ide: move ->failed_pc to ide_drive_t
[linux-ginger.git] / kernel / exit.c
blobefd30ccf38584f48c6ef68da62b9236479b6da69
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/init_task.h>
50 #include <trace/sched.h>
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 #include "cred-internals.h"
58 DEFINE_TRACE(sched_process_free);
59 DEFINE_TRACE(sched_process_exit);
60 DEFINE_TRACE(sched_process_wait);
62 static void exit_mm(struct task_struct * tsk);
64 static inline int task_detached(struct task_struct *p)
66 return p->exit_signal == -1;
69 static void __unhash_process(struct task_struct *p)
71 nr_threads--;
72 detach_pid(p, PIDTYPE_PID);
73 if (thread_group_leader(p)) {
74 detach_pid(p, PIDTYPE_PGID);
75 detach_pid(p, PIDTYPE_SID);
77 list_del_rcu(&p->tasks);
78 __get_cpu_var(process_counts)--;
80 list_del_rcu(&p->thread_group);
81 list_del_init(&p->sibling);
85 * This function expects the tasklist_lock write-locked.
87 static void __exit_signal(struct task_struct *tsk)
89 struct signal_struct *sig = tsk->signal;
90 struct sighand_struct *sighand;
92 BUG_ON(!sig);
93 BUG_ON(!atomic_read(&sig->count));
95 sighand = rcu_dereference(tsk->sighand);
96 spin_lock(&sighand->siglock);
98 posix_cpu_timers_exit(tsk);
99 if (atomic_dec_and_test(&sig->count))
100 posix_cpu_timers_exit_group(tsk);
101 else {
103 * If there is any task waiting for the group exit
104 * then notify it:
106 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
107 wake_up_process(sig->group_exit_task);
109 if (tsk == sig->curr_target)
110 sig->curr_target = next_thread(tsk);
112 * Accumulate here the counters for all threads but the
113 * group leader as they die, so they can be added into
114 * the process-wide totals when those are taken.
115 * The group leader stays around as a zombie as long
116 * as there are other threads. When it gets reaped,
117 * the exit.c code will add its counts into these totals.
118 * We won't ever get here for the group leader, since it
119 * will have been the last reference on the signal_struct.
121 sig->utime = cputime_add(sig->utime, task_utime(tsk));
122 sig->stime = cputime_add(sig->stime, task_stime(tsk));
123 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
124 sig->min_flt += tsk->min_flt;
125 sig->maj_flt += tsk->maj_flt;
126 sig->nvcsw += tsk->nvcsw;
127 sig->nivcsw += tsk->nivcsw;
128 sig->inblock += task_io_get_inblock(tsk);
129 sig->oublock += task_io_get_oublock(tsk);
130 task_io_accounting_add(&sig->ioac, &tsk->ioac);
131 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
132 sig = NULL; /* Marker for below. */
135 __unhash_process(tsk);
138 * Do this under ->siglock, we can race with another thread
139 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
141 flush_sigqueue(&tsk->pending);
143 tsk->signal = NULL;
144 tsk->sighand = NULL;
145 spin_unlock(&sighand->siglock);
147 __cleanup_sighand(sighand);
148 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
149 if (sig) {
150 flush_sigqueue(&sig->shared_pending);
151 taskstats_tgid_free(sig);
153 * Make sure ->signal can't go away under rq->lock,
154 * see account_group_exec_runtime().
156 task_rq_unlock_wait(tsk);
157 __cleanup_signal(sig);
161 static void delayed_put_task_struct(struct rcu_head *rhp)
163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
165 trace_sched_process_free(tsk);
166 put_task_struct(tsk);
170 void release_task(struct task_struct * p)
172 struct task_struct *leader;
173 int zap_leader;
174 repeat:
175 tracehook_prepare_release_task(p);
176 /* don't need to get the RCU readlock here - the process is dead and
177 * can't be modifying its own credentials */
178 atomic_dec(&__task_cred(p)->user->processes);
180 proc_flush_task(p);
181 write_lock_irq(&tasklist_lock);
182 tracehook_finish_release_task(p);
183 __exit_signal(p);
186 * If we are the last non-leader member of the thread
187 * group, and the leader is zombie, then notify the
188 * group leader's parent process. (if it wants notification.)
190 zap_leader = 0;
191 leader = p->group_leader;
192 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 BUG_ON(task_detached(leader));
194 do_notify_parent(leader, leader->exit_signal);
196 * If we were the last child thread and the leader has
197 * exited already, and the leader's parent ignores SIGCHLD,
198 * then we are the one who should release the leader.
200 * do_notify_parent() will have marked it self-reaping in
201 * that case.
203 zap_leader = task_detached(leader);
206 * This maintains the invariant that release_task()
207 * only runs on a task in EXIT_DEAD, just for sanity.
209 if (zap_leader)
210 leader->exit_state = EXIT_DEAD;
213 write_unlock_irq(&tasklist_lock);
214 release_thread(p);
215 call_rcu(&p->rcu, delayed_put_task_struct);
217 p = leader;
218 if (unlikely(zap_leader))
219 goto repeat;
223 * This checks not only the pgrp, but falls back on the pid if no
224 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
225 * without this...
227 * The caller must hold rcu lock or the tasklist lock.
229 struct pid *session_of_pgrp(struct pid *pgrp)
231 struct task_struct *p;
232 struct pid *sid = NULL;
234 p = pid_task(pgrp, PIDTYPE_PGID);
235 if (p == NULL)
236 p = pid_task(pgrp, PIDTYPE_PID);
237 if (p != NULL)
238 sid = task_session(p);
240 return sid;
244 * Determine if a process group is "orphaned", according to the POSIX
245 * definition in 2.2.2.52. Orphaned process groups are not to be affected
246 * by terminal-generated stop signals. Newly orphaned process groups are
247 * to receive a SIGHUP and a SIGCONT.
249 * "I ask you, have you ever known what it is to be an orphan?"
251 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
253 struct task_struct *p;
255 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
256 if ((p == ignored_task) ||
257 (p->exit_state && thread_group_empty(p)) ||
258 is_global_init(p->real_parent))
259 continue;
261 if (task_pgrp(p->real_parent) != pgrp &&
262 task_session(p->real_parent) == task_session(p))
263 return 0;
264 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
266 return 1;
269 int is_current_pgrp_orphaned(void)
271 int retval;
273 read_lock(&tasklist_lock);
274 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
275 read_unlock(&tasklist_lock);
277 return retval;
280 static int has_stopped_jobs(struct pid *pgrp)
282 int retval = 0;
283 struct task_struct *p;
285 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
286 if (!task_is_stopped(p))
287 continue;
288 retval = 1;
289 break;
290 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
291 return retval;
295 * Check to see if any process groups have become orphaned as
296 * a result of our exiting, and if they have any stopped jobs,
297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
302 struct pid *pgrp = task_pgrp(tsk);
303 struct task_struct *ignored_task = tsk;
305 if (!parent)
306 /* exit: our father is in a different pgrp than
307 * we are and we were the only connection outside.
309 parent = tsk->real_parent;
310 else
311 /* reparent: our child is in a different pgrp than
312 * we are, and it was the only connection outside.
314 ignored_task = NULL;
316 if (task_pgrp(parent) != pgrp &&
317 task_session(parent) == task_session(tsk) &&
318 will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 has_stopped_jobs(pgrp)) {
320 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
326 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
328 * If a kernel thread is launched as a result of a system call, or if
329 * it ever exits, it should generally reparent itself to kthreadd so it
330 * isn't in the way of other processes and is correctly cleaned up on exit.
332 * The various task state such as scheduling policy and priority may have
333 * been inherited from a user process, so we reset them to sane values here.
335 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
337 static void reparent_to_kthreadd(void)
339 write_lock_irq(&tasklist_lock);
341 ptrace_unlink(current);
342 /* Reparent to init */
343 current->real_parent = current->parent = kthreadd_task;
344 list_move_tail(&current->sibling, &current->real_parent->children);
346 /* Set the exit signal to SIGCHLD so we signal init on exit */
347 current->exit_signal = SIGCHLD;
349 if (task_nice(current) < 0)
350 set_user_nice(current, 0);
351 /* cpus_allowed? */
352 /* rt_priority? */
353 /* signals? */
354 memcpy(current->signal->rlim, init_task.signal->rlim,
355 sizeof(current->signal->rlim));
357 atomic_inc(&init_cred.usage);
358 commit_creds(&init_cred);
359 write_unlock_irq(&tasklist_lock);
362 void __set_special_pids(struct pid *pid)
364 struct task_struct *curr = current->group_leader;
365 pid_t nr = pid_nr(pid);
367 if (task_session(curr) != pid) {
368 change_pid(curr, PIDTYPE_SID, pid);
369 set_task_session(curr, nr);
371 if (task_pgrp(curr) != pid) {
372 change_pid(curr, PIDTYPE_PGID, pid);
373 set_task_pgrp(curr, nr);
377 static void set_special_pids(struct pid *pid)
379 write_lock_irq(&tasklist_lock);
380 __set_special_pids(pid);
381 write_unlock_irq(&tasklist_lock);
385 * Let kernel threads use this to say that they
386 * allow a certain signal (since daemonize() will
387 * have disabled all of them by default).
389 int allow_signal(int sig)
391 if (!valid_signal(sig) || sig < 1)
392 return -EINVAL;
394 spin_lock_irq(&current->sighand->siglock);
395 sigdelset(&current->blocked, sig);
396 if (!current->mm) {
397 /* Kernel threads handle their own signals.
398 Let the signal code know it'll be handled, so
399 that they don't get converted to SIGKILL or
400 just silently dropped */
401 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
403 recalc_sigpending();
404 spin_unlock_irq(&current->sighand->siglock);
405 return 0;
408 EXPORT_SYMBOL(allow_signal);
410 int disallow_signal(int sig)
412 if (!valid_signal(sig) || sig < 1)
413 return -EINVAL;
415 spin_lock_irq(&current->sighand->siglock);
416 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
417 recalc_sigpending();
418 spin_unlock_irq(&current->sighand->siglock);
419 return 0;
422 EXPORT_SYMBOL(disallow_signal);
425 * Put all the gunge required to become a kernel thread without
426 * attached user resources in one place where it belongs.
429 void daemonize(const char *name, ...)
431 va_list args;
432 struct fs_struct *fs;
433 sigset_t blocked;
435 va_start(args, name);
436 vsnprintf(current->comm, sizeof(current->comm), name, args);
437 va_end(args);
440 * If we were started as result of loading a module, close all of the
441 * user space pages. We don't need them, and if we didn't close them
442 * they would be locked into memory.
444 exit_mm(current);
446 * We don't want to have TIF_FREEZE set if the system-wide hibernation
447 * or suspend transition begins right now.
449 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
451 if (current->nsproxy != &init_nsproxy) {
452 get_nsproxy(&init_nsproxy);
453 switch_task_namespaces(current, &init_nsproxy);
455 set_special_pids(&init_struct_pid);
456 proc_clear_tty(current);
458 /* Block and flush all signals */
459 sigfillset(&blocked);
460 sigprocmask(SIG_BLOCK, &blocked, NULL);
461 flush_signals(current);
463 /* Become as one with the init task */
465 exit_fs(current); /* current->fs->count--; */
466 fs = init_task.fs;
467 current->fs = fs;
468 atomic_inc(&fs->count);
470 exit_files(current);
471 current->files = init_task.files;
472 atomic_inc(&current->files->count);
474 reparent_to_kthreadd();
477 EXPORT_SYMBOL(daemonize);
479 static void close_files(struct files_struct * files)
481 int i, j;
482 struct fdtable *fdt;
484 j = 0;
487 * It is safe to dereference the fd table without RCU or
488 * ->file_lock because this is the last reference to the
489 * files structure.
491 fdt = files_fdtable(files);
492 for (;;) {
493 unsigned long set;
494 i = j * __NFDBITS;
495 if (i >= fdt->max_fds)
496 break;
497 set = fdt->open_fds->fds_bits[j++];
498 while (set) {
499 if (set & 1) {
500 struct file * file = xchg(&fdt->fd[i], NULL);
501 if (file) {
502 filp_close(file, files);
503 cond_resched();
506 i++;
507 set >>= 1;
512 struct files_struct *get_files_struct(struct task_struct *task)
514 struct files_struct *files;
516 task_lock(task);
517 files = task->files;
518 if (files)
519 atomic_inc(&files->count);
520 task_unlock(task);
522 return files;
525 void put_files_struct(struct files_struct *files)
527 struct fdtable *fdt;
529 if (atomic_dec_and_test(&files->count)) {
530 close_files(files);
532 * Free the fd and fdset arrays if we expanded them.
533 * If the fdtable was embedded, pass files for freeing
534 * at the end of the RCU grace period. Otherwise,
535 * you can free files immediately.
537 fdt = files_fdtable(files);
538 if (fdt != &files->fdtab)
539 kmem_cache_free(files_cachep, files);
540 free_fdtable(fdt);
544 void reset_files_struct(struct files_struct *files)
546 struct task_struct *tsk = current;
547 struct files_struct *old;
549 old = tsk->files;
550 task_lock(tsk);
551 tsk->files = files;
552 task_unlock(tsk);
553 put_files_struct(old);
556 void exit_files(struct task_struct *tsk)
558 struct files_struct * files = tsk->files;
560 if (files) {
561 task_lock(tsk);
562 tsk->files = NULL;
563 task_unlock(tsk);
564 put_files_struct(files);
568 void put_fs_struct(struct fs_struct *fs)
570 /* No need to hold fs->lock if we are killing it */
571 if (atomic_dec_and_test(&fs->count)) {
572 path_put(&fs->root);
573 path_put(&fs->pwd);
574 kmem_cache_free(fs_cachep, fs);
578 void exit_fs(struct task_struct *tsk)
580 struct fs_struct * fs = tsk->fs;
582 if (fs) {
583 task_lock(tsk);
584 tsk->fs = NULL;
585 task_unlock(tsk);
586 put_fs_struct(fs);
590 EXPORT_SYMBOL_GPL(exit_fs);
592 #ifdef CONFIG_MM_OWNER
594 * Task p is exiting and it owned mm, lets find a new owner for it
596 static inline int
597 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
600 * If there are other users of the mm and the owner (us) is exiting
601 * we need to find a new owner to take on the responsibility.
603 if (atomic_read(&mm->mm_users) <= 1)
604 return 0;
605 if (mm->owner != p)
606 return 0;
607 return 1;
610 void mm_update_next_owner(struct mm_struct *mm)
612 struct task_struct *c, *g, *p = current;
614 retry:
615 if (!mm_need_new_owner(mm, p))
616 return;
618 read_lock(&tasklist_lock);
620 * Search in the children
622 list_for_each_entry(c, &p->children, sibling) {
623 if (c->mm == mm)
624 goto assign_new_owner;
628 * Search in the siblings
630 list_for_each_entry(c, &p->parent->children, sibling) {
631 if (c->mm == mm)
632 goto assign_new_owner;
636 * Search through everything else. We should not get
637 * here often
639 do_each_thread(g, c) {
640 if (c->mm == mm)
641 goto assign_new_owner;
642 } while_each_thread(g, c);
644 read_unlock(&tasklist_lock);
646 * We found no owner yet mm_users > 1: this implies that we are
647 * most likely racing with swapoff (try_to_unuse()) or /proc or
648 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
650 mm->owner = NULL;
651 return;
653 assign_new_owner:
654 BUG_ON(c == p);
655 get_task_struct(c);
657 * The task_lock protects c->mm from changing.
658 * We always want mm->owner->mm == mm
660 task_lock(c);
662 * Delay read_unlock() till we have the task_lock()
663 * to ensure that c does not slip away underneath us
665 read_unlock(&tasklist_lock);
666 if (c->mm != mm) {
667 task_unlock(c);
668 put_task_struct(c);
669 goto retry;
671 mm->owner = c;
672 task_unlock(c);
673 put_task_struct(c);
675 #endif /* CONFIG_MM_OWNER */
678 * Turn us into a lazy TLB process if we
679 * aren't already..
681 static void exit_mm(struct task_struct * tsk)
683 struct mm_struct *mm = tsk->mm;
684 struct core_state *core_state;
686 mm_release(tsk, mm);
687 if (!mm)
688 return;
690 * Serialize with any possible pending coredump.
691 * We must hold mmap_sem around checking core_state
692 * and clearing tsk->mm. The core-inducing thread
693 * will increment ->nr_threads for each thread in the
694 * group with ->mm != NULL.
696 down_read(&mm->mmap_sem);
697 core_state = mm->core_state;
698 if (core_state) {
699 struct core_thread self;
700 up_read(&mm->mmap_sem);
702 self.task = tsk;
703 self.next = xchg(&core_state->dumper.next, &self);
705 * Implies mb(), the result of xchg() must be visible
706 * to core_state->dumper.
708 if (atomic_dec_and_test(&core_state->nr_threads))
709 complete(&core_state->startup);
711 for (;;) {
712 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
713 if (!self.task) /* see coredump_finish() */
714 break;
715 schedule();
717 __set_task_state(tsk, TASK_RUNNING);
718 down_read(&mm->mmap_sem);
720 atomic_inc(&mm->mm_count);
721 BUG_ON(mm != tsk->active_mm);
722 /* more a memory barrier than a real lock */
723 task_lock(tsk);
724 tsk->mm = NULL;
725 up_read(&mm->mmap_sem);
726 enter_lazy_tlb(mm, current);
727 /* We don't want this task to be frozen prematurely */
728 clear_freeze_flag(tsk);
729 task_unlock(tsk);
730 mm_update_next_owner(mm);
731 mmput(mm);
735 * Return nonzero if @parent's children should reap themselves.
737 * Called with write_lock_irq(&tasklist_lock) held.
739 static int ignoring_children(struct task_struct *parent)
741 int ret;
742 struct sighand_struct *psig = parent->sighand;
743 unsigned long flags;
744 spin_lock_irqsave(&psig->siglock, flags);
745 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
746 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
747 spin_unlock_irqrestore(&psig->siglock, flags);
748 return ret;
752 * Detach all tasks we were using ptrace on.
753 * Any that need to be release_task'd are put on the @dead list.
755 * Called with write_lock(&tasklist_lock) held.
757 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
759 struct task_struct *p, *n;
760 int ign = -1;
762 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
763 __ptrace_unlink(p);
765 if (p->exit_state != EXIT_ZOMBIE)
766 continue;
769 * If it's a zombie, our attachedness prevented normal
770 * parent notification or self-reaping. Do notification
771 * now if it would have happened earlier. If it should
772 * reap itself, add it to the @dead list. We can't call
773 * release_task() here because we already hold tasklist_lock.
775 * If it's our own child, there is no notification to do.
776 * But if our normal children self-reap, then this child
777 * was prevented by ptrace and we must reap it now.
779 if (!task_detached(p) && thread_group_empty(p)) {
780 if (!same_thread_group(p->real_parent, parent))
781 do_notify_parent(p, p->exit_signal);
782 else {
783 if (ign < 0)
784 ign = ignoring_children(parent);
785 if (ign)
786 p->exit_signal = -1;
790 if (task_detached(p)) {
792 * Mark it as in the process of being reaped.
794 p->exit_state = EXIT_DEAD;
795 list_add(&p->ptrace_entry, dead);
801 * Finish up exit-time ptrace cleanup.
803 * Called without locks.
805 static void ptrace_exit_finish(struct task_struct *parent,
806 struct list_head *dead)
808 struct task_struct *p, *n;
810 BUG_ON(!list_empty(&parent->ptraced));
812 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
813 list_del_init(&p->ptrace_entry);
814 release_task(p);
818 static void reparent_thread(struct task_struct *p, struct task_struct *father)
820 if (p->pdeath_signal)
821 /* We already hold the tasklist_lock here. */
822 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
824 list_move_tail(&p->sibling, &p->real_parent->children);
826 /* If this is a threaded reparent there is no need to
827 * notify anyone anything has happened.
829 if (same_thread_group(p->real_parent, father))
830 return;
832 /* We don't want people slaying init. */
833 if (!task_detached(p))
834 p->exit_signal = SIGCHLD;
836 /* If we'd notified the old parent about this child's death,
837 * also notify the new parent.
839 if (!ptrace_reparented(p) &&
840 p->exit_state == EXIT_ZOMBIE &&
841 !task_detached(p) && thread_group_empty(p))
842 do_notify_parent(p, p->exit_signal);
844 kill_orphaned_pgrp(p, father);
848 * When we die, we re-parent all our children.
849 * Try to give them to another thread in our thread
850 * group, and if no such member exists, give it to
851 * the child reaper process (ie "init") in our pid
852 * space.
854 static struct task_struct *find_new_reaper(struct task_struct *father)
856 struct pid_namespace *pid_ns = task_active_pid_ns(father);
857 struct task_struct *thread;
859 thread = father;
860 while_each_thread(father, thread) {
861 if (thread->flags & PF_EXITING)
862 continue;
863 if (unlikely(pid_ns->child_reaper == father))
864 pid_ns->child_reaper = thread;
865 return thread;
868 if (unlikely(pid_ns->child_reaper == father)) {
869 write_unlock_irq(&tasklist_lock);
870 if (unlikely(pid_ns == &init_pid_ns))
871 panic("Attempted to kill init!");
873 zap_pid_ns_processes(pid_ns);
874 write_lock_irq(&tasklist_lock);
876 * We can not clear ->child_reaper or leave it alone.
877 * There may by stealth EXIT_DEAD tasks on ->children,
878 * forget_original_parent() must move them somewhere.
880 pid_ns->child_reaper = init_pid_ns.child_reaper;
883 return pid_ns->child_reaper;
886 static void forget_original_parent(struct task_struct *father)
888 struct task_struct *p, *n, *reaper;
889 LIST_HEAD(ptrace_dead);
891 write_lock_irq(&tasklist_lock);
892 reaper = find_new_reaper(father);
894 * First clean up ptrace if we were using it.
896 ptrace_exit(father, &ptrace_dead);
898 list_for_each_entry_safe(p, n, &father->children, sibling) {
899 p->real_parent = reaper;
900 if (p->parent == father) {
901 BUG_ON(p->ptrace);
902 p->parent = p->real_parent;
904 reparent_thread(p, father);
907 write_unlock_irq(&tasklist_lock);
908 BUG_ON(!list_empty(&father->children));
910 ptrace_exit_finish(father, &ptrace_dead);
914 * Send signals to all our closest relatives so that they know
915 * to properly mourn us..
917 static void exit_notify(struct task_struct *tsk, int group_dead)
919 int signal;
920 void *cookie;
923 * This does two things:
925 * A. Make init inherit all the child processes
926 * B. Check to see if any process groups have become orphaned
927 * as a result of our exiting, and if they have any stopped
928 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
930 forget_original_parent(tsk);
931 exit_task_namespaces(tsk);
933 write_lock_irq(&tasklist_lock);
934 if (group_dead)
935 kill_orphaned_pgrp(tsk->group_leader, NULL);
937 /* Let father know we died
939 * Thread signals are configurable, but you aren't going to use
940 * that to send signals to arbitary processes.
941 * That stops right now.
943 * If the parent exec id doesn't match the exec id we saved
944 * when we started then we know the parent has changed security
945 * domain.
947 * If our self_exec id doesn't match our parent_exec_id then
948 * we have changed execution domain as these two values started
949 * the same after a fork.
951 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
952 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
953 tsk->self_exec_id != tsk->parent_exec_id) &&
954 !capable(CAP_KILL))
955 tsk->exit_signal = SIGCHLD;
957 signal = tracehook_notify_death(tsk, &cookie, group_dead);
958 if (signal >= 0)
959 signal = do_notify_parent(tsk, signal);
961 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
963 /* mt-exec, de_thread() is waiting for us */
964 if (thread_group_leader(tsk) &&
965 tsk->signal->group_exit_task &&
966 tsk->signal->notify_count < 0)
967 wake_up_process(tsk->signal->group_exit_task);
969 write_unlock_irq(&tasklist_lock);
971 tracehook_report_death(tsk, signal, cookie, group_dead);
973 /* If the process is dead, release it - nobody will wait for it */
974 if (signal == DEATH_REAP)
975 release_task(tsk);
978 #ifdef CONFIG_DEBUG_STACK_USAGE
979 static void check_stack_usage(void)
981 static DEFINE_SPINLOCK(low_water_lock);
982 static int lowest_to_date = THREAD_SIZE;
983 unsigned long *n = end_of_stack(current);
984 unsigned long free;
986 while (*n == 0)
987 n++;
988 free = (unsigned long)n - (unsigned long)end_of_stack(current);
990 if (free >= lowest_to_date)
991 return;
993 spin_lock(&low_water_lock);
994 if (free < lowest_to_date) {
995 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
996 "left\n",
997 current->comm, free);
998 lowest_to_date = free;
1000 spin_unlock(&low_water_lock);
1002 #else
1003 static inline void check_stack_usage(void) {}
1004 #endif
1006 NORET_TYPE void do_exit(long code)
1008 struct task_struct *tsk = current;
1009 int group_dead;
1011 profile_task_exit(tsk);
1013 WARN_ON(atomic_read(&tsk->fs_excl));
1015 if (unlikely(in_interrupt()))
1016 panic("Aiee, killing interrupt handler!");
1017 if (unlikely(!tsk->pid))
1018 panic("Attempted to kill the idle task!");
1020 tracehook_report_exit(&code);
1023 * We're taking recursive faults here in do_exit. Safest is to just
1024 * leave this task alone and wait for reboot.
1026 if (unlikely(tsk->flags & PF_EXITING)) {
1027 printk(KERN_ALERT
1028 "Fixing recursive fault but reboot is needed!\n");
1030 * We can do this unlocked here. The futex code uses
1031 * this flag just to verify whether the pi state
1032 * cleanup has been done or not. In the worst case it
1033 * loops once more. We pretend that the cleanup was
1034 * done as there is no way to return. Either the
1035 * OWNER_DIED bit is set by now or we push the blocked
1036 * task into the wait for ever nirwana as well.
1038 tsk->flags |= PF_EXITPIDONE;
1039 set_current_state(TASK_UNINTERRUPTIBLE);
1040 schedule();
1043 exit_signals(tsk); /* sets PF_EXITING */
1045 * tsk->flags are checked in the futex code to protect against
1046 * an exiting task cleaning up the robust pi futexes.
1048 smp_mb();
1049 spin_unlock_wait(&tsk->pi_lock);
1051 if (unlikely(in_atomic()))
1052 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1053 current->comm, task_pid_nr(current),
1054 preempt_count());
1056 acct_update_integrals(tsk);
1058 group_dead = atomic_dec_and_test(&tsk->signal->live);
1059 if (group_dead) {
1060 hrtimer_cancel(&tsk->signal->real_timer);
1061 exit_itimers(tsk->signal);
1063 acct_collect(code, group_dead);
1064 if (group_dead)
1065 tty_audit_exit();
1066 if (unlikely(tsk->audit_context))
1067 audit_free(tsk);
1069 tsk->exit_code = code;
1070 taskstats_exit(tsk, group_dead);
1072 exit_mm(tsk);
1074 if (group_dead)
1075 acct_process();
1076 trace_sched_process_exit(tsk);
1078 exit_sem(tsk);
1079 exit_files(tsk);
1080 exit_fs(tsk);
1081 check_stack_usage();
1082 exit_thread();
1083 cgroup_exit(tsk, 1);
1085 if (group_dead && tsk->signal->leader)
1086 disassociate_ctty(1);
1088 module_put(task_thread_info(tsk)->exec_domain->module);
1089 if (tsk->binfmt)
1090 module_put(tsk->binfmt->module);
1092 proc_exit_connector(tsk);
1093 exit_notify(tsk, group_dead);
1094 #ifdef CONFIG_NUMA
1095 mpol_put(tsk->mempolicy);
1096 tsk->mempolicy = NULL;
1097 #endif
1098 #ifdef CONFIG_FUTEX
1100 * This must happen late, after the PID is not
1101 * hashed anymore:
1103 if (unlikely(!list_empty(&tsk->pi_state_list)))
1104 exit_pi_state_list(tsk);
1105 if (unlikely(current->pi_state_cache))
1106 kfree(current->pi_state_cache);
1107 #endif
1109 * Make sure we are holding no locks:
1111 debug_check_no_locks_held(tsk);
1113 * We can do this unlocked here. The futex code uses this flag
1114 * just to verify whether the pi state cleanup has been done
1115 * or not. In the worst case it loops once more.
1117 tsk->flags |= PF_EXITPIDONE;
1119 if (tsk->io_context)
1120 exit_io_context();
1122 if (tsk->splice_pipe)
1123 __free_pipe_info(tsk->splice_pipe);
1125 preempt_disable();
1126 /* causes final put_task_struct in finish_task_switch(). */
1127 tsk->state = TASK_DEAD;
1128 schedule();
1129 BUG();
1130 /* Avoid "noreturn function does return". */
1131 for (;;)
1132 cpu_relax(); /* For when BUG is null */
1135 EXPORT_SYMBOL_GPL(do_exit);
1137 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1139 if (comp)
1140 complete(comp);
1142 do_exit(code);
1145 EXPORT_SYMBOL(complete_and_exit);
1147 SYSCALL_DEFINE1(exit, int, error_code)
1149 do_exit((error_code&0xff)<<8);
1153 * Take down every thread in the group. This is called by fatal signals
1154 * as well as by sys_exit_group (below).
1156 NORET_TYPE void
1157 do_group_exit(int exit_code)
1159 struct signal_struct *sig = current->signal;
1161 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1163 if (signal_group_exit(sig))
1164 exit_code = sig->group_exit_code;
1165 else if (!thread_group_empty(current)) {
1166 struct sighand_struct *const sighand = current->sighand;
1167 spin_lock_irq(&sighand->siglock);
1168 if (signal_group_exit(sig))
1169 /* Another thread got here before we took the lock. */
1170 exit_code = sig->group_exit_code;
1171 else {
1172 sig->group_exit_code = exit_code;
1173 sig->flags = SIGNAL_GROUP_EXIT;
1174 zap_other_threads(current);
1176 spin_unlock_irq(&sighand->siglock);
1179 do_exit(exit_code);
1180 /* NOTREACHED */
1184 * this kills every thread in the thread group. Note that any externally
1185 * wait4()-ing process will get the correct exit code - even if this
1186 * thread is not the thread group leader.
1188 SYSCALL_DEFINE1(exit_group, int, error_code)
1190 do_group_exit((error_code & 0xff) << 8);
1191 /* NOTREACHED */
1192 return 0;
1195 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1197 struct pid *pid = NULL;
1198 if (type == PIDTYPE_PID)
1199 pid = task->pids[type].pid;
1200 else if (type < PIDTYPE_MAX)
1201 pid = task->group_leader->pids[type].pid;
1202 return pid;
1205 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1206 struct task_struct *p)
1208 int err;
1210 if (type < PIDTYPE_MAX) {
1211 if (task_pid_type(p, type) != pid)
1212 return 0;
1215 /* Wait for all children (clone and not) if __WALL is set;
1216 * otherwise, wait for clone children *only* if __WCLONE is
1217 * set; otherwise, wait for non-clone children *only*. (Note:
1218 * A "clone" child here is one that reports to its parent
1219 * using a signal other than SIGCHLD.) */
1220 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1221 && !(options & __WALL))
1222 return 0;
1224 err = security_task_wait(p);
1225 if (err)
1226 return err;
1228 return 1;
1231 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1232 int why, int status,
1233 struct siginfo __user *infop,
1234 struct rusage __user *rusagep)
1236 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1238 put_task_struct(p);
1239 if (!retval)
1240 retval = put_user(SIGCHLD, &infop->si_signo);
1241 if (!retval)
1242 retval = put_user(0, &infop->si_errno);
1243 if (!retval)
1244 retval = put_user((short)why, &infop->si_code);
1245 if (!retval)
1246 retval = put_user(pid, &infop->si_pid);
1247 if (!retval)
1248 retval = put_user(uid, &infop->si_uid);
1249 if (!retval)
1250 retval = put_user(status, &infop->si_status);
1251 if (!retval)
1252 retval = pid;
1253 return retval;
1257 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1258 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1259 * the lock and this task is uninteresting. If we return nonzero, we have
1260 * released the lock and the system call should return.
1262 static int wait_task_zombie(struct task_struct *p, int options,
1263 struct siginfo __user *infop,
1264 int __user *stat_addr, struct rusage __user *ru)
1266 unsigned long state;
1267 int retval, status, traced;
1268 pid_t pid = task_pid_vnr(p);
1269 uid_t uid = __task_cred(p)->uid;
1271 if (!likely(options & WEXITED))
1272 return 0;
1274 if (unlikely(options & WNOWAIT)) {
1275 int exit_code = p->exit_code;
1276 int why, status;
1278 get_task_struct(p);
1279 read_unlock(&tasklist_lock);
1280 if ((exit_code & 0x7f) == 0) {
1281 why = CLD_EXITED;
1282 status = exit_code >> 8;
1283 } else {
1284 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1285 status = exit_code & 0x7f;
1287 return wait_noreap_copyout(p, pid, uid, why,
1288 status, infop, ru);
1292 * Try to move the task's state to DEAD
1293 * only one thread is allowed to do this:
1295 state = xchg(&p->exit_state, EXIT_DEAD);
1296 if (state != EXIT_ZOMBIE) {
1297 BUG_ON(state != EXIT_DEAD);
1298 return 0;
1301 traced = ptrace_reparented(p);
1303 if (likely(!traced)) {
1304 struct signal_struct *psig;
1305 struct signal_struct *sig;
1306 struct task_cputime cputime;
1309 * The resource counters for the group leader are in its
1310 * own task_struct. Those for dead threads in the group
1311 * are in its signal_struct, as are those for the child
1312 * processes it has previously reaped. All these
1313 * accumulate in the parent's signal_struct c* fields.
1315 * We don't bother to take a lock here to protect these
1316 * p->signal fields, because they are only touched by
1317 * __exit_signal, which runs with tasklist_lock
1318 * write-locked anyway, and so is excluded here. We do
1319 * need to protect the access to p->parent->signal fields,
1320 * as other threads in the parent group can be right
1321 * here reaping other children at the same time.
1323 * We use thread_group_cputime() to get times for the thread
1324 * group, which consolidates times for all threads in the
1325 * group including the group leader.
1327 thread_group_cputime(p, &cputime);
1328 spin_lock_irq(&p->parent->sighand->siglock);
1329 psig = p->parent->signal;
1330 sig = p->signal;
1331 psig->cutime =
1332 cputime_add(psig->cutime,
1333 cputime_add(cputime.utime,
1334 sig->cutime));
1335 psig->cstime =
1336 cputime_add(psig->cstime,
1337 cputime_add(cputime.stime,
1338 sig->cstime));
1339 psig->cgtime =
1340 cputime_add(psig->cgtime,
1341 cputime_add(p->gtime,
1342 cputime_add(sig->gtime,
1343 sig->cgtime)));
1344 psig->cmin_flt +=
1345 p->min_flt + sig->min_flt + sig->cmin_flt;
1346 psig->cmaj_flt +=
1347 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1348 psig->cnvcsw +=
1349 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1350 psig->cnivcsw +=
1351 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1352 psig->cinblock +=
1353 task_io_get_inblock(p) +
1354 sig->inblock + sig->cinblock;
1355 psig->coublock +=
1356 task_io_get_oublock(p) +
1357 sig->oublock + sig->coublock;
1358 task_io_accounting_add(&psig->ioac, &p->ioac);
1359 task_io_accounting_add(&psig->ioac, &sig->ioac);
1360 spin_unlock_irq(&p->parent->sighand->siglock);
1364 * Now we are sure this task is interesting, and no other
1365 * thread can reap it because we set its state to EXIT_DEAD.
1367 read_unlock(&tasklist_lock);
1369 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1370 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1371 ? p->signal->group_exit_code : p->exit_code;
1372 if (!retval && stat_addr)
1373 retval = put_user(status, stat_addr);
1374 if (!retval && infop)
1375 retval = put_user(SIGCHLD, &infop->si_signo);
1376 if (!retval && infop)
1377 retval = put_user(0, &infop->si_errno);
1378 if (!retval && infop) {
1379 int why;
1381 if ((status & 0x7f) == 0) {
1382 why = CLD_EXITED;
1383 status >>= 8;
1384 } else {
1385 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1386 status &= 0x7f;
1388 retval = put_user((short)why, &infop->si_code);
1389 if (!retval)
1390 retval = put_user(status, &infop->si_status);
1392 if (!retval && infop)
1393 retval = put_user(pid, &infop->si_pid);
1394 if (!retval && infop)
1395 retval = put_user(uid, &infop->si_uid);
1396 if (!retval)
1397 retval = pid;
1399 if (traced) {
1400 write_lock_irq(&tasklist_lock);
1401 /* We dropped tasklist, ptracer could die and untrace */
1402 ptrace_unlink(p);
1404 * If this is not a detached task, notify the parent.
1405 * If it's still not detached after that, don't release
1406 * it now.
1408 if (!task_detached(p)) {
1409 do_notify_parent(p, p->exit_signal);
1410 if (!task_detached(p)) {
1411 p->exit_state = EXIT_ZOMBIE;
1412 p = NULL;
1415 write_unlock_irq(&tasklist_lock);
1417 if (p != NULL)
1418 release_task(p);
1420 return retval;
1424 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1425 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1426 * the lock and this task is uninteresting. If we return nonzero, we have
1427 * released the lock and the system call should return.
1429 static int wait_task_stopped(int ptrace, struct task_struct *p,
1430 int options, struct siginfo __user *infop,
1431 int __user *stat_addr, struct rusage __user *ru)
1433 int retval, exit_code, why;
1434 uid_t uid = 0; /* unneeded, required by compiler */
1435 pid_t pid;
1437 if (!(options & WUNTRACED))
1438 return 0;
1440 exit_code = 0;
1441 spin_lock_irq(&p->sighand->siglock);
1443 if (unlikely(!task_is_stopped_or_traced(p)))
1444 goto unlock_sig;
1446 if (!ptrace && p->signal->group_stop_count > 0)
1448 * A group stop is in progress and this is the group leader.
1449 * We won't report until all threads have stopped.
1451 goto unlock_sig;
1453 exit_code = p->exit_code;
1454 if (!exit_code)
1455 goto unlock_sig;
1457 if (!unlikely(options & WNOWAIT))
1458 p->exit_code = 0;
1460 /* don't need the RCU readlock here as we're holding a spinlock */
1461 uid = __task_cred(p)->uid;
1462 unlock_sig:
1463 spin_unlock_irq(&p->sighand->siglock);
1464 if (!exit_code)
1465 return 0;
1468 * Now we are pretty sure this task is interesting.
1469 * Make sure it doesn't get reaped out from under us while we
1470 * give up the lock and then examine it below. We don't want to
1471 * keep holding onto the tasklist_lock while we call getrusage and
1472 * possibly take page faults for user memory.
1474 get_task_struct(p);
1475 pid = task_pid_vnr(p);
1476 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1477 read_unlock(&tasklist_lock);
1479 if (unlikely(options & WNOWAIT))
1480 return wait_noreap_copyout(p, pid, uid,
1481 why, exit_code,
1482 infop, ru);
1484 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1485 if (!retval && stat_addr)
1486 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1487 if (!retval && infop)
1488 retval = put_user(SIGCHLD, &infop->si_signo);
1489 if (!retval && infop)
1490 retval = put_user(0, &infop->si_errno);
1491 if (!retval && infop)
1492 retval = put_user((short)why, &infop->si_code);
1493 if (!retval && infop)
1494 retval = put_user(exit_code, &infop->si_status);
1495 if (!retval && infop)
1496 retval = put_user(pid, &infop->si_pid);
1497 if (!retval && infop)
1498 retval = put_user(uid, &infop->si_uid);
1499 if (!retval)
1500 retval = pid;
1501 put_task_struct(p);
1503 BUG_ON(!retval);
1504 return retval;
1508 * Handle do_wait work for one task in a live, non-stopped state.
1509 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1510 * the lock and this task is uninteresting. If we return nonzero, we have
1511 * released the lock and the system call should return.
1513 static int wait_task_continued(struct task_struct *p, int options,
1514 struct siginfo __user *infop,
1515 int __user *stat_addr, struct rusage __user *ru)
1517 int retval;
1518 pid_t pid;
1519 uid_t uid;
1521 if (!unlikely(options & WCONTINUED))
1522 return 0;
1524 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1525 return 0;
1527 spin_lock_irq(&p->sighand->siglock);
1528 /* Re-check with the lock held. */
1529 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1530 spin_unlock_irq(&p->sighand->siglock);
1531 return 0;
1533 if (!unlikely(options & WNOWAIT))
1534 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1535 uid = __task_cred(p)->uid;
1536 spin_unlock_irq(&p->sighand->siglock);
1538 pid = task_pid_vnr(p);
1539 get_task_struct(p);
1540 read_unlock(&tasklist_lock);
1542 if (!infop) {
1543 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1544 put_task_struct(p);
1545 if (!retval && stat_addr)
1546 retval = put_user(0xffff, stat_addr);
1547 if (!retval)
1548 retval = pid;
1549 } else {
1550 retval = wait_noreap_copyout(p, pid, uid,
1551 CLD_CONTINUED, SIGCONT,
1552 infop, ru);
1553 BUG_ON(retval == 0);
1556 return retval;
1560 * Consider @p for a wait by @parent.
1562 * -ECHILD should be in *@notask_error before the first call.
1563 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1564 * Returns zero if the search for a child should continue;
1565 * then *@notask_error is 0 if @p is an eligible child,
1566 * or another error from security_task_wait(), or still -ECHILD.
1568 static int wait_consider_task(struct task_struct *parent, int ptrace,
1569 struct task_struct *p, int *notask_error,
1570 enum pid_type type, struct pid *pid, int options,
1571 struct siginfo __user *infop,
1572 int __user *stat_addr, struct rusage __user *ru)
1574 int ret = eligible_child(type, pid, options, p);
1575 if (!ret)
1576 return ret;
1578 if (unlikely(ret < 0)) {
1580 * If we have not yet seen any eligible child,
1581 * then let this error code replace -ECHILD.
1582 * A permission error will give the user a clue
1583 * to look for security policy problems, rather
1584 * than for mysterious wait bugs.
1586 if (*notask_error)
1587 *notask_error = ret;
1590 if (likely(!ptrace) && unlikely(p->ptrace)) {
1592 * This child is hidden by ptrace.
1593 * We aren't allowed to see it now, but eventually we will.
1595 *notask_error = 0;
1596 return 0;
1599 if (p->exit_state == EXIT_DEAD)
1600 return 0;
1603 * We don't reap group leaders with subthreads.
1605 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1606 return wait_task_zombie(p, options, infop, stat_addr, ru);
1609 * It's stopped or running now, so it might
1610 * later continue, exit, or stop again.
1612 *notask_error = 0;
1614 if (task_is_stopped_or_traced(p))
1615 return wait_task_stopped(ptrace, p, options,
1616 infop, stat_addr, ru);
1618 return wait_task_continued(p, options, infop, stat_addr, ru);
1622 * Do the work of do_wait() for one thread in the group, @tsk.
1624 * -ECHILD should be in *@notask_error before the first call.
1625 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1626 * Returns zero if the search for a child should continue; then
1627 * *@notask_error is 0 if there were any eligible children,
1628 * or another error from security_task_wait(), or still -ECHILD.
1630 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1631 enum pid_type type, struct pid *pid, int options,
1632 struct siginfo __user *infop, int __user *stat_addr,
1633 struct rusage __user *ru)
1635 struct task_struct *p;
1637 list_for_each_entry(p, &tsk->children, sibling) {
1639 * Do not consider detached threads.
1641 if (!task_detached(p)) {
1642 int ret = wait_consider_task(tsk, 0, p, notask_error,
1643 type, pid, options,
1644 infop, stat_addr, ru);
1645 if (ret)
1646 return ret;
1650 return 0;
1653 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1654 enum pid_type type, struct pid *pid, int options,
1655 struct siginfo __user *infop, int __user *stat_addr,
1656 struct rusage __user *ru)
1658 struct task_struct *p;
1661 * Traditionally we see ptrace'd stopped tasks regardless of options.
1663 options |= WUNTRACED;
1665 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1666 int ret = wait_consider_task(tsk, 1, p, notask_error,
1667 type, pid, options,
1668 infop, stat_addr, ru);
1669 if (ret)
1670 return ret;
1673 return 0;
1676 static long do_wait(enum pid_type type, struct pid *pid, int options,
1677 struct siginfo __user *infop, int __user *stat_addr,
1678 struct rusage __user *ru)
1680 DECLARE_WAITQUEUE(wait, current);
1681 struct task_struct *tsk;
1682 int retval;
1684 trace_sched_process_wait(pid);
1686 add_wait_queue(&current->signal->wait_chldexit,&wait);
1687 repeat:
1689 * If there is nothing that can match our critiera just get out.
1690 * We will clear @retval to zero if we see any child that might later
1691 * match our criteria, even if we are not able to reap it yet.
1693 retval = -ECHILD;
1694 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1695 goto end;
1697 current->state = TASK_INTERRUPTIBLE;
1698 read_lock(&tasklist_lock);
1699 tsk = current;
1700 do {
1701 int tsk_result = do_wait_thread(tsk, &retval,
1702 type, pid, options,
1703 infop, stat_addr, ru);
1704 if (!tsk_result)
1705 tsk_result = ptrace_do_wait(tsk, &retval,
1706 type, pid, options,
1707 infop, stat_addr, ru);
1708 if (tsk_result) {
1710 * tasklist_lock is unlocked and we have a final result.
1712 retval = tsk_result;
1713 goto end;
1716 if (options & __WNOTHREAD)
1717 break;
1718 tsk = next_thread(tsk);
1719 BUG_ON(tsk->signal != current->signal);
1720 } while (tsk != current);
1721 read_unlock(&tasklist_lock);
1723 if (!retval && !(options & WNOHANG)) {
1724 retval = -ERESTARTSYS;
1725 if (!signal_pending(current)) {
1726 schedule();
1727 goto repeat;
1731 end:
1732 current->state = TASK_RUNNING;
1733 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1734 if (infop) {
1735 if (retval > 0)
1736 retval = 0;
1737 else {
1739 * For a WNOHANG return, clear out all the fields
1740 * we would set so the user can easily tell the
1741 * difference.
1743 if (!retval)
1744 retval = put_user(0, &infop->si_signo);
1745 if (!retval)
1746 retval = put_user(0, &infop->si_errno);
1747 if (!retval)
1748 retval = put_user(0, &infop->si_code);
1749 if (!retval)
1750 retval = put_user(0, &infop->si_pid);
1751 if (!retval)
1752 retval = put_user(0, &infop->si_uid);
1753 if (!retval)
1754 retval = put_user(0, &infop->si_status);
1757 return retval;
1760 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1761 infop, int, options, struct rusage __user *, ru)
1763 struct pid *pid = NULL;
1764 enum pid_type type;
1765 long ret;
1767 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1768 return -EINVAL;
1769 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1770 return -EINVAL;
1772 switch (which) {
1773 case P_ALL:
1774 type = PIDTYPE_MAX;
1775 break;
1776 case P_PID:
1777 type = PIDTYPE_PID;
1778 if (upid <= 0)
1779 return -EINVAL;
1780 break;
1781 case P_PGID:
1782 type = PIDTYPE_PGID;
1783 if (upid <= 0)
1784 return -EINVAL;
1785 break;
1786 default:
1787 return -EINVAL;
1790 if (type < PIDTYPE_MAX)
1791 pid = find_get_pid(upid);
1792 ret = do_wait(type, pid, options, infop, NULL, ru);
1793 put_pid(pid);
1795 /* avoid REGPARM breakage on x86: */
1796 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1797 return ret;
1800 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1801 int, options, struct rusage __user *, ru)
1803 struct pid *pid = NULL;
1804 enum pid_type type;
1805 long ret;
1807 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1808 __WNOTHREAD|__WCLONE|__WALL))
1809 return -EINVAL;
1811 if (upid == -1)
1812 type = PIDTYPE_MAX;
1813 else if (upid < 0) {
1814 type = PIDTYPE_PGID;
1815 pid = find_get_pid(-upid);
1816 } else if (upid == 0) {
1817 type = PIDTYPE_PGID;
1818 pid = get_pid(task_pgrp(current));
1819 } else /* upid > 0 */ {
1820 type = PIDTYPE_PID;
1821 pid = find_get_pid(upid);
1824 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1825 put_pid(pid);
1827 /* avoid REGPARM breakage on x86: */
1828 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1829 return ret;
1832 #ifdef __ARCH_WANT_SYS_WAITPID
1835 * sys_waitpid() remains for compatibility. waitpid() should be
1836 * implemented by calling sys_wait4() from libc.a.
1838 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1840 return sys_wait4(pid, stat_addr, options, NULL);
1843 #endif