qc
->ap
;
1432 struct mv_port_priv
*pp
= ap
->private_data
;
1434 struct ata_taskfile
*tf
;
1438 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1439 (qc
->tf
.protocol
!= ATA_PROT_NCQ
))
1442 /* Fill in command request block
1444 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
1445 flags
|= CRQB_FLAG_READ
;
1446 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1447 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1448 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
1450 /* get current queue index from software */
1451 in_index
= pp
->req_idx
;
1453 pp
->crqb
[in_index
].sg_addr
=
1454 cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
1455 pp
->crqb
[in_index
].sg_addr_hi
=
1456 cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
1457 pp
->crqb
[in_index
].ctrl_flags
= cpu_to_le16(flags
);
1459 cw
= &pp
->crqb
[in_index
].ata_cmd
[0];
1462 /* Sadly, the CRQB cannot accomodate all registers--there are
1463 * only 11 bytes...so we must pick and choose required
1464 * registers based on the command. So, we drop feature and
1465 * hob_feature for [RW] DMA commands, but they are needed for
1466 * NCQ. NCQ will drop hob_nsect.
1468 switch (tf
->command
) {
1470 case ATA_CMD_READ_EXT
:
1472 case ATA_CMD_WRITE_EXT
:
1473 case ATA_CMD_WRITE_FUA_EXT
:
1474 mv_crqb_pack_cmd(cw
++, tf
->hob_nsect
, ATA_REG_NSECT
, 0);
1476 case ATA_CMD_FPDMA_READ
:
1477 case ATA_CMD_FPDMA_WRITE
:
1478 mv_crqb_pack_cmd(cw
++, tf
->hob_feature
, ATA_REG_FEATURE
, 0);
1479 mv_crqb_pack_cmd(cw
++, tf
->feature
, ATA_REG_FEATURE
, 0);
1482 /* The only other commands EDMA supports in non-queued and
1483 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1484 * of which are defined/used by Linux. If we get here, this
1485 * driver needs work.
1487 * FIXME: modify libata to give qc_prep a return value and
1488 * return error here.
1490 BUG_ON(tf
->command
);
1493 mv_crqb_pack_cmd(cw
++, tf
->nsect
, ATA_REG_NSECT
, 0);
1494 mv_crqb_pack_cmd(cw
++, tf
->hob_lbal
, ATA_REG_LBAL
, 0);
1495 mv_crqb_pack_cmd(cw
++, tf
->lbal
, ATA_REG_LBAL
, 0);
1496 mv_crqb_pack_cmd(cw
++, tf
->hob_lbam
, ATA_REG_LBAM
, 0);
1497 mv_crqb_pack_cmd(cw
++, tf
->lbam
, ATA_REG_LBAM
, 0);
1498 mv_crqb_pack_cmd(cw
++, tf
->hob_lbah
, ATA_REG_LBAH
, 0);
1499 mv_crqb_pack_cmd(cw
++, tf
->lbah
, ATA_REG_LBAH
, 0);
1500 mv_crqb_pack_cmd(cw
++, tf
->device
, ATA_REG_DEVICE
, 0);
1501 mv_crqb_pack_cmd(cw
++, tf
->command
, ATA_REG_CMD
, 1); /* last */
1503 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
1509 * mv_qc_prep_iie - Host specific command preparation.
1510 * @qc: queued command to prepare
1512 * This routine simply redirects to the general purpose routine
1513 * if command is not DMA. Else, it handles prep of the CRQB
1514 * (command request block), does some sanity checking, and calls
1515 * the SG load routine.
1518 * Inherited from caller.
1520 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
)
1522 struct ata_port
*ap
= qc
->ap
;
1523 struct mv_port_priv
*pp
= ap
->private_data
;
1524 struct mv_crqb_iie
*crqb
;
1525 struct ata_taskfile
*tf
;
1529 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1530 (qc
->tf
.protocol
!= ATA_PROT_NCQ
))
1533 /* Fill in Gen IIE command request block */
1534 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
1535 flags
|= CRQB_FLAG_READ
;
1537 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1538 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1539 flags
|= qc
->tag
<< CRQB_HOSTQ_SHIFT
;
1540 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
1542 /* get current queue index from software */
1543 in_index
= pp
->req_idx
;
1545 crqb
= (struct mv_crqb_iie
*) &pp
->crqb
[in_index
];
1546 crqb
->addr
= cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
1547 crqb
->addr_hi
= cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
1548 crqb
->flags
= cpu_to_le32(flags
);
1551 crqb
->ata_cmd
[0] = cpu_to_le32(
1552 (tf
->command
<< 16) |
1555 crqb
->ata_cmd
[1] = cpu_to_le32(
1561 crqb
->ata_cmd
[2] = cpu_to_le32(
1562 (tf
->hob_lbal
<< 0) |
1563 (tf
->hob_lbam
<< 8) |
1564 (tf
->hob_lbah
<< 16) |
1565 (tf
->hob_feature
<< 24)
1567 crqb
->ata_cmd
[3] = cpu_to_le32(
1569 (tf
->hob_nsect
<< 8)
1572 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
1578 * mv_qc_issue - Initiate a command to the host
1579 * @qc: queued command to start
1581 * This routine simply redirects to the general purpose routine
1582 * if command is not DMA. Else, it sanity checks our local
1583 * caches of the request producer/consumer indices then enables
1584 * DMA and bumps the request producer index.
1587 * Inherited from caller.
1589 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
)
1591 struct ata_port
*ap
= qc
->ap
;
1592 void __iomem
*port_mmio
= mv_ap_base(ap
);
1593 struct mv_port_priv
*pp
= ap
->private_data
;
1596 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1597 (qc
->tf
.protocol
!= ATA_PROT_NCQ
)) {
1598 static int limit_warnings
= 10;
1600 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
1602 * Someday, we might implement special polling workarounds
1603 * for these, but it all seems rather unnecessary since we
1604 * normally use only DMA for commands which transfer more
1605 * than a single block of data.
1607 * Much of the time, this could just work regardless.
1608 * So for now, just log the incident, and allow the attempt.
1610 if (limit_warnings
&& (qc
->nbytes
/ qc
->sect_size
) > 1) {
1612 ata_link_printk(qc
->dev
->link
, KERN_WARNING
, DRV_NAME
1613 ": attempting PIO w/multiple DRQ: "
1614 "this may fail due to h/w errata\n");
1617 * We're about to send a non-EDMA capable command to the
1618 * port. Turn off EDMA so there won't be problems accessing
1619 * shadow block, etc registers.
1622 mv_enable_port_irqs(ap
, ERR_IRQ
);
1623 mv_pmp_select(ap
, qc
->dev
->link
->pmp
);
1624 return ata_sff_qc_issue(qc
);
1627 mv_start_dma(ap
, port_mmio
, pp
, qc
->tf
.protocol
);
1629 pp
->req_idx
= (pp
->req_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
1630 in_index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
1632 /* and write the request in pointer to kick the EDMA to life */
1633 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | in_index
,
1634 port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
1639 static struct ata_queued_cmd
*mv_get_active_qc(struct ata_port
*ap
)
1641 struct mv_port_priv
*pp
= ap
->private_data
;
1642 struct ata_queued_cmd
*qc
;
1644 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
1646 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1647 if (qc
&& (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1652 static void mv_pmp_error_handler(struct ata_port
*ap
)
1654 unsigned int pmp
, pmp_map
;
1655 struct mv_port_priv
*pp
= ap
->private_data
;
1657 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
) {
1659 * Perform NCQ error analysis on failed PMPs
1660 * before we freeze the port entirely.
1662 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
1664 pmp_map
= pp
->delayed_eh_pmp_map
;
1665 pp
->pp_flags
&= ~MV_PP_FLAG_DELAYED_EH
;
1666 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
1667 unsigned int this_pmp
= (1 << pmp
);
1668 if (pmp_map
& this_pmp
) {
1669 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
1670 pmp_map
&= ~this_pmp
;
1671 ata_eh_analyze_ncq_error(link
);
1674 ata_port_freeze(ap
);
1676 sata_pmp_error_handler(ap
);
1679 static unsigned int mv_get_err_pmp_map(struct ata_port
*ap
)
1681 void __iomem
*port_mmio
= mv_ap_base(ap
);
1683 return readl(port_mmio
+ SATA_TESTCTL_OFS
) >> 16;
1686 static void mv_pmp_eh_prep(struct ata_port
*ap
, unsigned int pmp_map
)
1688 struct ata_eh_info
*ehi
;
1692 * Initialize EH info for PMPs which saw device errors
1694 ehi
= &ap
->link
.eh_info
;
1695 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
1696 unsigned int this_pmp
= (1 << pmp
);
1697 if (pmp_map
& this_pmp
) {
1698 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
1700 pmp_map
&= ~this_pmp
;
1701 ehi
= &link
->eh_info
;
1702 ata_ehi_clear_desc(ehi
);
1703 ata_ehi_push_desc(ehi
, "dev err");
1704 ehi
->err_mask
|= AC_ERR_DEV
;
1705 ehi
->action
|= ATA_EH_RESET
;
1706 ata_link_abort(link
);
1711 static int mv_req_q_empty(struct ata_port
*ap
)
1713 void __iomem
*port_mmio
= mv_ap_base(ap
);
1714 u32 in_ptr
, out_ptr
;
1716 in_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
)
1717 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
1718 out_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
)
1719 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
1720 return (in_ptr
== out_ptr
); /* 1 == queue_is_empty */
1723 static int mv_handle_fbs_ncq_dev_err(struct ata_port
*ap
)
1725 struct mv_port_priv
*pp
= ap
->private_data
;
1727 unsigned int old_map
, new_map
;
1730 * Device error during FBS+NCQ operation:
1732 * Set a port flag to prevent further I/O being enqueued.
1733 * Leave the EDMA running to drain outstanding commands from this port.
1734 * Perform the post-mortem/EH only when all responses are complete.
1735 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
1737 if (!(pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)) {
1738 pp
->pp_flags
|= MV_PP_FLAG_DELAYED_EH
;
1739 pp
->delayed_eh_pmp_map
= 0;
1741 old_map
= pp
->delayed_eh_pmp_map
;
1742 new_map
= old_map
| mv_get_err_pmp_map(ap
);
1744 if (old_map
!= new_map
) {
1745 pp
->delayed_eh_pmp_map
= new_map
;
1746 mv_pmp_eh_prep(ap
, new_map
& ~old_map
);
1748 failed_links
= hweight16(new_map
);
1750 ata_port_printk(ap
, KERN_INFO
, "%s: pmp_map=%04x qc_map=%04x "
1751 "failed_links=%d nr_active_links=%d\n",
1752 __func__
, pp
->delayed_eh_pmp_map
,
1753 ap
->qc_active
, failed_links
,
1754 ap
->nr_active_links
);
1756 if (ap
->nr_active_links
<= failed_links
&& mv_req_q_empty(ap
)) {
1757 mv_process_crpb_entries(ap
, pp
);
1760 ata_port_printk(ap
, KERN_INFO
, "%s: done\n", __func__
);
1761 return 1; /* handled */
1763 ata_port_printk(ap
, KERN_INFO
, "%s: waiting\n", __func__
);
1764 return 1; /* handled */
1767 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port
*ap
)
1770 * Possible future enhancement:
1772 * FBS+non-NCQ operation is not yet implemented.
1773 * See related notes in mv_edma_cfg().
1775 * Device error during FBS+non-NCQ operation:
1777 * We need to snapshot the shadow registers for each failed command.
1778 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
1780 return 0; /* not handled */
1783 static int mv_handle_dev_err(struct ata_port
*ap
, u32 edma_err_cause
)
1785 struct mv_port_priv
*pp
= ap
->private_data
;
1787 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
1788 return 0; /* EDMA was not active: not handled */
1789 if (!(pp
->pp_flags
& MV_PP_FLAG_FBS_EN
))
1790 return 0; /* FBS was not active: not handled */
1792 if (!(edma_err_cause
& EDMA_ERR_DEV
))
1793 return 0; /* non DEV error: not handled */
1794 edma_err_cause
&= ~EDMA_ERR_IRQ_TRANSIENT
;
1795 if (edma_err_cause
& ~(EDMA_ERR_DEV
| EDMA_ERR_SELF_DIS
))
1796 return 0; /* other problems: not handled */
1798 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) {
1800 * EDMA should NOT have self-disabled for this case.
1801 * If it did, then something is wrong elsewhere,
1802 * and we cannot handle it here.
1804 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
1805 ata_port_printk(ap
, KERN_WARNING
,
1806 "%s: err_cause=0x%x pp_flags=0x%x\n",
1807 __func__
, edma_err_cause
, pp
->pp_flags
);
1808 return 0; /* not handled */
1810 return mv_handle_fbs_ncq_dev_err(ap
);
1813 * EDMA should have self-disabled for this case.
1814 * If it did not, then something is wrong elsewhere,
1815 * and we cannot handle it here.
1817 if (!(edma_err_cause
& EDMA_ERR_SELF_DIS
)) {
1818 ata_port_printk(ap
, KERN_WARNING
,
1819 "%s: err_cause=0x%x pp_flags=0x%x\n",
1820 __func__
, edma_err_cause
, pp
->pp_flags
);
1821 return 0; /* not handled */
1823 return mv_handle_fbs_non_ncq_dev_err(ap
);
1825 return 0; /* not handled */
1828 static void mv_unexpected_intr(struct ata_port
*ap
, int edma_was_enabled
)
1830 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
1831 char *when
= "idle";
1833 ata_ehi_clear_desc(ehi
);
1834 if (!ap
|| (ap
->flags
& ATA_FLAG_DISABLED
)) {
1836 } else if (edma_was_enabled
) {
1837 when
= "EDMA enabled";
1839 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1840 if (qc
&& (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1843 ata_ehi_push_desc(ehi
, "unexpected device interrupt while %s", when
);
1844 ehi
->err_mask
|= AC_ERR_OTHER
;
1845 ehi
->action
|= ATA_EH_RESET
;
1846 ata_port_freeze(ap
);
1850 * mv_err_intr - Handle error interrupts on the port
1851 * @ap: ATA channel to manipulate
1852 * @qc: affected command (non-NCQ), or NULL
1854 * Most cases require a full reset of the chip's state machine,
1855 * which also performs a COMRESET.
1856 * Also, if the port disabled DMA, update our cached copy to match.
1859 * Inherited from caller.
1861 static void mv_err_intr(struct ata_port
*ap
)
1863 void __iomem
*port_mmio
= mv_ap_base(ap
);
1864 u32 edma_err_cause
, eh_freeze_mask
, serr
= 0;
1866 struct mv_port_priv
*pp
= ap
->private_data
;
1867 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1868 unsigned int action
= 0, err_mask
= 0;
1869 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
1870 struct ata_queued_cmd
*qc
;
1874 * Read and clear the SError and err_cause bits.
1875 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
1876 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
1878 sata_scr_read(&ap
->link
, SCR_ERROR
, &serr
);
1879 sata_scr_write_flush(&ap
->link
, SCR_ERROR
, serr
);
1881 edma_err_cause
= readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1882 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
1883 fis_cause
= readl(port_mmio
+ SATA_FIS_IRQ_CAUSE_OFS
);
1884 writelfl(~fis_cause
, port_mmio
+ SATA_FIS_IRQ_CAUSE_OFS
);
1886 writelfl(~edma_err_cause
, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1888 if (edma_err_cause
& EDMA_ERR_DEV
) {
1890 * Device errors during FIS-based switching operation
1891 * require special handling.
1893 if (mv_handle_dev_err(ap
, edma_err_cause
))
1897 qc
= mv_get_active_qc(ap
);
1898 ata_ehi_clear_desc(ehi
);
1899 ata_ehi_push_desc(ehi
, "edma_err_cause=%08x pp_flags=%08x",
1900 edma_err_cause
, pp
->pp_flags
);
1902 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
1903 ata_ehi_push_desc(ehi
, "fis_cause=%08x", fis_cause
);
1904 if (fis_cause
& SATA_FIS_IRQ_AN
) {
1905 u32 ec
= edma_err_cause
&
1906 ~(EDMA_ERR_TRANS_IRQ_7
| EDMA_ERR_IRQ_TRANSIENT
);
1907 sata_async_notification(ap
);
1909 return; /* Just an AN; no need for the nukes */
1910 ata_ehi_push_desc(ehi
, "SDB notify");
1914 * All generations share these EDMA error cause bits:
1916 if (edma_err_cause
& EDMA_ERR_DEV
) {
1917 err_mask
|= AC_ERR_DEV
;
1918 action
|= ATA_EH_RESET
;
1919 ata_ehi_push_desc(ehi
, "dev error");
1921 if (edma_err_cause
& (EDMA_ERR_D_PAR
| EDMA_ERR_PRD_PAR
|
1922 EDMA_ERR_CRQB_PAR
| EDMA_ERR_CRPB_PAR
|
1923 EDMA_ERR_INTRL_PAR
)) {
1924 err_mask
|= AC_ERR_ATA_BUS
;
1925 action
|= ATA_EH_RESET
;
1926 ata_ehi_push_desc(ehi
, "parity error");
1928 if (edma_err_cause
& (EDMA_ERR_DEV_DCON
| EDMA_ERR_DEV_CON
)) {
1929 ata_ehi_hotplugged(ehi
);
1930 ata_ehi_push_desc(ehi
, edma_err_cause
& EDMA_ERR_DEV_DCON
?
1931 "dev disconnect" : "dev connect");
1932 action
|= ATA_EH_RESET
;
1936 * Gen-I has a different SELF_DIS bit,
1937 * different FREEZE bits, and no SERR bit:
1939 if (IS_GEN_I(hpriv
)) {
1940 eh_freeze_mask
= EDMA_EH_FREEZE_5
;
1941 if (edma_err_cause
& EDMA_ERR_SELF_DIS_5
) {
1942 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1943 ata_ehi_push_desc(ehi
, "EDMA self-disable");
1946 eh_freeze_mask
= EDMA_EH_FREEZE
;
1947 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
1948 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1949 ata_ehi_push_desc(ehi
, "EDMA self-disable");
1951 if (edma_err_cause
& EDMA_ERR_SERR
) {
1952 ata_ehi_push_desc(ehi
, "SError=%08x", serr
);
1953 err_mask
|= AC_ERR_ATA_BUS
;
1954 action
|= ATA_EH_RESET
;
1959 err_mask
= AC_ERR_OTHER
;
1960 action
|= ATA_EH_RESET
;
1963 ehi
->serror
|= serr
;
1964 ehi
->action
|= action
;
1967 qc
->err_mask
|= err_mask
;
1969 ehi
->err_mask
|= err_mask
;
1971 if (err_mask
== AC_ERR_DEV
) {
1973 * Cannot do ata_port_freeze() here,
1974 * because it would kill PIO access,
1975 * which is needed for further diagnosis.
1979 } else if (edma_err_cause
& eh_freeze_mask
) {
1981 * Note to self: ata_port_freeze() calls ata_port_abort()
1983 ata_port_freeze(ap
);
1990 ata_link_abort(qc
->dev
->link
);
1996 static void mv_process_crpb_response(struct ata_port
*ap
,
1997 struct mv_crpb
*response
, unsigned int tag
, int ncq_enabled
)
1999 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, tag
);
2003 u16 edma_status
= le16_to_cpu(response
->flags
);
2005 * edma_status from a response queue entry:
2006 * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
2007 * MSB is saved ATA status from command completion.
2010 u8 err_cause
= edma_status
& 0xff & ~EDMA_ERR_DEV
;
2013 * Error will be seen/handled by mv_err_intr().
2014 * So do nothing at all here.
2019 ata_status
= edma_status
>> CRPB_FLAG_STATUS_SHIFT
;
2020 if (!ac_err_mask(ata_status
))
2021 ata_qc_complete(qc
);
2022 /* else: leave it for mv_err_intr() */
2024 ata_port_printk(ap
, KERN_ERR
, "%s: no qc for tag=%d\n",
2029 static void mv_process_crpb_entries(struct ata_port
*ap
, struct mv_port_priv
*pp
)
2031 void __iomem
*port_mmio
= mv_ap_base(ap
);
2032 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2034 bool work_done
= false;
2035 int ncq_enabled
= (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
);
2037 /* Get the hardware queue position index */
2038 in_index
= (readl(port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
)
2039 >> EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2041 /* Process new responses from since the last time we looked */
2042 while (in_index
!= pp
->resp_idx
) {
2044 struct mv_crpb
*response
= &pp
->crpb
[pp
->resp_idx
];
2046 pp
->resp_idx
= (pp
->resp_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
2048 if (IS_GEN_I(hpriv
)) {
2049 /* 50xx: no NCQ, only one command active at a time */
2050 tag
= ap
->link
.active_tag
;
2052 /* Gen II/IIE: get command tag from CRPB entry */
2053 tag
= le16_to_cpu(response
->id
) & 0x1f;
2055 mv_process_crpb_response(ap
, response
, tag
, ncq_enabled
);
2059 /* Update the software queue position index in hardware */
2061 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) |
2062 (pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
),
2063 port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
2066 static void mv_port_intr(struct ata_port
*ap
, u32 port_cause
)
2068 struct mv_port_priv
*pp
;
2069 int edma_was_enabled
;
2071 if (!ap
|| (ap
->flags
& ATA_FLAG_DISABLED
)) {
2072 mv_unexpected_intr(ap
, 0);
2076 * Grab a snapshot of the EDMA_EN flag setting,
2077 * so that we have a consistent view for this port,
2078 * even if something we call of our routines changes it.
2080 pp
= ap
->private_data
;
2081 edma_was_enabled
= (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
);
2083 * Process completed CRPB response(s) before other events.
2085 if (edma_was_enabled
&& (port_cause
& DONE_IRQ
)) {
2086 mv_process_crpb_entries(ap
, pp
);
2087 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
2088 mv_handle_fbs_ncq_dev_err(ap
);
2091 * Handle chip-reported errors, or continue on to handle PIO.
2093 if (unlikely(port_cause
& ERR_IRQ
)) {
2095 } else if (!edma_was_enabled
) {
2096 struct ata_queued_cmd
*qc
= mv_get_active_qc(ap
);
2098 ata_sff_host_intr(ap
, qc
);
2100 mv_unexpected_intr(ap
, edma_was_enabled
);
2105 * mv_host_intr - Handle all interrupts on the given host controller
2106 * @host: host specific structure
2107 * @main_irq_cause: Main interrupt cause register for the chip.
2110 * Inherited from caller.
2112 static int mv_host_intr(struct ata_host
*host
, u32 main_irq_cause
)
2114 struct mv_host_priv
*hpriv
= host
->private_data
;
2115 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
;
2116 unsigned int handled
= 0, port
;
2118 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
2119 struct ata_port
*ap
= host
->ports
[port
];
2120 unsigned int p
, shift
, hardport
, port_cause
;
2122 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
2124 * Each hc within the host has its own hc_irq_cause register,
2125 * where the interrupting ports bits get ack'd.
2127 if (hardport
== 0) { /* first port on this hc ? */
2128 u32 hc_cause
= (main_irq_cause
>> shift
) & HC0_IRQ_PEND
;
2129 u32 port_mask
, ack_irqs
;
2131 * Skip this entire hc if nothing pending for any ports
2134 port
+= MV_PORTS_PER_HC
- 1;
2138 * We don't need/want to read the hc_irq_cause register,
2139 * because doing so hurts performance, and
2140 * main_irq_cause already gives us everything we need.
2142 * But we do have to *write* to the hc_irq_cause to ack
2143 * the ports that we are handling this time through.
2145 * This requires that we create a bitmap for those
2146 * ports which interrupted us, and use that bitmap
2147 * to ack (only) those ports via hc_irq_cause.
2150 for (p
= 0; p
< MV_PORTS_PER_HC
; ++p
) {
2151 if ((port
+ p
) >= hpriv
->n_ports
)
2153 port_mask
= (DONE_IRQ
| ERR_IRQ
) << (p
* 2);
2154 if (hc_cause
& port_mask
)
2155 ack_irqs
|= (DMA_IRQ
| DEV_IRQ
) << p
;
2157 hc_mmio
= mv_hc_base_from_port(mmio
, port
);
2158 writelfl(~ack_irqs
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2162 * Handle interrupts signalled for this port:
2164 port_cause
= (main_irq_cause
>> shift
) & (DONE_IRQ
| ERR_IRQ
);
2166 mv_port_intr(ap
, port_cause
);
2171 static int mv_pci_error(struct ata_host
*host
, void __iomem
*mmio
)
2173 struct mv_host_priv
*hpriv
= host
->private_data
;
2174 struct ata_port
*ap
;
2175 struct ata_queued_cmd
*qc
;
2176 struct ata_eh_info
*ehi
;
2177 unsigned int i
, err_mask
, printed
= 0;
2180 err_cause
= readl(mmio
+ hpriv
->irq_cause_ofs
);
2182 dev_printk(KERN_ERR
, host
->dev
, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2185 DPRINTK("All regs @ PCI error\n");
2186 mv_dump_all_regs(mmio
, -1, to_pci_dev(host
->dev
));
2188 writelfl(0, mmio
+ hpriv
->irq_cause_ofs
);
2190 for (i
= 0; i
< host
->n_ports
; i
++) {
2191 ap
= host
->ports
[i
];
2192 if (!ata_link_offline(&ap
->link
)) {
2193 ehi
= &ap
->link
.eh_info
;
2194 ata_ehi_clear_desc(ehi
);
2196 ata_ehi_push_desc(ehi
,
2197 "PCI err cause 0x%08x", err_cause
);
2198 err_mask
= AC_ERR_HOST_BUS
;
2199 ehi
->action
= ATA_EH_RESET
;
2200 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2202 qc
->err_mask
|= err_mask
;
2204 ehi
->err_mask
|= err_mask
;
2206 ata_port_freeze(ap
);
2209 return 1; /* handled */
2213 * mv_interrupt - Main interrupt event handler
2215 * @dev_instance: private data; in this case the host structure
2217 * Read the read only register to determine if any host
2218 * controllers have pending interrupts. If so, call lower level
2219 * routine to handle. Also check for PCI errors which are only
2223 * This routine holds the host lock while processing pending
2226 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
)
2228 struct ata_host
*host
= dev_instance
;
2229 struct mv_host_priv
*hpriv
= host
->private_data
;
2230 unsigned int handled
= 0;
2231 u32 main_irq_cause
, pending_irqs
;
2233 spin_lock(&host
->lock
);
2234 main_irq_cause
= readl(hpriv
->main_irq_cause_addr
);
2235 pending_irqs
= main_irq_cause
& hpriv
->main_irq_mask
;
2237 * Deal with cases where we either have nothing pending, or have read
2238 * a bogus register value which can indicate HW removal or PCI fault.
2240 if (pending_irqs
&& main_irq_cause
!= 0xffffffffU
) {
2241 if (unlikely((pending_irqs
& PCI_ERR
) && !IS_SOC(hpriv
)))
2242 handled
= mv_pci_error(host
, hpriv
->base
);
2244 handled
= mv_host_intr(host
, pending_irqs
);
2246 spin_unlock(&host
->lock
);
2247 return IRQ_RETVAL(handled
);
2250 static unsigned int mv5_scr_offset(unsigned int sc_reg_in
)
2254 switch (sc_reg_in
) {
2258 ofs
= sc_reg_in
* sizeof(u32
);
2267 static int mv5_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
, u32
*val
)
2269 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2270 void __iomem
*mmio
= hpriv
->base
;
2271 void __iomem
*addr
= mv5_phy_base(mmio
, ap
->port_no
);
2272 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
2274 if (ofs
!= 0xffffffffU
) {
2275 *val
= readl(addr
+ ofs
);
2281 static int mv5_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
)
2283 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2284 void __iomem
*mmio
= hpriv
->base
;
2285 void __iomem
*addr
= mv5_phy_base(mmio
, ap
->port_no
);
2286 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
2288 if (ofs
!= 0xffffffffU
) {
2289 writelfl(val
, addr
+ ofs
);
2295 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
2297 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
2300 early_5080
= (pdev
->device
== 0x5080) && (pdev
->revision
== 0);
2303 u32 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2305 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2308 mv_reset_pci_bus(host
, mmio
);
2311 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2313 writel(0x0fcfffff, mmio
+ MV_FLASH_CTL_OFS
);
2316 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
2319 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, idx
);
2322 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
2324 hpriv
->signal
[idx
].pre
= tmp
& 0x1800; /* bits 12:11 */
2325 hpriv
->signal
[idx
].amps
= tmp
& 0xe0; /* bits 7:5 */
2328 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2332 writel(0, mmio
+ MV_GPIO_PORT_CTL_OFS
);
2334 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2336 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2338 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2341 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2344 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, port
);
2345 const u32 mask
= (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2347 int fix_apm_sq
= (hpriv
->hp_flags
& MV_HP_ERRATA_50XXB0
);
2350 tmp
= readl(phy_mmio
+ MV5_LTMODE_OFS
);
2352 writel(tmp
, phy_mmio
+ MV5_LTMODE_OFS
);
2354 tmp
= readl(phy_mmio
+ MV5_PHY_CTL_OFS
);
2357 writel(tmp
, phy_mmio
+ MV5_PHY_CTL_OFS
);
2360 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
2362 tmp
|= hpriv
->signal
[port
].pre
;
2363 tmp
|= hpriv
->signal
[port
].amps
;
2364 writel(tmp
, phy_mmio
+ MV5_PHY_MODE
);
2369 #define ZERO(reg) writel(0, port_mmio + (reg))
2370 static void mv5_reset_hc_port(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2373 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2375 mv_reset_channel(hpriv
, mmio
, port
);
2377 ZERO(0x028); /* command */
2378 writel(0x11f, port_mmio
+ EDMA_CFG_OFS
);
2379 ZERO(0x004); /* timer */
2380 ZERO(0x008); /* irq err cause */
2381 ZERO(0x00c); /* irq err mask */
2382 ZERO(0x010); /* rq bah */
2383 ZERO(0x014); /* rq inp */
2384 ZERO(0x018); /* rq outp */
2385 ZERO(0x01c); /* respq bah */
2386 ZERO(0x024); /* respq outp */
2387 ZERO(0x020); /* respq inp */
2388 ZERO(0x02c); /* test control */
2389 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT_OFS
);
2393 #define ZERO(reg) writel(0, hc_mmio + (reg))
2394 static void mv5_reset_one_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2397 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
2405 tmp
= readl(hc_mmio
+ 0x20);
2408 writel(tmp
, hc_mmio
+ 0x20);
2412 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2415 unsigned int hc
, port
;
2417 for (hc
= 0; hc
< n_hc
; hc
++) {
2418 for (port
= 0; port
< MV_PORTS_PER_HC
; port
++)
2419 mv5_reset_hc_port(hpriv
, mmio
,
2420 (hc
* MV_PORTS_PER_HC
) + port
);
2422 mv5_reset_one_hc(hpriv
, mmio
, hc
);
2429 #define ZERO(reg) writel(0, mmio + (reg))
2430 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
)
2432 struct mv_host_priv
*hpriv
= host
->private_data
;
2435 tmp
= readl(mmio
+ MV_PCI_MODE_OFS
);
2437 writel(tmp
, mmio
+ MV_PCI_MODE_OFS
);
2439 ZERO(MV_PCI_DISC_TIMER
);
2440 ZERO(MV_PCI_MSI_TRIGGER
);
2441 writel(0x000100ff, mmio
+ MV_PCI_XBAR_TMOUT_OFS
);
2442 ZERO(MV_PCI_SERR_MASK
);
2443 ZERO(hpriv
->irq_cause_ofs
);
2444 ZERO(hpriv
->irq_mask_ofs
);
2445 ZERO(MV_PCI_ERR_LOW_ADDRESS
);
2446 ZERO(MV_PCI_ERR_HIGH_ADDRESS
);
2447 ZERO(MV_PCI_ERR_ATTRIBUTE
);
2448 ZERO(MV_PCI_ERR_COMMAND
);
2452 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2456 mv5_reset_flash(hpriv
, mmio
);
2458 tmp
= readl(mmio
+ MV_GPIO_PORT_CTL_OFS
);
2460 tmp
|= (1 << 5) | (1 << 6);
2461 writel(tmp
, mmio
+ MV_GPIO_PORT_CTL_OFS
);
2465 * mv6_reset_hc - Perform the 6xxx global soft reset
2466 * @mmio: base address of the HBA
2468 * This routine only applies to 6xxx parts.
2471 * Inherited from caller.
2473 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2476 void __iomem
*reg
= mmio
+ PCI_MAIN_CMD_STS_OFS
;
2480 /* Following procedure defined in PCI "main command and status
2484 writel(t
| STOP_PCI_MASTER
, reg
);
2486 for (i
= 0; i
< 1000; i
++) {
2489 if (PCI_MASTER_EMPTY
& t
)
2492 if (!(PCI_MASTER_EMPTY
& t
)) {
2493 printk(KERN_ERR DRV_NAME
": PCI master won't flush\n");
2501 writel(t
| GLOB_SFT_RST
, reg
);
2504 } while (!(GLOB_SFT_RST
& t
) && (i
-- > 0));
2506 if (!(GLOB_SFT_RST
& t
)) {
2507 printk(KERN_ERR DRV_NAME
": can't set global reset\n");
2512 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
2515 writel(t
& ~(GLOB_SFT_RST
| STOP_PCI_MASTER
), reg
);
2518 } while ((GLOB_SFT_RST
& t
) && (i
-- > 0));
2520 if (GLOB_SFT_RST
& t
) {
2521 printk(KERN_ERR DRV_NAME
": can't clear global reset\n");
2528 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
2531 void __iomem
*port_mmio
;
2534 tmp
= readl(mmio
+ MV_RESET_CFG_OFS
);
2535 if ((tmp
& (1 << 0)) == 0) {
2536 hpriv
->signal
[idx
].amps
= 0x7 << 8;
2537 hpriv
->signal
[idx
].pre
= 0x1 << 5;
2541 port_mmio
= mv_port_base(mmio
, idx
);
2542 tmp
= readl(port_mmio
+ PHY_MODE2
);
2544 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
2545 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
2548 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2550 writel(0x00000060, mmio
+ MV_GPIO_PORT_CTL_OFS
);
2553 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2556 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2558 u32 hp_flags
= hpriv
->hp_flags
;
2560 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
2562 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
2565 if (fix_phy_mode2
) {
2566 m2
= readl(port_mmio
+ PHY_MODE2
);
2569 writel(m2
, port_mmio
+ PHY_MODE2
);
2573 m2
= readl(port_mmio
+ PHY_MODE2
);
2574 m2
&= ~((1 << 16) | (1 << 31));
2575 writel(m2
, port_mmio
+ PHY_MODE2
);
2581 * Gen-II/IIe PHY_MODE3 errata RM#2:
2582 * Achieves better receiver noise performance than the h/w default:
2584 m3
= readl(port_mmio
+ PHY_MODE3
);
2585 m3
= (m3
& 0x1f) | (0x5555601 << 5);
2587 /* Guideline 88F5182 (GL# SATA-S11) */
2591 if (fix_phy_mode4
) {
2592 u32 m4
= readl(port_mmio
+ PHY_MODE4
);
2594 * Enforce reserved-bit restrictions on GenIIe devices only.
2595 * For earlier chipsets, force only the internal config field
2596 * (workaround for errata FEr SATA#10 part 1).
2598 if (IS_GEN_IIE(hpriv
))
2599 m4
= (m4
& ~PHY_MODE4_RSVD_ZEROS
) | PHY_MODE4_RSVD_ONES
;
2601 m4
= (m4
& ~PHY_MODE4_CFG_MASK
) | PHY_MODE4_CFG_VALUE
;
2602 writel(m4
, port_mmio
+ PHY_MODE4
);
2605 * Workaround for 60x1-B2 errata SATA#13:
2606 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
2607 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
2609 writel(m3
, port_mmio
+ PHY_MODE3
);
2611 /* Revert values of pre-emphasis and signal amps to the saved ones */
2612 m2
= readl(port_mmio
+ PHY_MODE2
);
2614 m2
&= ~MV_M2_PREAMP_MASK
;
2615 m2
|= hpriv
->signal
[port
].amps
;
2616 m2
|= hpriv
->signal
[port
].pre
;
2619 /* according to mvSata 3.6.1, some IIE values are fixed */
2620 if (IS_GEN_IIE(hpriv
)) {
2625 writel(m2
, port_mmio
+ PHY_MODE2
);
2628 /* TODO: use the generic LED interface to configure the SATA Presence */
2629 /* & Acitivy LEDs on the board */
2630 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
2636 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
2639 void __iomem
*port_mmio
;
2642 port_mmio
= mv_port_base(mmio
, idx
);
2643 tmp
= readl(port_mmio
+ PHY_MODE2
);
2645 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
2646 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
2650 #define ZERO(reg) writel(0, port_mmio + (reg))
2651 static void mv_soc_reset_hc_port(struct mv_host_priv
*hpriv
,
2652 void __iomem
*mmio
, unsigned int port
)
2654 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2656 mv_reset_channel(hpriv
, mmio
, port
);
2658 ZERO(0x028); /* command */
2659 writel(0x101f, port_mmio
+ EDMA_CFG_OFS
);
2660 ZERO(0x004); /* timer */
2661 ZERO(0x008); /* irq err cause */
2662 ZERO(0x00c); /* irq err mask */
2663 ZERO(0x010); /* rq bah */
2664 ZERO(0x014); /* rq inp */
2665 ZERO(0x018); /* rq outp */
2666 ZERO(0x01c); /* respq bah */
2667 ZERO(0x024); /* respq outp */
2668 ZERO(0x020); /* respq inp */
2669 ZERO(0x02c); /* test control */
2670 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT_OFS
);
2675 #define ZERO(reg) writel(0, hc_mmio + (reg))
2676 static void mv_soc_reset_one_hc(struct mv_host_priv
*hpriv
,
2679 void __iomem
*hc_mmio
= mv_hc_base(mmio
, 0);
2689 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
2690 void __iomem
*mmio
, unsigned int n_hc
)
2694 for (port
= 0; port
< hpriv
->n_ports
; port
++)
2695 mv_soc_reset_hc_port(hpriv
, mmio
, port
);
2697 mv_soc_reset_one_hc(hpriv
, mmio
);
2702 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
2708 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
2713 static void mv_setup_ifcfg(void __iomem
*port_mmio
, int want_gen2i
)
2715 u32 ifcfg
= readl(port_mmio
+ SATA_INTERFACE_CFG_OFS
);
2717 ifcfg
= (ifcfg
& 0xf7f) | 0x9b1000; /* from chip spec */
2719 ifcfg
|= (1 << 7); /* enable gen2i speed */
2720 writelfl(ifcfg
, port_mmio
+ SATA_INTERFACE_CFG_OFS
);
2723 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2724 unsigned int port_no
)
2726 void __iomem
*port_mmio
= mv_port_base(mmio
, port_no
);
2729 * The datasheet warns against setting EDMA_RESET when EDMA is active
2730 * (but doesn't say what the problem might be). So we first try
2731 * to disable the EDMA engine before doing the EDMA_RESET operation.
2733 mv_stop_edma_engine(port_mmio
);
2734 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD_OFS
);
2736 if (!IS_GEN_I(hpriv
)) {
2737 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
2738 mv_setup_ifcfg(port_mmio
, 1);
2741 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
2742 * link, and physical layers. It resets all SATA interface registers
2743 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2745 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD_OFS
);
2746 udelay(25); /* allow reset propagation */
2747 writelfl(0, port_mmio
+ EDMA_CMD_OFS
);
2749 hpriv
->ops
->phy_errata(hpriv
, mmio
, port_no
);
2751 if (IS_GEN_I(hpriv
))
2755 static void mv_pmp_select(struct ata_port
*ap
, int pmp
)
2757 if (sata_pmp_supported(ap
)) {
2758 void __iomem
*port_mmio
= mv_ap_base(ap
);
2759 u32 reg
= readl(port_mmio
+ SATA_IFCTL_OFS
);
2760 int old
= reg
& 0xf;
2763 reg
= (reg
& ~0xf) | pmp
;
2764 writelfl(reg
, port_mmio
+ SATA_IFCTL_OFS
);
2769 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
2770 unsigned long deadline
)
2772 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
2773 return sata_std_hardreset(link
, class, deadline
);
2776 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
2777 unsigned long deadline
)
2779 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
2780 return ata_sff_softreset(link
, class, deadline
);
2783 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
2784 unsigned long deadline
)
2786 struct ata_port
*ap
= link
->ap
;
2787 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2788 struct mv_port_priv
*pp
= ap
->private_data
;
2789 void __iomem
*mmio
= hpriv
->base
;
2790 int rc
, attempts
= 0, extra
= 0;
2794 mv_reset_channel(hpriv
, mmio
, ap
->port_no
);
2795 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2797 /* Workaround for errata FEr SATA#10 (part 2) */
2799 const unsigned long *timing
=
2800 sata_ehc_deb_timing(&link
->eh_context
);
2802 rc
= sata_link_hardreset(link
, timing
, deadline
+ extra
,
2804 rc
= online
? -EAGAIN
: rc
;
2807 sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2808 if (!IS_GEN_I(hpriv
) && ++attempts
>= 5 && sstatus
== 0x121) {
2809 /* Force 1.5gb/s link speed and try again */
2810 mv_setup_ifcfg(mv_ap_base(ap
), 0);
2811 if (time_after(jiffies
+ HZ
, deadline
))
2812 extra
= HZ
; /* only extend it once, max */
2814 } while (sstatus
!= 0x0 && sstatus
!= 0x113 && sstatus
!= 0x123);
2819 static void mv_eh_freeze(struct ata_port
*ap
)
2822 mv_enable_port_irqs(ap
, 0);
2825 static void mv_eh_thaw(struct ata_port
*ap
)
2827 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2828 unsigned int port
= ap
->port_no
;
2829 unsigned int hardport
= mv_hardport_from_port(port
);
2830 void __iomem
*hc_mmio
= mv_hc_base_from_port(hpriv
->base
, port
);
2831 void __iomem
*port_mmio
= mv_ap_base(ap
);
2834 /* clear EDMA errors on this port */
2835 writel(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
2837 /* clear pending irq events */
2838 hc_irq_cause
= readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2839 hc_irq_cause
&= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
2840 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2842 mv_enable_port_irqs(ap
, ERR_IRQ
);
2846 * mv_port_init - Perform some early initialization on a single port.
2847 * @port: libata data structure storing shadow register addresses
2848 * @port_mmio: base address of the port
2850 * Initialize shadow register mmio addresses, clear outstanding
2851 * interrupts on the port, and unmask interrupts for the future
2852 * start of the port.
2855 * Inherited from caller.
2857 static void mv_port_init(struct ata_ioports
*port
, void __iomem
*port_mmio
)
2859 void __iomem
*shd_base
= port_mmio
+ SHD_BLK_OFS
;
2862 /* PIO related setup
2864 port
->data_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DATA
);
2866 port
->feature_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_ERR
);
2867 port
->nsect_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_NSECT
);
2868 port
->lbal_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAL
);
2869 port
->lbam_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAM
);
2870 port
->lbah_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAH
);
2871 port
->device_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DEVICE
);
2873 port
->command_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_STATUS
);
2874 /* special case: control/altstatus doesn't have ATA_REG_ address */
2875 port
->altstatus_addr
= port
->ctl_addr
= shd_base
+ SHD_CTL_AST_OFS
;
2878 port
->cmd_addr
= port
->bmdma_addr
= port
->scr_addr
= NULL
;
2880 /* Clear any currently outstanding port interrupt conditions */
2881 serr_ofs
= mv_scr_offset(SCR_ERROR
);
2882 writelfl(readl(port_mmio
+ serr_ofs
), port_mmio
+ serr_ofs
);
2883 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
2885 /* unmask all non-transient EDMA error interrupts */
2886 writelfl(~EDMA_ERR_IRQ_TRANSIENT
, port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
);
2888 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2889 readl(port_mmio
+ EDMA_CFG_OFS
),
2890 readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
),
2891 readl(port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
));
2894 static unsigned int mv_in_pcix_mode(struct ata_host
*host
)
2896 struct mv_host_priv
*hpriv
= host
->private_data
;
2897 void __iomem
*mmio
= hpriv
->base
;
2900 if (IS_SOC(hpriv
) || !IS_PCIE(hpriv
))
2901 return 0; /* not PCI-X capable */
2902 reg
= readl(mmio
+ MV_PCI_MODE_OFS
);
2903 if ((reg
& MV_PCI_MODE_MASK
) == 0)
2904 return 0; /* conventional PCI mode */
2905 return 1; /* chip is in PCI-X mode */
2908 static int mv_pci_cut_through_okay(struct ata_host
*host
)
2910 struct mv_host_priv
*hpriv
= host
->private_data
;
2911 void __iomem
*mmio
= hpriv
->base
;
2914 if (!mv_in_pcix_mode(host
)) {
2915 reg
= readl(mmio
+ PCI_COMMAND_OFS
);
2916 if (reg
& PCI_COMMAND_MRDTRIG
)
2917 return 0; /* not okay */
2919 return 1; /* okay */
2922 static int mv_chip_id(struct ata_host
*host
, unsigned int board_idx
)
2924 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
2925 struct mv_host_priv
*hpriv
= host
->private_data
;
2926 u32 hp_flags
= hpriv
->hp_flags
;
2928 switch (board_idx
) {
2930 hpriv
->ops
= &mv5xxx_ops
;
2931 hp_flags
|= MV_HP_GEN_I
;
2933 switch (pdev
->revision
) {
2935 hp_flags
|= MV_HP_ERRATA_50XXB0
;
2938 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2941 dev_printk(KERN_WARNING
, &pdev
->dev
,
2942 "Applying 50XXB2 workarounds to unknown rev\n");
2943 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2950 hpriv
->ops
= &mv5xxx_ops
;
2951 hp_flags
|= MV_HP_GEN_I
;
2953 switch (pdev
->revision
) {
2955 hp_flags
|= MV_HP_ERRATA_50XXB0
;
2958 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2961 dev_printk(KERN_WARNING
, &pdev
->dev
,
2962 "Applying B2 workarounds to unknown rev\n");
2963 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2970 hpriv
->ops
= &mv6xxx_ops
;
2971 hp_flags
|= MV_HP_GEN_II
;
2973 switch (pdev
->revision
) {
2975 hp_flags
|= MV_HP_ERRATA_60X1B2
;
2978 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2981 dev_printk(KERN_WARNING
, &pdev
->dev
,
2982 "Applying B2 workarounds to unknown rev\n");
2983 hp_flags
|= MV_HP_ERRATA_60X1B2
;
2989 hp_flags
|= MV_HP_PCIE
| MV_HP_CUT_THROUGH
;
2990 if (pdev
->vendor
== PCI_VENDOR_ID_TTI
&&
2991 (pdev
->device
== 0x2300 || pdev
->device
== 0x2310))
2994 * Highpoint RocketRAID PCIe 23xx series cards:
2996 * Unconfigured drives are treated as "Legacy"
2997 * by the BIOS, and it overwrites sector 8 with
2998 * a "Lgcy" metadata block prior to Linux boot.
3000 * Configured drives (RAID or JBOD) leave sector 8
3001 * alone, but instead overwrite a high numbered
3002 * sector for the RAID metadata. This sector can
3003 * be determined exactly, by truncating the physical
3004 * drive capacity to a nice even GB value.
3006 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3008 * Warn the user, lest they think we're just buggy.
3010 printk(KERN_WARNING DRV_NAME
": Highpoint RocketRAID"
3011 " BIOS CORRUPTS DATA on all attached drives,"
3012 " regardless of if/how they are configured."
3014 printk(KERN_WARNING DRV_NAME
": For data safety, do not"
3015 " use sectors 8-9 on \"Legacy\" drives,"
3016 " and avoid the final two gigabytes on"
3017 " all RocketRAID BIOS initialized drives.\n");
3021 hpriv
->ops
= &mv6xxx_ops
;
3022 hp_flags
|= MV_HP_GEN_IIE
;
3023 if (board_idx
== chip_6042
&& mv_pci_cut_through_okay(host
))
3024 hp_flags
|= MV_HP_CUT_THROUGH
;
3026 switch (pdev
->revision
) {
3027 case 0x2: /* Rev.B0: the first/only public release */
3028 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3031 dev_printk(KERN_WARNING
, &pdev
->dev
,
3032 "Applying 60X1C0 workarounds to unknown rev\n");
3033 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3038 hpriv
->ops
= &mv_soc_ops
;
3039 hp_flags
|= MV_HP_FLAG_SOC
| MV_HP_ERRATA_60X1C0
;
3043 dev_printk(KERN_ERR
, host
->dev
,
3044 "BUG: invalid board index %u\n", board_idx
);
3048 hpriv
->hp_flags
= hp_flags
;
3049 if (hp_flags
& MV_HP_PCIE
) {
3050 hpriv
->irq_cause_ofs
= PCIE_IRQ_CAUSE_OFS
;
3051 hpriv
->irq_mask_ofs
= PCIE_IRQ_MASK_OFS
;
3052 hpriv
->unmask_all_irqs
= PCIE_UNMASK_ALL_IRQS
;
3054 hpriv
->irq_cause_ofs
= PCI_IRQ_CAUSE_OFS
;
3055 hpriv
->irq_mask_ofs
= PCI_IRQ_MASK_OFS
;
3056 hpriv
->unmask_all_irqs
= PCI_UNMASK_ALL_IRQS
;
3063 * mv_init_host - Perform some early initialization of the host.
3064 * @host: ATA host to initialize
3065 * @board_idx: controller index
3067 * If possible, do an early global reset of the host. Then do
3068 * our port init and clear/unmask all/relevant host interrupts.
3071 * Inherited from caller.
3073 static int mv_init_host(struct ata_host
*host
, unsigned int board_idx
)
3075 int rc
= 0, n_hc
, port
, hc
;
3076 struct mv_host_priv
*hpriv
= host
->private_data
;
3077 void __iomem
*mmio
= hpriv
->base
;
3079 rc
= mv_chip_id(host
, board_idx
);
3083 if (IS_SOC(hpriv
)) {
3084 hpriv
->main_irq_cause_addr
= mmio
+ SOC_HC_MAIN_IRQ_CAUSE_OFS
;
3085 hpriv
->main_irq_mask_addr
= mmio
+ SOC_HC_MAIN_IRQ_MASK_OFS
;
3087 hpriv
->main_irq_cause_addr
= mmio
+ PCI_HC_MAIN_IRQ_CAUSE_OFS
;
3088 hpriv
->main_irq_mask_addr
= mmio
+ PCI_HC_MAIN_IRQ_MASK_OFS
;
3091 /* global interrupt mask: 0 == mask everything */
3092 mv_set_main_irq_mask(host
, ~0, 0);
3094 n_hc
= mv_get_hc_count(host
->ports
[0]->flags
);
3096 for (port
= 0; port
< host
->n_ports
; port
++)
3097 hpriv
->ops
->read_preamp(hpriv
, port
, mmio
);
3099 rc
= hpriv
->ops
->reset_hc(hpriv
, mmio
, n_hc
);
3103 hpriv
->ops
->reset_flash(hpriv
, mmio
);
3104 hpriv
->ops
->reset_bus(host
, mmio
);
3105 hpriv
->ops
->enable_leds(hpriv
, mmio
);
3107 for (port
= 0; port
< host
->n_ports
; port
++) {
3108 struct ata_port
*ap
= host
->ports
[port
];
3109 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3111 mv_port_init(&ap
->ioaddr
, port_mmio
);
3114 if (!IS_SOC(hpriv
)) {
3115 unsigned int offset
= port_mmio
- mmio
;
3116 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, -1, "mmio");
3117 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, offset
, "port");
3122 for (hc
= 0; hc
< n_hc
; hc
++) {
3123 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
3125 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3126 "(before clear)=0x%08x\n", hc
,
3127 readl(hc_mmio
+ HC_CFG_OFS
),
3128 readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
));
3130 /* Clear any currently outstanding hc interrupt conditions */
3131 writelfl(0, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
3134 if (!IS_SOC(hpriv
)) {
3135 /* Clear any currently outstanding host interrupt conditions */
3136 writelfl(0, mmio
+ hpriv
->irq_cause_ofs
);
3138 /* and unmask interrupt generation for host regs */
3139 writelfl(hpriv
->unmask_all_irqs
, mmio
+ hpriv
->irq_mask_ofs
);
3142 * enable only global host interrupts for now.
3143 * The per-port interrupts get done later as ports are set up.
3145 mv_set_main_irq_mask(host
, 0, PCI_ERR
);
3151 static int mv_create_dma_pools(struct mv_host_priv
*hpriv
, struct device
*dev
)
3153 hpriv
->crqb_pool
= dmam_pool_create("crqb_q", dev
, MV_CRQB_Q_SZ
,
3155 if (!hpriv
->crqb_pool
)
3158 hpriv
->crpb_pool
= dmam_pool_create("crpb_q", dev
, MV_CRPB_Q_SZ
,
3160 if (!hpriv
->crpb_pool
)
3163 hpriv
->sg_tbl_pool
= dmam_pool_create("sg_tbl", dev
, MV_SG_TBL_SZ
,
3165 if (!hpriv
->sg_tbl_pool
)
3171 static void mv_conf_mbus_windows(struct mv_host_priv
*hpriv
,
3172 struct mbus_dram_target_info
*dram
)
3176 for (i
= 0; i
< 4; i
++) {
3177 writel(0, hpriv
->base
+ WINDOW_CTRL(i
));
3178 writel(0, hpriv
->base
+ WINDOW_BASE(i
));
3181 for (i
= 0; i
< dram
->num_cs
; i
++) {
3182 struct mbus_dram_window
*cs
= dram
->cs
+ i
;
3184 writel(((cs
->size
- 1) & 0xffff0000) |
3185 (cs
->mbus_attr
<< 8) |
3186 (dram
->mbus_dram_target_id
<< 4) | 1,
3187 hpriv
->base
+ WINDOW_CTRL(i
));
3188 writel(cs
->base
, hpriv
->base
+ WINDOW_BASE(i
));
3193 * mv_platform_probe - handle a positive probe of an soc Marvell
3195 * @pdev: platform device found
3198 * Inherited from caller.
3200 static int mv_platform_probe(struct platform_device
*pdev
)
3202 static int printed_version
;
3203 const struct mv_sata_platform_data
*mv_platform_data
;
3204 const struct ata_port_info
*ppi
[] =
3205 { &mv_port_info
[chip_soc
], NULL
};
3206 struct ata_host
*host
;
3207 struct mv_host_priv
*hpriv
;
3208 struct resource
*res
;
3211 if (!printed_version
++)
3212 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
3215 * Simple resource validation ..
3217 if (unlikely(pdev
->num_resources
!= 2)) {
3218 dev_err(&pdev
->dev
, "invalid number of resources\n");
3223 * Get the register base first
3225 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3230 mv_platform_data
= pdev
->dev
.platform_data
;
3231 n_ports
= mv_platform_data
->n_ports
;
3233 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
3234 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
3236 if (!host
|| !hpriv
)
3238 host
->private_data
= hpriv
;
3239 hpriv
->n_ports
= n_ports
;
3242 hpriv
->base
= devm_ioremap(&pdev
->dev
, res
->start
,
3243 res
->end
- res
->start
+ 1);
3244 hpriv
->base
-= MV_SATAHC0_REG_BASE
;
3247 * (Re-)program MBUS remapping windows if we are asked to.
3249 if (mv_platform_data
->dram
!= NULL
)
3250 mv_conf_mbus_windows(hpriv
, mv_platform_data
->dram
);
3252 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
3256 /* initialize adapter */
3257 rc
= mv_init_host(host
, chip_soc
);
3261 dev_printk(KERN_INFO
, &pdev
->dev
,
3262 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH
,
3265 return ata_host_activate(host
, platform_get_irq(pdev
, 0), mv_interrupt
,
3266 IRQF_SHARED
, &mv6_sht
);
3271 * mv_platform_remove - unplug a platform interface
3272 * @pdev: platform device
3274 * A platform bus SATA device has been unplugged. Perform the needed
3275 * cleanup. Also called on module unload for any active devices.
3277 static int __devexit
mv_platform_remove(struct platform_device
*pdev
)
3279 struct device
*dev
= &pdev
->dev
;
3280 struct ata_host
*host
= dev_get_drvdata(dev
);
3282 ata_host_detach(host
);
3286 static struct platform_driver mv_platform_driver
= {
3287 .probe
= mv_platform_probe
,
3288 .remove
= __devexit_p(mv_platform_remove
),
3291 .owner
= THIS_MODULE
,
3297 static int mv_pci_init_one(struct pci_dev
*pdev
,
3298 const struct pci_device_id
*ent
);
3301 static struct pci_driver mv_pci_driver
= {
3303 .id_table
= mv_pci_tbl
,
3304 .probe
= mv_pci_init_one
,
3305 .remove
= ata_pci_remove_one
,
3311 static int msi
; /* Use PCI msi; either zero (off, default) or non-zero */
3314 /* move to PCI layer or libata core? */
3315 static int pci_go_64(struct pci_dev
*pdev
)
3319 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
3320 rc
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
3322 rc
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3324 dev_printk(KERN_ERR
, &pdev
->dev
,
3325 "64-bit DMA enable failed\n");
3330 rc
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
3332 dev_printk(KERN_ERR
, &pdev
->dev
,
3333 "32-bit DMA enable failed\n");
3336 rc
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3338 dev_printk(KERN_ERR
, &pdev
->dev
,
3339 "32-bit consistent DMA enable failed\n");
3348 * mv_print_info - Dump key info to kernel log for perusal.
3349 * @host: ATA host to print info about
3351 * FIXME: complete this.
3354 * Inherited from caller.
3356 static void mv_print_info(struct ata_host
*host
)
3358 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
3359 struct mv_host_priv
*hpriv
= host
->private_data
;
3361 const char *scc_s
, *gen
;
3363 /* Use this to determine the HW stepping of the chip so we know
3364 * what errata to workaround
3366 pci_read_config_byte(pdev
, PCI_CLASS_DEVICE
, &scc
);
3369 else if (scc
== 0x01)
3374 if (IS_GEN_I(hpriv
))
3376 else if (IS_GEN_II(hpriv
))
3378 else if (IS_GEN_IIE(hpriv
))
3383 dev_printk(KERN_INFO
, &pdev
->dev
,
3384 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
3385 gen
, (unsigned)MV_MAX_Q_DEPTH
, host
->n_ports
,
3386 scc_s
, (MV_HP_FLAG_MSI
& hpriv
->hp_flags
) ? "MSI" : "INTx");
3390 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
3391 * @pdev: PCI device found
3392 * @ent: PCI device ID entry for the matched host
3395 * Inherited from caller.
3397 static int mv_pci_init_one(struct pci_dev
*pdev
,
3398 const struct pci_device_id
*ent
)
3400 static int printed_version
;
3401 unsigned int board_idx
= (unsigned int)ent
->driver_data
;
3402 const struct ata_port_info
*ppi
[] = { &mv_port_info
[board_idx
], NULL
};
3403 struct ata_host
*host
;
3404 struct mv_host_priv
*hpriv
;
3407 if (!printed_version
++)
3408 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
3411 n_ports
= mv_get_hc_count(ppi
[0]->flags
) * MV_PORTS_PER_HC
;
3413 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
3414 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
3415 if (!host
|| !hpriv
)
3417 host
->private_data
= hpriv
;
3418 hpriv
->n_ports
= n_ports
;
3420 /* acquire resources */
3421 rc
= pcim_enable_device(pdev
);
3425 rc
= pcim_iomap_regions(pdev
, 1 << MV_PRIMARY_BAR
, DRV_NAME
);
3427 pcim_pin_device(pdev
);
3430 host
->iomap
= pcim_iomap_table(pdev
);
3431 hpriv
->base
= host
->iomap
[MV_PRIMARY_BAR
];
3433 rc
= pci_go_64(pdev
);
3437 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
3441 /* initialize adapter */
3442 rc
= mv_init_host(host
, board_idx
);
3446 /* Enable interrupts */
3447 if (msi
&& pci_enable_msi(pdev
))
3450 mv_dump_pci_cfg(pdev
, 0x68);
3451 mv_print_info(host
);
3453 pci_set_master(pdev
);
3454 pci_try_set_mwi(pdev
);
3455 return ata_host_activate(host
, pdev
->irq
, mv_interrupt
, IRQF_SHARED
,
3456 IS_GEN_I(hpriv
) ? &mv5_sht
: &mv6_sht
);
3460 static int mv_platform_probe(struct platform_device
*pdev
);
3461 static int __devexit
mv_platform_remove(struct platform_device
*pdev
);
3463 static int __init
mv_init(void)
3467 rc
= pci_register_driver(&mv_pci_driver
);
3471 rc
= platform_driver_register(&mv_platform_driver
);
3475 pci_unregister_driver(&mv_pci_driver
);
3480 static void __exit
mv_exit(void)
3483 pci_unregister_driver(&mv_pci_driver
);
3485 platform_driver_unregister(&mv_platform_driver
);
3488 MODULE_AUTHOR("Brett Russ");
3489 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3490 MODULE_LICENSE("GPL");
3491 MODULE_DEVICE_TABLE(pci
, mv_pci_tbl
);
3492 MODULE_VERSION(DRV_VERSION
);
3493 MODULE_ALIAS("platform:" DRV_NAME
);
3496 module_param(msi
, int, 0444);
3497 MODULE_PARM_DESC(msi
, "Enable use of PCI MSI (0=off, 1=on)");
3500 module_init(mv_init
);
3501 module_exit(mv_exit
);