Full support for Ginger Console
[linux-ginger.git] / arch / s390 / include / asm / pgtable.h
blob60a7b1a1702ff478b60177b2ac161341a2882873
1 /*
2 * include/asm-s390/pgtable.h
4 * S390 version
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
10 * Derived from "include/asm-i386/pgtable.h"
13 #ifndef _ASM_S390_PGTABLE_H
14 #define _ASM_S390_PGTABLE_H
17 * The Linux memory management assumes a three-level page table setup. For
18 * s390 31 bit we "fold" the mid level into the top-level page table, so
19 * that we physically have the same two-level page table as the s390 mmu
20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21 * the hardware provides (region first and region second tables are not
22 * used).
24 * The "pgd_xxx()" functions are trivial for a folded two-level
25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
26 * into the pgd entry)
28 * This file contains the functions and defines necessary to modify and use
29 * the S390 page table tree.
31 #ifndef __ASSEMBLY__
32 #include <linux/sched.h>
33 #include <linux/mm_types.h>
34 #include <asm/bitops.h>
35 #include <asm/bug.h>
36 #include <asm/processor.h>
38 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
39 extern void paging_init(void);
40 extern void vmem_map_init(void);
43 * The S390 doesn't have any external MMU info: the kernel page
44 * tables contain all the necessary information.
46 #define update_mmu_cache(vma, address, pte) do { } while (0)
49 * ZERO_PAGE is a global shared page that is always zero: used
50 * for zero-mapped memory areas etc..
52 extern char empty_zero_page[PAGE_SIZE];
53 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
54 #endif /* !__ASSEMBLY__ */
57 * PMD_SHIFT determines the size of the area a second-level page
58 * table can map
59 * PGDIR_SHIFT determines what a third-level page table entry can map
61 #ifndef __s390x__
62 # define PMD_SHIFT 20
63 # define PUD_SHIFT 20
64 # define PGDIR_SHIFT 20
65 #else /* __s390x__ */
66 # define PMD_SHIFT 20
67 # define PUD_SHIFT 31
68 # define PGDIR_SHIFT 42
69 #endif /* __s390x__ */
71 #define PMD_SIZE (1UL << PMD_SHIFT)
72 #define PMD_MASK (~(PMD_SIZE-1))
73 #define PUD_SIZE (1UL << PUD_SHIFT)
74 #define PUD_MASK (~(PUD_SIZE-1))
75 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
76 #define PGDIR_MASK (~(PGDIR_SIZE-1))
79 * entries per page directory level: the S390 is two-level, so
80 * we don't really have any PMD directory physically.
81 * for S390 segment-table entries are combined to one PGD
82 * that leads to 1024 pte per pgd
84 #define PTRS_PER_PTE 256
85 #ifndef __s390x__
86 #define PTRS_PER_PMD 1
87 #define PTRS_PER_PUD 1
88 #else /* __s390x__ */
89 #define PTRS_PER_PMD 2048
90 #define PTRS_PER_PUD 2048
91 #endif /* __s390x__ */
92 #define PTRS_PER_PGD 2048
94 #define FIRST_USER_ADDRESS 0
96 #define pte_ERROR(e) \
97 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
98 #define pmd_ERROR(e) \
99 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
100 #define pud_ERROR(e) \
101 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
102 #define pgd_ERROR(e) \
103 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
105 #ifndef __ASSEMBLY__
107 * The vmalloc area will always be on the topmost area of the kernel
108 * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc,
109 * which should be enough for any sane case.
110 * By putting vmalloc at the top, we maximise the gap between physical
111 * memory and vmalloc to catch misplaced memory accesses. As a side
112 * effect, this also makes sure that 64 bit module code cannot be used
113 * as system call address.
116 extern unsigned long VMALLOC_START;
118 #ifndef __s390x__
119 #define VMALLOC_SIZE (96UL << 20)
120 #define VMALLOC_END 0x7e000000UL
121 #define VMEM_MAP_END 0x80000000UL
122 #else /* __s390x__ */
123 #define VMALLOC_SIZE (1UL << 30)
124 #define VMALLOC_END 0x3e040000000UL
125 #define VMEM_MAP_END 0x40000000000UL
126 #endif /* __s390x__ */
129 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
130 * mapping. This needs to be calculated at compile time since the size of the
131 * VMEM_MAP is static but the size of struct page can change.
133 #define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
134 #define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
135 #define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
136 #define vmemmap ((struct page *) VMALLOC_END)
139 * A 31 bit pagetable entry of S390 has following format:
140 * | PFRA | | OS |
141 * 0 0IP0
142 * 00000000001111111111222222222233
143 * 01234567890123456789012345678901
145 * I Page-Invalid Bit: Page is not available for address-translation
146 * P Page-Protection Bit: Store access not possible for page
148 * A 31 bit segmenttable entry of S390 has following format:
149 * | P-table origin | |PTL
150 * 0 IC
151 * 00000000001111111111222222222233
152 * 01234567890123456789012345678901
154 * I Segment-Invalid Bit: Segment is not available for address-translation
155 * C Common-Segment Bit: Segment is not private (PoP 3-30)
156 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
158 * The 31 bit segmenttable origin of S390 has following format:
160 * |S-table origin | | STL |
161 * X **GPS
162 * 00000000001111111111222222222233
163 * 01234567890123456789012345678901
165 * X Space-Switch event:
166 * G Segment-Invalid Bit: *
167 * P Private-Space Bit: Segment is not private (PoP 3-30)
168 * S Storage-Alteration:
169 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
171 * A 64 bit pagetable entry of S390 has following format:
172 * | PFRA |0IP0| OS |
173 * 0000000000111111111122222222223333333333444444444455555555556666
174 * 0123456789012345678901234567890123456789012345678901234567890123
176 * I Page-Invalid Bit: Page is not available for address-translation
177 * P Page-Protection Bit: Store access not possible for page
179 * A 64 bit segmenttable entry of S390 has following format:
180 * | P-table origin | TT
181 * 0000000000111111111122222222223333333333444444444455555555556666
182 * 0123456789012345678901234567890123456789012345678901234567890123
184 * I Segment-Invalid Bit: Segment is not available for address-translation
185 * C Common-Segment Bit: Segment is not private (PoP 3-30)
186 * P Page-Protection Bit: Store access not possible for page
187 * TT Type 00
189 * A 64 bit region table entry of S390 has following format:
190 * | S-table origin | TF TTTL
191 * 0000000000111111111122222222223333333333444444444455555555556666
192 * 0123456789012345678901234567890123456789012345678901234567890123
194 * I Segment-Invalid Bit: Segment is not available for address-translation
195 * TT Type 01
196 * TF
197 * TL Table length
199 * The 64 bit regiontable origin of S390 has following format:
200 * | region table origon | DTTL
201 * 0000000000111111111122222222223333333333444444444455555555556666
202 * 0123456789012345678901234567890123456789012345678901234567890123
204 * X Space-Switch event:
205 * G Segment-Invalid Bit:
206 * P Private-Space Bit:
207 * S Storage-Alteration:
208 * R Real space
209 * TL Table-Length:
211 * A storage key has the following format:
212 * | ACC |F|R|C|0|
213 * 0 3 4 5 6 7
214 * ACC: access key
215 * F : fetch protection bit
216 * R : referenced bit
217 * C : changed bit
220 /* Hardware bits in the page table entry */
221 #define _PAGE_RO 0x200 /* HW read-only bit */
222 #define _PAGE_INVALID 0x400 /* HW invalid bit */
224 /* Software bits in the page table entry */
225 #define _PAGE_SWT 0x001 /* SW pte type bit t */
226 #define _PAGE_SWX 0x002 /* SW pte type bit x */
227 #define _PAGE_SPECIAL 0x004 /* SW associated with special page */
228 #define __HAVE_ARCH_PTE_SPECIAL
230 /* Set of bits not changed in pte_modify */
231 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL)
233 /* Six different types of pages. */
234 #define _PAGE_TYPE_EMPTY 0x400
235 #define _PAGE_TYPE_NONE 0x401
236 #define _PAGE_TYPE_SWAP 0x403
237 #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
238 #define _PAGE_TYPE_RO 0x200
239 #define _PAGE_TYPE_RW 0x000
240 #define _PAGE_TYPE_EX_RO 0x202
241 #define _PAGE_TYPE_EX_RW 0x002
244 * Only four types for huge pages, using the invalid bit and protection bit
245 * of a segment table entry.
247 #define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
248 #define _HPAGE_TYPE_NONE 0x220
249 #define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
250 #define _HPAGE_TYPE_RW 0x000
253 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
254 * pte_none and pte_file to find out the pte type WITHOUT holding the page
255 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
256 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
257 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
258 * This change is done while holding the lock, but the intermediate step
259 * of a previously valid pte with the hw invalid bit set can be observed by
260 * handle_pte_fault. That makes it necessary that all valid pte types with
261 * the hw invalid bit set must be distinguishable from the four pte types
262 * empty, none, swap and file.
264 * irxt ipte irxt
265 * _PAGE_TYPE_EMPTY 1000 -> 1000
266 * _PAGE_TYPE_NONE 1001 -> 1001
267 * _PAGE_TYPE_SWAP 1011 -> 1011
268 * _PAGE_TYPE_FILE 11?1 -> 11?1
269 * _PAGE_TYPE_RO 0100 -> 1100
270 * _PAGE_TYPE_RW 0000 -> 1000
271 * _PAGE_TYPE_EX_RO 0110 -> 1110
272 * _PAGE_TYPE_EX_RW 0010 -> 1010
274 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
275 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
276 * pte_file is true for bits combinations 1101, 1111
277 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
280 /* Page status table bits for virtualization */
281 #define RCP_PCL_BIT 55
282 #define RCP_HR_BIT 54
283 #define RCP_HC_BIT 53
284 #define RCP_GR_BIT 50
285 #define RCP_GC_BIT 49
287 /* User dirty bit for KVM's migration feature */
288 #define KVM_UD_BIT 47
290 #ifndef __s390x__
292 /* Bits in the segment table address-space-control-element */
293 #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
294 #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
295 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
296 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
297 #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
299 /* Bits in the segment table entry */
300 #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
301 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
302 #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
303 #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
305 #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
306 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
308 #else /* __s390x__ */
310 /* Bits in the segment/region table address-space-control-element */
311 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
312 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
313 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
314 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
315 #define _ASCE_REAL_SPACE 0x20 /* real space control */
316 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
317 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
318 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
319 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
320 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
321 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
323 /* Bits in the region table entry */
324 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
325 #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
326 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
327 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
328 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
329 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
330 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
332 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
333 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
334 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
335 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
336 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
337 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
339 /* Bits in the segment table entry */
340 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
341 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
342 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
344 #define _SEGMENT_ENTRY (0)
345 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
347 #define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
348 #define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
350 #endif /* __s390x__ */
353 * A user page table pointer has the space-switch-event bit, the
354 * private-space-control bit and the storage-alteration-event-control
355 * bit set. A kernel page table pointer doesn't need them.
357 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
358 _ASCE_ALT_EVENT)
360 /* Bits int the storage key */
361 #define _PAGE_CHANGED 0x02 /* HW changed bit */
362 #define _PAGE_REFERENCED 0x04 /* HW referenced bit */
365 * Page protection definitions.
367 #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
368 #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
369 #define PAGE_RW __pgprot(_PAGE_TYPE_RW)
370 #define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO)
371 #define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW)
373 #define PAGE_KERNEL PAGE_RW
374 #define PAGE_COPY PAGE_RO
377 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
378 * Write permission always implies read permission. In theory with a
379 * primary/secondary page table execute only can be implemented but
380 * it would cost an additional bit in the pte to distinguish all the
381 * different pte types. To avoid that execute permission currently
382 * implies read permission as well.
384 /*xwr*/
385 #define __P000 PAGE_NONE
386 #define __P001 PAGE_RO
387 #define __P010 PAGE_RO
388 #define __P011 PAGE_RO
389 #define __P100 PAGE_EX_RO
390 #define __P101 PAGE_EX_RO
391 #define __P110 PAGE_EX_RO
392 #define __P111 PAGE_EX_RO
394 #define __S000 PAGE_NONE
395 #define __S001 PAGE_RO
396 #define __S010 PAGE_RW
397 #define __S011 PAGE_RW
398 #define __S100 PAGE_EX_RO
399 #define __S101 PAGE_EX_RO
400 #define __S110 PAGE_EX_RW
401 #define __S111 PAGE_EX_RW
403 #ifndef __s390x__
404 # define PxD_SHADOW_SHIFT 1
405 #else /* __s390x__ */
406 # define PxD_SHADOW_SHIFT 2
407 #endif /* __s390x__ */
409 static inline void *get_shadow_table(void *table)
411 unsigned long addr, offset;
412 struct page *page;
414 addr = (unsigned long) table;
415 offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
416 page = virt_to_page((void *)(addr ^ offset));
417 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
421 * Certain architectures need to do special things when PTEs
422 * within a page table are directly modified. Thus, the following
423 * hook is made available.
425 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
426 pte_t *ptep, pte_t entry)
428 *ptep = entry;
429 if (mm->context.noexec) {
430 if (!(pte_val(entry) & _PAGE_INVALID) &&
431 (pte_val(entry) & _PAGE_SWX))
432 pte_val(entry) |= _PAGE_RO;
433 else
434 pte_val(entry) = _PAGE_TYPE_EMPTY;
435 ptep[PTRS_PER_PTE] = entry;
440 * pgd/pmd/pte query functions
442 #ifndef __s390x__
444 static inline int pgd_present(pgd_t pgd) { return 1; }
445 static inline int pgd_none(pgd_t pgd) { return 0; }
446 static inline int pgd_bad(pgd_t pgd) { return 0; }
448 static inline int pud_present(pud_t pud) { return 1; }
449 static inline int pud_none(pud_t pud) { return 0; }
450 static inline int pud_bad(pud_t pud) { return 0; }
452 #else /* __s390x__ */
454 static inline int pgd_present(pgd_t pgd)
456 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
457 return 1;
458 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
461 static inline int pgd_none(pgd_t pgd)
463 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
464 return 0;
465 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
468 static inline int pgd_bad(pgd_t pgd)
471 * With dynamic page table levels the pgd can be a region table
472 * entry or a segment table entry. Check for the bit that are
473 * invalid for either table entry.
475 unsigned long mask =
476 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
477 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
478 return (pgd_val(pgd) & mask) != 0;
481 static inline int pud_present(pud_t pud)
483 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
484 return 1;
485 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
488 static inline int pud_none(pud_t pud)
490 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
491 return 0;
492 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
495 static inline int pud_bad(pud_t pud)
498 * With dynamic page table levels the pud can be a region table
499 * entry or a segment table entry. Check for the bit that are
500 * invalid for either table entry.
502 unsigned long mask =
503 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
504 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
505 return (pud_val(pud) & mask) != 0;
508 #endif /* __s390x__ */
510 static inline int pmd_present(pmd_t pmd)
512 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
515 static inline int pmd_none(pmd_t pmd)
517 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
520 static inline int pmd_bad(pmd_t pmd)
522 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
523 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
526 static inline int pte_none(pte_t pte)
528 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
531 static inline int pte_present(pte_t pte)
533 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
534 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
535 (!(pte_val(pte) & _PAGE_INVALID) &&
536 !(pte_val(pte) & _PAGE_SWT));
539 static inline int pte_file(pte_t pte)
541 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
542 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
545 static inline int pte_special(pte_t pte)
547 return (pte_val(pte) & _PAGE_SPECIAL);
550 #define __HAVE_ARCH_PTE_SAME
551 #define pte_same(a,b) (pte_val(a) == pte_val(b))
553 static inline void rcp_lock(pte_t *ptep)
555 #ifdef CONFIG_PGSTE
556 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
557 preempt_disable();
558 while (test_and_set_bit(RCP_PCL_BIT, pgste))
560 #endif
563 static inline void rcp_unlock(pte_t *ptep)
565 #ifdef CONFIG_PGSTE
566 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
567 clear_bit(RCP_PCL_BIT, pgste);
568 preempt_enable();
569 #endif
572 /* forward declaration for SetPageUptodate in page-flags.h*/
573 static inline void page_clear_dirty(struct page *page);
574 #include <linux/page-flags.h>
576 static inline void ptep_rcp_copy(pte_t *ptep)
578 #ifdef CONFIG_PGSTE
579 struct page *page = virt_to_page(pte_val(*ptep));
580 unsigned int skey;
581 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
583 skey = page_get_storage_key(page_to_phys(page));
584 if (skey & _PAGE_CHANGED) {
585 set_bit_simple(RCP_GC_BIT, pgste);
586 set_bit_simple(KVM_UD_BIT, pgste);
588 if (skey & _PAGE_REFERENCED)
589 set_bit_simple(RCP_GR_BIT, pgste);
590 if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
591 SetPageDirty(page);
592 set_bit_simple(KVM_UD_BIT, pgste);
594 if (test_and_clear_bit_simple(RCP_HR_BIT, pgste))
595 SetPageReferenced(page);
596 #endif
600 * query functions pte_write/pte_dirty/pte_young only work if
601 * pte_present() is true. Undefined behaviour if not..
603 static inline int pte_write(pte_t pte)
605 return (pte_val(pte) & _PAGE_RO) == 0;
608 static inline int pte_dirty(pte_t pte)
610 /* A pte is neither clean nor dirty on s/390. The dirty bit
611 * is in the storage key. See page_test_and_clear_dirty for
612 * details.
614 return 0;
617 static inline int pte_young(pte_t pte)
619 /* A pte is neither young nor old on s/390. The young bit
620 * is in the storage key. See page_test_and_clear_young for
621 * details.
623 return 0;
627 * pgd/pmd/pte modification functions
630 #ifndef __s390x__
632 #define pgd_clear(pgd) do { } while (0)
633 #define pud_clear(pud) do { } while (0)
635 #else /* __s390x__ */
637 static inline void pgd_clear_kernel(pgd_t * pgd)
639 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
640 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
643 static inline void pgd_clear(pgd_t * pgd)
645 pgd_t *shadow = get_shadow_table(pgd);
647 pgd_clear_kernel(pgd);
648 if (shadow)
649 pgd_clear_kernel(shadow);
652 static inline void pud_clear_kernel(pud_t *pud)
654 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
655 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
658 static inline void pud_clear(pud_t *pud)
660 pud_t *shadow = get_shadow_table(pud);
662 pud_clear_kernel(pud);
663 if (shadow)
664 pud_clear_kernel(shadow);
667 #endif /* __s390x__ */
669 static inline void pmd_clear_kernel(pmd_t * pmdp)
671 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
674 static inline void pmd_clear(pmd_t *pmd)
676 pmd_t *shadow = get_shadow_table(pmd);
678 pmd_clear_kernel(pmd);
679 if (shadow)
680 pmd_clear_kernel(shadow);
683 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
685 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
686 if (mm->context.noexec)
687 pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
691 * The following pte modification functions only work if
692 * pte_present() is true. Undefined behaviour if not..
694 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
696 pte_val(pte) &= _PAGE_CHG_MASK;
697 pte_val(pte) |= pgprot_val(newprot);
698 return pte;
701 static inline pte_t pte_wrprotect(pte_t pte)
703 /* Do not clobber _PAGE_TYPE_NONE pages! */
704 if (!(pte_val(pte) & _PAGE_INVALID))
705 pte_val(pte) |= _PAGE_RO;
706 return pte;
709 static inline pte_t pte_mkwrite(pte_t pte)
711 pte_val(pte) &= ~_PAGE_RO;
712 return pte;
715 static inline pte_t pte_mkclean(pte_t pte)
717 /* The only user of pte_mkclean is the fork() code.
718 We must *not* clear the *physical* page dirty bit
719 just because fork() wants to clear the dirty bit in
720 *one* of the page's mappings. So we just do nothing. */
721 return pte;
724 static inline pte_t pte_mkdirty(pte_t pte)
726 /* We do not explicitly set the dirty bit because the
727 * sske instruction is slow. It is faster to let the
728 * next instruction set the dirty bit.
730 return pte;
733 static inline pte_t pte_mkold(pte_t pte)
735 /* S/390 doesn't keep its dirty/referenced bit in the pte.
736 * There is no point in clearing the real referenced bit.
738 return pte;
741 static inline pte_t pte_mkyoung(pte_t pte)
743 /* S/390 doesn't keep its dirty/referenced bit in the pte.
744 * There is no point in setting the real referenced bit.
746 return pte;
749 static inline pte_t pte_mkspecial(pte_t pte)
751 pte_val(pte) |= _PAGE_SPECIAL;
752 return pte;
755 #ifdef CONFIG_PGSTE
757 * Get (and clear) the user dirty bit for a PTE.
759 static inline int kvm_s390_test_and_clear_page_dirty(struct mm_struct *mm,
760 pte_t *ptep)
762 int dirty;
763 unsigned long *pgste;
764 struct page *page;
765 unsigned int skey;
767 if (!mm->context.has_pgste)
768 return -EINVAL;
769 rcp_lock(ptep);
770 pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
771 page = virt_to_page(pte_val(*ptep));
772 skey = page_get_storage_key(page_to_phys(page));
773 if (skey & _PAGE_CHANGED) {
774 set_bit_simple(RCP_GC_BIT, pgste);
775 set_bit_simple(KVM_UD_BIT, pgste);
777 if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
778 SetPageDirty(page);
779 set_bit_simple(KVM_UD_BIT, pgste);
781 dirty = test_and_clear_bit_simple(KVM_UD_BIT, pgste);
782 if (skey & _PAGE_CHANGED)
783 page_clear_dirty(page);
784 rcp_unlock(ptep);
785 return dirty;
787 #endif
789 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
790 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
791 unsigned long addr, pte_t *ptep)
793 #ifdef CONFIG_PGSTE
794 unsigned long physpage;
795 int young;
796 unsigned long *pgste;
798 if (!vma->vm_mm->context.has_pgste)
799 return 0;
800 physpage = pte_val(*ptep) & PAGE_MASK;
801 pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
803 young = ((page_get_storage_key(physpage) & _PAGE_REFERENCED) != 0);
804 rcp_lock(ptep);
805 if (young)
806 set_bit_simple(RCP_GR_BIT, pgste);
807 young |= test_and_clear_bit_simple(RCP_HR_BIT, pgste);
808 rcp_unlock(ptep);
809 return young;
810 #endif
811 return 0;
814 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
815 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
816 unsigned long address, pte_t *ptep)
818 /* No need to flush TLB
819 * On s390 reference bits are in storage key and never in TLB
820 * With virtualization we handle the reference bit, without we
821 * we can simply return */
822 #ifdef CONFIG_PGSTE
823 return ptep_test_and_clear_young(vma, address, ptep);
824 #endif
825 return 0;
828 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
830 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
831 #ifndef __s390x__
832 /* pto must point to the start of the segment table */
833 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
834 #else
835 /* ipte in zarch mode can do the math */
836 pte_t *pto = ptep;
837 #endif
838 asm volatile(
839 " ipte %2,%3"
840 : "=m" (*ptep) : "m" (*ptep),
841 "a" (pto), "a" (address));
845 static inline void ptep_invalidate(struct mm_struct *mm,
846 unsigned long address, pte_t *ptep)
848 if (mm->context.has_pgste) {
849 rcp_lock(ptep);
850 __ptep_ipte(address, ptep);
851 ptep_rcp_copy(ptep);
852 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
853 rcp_unlock(ptep);
854 return;
856 __ptep_ipte(address, ptep);
857 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
858 if (mm->context.noexec) {
859 __ptep_ipte(address, ptep + PTRS_PER_PTE);
860 pte_val(*(ptep + PTRS_PER_PTE)) = _PAGE_TYPE_EMPTY;
865 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
866 * both clear the TLB for the unmapped pte. The reason is that
867 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
868 * to modify an active pte. The sequence is
869 * 1) ptep_get_and_clear
870 * 2) set_pte_at
871 * 3) flush_tlb_range
872 * On s390 the tlb needs to get flushed with the modification of the pte
873 * if the pte is active. The only way how this can be implemented is to
874 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
875 * is a nop.
877 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
878 #define ptep_get_and_clear(__mm, __address, __ptep) \
879 ({ \
880 pte_t __pte = *(__ptep); \
881 if (atomic_read(&(__mm)->mm_users) > 1 || \
882 (__mm) != current->active_mm) \
883 ptep_invalidate(__mm, __address, __ptep); \
884 else \
885 pte_clear((__mm), (__address), (__ptep)); \
886 __pte; \
889 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
890 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
891 unsigned long address, pte_t *ptep)
893 pte_t pte = *ptep;
894 ptep_invalidate(vma->vm_mm, address, ptep);
895 return pte;
899 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
900 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
901 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
902 * cannot be accessed while the batched unmap is running. In this case
903 * full==1 and a simple pte_clear is enough. See tlb.h.
905 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
906 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
907 unsigned long addr,
908 pte_t *ptep, int full)
910 pte_t pte = *ptep;
912 if (full)
913 pte_clear(mm, addr, ptep);
914 else
915 ptep_invalidate(mm, addr, ptep);
916 return pte;
919 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
920 #define ptep_set_wrprotect(__mm, __addr, __ptep) \
921 ({ \
922 pte_t __pte = *(__ptep); \
923 if (pte_write(__pte)) { \
924 if (atomic_read(&(__mm)->mm_users) > 1 || \
925 (__mm) != current->active_mm) \
926 ptep_invalidate(__mm, __addr, __ptep); \
927 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
931 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
932 #define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \
933 ({ \
934 int __changed = !pte_same(*(__ptep), __entry); \
935 if (__changed) { \
936 ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \
937 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \
939 __changed; \
943 * Test and clear dirty bit in storage key.
944 * We can't clear the changed bit atomically. This is a potential
945 * race against modification of the referenced bit. This function
946 * should therefore only be called if it is not mapped in any
947 * address space.
949 #define __HAVE_ARCH_PAGE_TEST_DIRTY
950 static inline int page_test_dirty(struct page *page)
952 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
955 #define __HAVE_ARCH_PAGE_CLEAR_DIRTY
956 static inline void page_clear_dirty(struct page *page)
958 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
962 * Test and clear referenced bit in storage key.
964 #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
965 static inline int page_test_and_clear_young(struct page *page)
967 unsigned long physpage = page_to_phys(page);
968 int ccode;
970 asm volatile(
971 " rrbe 0,%1\n"
972 " ipm %0\n"
973 " srl %0,28\n"
974 : "=d" (ccode) : "a" (physpage) : "cc" );
975 return ccode & 2;
979 * Conversion functions: convert a page and protection to a page entry,
980 * and a page entry and page directory to the page they refer to.
982 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
984 pte_t __pte;
985 pte_val(__pte) = physpage + pgprot_val(pgprot);
986 return __pte;
989 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
991 unsigned long physpage = page_to_phys(page);
993 return mk_pte_phys(physpage, pgprot);
996 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
997 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
998 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
999 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1001 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1002 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1004 #ifndef __s390x__
1006 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1007 #define pud_deref(pmd) ({ BUG(); 0UL; })
1008 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1010 #define pud_offset(pgd, address) ((pud_t *) pgd)
1011 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1013 #else /* __s390x__ */
1015 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1016 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1017 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1019 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1021 pud_t *pud = (pud_t *) pgd;
1022 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1023 pud = (pud_t *) pgd_deref(*pgd);
1024 return pud + pud_index(address);
1027 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1029 pmd_t *pmd = (pmd_t *) pud;
1030 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1031 pmd = (pmd_t *) pud_deref(*pud);
1032 return pmd + pmd_index(address);
1035 #endif /* __s390x__ */
1037 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1038 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1039 #define pte_page(x) pfn_to_page(pte_pfn(x))
1041 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1043 /* Find an entry in the lowest level page table.. */
1044 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1045 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1046 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1047 #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
1048 #define pte_unmap(pte) do { } while (0)
1049 #define pte_unmap_nested(pte) do { } while (0)
1052 * 31 bit swap entry format:
1053 * A page-table entry has some bits we have to treat in a special way.
1054 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1055 * exception will occur instead of a page translation exception. The
1056 * specifiation exception has the bad habit not to store necessary
1057 * information in the lowcore.
1058 * Bit 21 and bit 22 are the page invalid bit and the page protection
1059 * bit. We set both to indicate a swapped page.
1060 * Bit 30 and 31 are used to distinguish the different page types. For
1061 * a swapped page these bits need to be zero.
1062 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1063 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1064 * plus 24 for the offset.
1065 * 0| offset |0110|o|type |00|
1066 * 0 0000000001111111111 2222 2 22222 33
1067 * 0 1234567890123456789 0123 4 56789 01
1069 * 64 bit swap entry format:
1070 * A page-table entry has some bits we have to treat in a special way.
1071 * Bits 52 and bit 55 have to be zero, otherwise an specification
1072 * exception will occur instead of a page translation exception. The
1073 * specifiation exception has the bad habit not to store necessary
1074 * information in the lowcore.
1075 * Bit 53 and bit 54 are the page invalid bit and the page protection
1076 * bit. We set both to indicate a swapped page.
1077 * Bit 62 and 63 are used to distinguish the different page types. For
1078 * a swapped page these bits need to be zero.
1079 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1080 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1081 * plus 56 for the offset.
1082 * | offset |0110|o|type |00|
1083 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1084 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1086 #ifndef __s390x__
1087 #define __SWP_OFFSET_MASK (~0UL >> 12)
1088 #else
1089 #define __SWP_OFFSET_MASK (~0UL >> 11)
1090 #endif
1091 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1093 pte_t pte;
1094 offset &= __SWP_OFFSET_MASK;
1095 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1096 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1097 return pte;
1100 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1101 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1102 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1104 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1105 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1107 #ifndef __s390x__
1108 # define PTE_FILE_MAX_BITS 26
1109 #else /* __s390x__ */
1110 # define PTE_FILE_MAX_BITS 59
1111 #endif /* __s390x__ */
1113 #define pte_to_pgoff(__pte) \
1114 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1116 #define pgoff_to_pte(__off) \
1117 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1118 | _PAGE_TYPE_FILE })
1120 #endif /* !__ASSEMBLY__ */
1122 #define kern_addr_valid(addr) (1)
1124 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1125 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1126 extern int s390_enable_sie(void);
1129 * No page table caches to initialise
1131 #define pgtable_cache_init() do { } while (0)
1133 #include <asm-generic/pgtable.h>
1135 #endif /* _S390_PAGE_H */