2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
6 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
8 return container_of(rt_se
, struct task_struct
, rt
);
11 #ifdef CONFIG_RT_GROUP_SCHED
13 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
18 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
23 #else /* CONFIG_RT_GROUP_SCHED */
25 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
27 return container_of(rt_rq
, struct rq
, rt
);
30 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
32 struct task_struct
*p
= rt_task_of(rt_se
);
33 struct rq
*rq
= task_rq(p
);
38 #endif /* CONFIG_RT_GROUP_SCHED */
42 static inline int rt_overloaded(struct rq
*rq
)
44 return atomic_read(&rq
->rd
->rto_count
);
47 static inline void rt_set_overload(struct rq
*rq
)
52 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
54 * Make sure the mask is visible before we set
55 * the overload count. That is checked to determine
56 * if we should look at the mask. It would be a shame
57 * if we looked at the mask, but the mask was not
61 atomic_inc(&rq
->rd
->rto_count
);
64 static inline void rt_clear_overload(struct rq
*rq
)
69 /* the order here really doesn't matter */
70 atomic_dec(&rq
->rd
->rto_count
);
71 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
74 static void update_rt_migration(struct rt_rq
*rt_rq
)
76 if (rt_rq
->rt_nr_migratory
&& (rt_rq
->rt_nr_running
> 1)) {
77 if (!rt_rq
->overloaded
) {
78 rt_set_overload(rq_of_rt_rq(rt_rq
));
79 rt_rq
->overloaded
= 1;
81 } else if (rt_rq
->overloaded
) {
82 rt_clear_overload(rq_of_rt_rq(rt_rq
));
83 rt_rq
->overloaded
= 0;
87 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
89 if (rt_se
->nr_cpus_allowed
> 1)
90 rt_rq
->rt_nr_migratory
++;
92 update_rt_migration(rt_rq
);
95 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
97 if (rt_se
->nr_cpus_allowed
> 1)
98 rt_rq
->rt_nr_migratory
--;
100 update_rt_migration(rt_rq
);
103 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
105 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
106 plist_node_init(&p
->pushable_tasks
, p
->prio
);
107 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
110 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
112 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
117 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
121 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
126 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
131 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
135 #endif /* CONFIG_SMP */
137 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
139 return !list_empty(&rt_se
->run_list
);
142 #ifdef CONFIG_RT_GROUP_SCHED
144 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
149 return rt_rq
->rt_runtime
;
152 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
154 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
157 #define for_each_leaf_rt_rq(rt_rq, rq) \
158 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
160 #define for_each_sched_rt_entity(rt_se) \
161 for (; rt_se; rt_se = rt_se->parent)
163 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
168 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
);
169 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
171 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
173 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
174 struct sched_rt_entity
*rt_se
= rt_rq
->rt_se
;
176 if (rt_rq
->rt_nr_running
) {
177 if (rt_se
&& !on_rt_rq(rt_se
))
178 enqueue_rt_entity(rt_se
);
179 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
184 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
186 struct sched_rt_entity
*rt_se
= rt_rq
->rt_se
;
188 if (rt_se
&& on_rt_rq(rt_se
))
189 dequeue_rt_entity(rt_se
);
192 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
194 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
197 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
199 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
200 struct task_struct
*p
;
203 return !!rt_rq
->rt_nr_boosted
;
205 p
= rt_task_of(rt_se
);
206 return p
->prio
!= p
->normal_prio
;
210 static inline const struct cpumask
*sched_rt_period_mask(void)
212 return cpu_rq(smp_processor_id())->rd
->span
;
215 static inline const struct cpumask
*sched_rt_period_mask(void)
217 return cpu_online_mask
;
222 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
224 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
227 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
229 return &rt_rq
->tg
->rt_bandwidth
;
232 #else /* !CONFIG_RT_GROUP_SCHED */
234 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
236 return rt_rq
->rt_runtime
;
239 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
241 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
244 #define for_each_leaf_rt_rq(rt_rq, rq) \
245 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
247 #define for_each_sched_rt_entity(rt_se) \
248 for (; rt_se; rt_se = NULL)
250 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
255 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
257 if (rt_rq
->rt_nr_running
)
258 resched_task(rq_of_rt_rq(rt_rq
)->curr
);
261 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
265 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
267 return rt_rq
->rt_throttled
;
270 static inline const struct cpumask
*sched_rt_period_mask(void)
272 return cpu_online_mask
;
276 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
278 return &cpu_rq(cpu
)->rt
;
281 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
283 return &def_rt_bandwidth
;
286 #endif /* CONFIG_RT_GROUP_SCHED */
290 * We ran out of runtime, see if we can borrow some from our neighbours.
292 static int do_balance_runtime(struct rt_rq
*rt_rq
)
294 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
295 struct root_domain
*rd
= cpu_rq(smp_processor_id())->rd
;
296 int i
, weight
, more
= 0;
299 weight
= cpumask_weight(rd
->span
);
301 spin_lock(&rt_b
->rt_runtime_lock
);
302 rt_period
= ktime_to_ns(rt_b
->rt_period
);
303 for_each_cpu(i
, rd
->span
) {
304 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
310 spin_lock(&iter
->rt_runtime_lock
);
312 * Either all rqs have inf runtime and there's nothing to steal
313 * or __disable_runtime() below sets a specific rq to inf to
314 * indicate its been disabled and disalow stealing.
316 if (iter
->rt_runtime
== RUNTIME_INF
)
320 * From runqueues with spare time, take 1/n part of their
321 * spare time, but no more than our period.
323 diff
= iter
->rt_runtime
- iter
->rt_time
;
325 diff
= div_u64((u64
)diff
, weight
);
326 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
327 diff
= rt_period
- rt_rq
->rt_runtime
;
328 iter
->rt_runtime
-= diff
;
329 rt_rq
->rt_runtime
+= diff
;
331 if (rt_rq
->rt_runtime
== rt_period
) {
332 spin_unlock(&iter
->rt_runtime_lock
);
337 spin_unlock(&iter
->rt_runtime_lock
);
339 spin_unlock(&rt_b
->rt_runtime_lock
);
345 * Ensure this RQ takes back all the runtime it lend to its neighbours.
347 static void __disable_runtime(struct rq
*rq
)
349 struct root_domain
*rd
= rq
->rd
;
352 if (unlikely(!scheduler_running
))
355 for_each_leaf_rt_rq(rt_rq
, rq
) {
356 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
360 spin_lock(&rt_b
->rt_runtime_lock
);
361 spin_lock(&rt_rq
->rt_runtime_lock
);
363 * Either we're all inf and nobody needs to borrow, or we're
364 * already disabled and thus have nothing to do, or we have
365 * exactly the right amount of runtime to take out.
367 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
368 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
370 spin_unlock(&rt_rq
->rt_runtime_lock
);
373 * Calculate the difference between what we started out with
374 * and what we current have, that's the amount of runtime
375 * we lend and now have to reclaim.
377 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
380 * Greedy reclaim, take back as much as we can.
382 for_each_cpu(i
, rd
->span
) {
383 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
387 * Can't reclaim from ourselves or disabled runqueues.
389 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
392 spin_lock(&iter
->rt_runtime_lock
);
394 diff
= min_t(s64
, iter
->rt_runtime
, want
);
395 iter
->rt_runtime
-= diff
;
398 iter
->rt_runtime
-= want
;
401 spin_unlock(&iter
->rt_runtime_lock
);
407 spin_lock(&rt_rq
->rt_runtime_lock
);
409 * We cannot be left wanting - that would mean some runtime
410 * leaked out of the system.
415 * Disable all the borrow logic by pretending we have inf
416 * runtime - in which case borrowing doesn't make sense.
418 rt_rq
->rt_runtime
= RUNTIME_INF
;
419 spin_unlock(&rt_rq
->rt_runtime_lock
);
420 spin_unlock(&rt_b
->rt_runtime_lock
);
424 static void disable_runtime(struct rq
*rq
)
428 spin_lock_irqsave(&rq
->lock
, flags
);
429 __disable_runtime(rq
);
430 spin_unlock_irqrestore(&rq
->lock
, flags
);
433 static void __enable_runtime(struct rq
*rq
)
437 if (unlikely(!scheduler_running
))
441 * Reset each runqueue's bandwidth settings
443 for_each_leaf_rt_rq(rt_rq
, rq
) {
444 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
446 spin_lock(&rt_b
->rt_runtime_lock
);
447 spin_lock(&rt_rq
->rt_runtime_lock
);
448 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
450 rt_rq
->rt_throttled
= 0;
451 spin_unlock(&rt_rq
->rt_runtime_lock
);
452 spin_unlock(&rt_b
->rt_runtime_lock
);
456 static void enable_runtime(struct rq
*rq
)
460 spin_lock_irqsave(&rq
->lock
, flags
);
461 __enable_runtime(rq
);
462 spin_unlock_irqrestore(&rq
->lock
, flags
);
465 static int balance_runtime(struct rt_rq
*rt_rq
)
469 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
470 spin_unlock(&rt_rq
->rt_runtime_lock
);
471 more
= do_balance_runtime(rt_rq
);
472 spin_lock(&rt_rq
->rt_runtime_lock
);
477 #else /* !CONFIG_SMP */
478 static inline int balance_runtime(struct rt_rq
*rt_rq
)
482 #endif /* CONFIG_SMP */
484 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
487 const struct cpumask
*span
;
489 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
492 span
= sched_rt_period_mask();
493 for_each_cpu(i
, span
) {
495 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
496 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
498 spin_lock(&rq
->lock
);
499 if (rt_rq
->rt_time
) {
502 spin_lock(&rt_rq
->rt_runtime_lock
);
503 if (rt_rq
->rt_throttled
)
504 balance_runtime(rt_rq
);
505 runtime
= rt_rq
->rt_runtime
;
506 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
507 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
508 rt_rq
->rt_throttled
= 0;
511 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
513 spin_unlock(&rt_rq
->rt_runtime_lock
);
514 } else if (rt_rq
->rt_nr_running
)
518 sched_rt_rq_enqueue(rt_rq
);
519 spin_unlock(&rq
->lock
);
525 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
527 #ifdef CONFIG_RT_GROUP_SCHED
528 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
531 return rt_rq
->highest_prio
.curr
;
534 return rt_task_of(rt_se
)->prio
;
537 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
539 u64 runtime
= sched_rt_runtime(rt_rq
);
541 if (rt_rq
->rt_throttled
)
542 return rt_rq_throttled(rt_rq
);
544 if (sched_rt_runtime(rt_rq
) >= sched_rt_period(rt_rq
))
547 balance_runtime(rt_rq
);
548 runtime
= sched_rt_runtime(rt_rq
);
549 if (runtime
== RUNTIME_INF
)
552 if (rt_rq
->rt_time
> runtime
) {
553 rt_rq
->rt_throttled
= 1;
554 if (rt_rq_throttled(rt_rq
)) {
555 sched_rt_rq_dequeue(rt_rq
);
564 * Update the current task's runtime statistics. Skip current tasks that
565 * are not in our scheduling class.
567 static void update_curr_rt(struct rq
*rq
)
569 struct task_struct
*curr
= rq
->curr
;
570 struct sched_rt_entity
*rt_se
= &curr
->rt
;
571 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
574 if (!task_has_rt_policy(curr
))
577 delta_exec
= rq
->clock
- curr
->se
.exec_start
;
578 if (unlikely((s64
)delta_exec
< 0))
581 schedstat_set(curr
->se
.exec_max
, max(curr
->se
.exec_max
, delta_exec
));
583 curr
->se
.sum_exec_runtime
+= delta_exec
;
584 account_group_exec_runtime(curr
, delta_exec
);
586 curr
->se
.exec_start
= rq
->clock
;
587 cpuacct_charge(curr
, delta_exec
);
589 if (!rt_bandwidth_enabled())
592 for_each_sched_rt_entity(rt_se
) {
593 rt_rq
= rt_rq_of_se(rt_se
);
595 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
596 spin_lock(&rt_rq
->rt_runtime_lock
);
597 rt_rq
->rt_time
+= delta_exec
;
598 if (sched_rt_runtime_exceeded(rt_rq
))
600 spin_unlock(&rt_rq
->rt_runtime_lock
);
605 #if defined CONFIG_SMP
607 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
);
609 static inline int next_prio(struct rq
*rq
)
611 struct task_struct
*next
= pick_next_highest_task_rt(rq
, rq
->cpu
);
613 if (next
&& rt_prio(next
->prio
))
620 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
622 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
624 if (prio
< prev_prio
) {
627 * If the new task is higher in priority than anything on the
628 * run-queue, we know that the previous high becomes our
631 rt_rq
->highest_prio
.next
= prev_prio
;
634 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
636 } else if (prio
== rt_rq
->highest_prio
.curr
)
638 * If the next task is equal in priority to the highest on
639 * the run-queue, then we implicitly know that the next highest
640 * task cannot be any lower than current
642 rt_rq
->highest_prio
.next
= prio
;
643 else if (prio
< rt_rq
->highest_prio
.next
)
645 * Otherwise, we need to recompute next-highest
647 rt_rq
->highest_prio
.next
= next_prio(rq
);
651 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
653 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
655 if (rt_rq
->rt_nr_running
&& (prio
<= rt_rq
->highest_prio
.next
))
656 rt_rq
->highest_prio
.next
= next_prio(rq
);
658 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
659 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
662 #else /* CONFIG_SMP */
665 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
667 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
669 #endif /* CONFIG_SMP */
671 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
673 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
675 int prev_prio
= rt_rq
->highest_prio
.curr
;
677 if (prio
< prev_prio
)
678 rt_rq
->highest_prio
.curr
= prio
;
680 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
684 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
686 int prev_prio
= rt_rq
->highest_prio
.curr
;
688 if (rt_rq
->rt_nr_running
) {
690 WARN_ON(prio
< prev_prio
);
693 * This may have been our highest task, and therefore
694 * we may have some recomputation to do
696 if (prio
== prev_prio
) {
697 struct rt_prio_array
*array
= &rt_rq
->active
;
699 rt_rq
->highest_prio
.curr
=
700 sched_find_first_bit(array
->bitmap
);
704 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
706 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
711 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
712 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
714 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
716 #ifdef CONFIG_RT_GROUP_SCHED
719 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
721 if (rt_se_boosted(rt_se
))
722 rt_rq
->rt_nr_boosted
++;
725 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
729 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
731 if (rt_se_boosted(rt_se
))
732 rt_rq
->rt_nr_boosted
--;
734 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
737 #else /* CONFIG_RT_GROUP_SCHED */
740 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
742 start_rt_bandwidth(&def_rt_bandwidth
);
746 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
748 #endif /* CONFIG_RT_GROUP_SCHED */
751 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
753 int prio
= rt_se_prio(rt_se
);
755 WARN_ON(!rt_prio(prio
));
756 rt_rq
->rt_nr_running
++;
758 inc_rt_prio(rt_rq
, prio
);
759 inc_rt_migration(rt_se
, rt_rq
);
760 inc_rt_group(rt_se
, rt_rq
);
764 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
766 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
767 WARN_ON(!rt_rq
->rt_nr_running
);
768 rt_rq
->rt_nr_running
--;
770 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
771 dec_rt_migration(rt_se
, rt_rq
);
772 dec_rt_group(rt_se
, rt_rq
);
775 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
)
777 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
778 struct rt_prio_array
*array
= &rt_rq
->active
;
779 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
780 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
783 * Don't enqueue the group if its throttled, or when empty.
784 * The latter is a consequence of the former when a child group
785 * get throttled and the current group doesn't have any other
788 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
))
791 list_add_tail(&rt_se
->run_list
, queue
);
792 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
794 inc_rt_tasks(rt_se
, rt_rq
);
797 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
799 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
800 struct rt_prio_array
*array
= &rt_rq
->active
;
802 list_del_init(&rt_se
->run_list
);
803 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
804 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
806 dec_rt_tasks(rt_se
, rt_rq
);
810 * Because the prio of an upper entry depends on the lower
811 * entries, we must remove entries top - down.
813 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
)
815 struct sched_rt_entity
*back
= NULL
;
817 for_each_sched_rt_entity(rt_se
) {
822 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
824 __dequeue_rt_entity(rt_se
);
828 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
)
830 dequeue_rt_stack(rt_se
);
831 for_each_sched_rt_entity(rt_se
)
832 __enqueue_rt_entity(rt_se
);
835 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
837 dequeue_rt_stack(rt_se
);
839 for_each_sched_rt_entity(rt_se
) {
840 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
842 if (rt_rq
&& rt_rq
->rt_nr_running
)
843 __enqueue_rt_entity(rt_se
);
848 * Adding/removing a task to/from a priority array:
850 static void enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
852 struct sched_rt_entity
*rt_se
= &p
->rt
;
857 enqueue_rt_entity(rt_se
);
859 if (!task_current(rq
, p
) && p
->rt
.nr_cpus_allowed
> 1)
860 enqueue_pushable_task(rq
, p
);
862 inc_cpu_load(rq
, p
->se
.load
.weight
);
865 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int sleep
)
867 struct sched_rt_entity
*rt_se
= &p
->rt
;
870 dequeue_rt_entity(rt_se
);
872 dequeue_pushable_task(rq
, p
);
874 dec_cpu_load(rq
, p
->se
.load
.weight
);
878 * Put task to the end of the run list without the overhead of dequeue
879 * followed by enqueue.
882 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
884 if (on_rt_rq(rt_se
)) {
885 struct rt_prio_array
*array
= &rt_rq
->active
;
886 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
889 list_move(&rt_se
->run_list
, queue
);
891 list_move_tail(&rt_se
->run_list
, queue
);
895 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
897 struct sched_rt_entity
*rt_se
= &p
->rt
;
900 for_each_sched_rt_entity(rt_se
) {
901 rt_rq
= rt_rq_of_se(rt_se
);
902 requeue_rt_entity(rt_rq
, rt_se
, head
);
906 static void yield_task_rt(struct rq
*rq
)
908 requeue_task_rt(rq
, rq
->curr
, 0);
912 static int find_lowest_rq(struct task_struct
*task
);
914 static int select_task_rq_rt(struct task_struct
*p
, int sync
)
916 struct rq
*rq
= task_rq(p
);
919 * If the current task is an RT task, then
920 * try to see if we can wake this RT task up on another
921 * runqueue. Otherwise simply start this RT task
922 * on its current runqueue.
924 * We want to avoid overloading runqueues. Even if
925 * the RT task is of higher priority than the current RT task.
926 * RT tasks behave differently than other tasks. If
927 * one gets preempted, we try to push it off to another queue.
928 * So trying to keep a preempting RT task on the same
929 * cache hot CPU will force the running RT task to
930 * a cold CPU. So we waste all the cache for the lower
931 * RT task in hopes of saving some of a RT task
932 * that is just being woken and probably will have
935 if (unlikely(rt_task(rq
->curr
)) &&
936 (p
->rt
.nr_cpus_allowed
> 1)) {
937 int cpu
= find_lowest_rq(p
);
939 return (cpu
== -1) ? task_cpu(p
) : cpu
;
943 * Otherwise, just let it ride on the affined RQ and the
944 * post-schedule router will push the preempted task away
949 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
953 if (rq
->curr
->rt
.nr_cpus_allowed
== 1)
956 if (!alloc_cpumask_var(&mask
, GFP_ATOMIC
))
959 if (p
->rt
.nr_cpus_allowed
!= 1
960 && cpupri_find(&rq
->rd
->cpupri
, p
, mask
))
963 if (!cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, mask
))
967 * There appears to be other cpus that can accept
968 * current and none to run 'p', so lets reschedule
969 * to try and push current away:
971 requeue_task_rt(rq
, p
, 1);
972 resched_task(rq
->curr
);
974 free_cpumask_var(mask
);
977 #endif /* CONFIG_SMP */
980 * Preempt the current task with a newly woken task if needed:
982 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int sync
)
984 if (p
->prio
< rq
->curr
->prio
) {
985 resched_task(rq
->curr
);
993 * - the newly woken task is of equal priority to the current task
994 * - the newly woken task is non-migratable while current is migratable
995 * - current will be preempted on the next reschedule
997 * we should check to see if current can readily move to a different
998 * cpu. If so, we will reschedule to allow the push logic to try
999 * to move current somewhere else, making room for our non-migratable
1002 if (p
->prio
== rq
->curr
->prio
&& !need_resched())
1003 check_preempt_equal_prio(rq
, p
);
1007 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1008 struct rt_rq
*rt_rq
)
1010 struct rt_prio_array
*array
= &rt_rq
->active
;
1011 struct sched_rt_entity
*next
= NULL
;
1012 struct list_head
*queue
;
1015 idx
= sched_find_first_bit(array
->bitmap
);
1016 BUG_ON(idx
>= MAX_RT_PRIO
);
1018 queue
= array
->queue
+ idx
;
1019 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1024 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1026 struct sched_rt_entity
*rt_se
;
1027 struct task_struct
*p
;
1028 struct rt_rq
*rt_rq
;
1032 if (unlikely(!rt_rq
->rt_nr_running
))
1035 if (rt_rq_throttled(rt_rq
))
1039 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1041 rt_rq
= group_rt_rq(rt_se
);
1044 p
= rt_task_of(rt_se
);
1045 p
->se
.exec_start
= rq
->clock
;
1050 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
1052 struct task_struct
*p
= _pick_next_task_rt(rq
);
1054 /* The running task is never eligible for pushing */
1056 dequeue_pushable_task(rq
, p
);
1061 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1064 p
->se
.exec_start
= 0;
1067 * The previous task needs to be made eligible for pushing
1068 * if it is still active
1070 if (p
->se
.on_rq
&& p
->rt
.nr_cpus_allowed
> 1)
1071 enqueue_pushable_task(rq
, p
);
1076 /* Only try algorithms three times */
1077 #define RT_MAX_TRIES 3
1079 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
);
1081 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1083 if (!task_running(rq
, p
) &&
1084 (cpu
< 0 || cpumask_test_cpu(cpu
, &p
->cpus_allowed
)) &&
1085 (p
->rt
.nr_cpus_allowed
> 1))
1090 /* Return the second highest RT task, NULL otherwise */
1091 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
)
1093 struct task_struct
*next
= NULL
;
1094 struct sched_rt_entity
*rt_se
;
1095 struct rt_prio_array
*array
;
1096 struct rt_rq
*rt_rq
;
1099 for_each_leaf_rt_rq(rt_rq
, rq
) {
1100 array
= &rt_rq
->active
;
1101 idx
= sched_find_first_bit(array
->bitmap
);
1103 if (idx
>= MAX_RT_PRIO
)
1105 if (next
&& next
->prio
< idx
)
1107 list_for_each_entry(rt_se
, array
->queue
+ idx
, run_list
) {
1108 struct task_struct
*p
= rt_task_of(rt_se
);
1109 if (pick_rt_task(rq
, p
, cpu
)) {
1115 idx
= find_next_bit(array
->bitmap
, MAX_RT_PRIO
, idx
+1);
1123 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1125 static inline int pick_optimal_cpu(int this_cpu
, cpumask_t
*mask
)
1129 /* "this_cpu" is cheaper to preempt than a remote processor */
1130 if ((this_cpu
!= -1) && cpu_isset(this_cpu
, *mask
))
1133 first
= cpumask_first(mask
);
1134 if (first
< nr_cpu_ids
)
1140 static int find_lowest_rq(struct task_struct
*task
)
1142 struct sched_domain
*sd
;
1143 struct cpumask
*lowest_mask
= __get_cpu_var(local_cpu_mask
);
1144 int this_cpu
= smp_processor_id();
1145 int cpu
= task_cpu(task
);
1147 if (task
->rt
.nr_cpus_allowed
== 1)
1148 return -1; /* No other targets possible */
1150 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
1151 return -1; /* No targets found */
1154 * Only consider CPUs that are usable for migration.
1155 * I guess we might want to change cpupri_find() to ignore those
1156 * in the first place.
1158 cpumask_and(lowest_mask
, lowest_mask
, cpu_active_mask
);
1161 * At this point we have built a mask of cpus representing the
1162 * lowest priority tasks in the system. Now we want to elect
1163 * the best one based on our affinity and topology.
1165 * We prioritize the last cpu that the task executed on since
1166 * it is most likely cache-hot in that location.
1168 if (cpumask_test_cpu(cpu
, lowest_mask
))
1172 * Otherwise, we consult the sched_domains span maps to figure
1173 * out which cpu is logically closest to our hot cache data.
1175 if (this_cpu
== cpu
)
1176 this_cpu
= -1; /* Skip this_cpu opt if the same */
1178 for_each_domain(cpu
, sd
) {
1179 if (sd
->flags
& SD_WAKE_AFFINE
) {
1180 cpumask_t domain_mask
;
1183 cpumask_and(&domain_mask
, sched_domain_span(sd
),
1186 best_cpu
= pick_optimal_cpu(this_cpu
,
1194 * And finally, if there were no matches within the domains
1195 * just give the caller *something* to work with from the compatible
1198 return pick_optimal_cpu(this_cpu
, lowest_mask
);
1201 /* Will lock the rq it finds */
1202 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1204 struct rq
*lowest_rq
= NULL
;
1208 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1209 cpu
= find_lowest_rq(task
);
1211 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1214 lowest_rq
= cpu_rq(cpu
);
1216 /* if the prio of this runqueue changed, try again */
1217 if (double_lock_balance(rq
, lowest_rq
)) {
1219 * We had to unlock the run queue. In
1220 * the mean time, task could have
1221 * migrated already or had its affinity changed.
1222 * Also make sure that it wasn't scheduled on its rq.
1224 if (unlikely(task_rq(task
) != rq
||
1225 !cpumask_test_cpu(lowest_rq
->cpu
,
1226 &task
->cpus_allowed
) ||
1227 task_running(rq
, task
) ||
1230 spin_unlock(&lowest_rq
->lock
);
1236 /* If this rq is still suitable use it. */
1237 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1241 double_unlock_balance(rq
, lowest_rq
);
1248 static inline int has_pushable_tasks(struct rq
*rq
)
1250 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
1253 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1255 struct task_struct
*p
;
1257 if (!has_pushable_tasks(rq
))
1260 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1261 struct task_struct
, pushable_tasks
);
1263 BUG_ON(rq
->cpu
!= task_cpu(p
));
1264 BUG_ON(task_current(rq
, p
));
1265 BUG_ON(p
->rt
.nr_cpus_allowed
<= 1);
1267 BUG_ON(!p
->se
.on_rq
);
1268 BUG_ON(!rt_task(p
));
1274 * If the current CPU has more than one RT task, see if the non
1275 * running task can migrate over to a CPU that is running a task
1276 * of lesser priority.
1278 static int push_rt_task(struct rq
*rq
)
1280 struct task_struct
*next_task
;
1281 struct rq
*lowest_rq
;
1283 if (!rq
->rt
.overloaded
)
1286 next_task
= pick_next_pushable_task(rq
);
1291 if (unlikely(next_task
== rq
->curr
)) {
1297 * It's possible that the next_task slipped in of
1298 * higher priority than current. If that's the case
1299 * just reschedule current.
1301 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1302 resched_task(rq
->curr
);
1306 /* We might release rq lock */
1307 get_task_struct(next_task
);
1309 /* find_lock_lowest_rq locks the rq if found */
1310 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1312 struct task_struct
*task
;
1314 * find lock_lowest_rq releases rq->lock
1315 * so it is possible that next_task has migrated.
1317 * We need to make sure that the task is still on the same
1318 * run-queue and is also still the next task eligible for
1321 task
= pick_next_pushable_task(rq
);
1322 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1324 * If we get here, the task hasnt moved at all, but
1325 * it has failed to push. We will not try again,
1326 * since the other cpus will pull from us when they
1329 dequeue_pushable_task(rq
, next_task
);
1334 /* No more tasks, just exit */
1338 * Something has shifted, try again.
1340 put_task_struct(next_task
);
1345 deactivate_task(rq
, next_task
, 0);
1346 set_task_cpu(next_task
, lowest_rq
->cpu
);
1347 activate_task(lowest_rq
, next_task
, 0);
1349 resched_task(lowest_rq
->curr
);
1351 double_unlock_balance(rq
, lowest_rq
);
1354 put_task_struct(next_task
);
1359 static void push_rt_tasks(struct rq
*rq
)
1361 /* push_rt_task will return true if it moved an RT */
1362 while (push_rt_task(rq
))
1366 static int pull_rt_task(struct rq
*this_rq
)
1368 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1369 struct task_struct
*p
;
1372 if (likely(!rt_overloaded(this_rq
)))
1375 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
1376 if (this_cpu
== cpu
)
1379 src_rq
= cpu_rq(cpu
);
1382 * Don't bother taking the src_rq->lock if the next highest
1383 * task is known to be lower-priority than our current task.
1384 * This may look racy, but if this value is about to go
1385 * logically higher, the src_rq will push this task away.
1386 * And if its going logically lower, we do not care
1388 if (src_rq
->rt
.highest_prio
.next
>=
1389 this_rq
->rt
.highest_prio
.curr
)
1393 * We can potentially drop this_rq's lock in
1394 * double_lock_balance, and another CPU could
1397 double_lock_balance(this_rq
, src_rq
);
1400 * Are there still pullable RT tasks?
1402 if (src_rq
->rt
.rt_nr_running
<= 1)
1405 p
= pick_next_highest_task_rt(src_rq
, this_cpu
);
1408 * Do we have an RT task that preempts
1409 * the to-be-scheduled task?
1411 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
1412 WARN_ON(p
== src_rq
->curr
);
1413 WARN_ON(!p
->se
.on_rq
);
1416 * There's a chance that p is higher in priority
1417 * than what's currently running on its cpu.
1418 * This is just that p is wakeing up and hasn't
1419 * had a chance to schedule. We only pull
1420 * p if it is lower in priority than the
1421 * current task on the run queue
1423 if (p
->prio
< src_rq
->curr
->prio
)
1428 deactivate_task(src_rq
, p
, 0);
1429 set_task_cpu(p
, this_cpu
);
1430 activate_task(this_rq
, p
, 0);
1432 * We continue with the search, just in
1433 * case there's an even higher prio task
1434 * in another runqueue. (low likelyhood
1439 double_unlock_balance(this_rq
, src_rq
);
1445 static void pre_schedule_rt(struct rq
*rq
, struct task_struct
*prev
)
1447 /* Try to pull RT tasks here if we lower this rq's prio */
1448 if (unlikely(rt_task(prev
)) && rq
->rt
.highest_prio
.curr
> prev
->prio
)
1453 * assumes rq->lock is held
1455 static int needs_post_schedule_rt(struct rq
*rq
)
1457 return has_pushable_tasks(rq
);
1460 static void post_schedule_rt(struct rq
*rq
)
1463 * This is only called if needs_post_schedule_rt() indicates that
1464 * we need to push tasks away
1466 spin_lock_irq(&rq
->lock
);
1468 spin_unlock_irq(&rq
->lock
);
1472 * If we are not running and we are not going to reschedule soon, we should
1473 * try to push tasks away now
1475 static void task_wake_up_rt(struct rq
*rq
, struct task_struct
*p
)
1477 if (!task_running(rq
, p
) &&
1478 !test_tsk_need_resched(rq
->curr
) &&
1479 has_pushable_tasks(rq
) &&
1480 p
->rt
.nr_cpus_allowed
> 1)
1484 static unsigned long
1485 load_balance_rt(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1486 unsigned long max_load_move
,
1487 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1488 int *all_pinned
, int *this_best_prio
)
1490 /* don't touch RT tasks */
1495 move_one_task_rt(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1496 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1498 /* don't touch RT tasks */
1502 static void set_cpus_allowed_rt(struct task_struct
*p
,
1503 const struct cpumask
*new_mask
)
1505 int weight
= cpumask_weight(new_mask
);
1507 BUG_ON(!rt_task(p
));
1510 * Update the migration status of the RQ if we have an RT task
1511 * which is running AND changing its weight value.
1513 if (p
->se
.on_rq
&& (weight
!= p
->rt
.nr_cpus_allowed
)) {
1514 struct rq
*rq
= task_rq(p
);
1516 if (!task_current(rq
, p
)) {
1518 * Make sure we dequeue this task from the pushable list
1519 * before going further. It will either remain off of
1520 * the list because we are no longer pushable, or it
1523 if (p
->rt
.nr_cpus_allowed
> 1)
1524 dequeue_pushable_task(rq
, p
);
1527 * Requeue if our weight is changing and still > 1
1530 enqueue_pushable_task(rq
, p
);
1534 if ((p
->rt
.nr_cpus_allowed
<= 1) && (weight
> 1)) {
1535 rq
->rt
.rt_nr_migratory
++;
1536 } else if ((p
->rt
.nr_cpus_allowed
> 1) && (weight
<= 1)) {
1537 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1538 rq
->rt
.rt_nr_migratory
--;
1541 update_rt_migration(&rq
->rt
);
1544 cpumask_copy(&p
->cpus_allowed
, new_mask
);
1545 p
->rt
.nr_cpus_allowed
= weight
;
1548 /* Assumes rq->lock is held */
1549 static void rq_online_rt(struct rq
*rq
)
1551 if (rq
->rt
.overloaded
)
1552 rt_set_overload(rq
);
1554 __enable_runtime(rq
);
1556 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
1559 /* Assumes rq->lock is held */
1560 static void rq_offline_rt(struct rq
*rq
)
1562 if (rq
->rt
.overloaded
)
1563 rt_clear_overload(rq
);
1565 __disable_runtime(rq
);
1567 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
1571 * When switch from the rt queue, we bring ourselves to a position
1572 * that we might want to pull RT tasks from other runqueues.
1574 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
,
1578 * If there are other RT tasks then we will reschedule
1579 * and the scheduling of the other RT tasks will handle
1580 * the balancing. But if we are the last RT task
1581 * we may need to handle the pulling of RT tasks
1584 if (!rq
->rt
.rt_nr_running
)
1588 static inline void init_sched_rt_class(void)
1592 for_each_possible_cpu(i
)
1593 alloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
1594 GFP_KERNEL
, cpu_to_node(i
));
1596 #endif /* CONFIG_SMP */
1599 * When switching a task to RT, we may overload the runqueue
1600 * with RT tasks. In this case we try to push them off to
1603 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
,
1606 int check_resched
= 1;
1609 * If we are already running, then there's nothing
1610 * that needs to be done. But if we are not running
1611 * we may need to preempt the current running task.
1612 * If that current running task is also an RT task
1613 * then see if we can move to another run queue.
1617 if (rq
->rt
.overloaded
&& push_rt_task(rq
) &&
1618 /* Don't resched if we changed runqueues */
1621 #endif /* CONFIG_SMP */
1622 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1623 resched_task(rq
->curr
);
1628 * Priority of the task has changed. This may cause
1629 * us to initiate a push or pull.
1631 static void prio_changed_rt(struct rq
*rq
, struct task_struct
*p
,
1632 int oldprio
, int running
)
1637 * If our priority decreases while running, we
1638 * may need to pull tasks to this runqueue.
1640 if (oldprio
< p
->prio
)
1643 * If there's a higher priority task waiting to run
1644 * then reschedule. Note, the above pull_rt_task
1645 * can release the rq lock and p could migrate.
1646 * Only reschedule if p is still on the same runqueue.
1648 if (p
->prio
> rq
->rt
.highest_prio
.curr
&& rq
->curr
== p
)
1651 /* For UP simply resched on drop of prio */
1652 if (oldprio
< p
->prio
)
1654 #endif /* CONFIG_SMP */
1657 * This task is not running, but if it is
1658 * greater than the current running task
1661 if (p
->prio
< rq
->curr
->prio
)
1662 resched_task(rq
->curr
);
1666 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
1668 unsigned long soft
, hard
;
1673 soft
= p
->signal
->rlim
[RLIMIT_RTTIME
].rlim_cur
;
1674 hard
= p
->signal
->rlim
[RLIMIT_RTTIME
].rlim_max
;
1676 if (soft
!= RLIM_INFINITY
) {
1680 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
1681 if (p
->rt
.timeout
> next
)
1682 p
->cputime_expires
.sched_exp
= p
->se
.sum_exec_runtime
;
1686 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
1693 * RR tasks need a special form of timeslice management.
1694 * FIFO tasks have no timeslices.
1696 if (p
->policy
!= SCHED_RR
)
1699 if (--p
->rt
.time_slice
)
1702 p
->rt
.time_slice
= DEF_TIMESLICE
;
1705 * Requeue to the end of queue if we are not the only element
1708 if (p
->rt
.run_list
.prev
!= p
->rt
.run_list
.next
) {
1709 requeue_task_rt(rq
, p
, 0);
1710 set_tsk_need_resched(p
);
1714 static void set_curr_task_rt(struct rq
*rq
)
1716 struct task_struct
*p
= rq
->curr
;
1718 p
->se
.exec_start
= rq
->clock
;
1720 /* The running task is never eligible for pushing */
1721 dequeue_pushable_task(rq
, p
);
1724 static const struct sched_class rt_sched_class
= {
1725 .next
= &fair_sched_class
,
1726 .enqueue_task
= enqueue_task_rt
,
1727 .dequeue_task
= dequeue_task_rt
,
1728 .yield_task
= yield_task_rt
,
1730 .check_preempt_curr
= check_preempt_curr_rt
,
1732 .pick_next_task
= pick_next_task_rt
,
1733 .put_prev_task
= put_prev_task_rt
,
1736 .select_task_rq
= select_task_rq_rt
,
1738 .load_balance
= load_balance_rt
,
1739 .move_one_task
= move_one_task_rt
,
1740 .set_cpus_allowed
= set_cpus_allowed_rt
,
1741 .rq_online
= rq_online_rt
,
1742 .rq_offline
= rq_offline_rt
,
1743 .pre_schedule
= pre_schedule_rt
,
1744 .needs_post_schedule
= needs_post_schedule_rt
,
1745 .post_schedule
= post_schedule_rt
,
1746 .task_wake_up
= task_wake_up_rt
,
1747 .switched_from
= switched_from_rt
,
1750 .set_curr_task
= set_curr_task_rt
,
1751 .task_tick
= task_tick_rt
,
1753 .prio_changed
= prio_changed_rt
,
1754 .switched_to
= switched_to_rt
,
1757 #ifdef CONFIG_SCHED_DEBUG
1758 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
1760 static void print_rt_stats(struct seq_file
*m
, int cpu
)
1762 struct rt_rq
*rt_rq
;
1765 for_each_leaf_rt_rq(rt_rq
, cpu_rq(cpu
))
1766 print_rt_rq(m
, cpu
, rt_rq
);
1769 #endif /* CONFIG_SCHED_DEBUG */