2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <asm/div64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/partitions.h>
38 #include <linux/delay.h>
39 #include <linux/list.h>
40 #include <linux/random.h>
41 #include <linux/sched.h>
43 #include <linux/pagemap.h>
45 /* Default simulator parameters values */
46 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
47 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
48 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
49 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
50 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
51 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
52 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
53 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
56 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
57 #define CONFIG_NANDSIM_ACCESS_DELAY 25
59 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
60 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
62 #ifndef CONFIG_NANDSIM_ERASE_DELAY
63 #define CONFIG_NANDSIM_ERASE_DELAY 2
65 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
66 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
68 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
69 #define CONFIG_NANDSIM_INPUT_CYCLE 50
71 #ifndef CONFIG_NANDSIM_BUS_WIDTH
72 #define CONFIG_NANDSIM_BUS_WIDTH 8
74 #ifndef CONFIG_NANDSIM_DO_DELAYS
75 #define CONFIG_NANDSIM_DO_DELAYS 0
77 #ifndef CONFIG_NANDSIM_LOG
78 #define CONFIG_NANDSIM_LOG 0
80 #ifndef CONFIG_NANDSIM_DBG
81 #define CONFIG_NANDSIM_DBG 0
84 static uint first_id_byte
= CONFIG_NANDSIM_FIRST_ID_BYTE
;
85 static uint second_id_byte
= CONFIG_NANDSIM_SECOND_ID_BYTE
;
86 static uint third_id_byte
= CONFIG_NANDSIM_THIRD_ID_BYTE
;
87 static uint fourth_id_byte
= CONFIG_NANDSIM_FOURTH_ID_BYTE
;
88 static uint access_delay
= CONFIG_NANDSIM_ACCESS_DELAY
;
89 static uint programm_delay
= CONFIG_NANDSIM_PROGRAMM_DELAY
;
90 static uint erase_delay
= CONFIG_NANDSIM_ERASE_DELAY
;
91 static uint output_cycle
= CONFIG_NANDSIM_OUTPUT_CYCLE
;
92 static uint input_cycle
= CONFIG_NANDSIM_INPUT_CYCLE
;
93 static uint bus_width
= CONFIG_NANDSIM_BUS_WIDTH
;
94 static uint do_delays
= CONFIG_NANDSIM_DO_DELAYS
;
95 static uint log
= CONFIG_NANDSIM_LOG
;
96 static uint dbg
= CONFIG_NANDSIM_DBG
;
97 static unsigned long parts
[MAX_MTD_DEVICES
];
98 static unsigned int parts_num
;
99 static char *badblocks
= NULL
;
100 static char *weakblocks
= NULL
;
101 static char *weakpages
= NULL
;
102 static unsigned int bitflips
= 0;
103 static char *gravepages
= NULL
;
104 static unsigned int rptwear
= 0;
105 static unsigned int overridesize
= 0;
106 static char *cache_file
= NULL
;
108 module_param(first_id_byte
, uint
, 0400);
109 module_param(second_id_byte
, uint
, 0400);
110 module_param(third_id_byte
, uint
, 0400);
111 module_param(fourth_id_byte
, uint
, 0400);
112 module_param(access_delay
, uint
, 0400);
113 module_param(programm_delay
, uint
, 0400);
114 module_param(erase_delay
, uint
, 0400);
115 module_param(output_cycle
, uint
, 0400);
116 module_param(input_cycle
, uint
, 0400);
117 module_param(bus_width
, uint
, 0400);
118 module_param(do_delays
, uint
, 0400);
119 module_param(log
, uint
, 0400);
120 module_param(dbg
, uint
, 0400);
121 module_param_array(parts
, ulong
, &parts_num
, 0400);
122 module_param(badblocks
, charp
, 0400);
123 module_param(weakblocks
, charp
, 0400);
124 module_param(weakpages
, charp
, 0400);
125 module_param(bitflips
, uint
, 0400);
126 module_param(gravepages
, charp
, 0400);
127 module_param(rptwear
, uint
, 0400);
128 module_param(overridesize
, uint
, 0400);
129 module_param(cache_file
, charp
, 0400);
131 MODULE_PARM_DESC(first_id_byte
, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
132 MODULE_PARM_DESC(second_id_byte
, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
133 MODULE_PARM_DESC(third_id_byte
, "The third byte returned by NAND Flash 'read ID' command");
134 MODULE_PARM_DESC(fourth_id_byte
, "The fourth byte returned by NAND Flash 'read ID' command");
135 MODULE_PARM_DESC(access_delay
, "Initial page access delay (microseconds)");
136 MODULE_PARM_DESC(programm_delay
, "Page programm delay (microseconds");
137 MODULE_PARM_DESC(erase_delay
, "Sector erase delay (milliseconds)");
138 MODULE_PARM_DESC(output_cycle
, "Word output (from flash) time (nanodeconds)");
139 MODULE_PARM_DESC(input_cycle
, "Word input (to flash) time (nanodeconds)");
140 MODULE_PARM_DESC(bus_width
, "Chip's bus width (8- or 16-bit)");
141 MODULE_PARM_DESC(do_delays
, "Simulate NAND delays using busy-waits if not zero");
142 MODULE_PARM_DESC(log
, "Perform logging if not zero");
143 MODULE_PARM_DESC(dbg
, "Output debug information if not zero");
144 MODULE_PARM_DESC(parts
, "Partition sizes (in erase blocks) separated by commas");
145 /* Page and erase block positions for the following parameters are independent of any partitions */
146 MODULE_PARM_DESC(badblocks
, "Erase blocks that are initially marked bad, separated by commas");
147 MODULE_PARM_DESC(weakblocks
, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
148 " separated by commas e.g. 113:2 means eb 113"
149 " can be erased only twice before failing");
150 MODULE_PARM_DESC(weakpages
, "Weak pages [: maximum writes (defaults to 3)]"
151 " separated by commas e.g. 1401:2 means page 1401"
152 " can be written only twice before failing");
153 MODULE_PARM_DESC(bitflips
, "Maximum number of random bit flips per page (zero by default)");
154 MODULE_PARM_DESC(gravepages
, "Pages that lose data [: maximum reads (defaults to 3)]"
155 " separated by commas e.g. 1401:2 means page 1401"
156 " can be read only twice before failing");
157 MODULE_PARM_DESC(rptwear
, "Number of erases inbetween reporting wear, if not zero");
158 MODULE_PARM_DESC(overridesize
, "Specifies the NAND Flash size overriding the ID bytes. "
159 "The size is specified in erase blocks and as the exponent of a power of two"
160 " e.g. 5 means a size of 32 erase blocks");
161 MODULE_PARM_DESC(cache_file
, "File to use to cache nand pages instead of memory");
163 /* The largest possible page size */
164 #define NS_LARGEST_PAGE_SIZE 2048
166 /* The prefix for simulator output */
167 #define NS_OUTPUT_PREFIX "[nandsim]"
169 /* Simulator's output macros (logging, debugging, warning, error) */
170 #define NS_LOG(args...) \
171 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
172 #define NS_DBG(args...) \
173 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
174 #define NS_WARN(args...) \
175 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
176 #define NS_ERR(args...) \
177 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
178 #define NS_INFO(args...) \
179 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
181 /* Busy-wait delay macros (microseconds, milliseconds) */
182 #define NS_UDELAY(us) \
183 do { if (do_delays) udelay(us); } while(0)
184 #define NS_MDELAY(us) \
185 do { if (do_delays) mdelay(us); } while(0)
187 /* Is the nandsim structure initialized ? */
188 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
190 /* Good operation completion status */
191 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
193 /* Operation failed completion status */
194 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
196 /* Calculate the page offset in flash RAM image by (row, column) address */
197 #define NS_RAW_OFFSET(ns) \
198 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
200 /* Calculate the OOB offset in flash RAM image by (row, column) address */
201 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
203 /* After a command is input, the simulator goes to one of the following states */
204 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
205 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
206 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
207 #define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
208 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
209 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
210 #define STATE_CMD_STATUS 0x00000007 /* read status */
211 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
212 #define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
213 #define STATE_CMD_READID 0x0000000A /* read ID */
214 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
215 #define STATE_CMD_RESET 0x0000000C /* reset */
216 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
217 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
218 #define STATE_CMD_MASK 0x0000000F /* command states mask */
220 /* After an address is input, the simulator goes to one of these states */
221 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
222 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
223 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
224 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
225 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
227 /* Durind data input/output the simulator is in these states */
228 #define STATE_DATAIN 0x00000100 /* waiting for data input */
229 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
231 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
232 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
233 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
234 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
235 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
237 /* Previous operation is done, ready to accept new requests */
238 #define STATE_READY 0x00000000
240 /* This state is used to mark that the next state isn't known yet */
241 #define STATE_UNKNOWN 0x10000000
243 /* Simulator's actions bit masks */
244 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
245 #define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
246 #define ACTION_SECERASE 0x00300000 /* erase sector */
247 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
248 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
249 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
250 #define ACTION_MASK 0x00700000 /* action mask */
252 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
253 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
255 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
256 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
257 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
258 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
259 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
260 #define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
261 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
262 #define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
263 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
265 /* Remove action bits ftom state */
266 #define NS_STATE(x) ((x) & ~ACTION_MASK)
269 * Maximum previous states which need to be saved. Currently saving is
270 * only needed for page programm operation with preceeded read command
271 * (which is only valid for 512-byte pages).
273 #define NS_MAX_PREVSTATES 1
275 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
276 #define NS_MAX_HELD_PAGES 16
279 * A union to represent flash memory contents and flash buffer.
282 u_char
*byte
; /* for byte access */
283 uint16_t *word
; /* for 16-bit word access */
287 * The structure which describes all the internal simulator data.
290 struct mtd_partition partitions
[MAX_MTD_DEVICES
];
291 unsigned int nbparts
;
293 uint busw
; /* flash chip bus width (8 or 16) */
294 u_char ids
[4]; /* chip's ID bytes */
295 uint32_t options
; /* chip's characteristic bits */
296 uint32_t state
; /* current chip state */
297 uint32_t nxstate
; /* next expected state */
299 uint32_t *op
; /* current operation, NULL operations isn't known yet */
300 uint32_t pstates
[NS_MAX_PREVSTATES
]; /* previous states */
301 uint16_t npstates
; /* number of previous states saved */
302 uint16_t stateidx
; /* current state index */
304 /* The simulated NAND flash pages array */
307 /* Slab allocator for nand pages */
308 struct kmem_cache
*nand_pages_slab
;
310 /* Internal buffer of page + OOB size bytes */
313 /* NAND flash "geometry" */
314 struct nandsin_geometry
{
315 uint64_t totsz
; /* total flash size, bytes */
316 uint32_t secsz
; /* flash sector (erase block) size, bytes */
317 uint pgsz
; /* NAND flash page size, bytes */
318 uint oobsz
; /* page OOB area size, bytes */
319 uint64_t totszoob
; /* total flash size including OOB, bytes */
320 uint pgszoob
; /* page size including OOB , bytes*/
321 uint secszoob
; /* sector size including OOB, bytes */
322 uint pgnum
; /* total number of pages */
323 uint pgsec
; /* number of pages per sector */
324 uint secshift
; /* bits number in sector size */
325 uint pgshift
; /* bits number in page size */
326 uint oobshift
; /* bits number in OOB size */
327 uint pgaddrbytes
; /* bytes per page address */
328 uint secaddrbytes
; /* bytes per sector address */
329 uint idbytes
; /* the number ID bytes that this chip outputs */
332 /* NAND flash internal registers */
333 struct nandsim_regs
{
334 unsigned command
; /* the command register */
335 u_char status
; /* the status register */
336 uint row
; /* the page number */
337 uint column
; /* the offset within page */
338 uint count
; /* internal counter */
339 uint num
; /* number of bytes which must be processed */
340 uint off
; /* fixed page offset */
343 /* NAND flash lines state */
344 struct ns_lines_status
{
345 int ce
; /* chip Enable */
346 int cle
; /* command Latch Enable */
347 int ale
; /* address Latch Enable */
348 int wp
; /* write Protect */
351 /* Fields needed when using a cache file */
352 struct file
*cfile
; /* Open file */
353 unsigned char *pages_written
; /* Which pages have been written */
355 struct page
*held_pages
[NS_MAX_HELD_PAGES
];
360 * Operations array. To perform any operation the simulator must pass
361 * through the correspondent states chain.
363 static struct nandsim_operations
{
364 uint32_t reqopts
; /* options which are required to perform the operation */
365 uint32_t states
[NS_OPER_STATES
]; /* operation's states */
366 } ops
[NS_OPER_NUM
] = {
367 /* Read page + OOB from the beginning */
368 {OPT_SMALLPAGE
, {STATE_CMD_READ0
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
369 STATE_DATAOUT
, STATE_READY
}},
370 /* Read page + OOB from the second half */
371 {OPT_PAGE512_8BIT
, {STATE_CMD_READ1
| ACTION_HALFOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
372 STATE_DATAOUT
, STATE_READY
}},
374 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
| ACTION_OOBOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
375 STATE_DATAOUT
, STATE_READY
}},
376 /* Programm page starting from the beginning */
377 {OPT_ANY
, {STATE_CMD_SEQIN
, STATE_ADDR_PAGE
, STATE_DATAIN
,
378 STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
379 /* Programm page starting from the beginning */
380 {OPT_SMALLPAGE
, {STATE_CMD_READ0
, STATE_CMD_SEQIN
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
,
381 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
382 /* Programm page starting from the second half */
383 {OPT_PAGE512
, {STATE_CMD_READ1
, STATE_CMD_SEQIN
| ACTION_HALFOFF
, STATE_ADDR_PAGE
,
384 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
386 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
, STATE_CMD_SEQIN
| ACTION_OOBOFF
, STATE_ADDR_PAGE
,
387 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
389 {OPT_ANY
, {STATE_CMD_ERASE1
, STATE_ADDR_SEC
, STATE_CMD_ERASE2
| ACTION_SECERASE
, STATE_READY
}},
391 {OPT_ANY
, {STATE_CMD_STATUS
, STATE_DATAOUT_STATUS
, STATE_READY
}},
392 /* Read multi-plane status */
393 {OPT_SMARTMEDIA
, {STATE_CMD_STATUS_M
, STATE_DATAOUT_STATUS_M
, STATE_READY
}},
395 {OPT_ANY
, {STATE_CMD_READID
, STATE_ADDR_ZERO
, STATE_DATAOUT_ID
, STATE_READY
}},
396 /* Large page devices read page */
397 {OPT_LARGEPAGE
, {STATE_CMD_READ0
, STATE_ADDR_PAGE
, STATE_CMD_READSTART
| ACTION_CPY
,
398 STATE_DATAOUT
, STATE_READY
}},
399 /* Large page devices random page read */
400 {OPT_LARGEPAGE
, {STATE_CMD_RNDOUT
, STATE_ADDR_COLUMN
, STATE_CMD_RNDOUTSTART
| ACTION_CPY
,
401 STATE_DATAOUT
, STATE_READY
}},
405 struct list_head list
;
406 unsigned int erase_block_no
;
407 unsigned int max_erases
;
408 unsigned int erases_done
;
411 static LIST_HEAD(weak_blocks
);
414 struct list_head list
;
415 unsigned int page_no
;
416 unsigned int max_writes
;
417 unsigned int writes_done
;
420 static LIST_HEAD(weak_pages
);
423 struct list_head list
;
424 unsigned int page_no
;
425 unsigned int max_reads
;
426 unsigned int reads_done
;
429 static LIST_HEAD(grave_pages
);
431 static unsigned long *erase_block_wear
= NULL
;
432 static unsigned int wear_eb_count
= 0;
433 static unsigned long total_wear
= 0;
434 static unsigned int rptwear_cnt
= 0;
436 /* MTD structure for NAND controller */
437 static struct mtd_info
*nsmtd
;
439 static u_char ns_verify_buf
[NS_LARGEST_PAGE_SIZE
];
442 * Allocate array of page pointers, create slab allocation for an array
443 * and initialize the array by NULL pointers.
445 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
447 static int alloc_device(struct nandsim
*ns
)
453 cfile
= filp_open(cache_file
, O_CREAT
| O_RDWR
| O_LARGEFILE
, 0600);
455 return PTR_ERR(cfile
);
456 if (!cfile
->f_op
|| (!cfile
->f_op
->read
&& !cfile
->f_op
->aio_read
)) {
457 NS_ERR("alloc_device: cache file not readable\n");
461 if (!cfile
->f_op
->write
&& !cfile
->f_op
->aio_write
) {
462 NS_ERR("alloc_device: cache file not writeable\n");
466 ns
->pages_written
= vmalloc(ns
->geom
.pgnum
);
467 if (!ns
->pages_written
) {
468 NS_ERR("alloc_device: unable to allocate pages written array\n");
472 ns
->file_buf
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
474 NS_ERR("alloc_device: unable to allocate file buf\n");
479 memset(ns
->pages_written
, 0, ns
->geom
.pgnum
);
483 ns
->pages
= vmalloc(ns
->geom
.pgnum
* sizeof(union ns_mem
));
485 NS_ERR("alloc_device: unable to allocate page array\n");
488 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
489 ns
->pages
[i
].byte
= NULL
;
491 ns
->nand_pages_slab
= kmem_cache_create("nandsim",
492 ns
->geom
.pgszoob
, 0, 0, NULL
);
493 if (!ns
->nand_pages_slab
) {
494 NS_ERR("cache_create: unable to create kmem_cache\n");
501 vfree(ns
->pages_written
);
503 filp_close(cfile
, NULL
);
508 * Free any allocated pages, and free the array of page pointers.
510 static void free_device(struct nandsim
*ns
)
516 vfree(ns
->pages_written
);
517 filp_close(ns
->cfile
, NULL
);
522 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
523 if (ns
->pages
[i
].byte
)
524 kmem_cache_free(ns
->nand_pages_slab
,
527 kmem_cache_destroy(ns
->nand_pages_slab
);
532 static char *get_partition_name(int i
)
535 sprintf(buf
, "NAND simulator partition %d", i
);
536 return kstrdup(buf
, GFP_KERNEL
);
539 static uint64_t divide(uint64_t n
, uint32_t d
)
546 * Initialize the nandsim structure.
548 * RETURNS: 0 if success, -ERRNO if failure.
550 static int init_nandsim(struct mtd_info
*mtd
)
552 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
553 struct nandsim
*ns
= (struct nandsim
*)(chip
->priv
);
556 uint64_t next_offset
;
558 if (NS_IS_INITIALIZED(ns
)) {
559 NS_ERR("init_nandsim: nandsim is already initialized\n");
563 /* Force mtd to not do delays */
564 chip
->chip_delay
= 0;
566 /* Initialize the NAND flash parameters */
567 ns
->busw
= chip
->options
& NAND_BUSWIDTH_16
? 16 : 8;
568 ns
->geom
.totsz
= mtd
->size
;
569 ns
->geom
.pgsz
= mtd
->writesize
;
570 ns
->geom
.oobsz
= mtd
->oobsize
;
571 ns
->geom
.secsz
= mtd
->erasesize
;
572 ns
->geom
.pgszoob
= ns
->geom
.pgsz
+ ns
->geom
.oobsz
;
573 ns
->geom
.pgnum
= divide(ns
->geom
.totsz
, ns
->geom
.pgsz
);
574 ns
->geom
.totszoob
= ns
->geom
.totsz
+ (uint64_t)ns
->geom
.pgnum
* ns
->geom
.oobsz
;
575 ns
->geom
.secshift
= ffs(ns
->geom
.secsz
) - 1;
576 ns
->geom
.pgshift
= chip
->page_shift
;
577 ns
->geom
.oobshift
= ffs(ns
->geom
.oobsz
) - 1;
578 ns
->geom
.pgsec
= ns
->geom
.secsz
/ ns
->geom
.pgsz
;
579 ns
->geom
.secszoob
= ns
->geom
.secsz
+ ns
->geom
.oobsz
* ns
->geom
.pgsec
;
582 if (ns
->geom
.pgsz
== 256) {
583 ns
->options
|= OPT_PAGE256
;
585 else if (ns
->geom
.pgsz
== 512) {
586 ns
->options
|= (OPT_PAGE512
| OPT_AUTOINCR
);
588 ns
->options
|= OPT_PAGE512_8BIT
;
589 } else if (ns
->geom
.pgsz
== 2048) {
590 ns
->options
|= OPT_PAGE2048
;
592 NS_ERR("init_nandsim: unknown page size %u\n", ns
->geom
.pgsz
);
596 if (ns
->options
& OPT_SMALLPAGE
) {
597 if (ns
->geom
.totsz
<= (32 << 20)) {
598 ns
->geom
.pgaddrbytes
= 3;
599 ns
->geom
.secaddrbytes
= 2;
601 ns
->geom
.pgaddrbytes
= 4;
602 ns
->geom
.secaddrbytes
= 3;
605 if (ns
->geom
.totsz
<= (128 << 20)) {
606 ns
->geom
.pgaddrbytes
= 4;
607 ns
->geom
.secaddrbytes
= 2;
609 ns
->geom
.pgaddrbytes
= 5;
610 ns
->geom
.secaddrbytes
= 3;
614 /* Fill the partition_info structure */
615 if (parts_num
> ARRAY_SIZE(ns
->partitions
)) {
616 NS_ERR("too many partitions.\n");
620 remains
= ns
->geom
.totsz
;
622 for (i
= 0; i
< parts_num
; ++i
) {
623 uint64_t part_sz
= (uint64_t)parts
[i
] * ns
->geom
.secsz
;
625 if (!part_sz
|| part_sz
> remains
) {
626 NS_ERR("bad partition size.\n");
630 ns
->partitions
[i
].name
= get_partition_name(i
);
631 ns
->partitions
[i
].offset
= next_offset
;
632 ns
->partitions
[i
].size
= part_sz
;
633 next_offset
+= ns
->partitions
[i
].size
;
634 remains
-= ns
->partitions
[i
].size
;
636 ns
->nbparts
= parts_num
;
638 if (parts_num
+ 1 > ARRAY_SIZE(ns
->partitions
)) {
639 NS_ERR("too many partitions.\n");
643 ns
->partitions
[i
].name
= get_partition_name(i
);
644 ns
->partitions
[i
].offset
= next_offset
;
645 ns
->partitions
[i
].size
= remains
;
649 /* Detect how many ID bytes the NAND chip outputs */
650 for (i
= 0; nand_flash_ids
[i
].name
!= NULL
; i
++) {
651 if (second_id_byte
!= nand_flash_ids
[i
].id
)
653 if (!(nand_flash_ids
[i
].options
& NAND_NO_AUTOINCR
))
654 ns
->options
|= OPT_AUTOINCR
;
658 NS_WARN("16-bit flashes support wasn't tested\n");
660 printk("flash size: %llu MiB\n",
661 (unsigned long long)ns
->geom
.totsz
>> 20);
662 printk("page size: %u bytes\n", ns
->geom
.pgsz
);
663 printk("OOB area size: %u bytes\n", ns
->geom
.oobsz
);
664 printk("sector size: %u KiB\n", ns
->geom
.secsz
>> 10);
665 printk("pages number: %u\n", ns
->geom
.pgnum
);
666 printk("pages per sector: %u\n", ns
->geom
.pgsec
);
667 printk("bus width: %u\n", ns
->busw
);
668 printk("bits in sector size: %u\n", ns
->geom
.secshift
);
669 printk("bits in page size: %u\n", ns
->geom
.pgshift
);
670 printk("bits in OOB size: %u\n", ns
->geom
.oobshift
);
671 printk("flash size with OOB: %llu KiB\n",
672 (unsigned long long)ns
->geom
.totszoob
>> 10);
673 printk("page address bytes: %u\n", ns
->geom
.pgaddrbytes
);
674 printk("sector address bytes: %u\n", ns
->geom
.secaddrbytes
);
675 printk("options: %#x\n", ns
->options
);
677 if ((ret
= alloc_device(ns
)) != 0)
680 /* Allocate / initialize the internal buffer */
681 ns
->buf
.byte
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
683 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
688 memset(ns
->buf
.byte
, 0xFF, ns
->geom
.pgszoob
);
699 * Free the nandsim structure.
701 static void free_nandsim(struct nandsim
*ns
)
709 static int parse_badblocks(struct nandsim
*ns
, struct mtd_info
*mtd
)
713 unsigned int erase_block_no
;
720 zero_ok
= (*w
== '0' ? 1 : 0);
721 erase_block_no
= simple_strtoul(w
, &w
, 0);
722 if (!zero_ok
&& !erase_block_no
) {
723 NS_ERR("invalid badblocks.\n");
726 offset
= erase_block_no
* ns
->geom
.secsz
;
727 if (mtd
->block_markbad(mtd
, offset
)) {
728 NS_ERR("invalid badblocks.\n");
737 static int parse_weakblocks(void)
741 unsigned int erase_block_no
;
742 unsigned int max_erases
;
743 struct weak_block
*wb
;
749 zero_ok
= (*w
== '0' ? 1 : 0);
750 erase_block_no
= simple_strtoul(w
, &w
, 0);
751 if (!zero_ok
&& !erase_block_no
) {
752 NS_ERR("invalid weakblocks.\n");
758 max_erases
= simple_strtoul(w
, &w
, 0);
762 wb
= kzalloc(sizeof(*wb
), GFP_KERNEL
);
764 NS_ERR("unable to allocate memory.\n");
767 wb
->erase_block_no
= erase_block_no
;
768 wb
->max_erases
= max_erases
;
769 list_add(&wb
->list
, &weak_blocks
);
774 static int erase_error(unsigned int erase_block_no
)
776 struct weak_block
*wb
;
778 list_for_each_entry(wb
, &weak_blocks
, list
)
779 if (wb
->erase_block_no
== erase_block_no
) {
780 if (wb
->erases_done
>= wb
->max_erases
)
782 wb
->erases_done
+= 1;
788 static int parse_weakpages(void)
792 unsigned int page_no
;
793 unsigned int max_writes
;
794 struct weak_page
*wp
;
800 zero_ok
= (*w
== '0' ? 1 : 0);
801 page_no
= simple_strtoul(w
, &w
, 0);
802 if (!zero_ok
&& !page_no
) {
803 NS_ERR("invalid weakpagess.\n");
809 max_writes
= simple_strtoul(w
, &w
, 0);
813 wp
= kzalloc(sizeof(*wp
), GFP_KERNEL
);
815 NS_ERR("unable to allocate memory.\n");
818 wp
->page_no
= page_no
;
819 wp
->max_writes
= max_writes
;
820 list_add(&wp
->list
, &weak_pages
);
825 static int write_error(unsigned int page_no
)
827 struct weak_page
*wp
;
829 list_for_each_entry(wp
, &weak_pages
, list
)
830 if (wp
->page_no
== page_no
) {
831 if (wp
->writes_done
>= wp
->max_writes
)
833 wp
->writes_done
+= 1;
839 static int parse_gravepages(void)
843 unsigned int page_no
;
844 unsigned int max_reads
;
845 struct grave_page
*gp
;
851 zero_ok
= (*g
== '0' ? 1 : 0);
852 page_no
= simple_strtoul(g
, &g
, 0);
853 if (!zero_ok
&& !page_no
) {
854 NS_ERR("invalid gravepagess.\n");
860 max_reads
= simple_strtoul(g
, &g
, 0);
864 gp
= kzalloc(sizeof(*gp
), GFP_KERNEL
);
866 NS_ERR("unable to allocate memory.\n");
869 gp
->page_no
= page_no
;
870 gp
->max_reads
= max_reads
;
871 list_add(&gp
->list
, &grave_pages
);
876 static int read_error(unsigned int page_no
)
878 struct grave_page
*gp
;
880 list_for_each_entry(gp
, &grave_pages
, list
)
881 if (gp
->page_no
== page_no
) {
882 if (gp
->reads_done
>= gp
->max_reads
)
890 static void free_lists(void)
892 struct list_head
*pos
, *n
;
893 list_for_each_safe(pos
, n
, &weak_blocks
) {
895 kfree(list_entry(pos
, struct weak_block
, list
));
897 list_for_each_safe(pos
, n
, &weak_pages
) {
899 kfree(list_entry(pos
, struct weak_page
, list
));
901 list_for_each_safe(pos
, n
, &grave_pages
) {
903 kfree(list_entry(pos
, struct grave_page
, list
));
905 kfree(erase_block_wear
);
908 static int setup_wear_reporting(struct mtd_info
*mtd
)
914 wear_eb_count
= divide(mtd
->size
, mtd
->erasesize
);
915 mem
= wear_eb_count
* sizeof(unsigned long);
916 if (mem
/ sizeof(unsigned long) != wear_eb_count
) {
917 NS_ERR("Too many erase blocks for wear reporting\n");
920 erase_block_wear
= kzalloc(mem
, GFP_KERNEL
);
921 if (!erase_block_wear
) {
922 NS_ERR("Too many erase blocks for wear reporting\n");
928 static void update_wear(unsigned int erase_block_no
)
930 unsigned long wmin
= -1, wmax
= 0, avg
;
931 unsigned long deciles
[10], decile_max
[10], tot
= 0;
934 if (!erase_block_wear
)
938 NS_ERR("Erase counter total overflow\n");
939 erase_block_wear
[erase_block_no
] += 1;
940 if (erase_block_wear
[erase_block_no
] == 0)
941 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no
);
943 if (rptwear_cnt
< rptwear
)
946 /* Calc wear stats */
947 for (i
= 0; i
< wear_eb_count
; ++i
) {
948 unsigned long wear
= erase_block_wear
[i
];
955 for (i
= 0; i
< 9; ++i
) {
957 decile_max
[i
] = (wmax
* (i
+ 1) + 5) / 10;
960 decile_max
[9] = wmax
;
961 for (i
= 0; i
< wear_eb_count
; ++i
) {
963 unsigned long wear
= erase_block_wear
[i
];
964 for (d
= 0; d
< 10; ++d
)
965 if (wear
<= decile_max
[d
]) {
970 avg
= tot
/ wear_eb_count
;
971 /* Output wear report */
972 NS_INFO("*** Wear Report ***\n");
973 NS_INFO("Total numbers of erases: %lu\n", tot
);
974 NS_INFO("Number of erase blocks: %u\n", wear_eb_count
);
975 NS_INFO("Average number of erases: %lu\n", avg
);
976 NS_INFO("Maximum number of erases: %lu\n", wmax
);
977 NS_INFO("Minimum number of erases: %lu\n", wmin
);
978 for (i
= 0; i
< 10; ++i
) {
979 unsigned long from
= (i
? decile_max
[i
- 1] + 1 : 0);
980 if (from
> decile_max
[i
])
982 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
987 NS_INFO("*** End of Wear Report ***\n");
991 * Returns the string representation of 'state' state.
993 static char *get_state_name(uint32_t state
)
995 switch (NS_STATE(state
)) {
996 case STATE_CMD_READ0
:
997 return "STATE_CMD_READ0";
998 case STATE_CMD_READ1
:
999 return "STATE_CMD_READ1";
1000 case STATE_CMD_PAGEPROG
:
1001 return "STATE_CMD_PAGEPROG";
1002 case STATE_CMD_READOOB
:
1003 return "STATE_CMD_READOOB";
1004 case STATE_CMD_READSTART
:
1005 return "STATE_CMD_READSTART";
1006 case STATE_CMD_ERASE1
:
1007 return "STATE_CMD_ERASE1";
1008 case STATE_CMD_STATUS
:
1009 return "STATE_CMD_STATUS";
1010 case STATE_CMD_STATUS_M
:
1011 return "STATE_CMD_STATUS_M";
1012 case STATE_CMD_SEQIN
:
1013 return "STATE_CMD_SEQIN";
1014 case STATE_CMD_READID
:
1015 return "STATE_CMD_READID";
1016 case STATE_CMD_ERASE2
:
1017 return "STATE_CMD_ERASE2";
1018 case STATE_CMD_RESET
:
1019 return "STATE_CMD_RESET";
1020 case STATE_CMD_RNDOUT
:
1021 return "STATE_CMD_RNDOUT";
1022 case STATE_CMD_RNDOUTSTART
:
1023 return "STATE_CMD_RNDOUTSTART";
1024 case STATE_ADDR_PAGE
:
1025 return "STATE_ADDR_PAGE";
1026 case STATE_ADDR_SEC
:
1027 return "STATE_ADDR_SEC";
1028 case STATE_ADDR_ZERO
:
1029 return "STATE_ADDR_ZERO";
1030 case STATE_ADDR_COLUMN
:
1031 return "STATE_ADDR_COLUMN";
1033 return "STATE_DATAIN";
1035 return "STATE_DATAOUT";
1036 case STATE_DATAOUT_ID
:
1037 return "STATE_DATAOUT_ID";
1038 case STATE_DATAOUT_STATUS
:
1039 return "STATE_DATAOUT_STATUS";
1040 case STATE_DATAOUT_STATUS_M
:
1041 return "STATE_DATAOUT_STATUS_M";
1043 return "STATE_READY";
1045 return "STATE_UNKNOWN";
1048 NS_ERR("get_state_name: unknown state, BUG\n");
1053 * Check if command is valid.
1055 * RETURNS: 1 if wrong command, 0 if right.
1057 static int check_command(int cmd
)
1061 case NAND_CMD_READ0
:
1062 case NAND_CMD_READ1
:
1063 case NAND_CMD_READSTART
:
1064 case NAND_CMD_PAGEPROG
:
1065 case NAND_CMD_READOOB
:
1066 case NAND_CMD_ERASE1
:
1067 case NAND_CMD_STATUS
:
1068 case NAND_CMD_SEQIN
:
1069 case NAND_CMD_READID
:
1070 case NAND_CMD_ERASE2
:
1071 case NAND_CMD_RESET
:
1072 case NAND_CMD_RNDOUT
:
1073 case NAND_CMD_RNDOUTSTART
:
1076 case NAND_CMD_STATUS_MULTI
:
1083 * Returns state after command is accepted by command number.
1085 static uint32_t get_state_by_command(unsigned command
)
1088 case NAND_CMD_READ0
:
1089 return STATE_CMD_READ0
;
1090 case NAND_CMD_READ1
:
1091 return STATE_CMD_READ1
;
1092 case NAND_CMD_PAGEPROG
:
1093 return STATE_CMD_PAGEPROG
;
1094 case NAND_CMD_READSTART
:
1095 return STATE_CMD_READSTART
;
1096 case NAND_CMD_READOOB
:
1097 return STATE_CMD_READOOB
;
1098 case NAND_CMD_ERASE1
:
1099 return STATE_CMD_ERASE1
;
1100 case NAND_CMD_STATUS
:
1101 return STATE_CMD_STATUS
;
1102 case NAND_CMD_STATUS_MULTI
:
1103 return STATE_CMD_STATUS_M
;
1104 case NAND_CMD_SEQIN
:
1105 return STATE_CMD_SEQIN
;
1106 case NAND_CMD_READID
:
1107 return STATE_CMD_READID
;
1108 case NAND_CMD_ERASE2
:
1109 return STATE_CMD_ERASE2
;
1110 case NAND_CMD_RESET
:
1111 return STATE_CMD_RESET
;
1112 case NAND_CMD_RNDOUT
:
1113 return STATE_CMD_RNDOUT
;
1114 case NAND_CMD_RNDOUTSTART
:
1115 return STATE_CMD_RNDOUTSTART
;
1118 NS_ERR("get_state_by_command: unknown command, BUG\n");
1123 * Move an address byte to the correspondent internal register.
1125 static inline void accept_addr_byte(struct nandsim
*ns
, u_char bt
)
1127 uint byte
= (uint
)bt
;
1129 if (ns
->regs
.count
< (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
))
1130 ns
->regs
.column
|= (byte
<< 8 * ns
->regs
.count
);
1132 ns
->regs
.row
|= (byte
<< 8 * (ns
->regs
.count
-
1133 ns
->geom
.pgaddrbytes
+
1134 ns
->geom
.secaddrbytes
));
1141 * Switch to STATE_READY state.
1143 static inline void switch_to_ready_state(struct nandsim
*ns
, u_char status
)
1145 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY
));
1147 ns
->state
= STATE_READY
;
1148 ns
->nxstate
= STATE_UNKNOWN
;
1156 ns
->regs
.column
= 0;
1157 ns
->regs
.status
= status
;
1161 * If the operation isn't known yet, try to find it in the global array
1162 * of supported operations.
1164 * Operation can be unknown because of the following.
1165 * 1. New command was accepted and this is the firs call to find the
1166 * correspondent states chain. In this case ns->npstates = 0;
1167 * 2. There is several operations which begin with the same command(s)
1168 * (for example program from the second half and read from the
1169 * second half operations both begin with the READ1 command). In this
1170 * case the ns->pstates[] array contains previous states.
1172 * Thus, the function tries to find operation containing the following
1173 * states (if the 'flag' parameter is 0):
1174 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1176 * If (one and only one) matching operation is found, it is accepted (
1177 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1180 * If there are several maches, the current state is pushed to the
1183 * The operation can be unknown only while commands are input to the chip.
1184 * As soon as address command is accepted, the operation must be known.
1185 * In such situation the function is called with 'flag' != 0, and the
1186 * operation is searched using the following pattern:
1187 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1189 * It is supposed that this pattern must either match one operation on
1190 * none. There can't be ambiguity in that case.
1192 * If no matches found, the functions does the following:
1193 * 1. if there are saved states present, try to ignore them and search
1194 * again only using the last command. If nothing was found, switch
1195 * to the STATE_READY state.
1196 * 2. if there are no saved states, switch to the STATE_READY state.
1198 * RETURNS: -2 - no matched operations found.
1199 * -1 - several matches.
1200 * 0 - operation is found.
1202 static int find_operation(struct nandsim
*ns
, uint32_t flag
)
1207 for (i
= 0; i
< NS_OPER_NUM
; i
++) {
1211 if (!(ns
->options
& ops
[i
].reqopts
))
1212 /* Ignore operations we can't perform */
1216 if (!(ops
[i
].states
[ns
->npstates
] & STATE_ADDR_MASK
))
1219 if (NS_STATE(ns
->state
) != NS_STATE(ops
[i
].states
[ns
->npstates
]))
1223 for (j
= 0; j
< ns
->npstates
; j
++)
1224 if (NS_STATE(ops
[i
].states
[j
]) != NS_STATE(ns
->pstates
[j
])
1225 && (ns
->options
& ops
[idx
].reqopts
)) {
1236 if (opsfound
== 1) {
1238 ns
->op
= &ops
[idx
].states
[0];
1241 * In this case the find_operation function was
1242 * called when address has just began input. But it isn't
1243 * yet fully input and the current state must
1244 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1245 * state must be the next state (ns->nxstate).
1247 ns
->stateidx
= ns
->npstates
- 1;
1249 ns
->stateidx
= ns
->npstates
;
1252 ns
->state
= ns
->op
[ns
->stateidx
];
1253 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1254 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1255 idx
, get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1259 if (opsfound
== 0) {
1260 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1261 if (ns
->npstates
!= 0) {
1262 NS_DBG("find_operation: no operation found, try again with state %s\n",
1263 get_state_name(ns
->state
));
1265 return find_operation(ns
, 0);
1268 NS_DBG("find_operation: no operations found\n");
1269 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1274 /* This shouldn't happen */
1275 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1279 NS_DBG("find_operation: there is still ambiguity\n");
1281 ns
->pstates
[ns
->npstates
++] = ns
->state
;
1286 static void put_pages(struct nandsim
*ns
)
1290 for (i
= 0; i
< ns
->held_cnt
; i
++)
1291 page_cache_release(ns
->held_pages
[i
]);
1294 /* Get page cache pages in advance to provide NOFS memory allocation */
1295 static int get_pages(struct nandsim
*ns
, struct file
*file
, size_t count
, loff_t pos
)
1297 pgoff_t index
, start_index
, end_index
;
1299 struct address_space
*mapping
= file
->f_mapping
;
1301 start_index
= pos
>> PAGE_CACHE_SHIFT
;
1302 end_index
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1303 if (end_index
- start_index
+ 1 > NS_MAX_HELD_PAGES
)
1306 for (index
= start_index
; index
<= end_index
; index
++) {
1307 page
= find_get_page(mapping
, index
);
1309 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
1311 write_inode_now(mapping
->host
, 1);
1312 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
1320 ns
->held_pages
[ns
->held_cnt
++] = page
;
1325 static int set_memalloc(void)
1327 if (current
->flags
& PF_MEMALLOC
)
1329 current
->flags
|= PF_MEMALLOC
;
1333 static void clear_memalloc(int memalloc
)
1336 current
->flags
&= ~PF_MEMALLOC
;
1339 static ssize_t
read_file(struct nandsim
*ns
, struct file
*file
, void *buf
, size_t count
, loff_t
*pos
)
1341 mm_segment_t old_fs
;
1345 err
= get_pages(ns
, file
, count
, *pos
);
1350 memalloc
= set_memalloc();
1351 tx
= vfs_read(file
, (char __user
*)buf
, count
, pos
);
1352 clear_memalloc(memalloc
);
1358 static ssize_t
write_file(struct nandsim
*ns
, struct file
*file
, void *buf
, size_t count
, loff_t
*pos
)
1360 mm_segment_t old_fs
;
1364 err
= get_pages(ns
, file
, count
, *pos
);
1369 memalloc
= set_memalloc();
1370 tx
= vfs_write(file
, (char __user
*)buf
, count
, pos
);
1371 clear_memalloc(memalloc
);
1378 * Returns a pointer to the current page.
1380 static inline union ns_mem
*NS_GET_PAGE(struct nandsim
*ns
)
1382 return &(ns
->pages
[ns
->regs
.row
]);
1386 * Retuns a pointer to the current byte, within the current page.
1388 static inline u_char
*NS_PAGE_BYTE_OFF(struct nandsim
*ns
)
1390 return NS_GET_PAGE(ns
)->byte
+ ns
->regs
.column
+ ns
->regs
.off
;
1393 int do_read_error(struct nandsim
*ns
, int num
)
1395 unsigned int page_no
= ns
->regs
.row
;
1397 if (read_error(page_no
)) {
1399 memset(ns
->buf
.byte
, 0xFF, num
);
1400 for (i
= 0; i
< num
; ++i
)
1401 ns
->buf
.byte
[i
] = random32();
1402 NS_WARN("simulating read error in page %u\n", page_no
);
1408 void do_bit_flips(struct nandsim
*ns
, int num
)
1410 if (bitflips
&& random32() < (1 << 22)) {
1413 flips
= (random32() % (int) bitflips
) + 1;
1415 int pos
= random32() % (num
* 8);
1416 ns
->buf
.byte
[pos
/ 8] ^= (1 << (pos
% 8));
1417 NS_WARN("read_page: flipping bit %d in page %d "
1418 "reading from %d ecc: corrected=%u failed=%u\n",
1419 pos
, ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
,
1420 nsmtd
->ecc_stats
.corrected
, nsmtd
->ecc_stats
.failed
);
1426 * Fill the NAND buffer with data read from the specified page.
1428 static void read_page(struct nandsim
*ns
, int num
)
1430 union ns_mem
*mypage
;
1433 if (!ns
->pages_written
[ns
->regs
.row
]) {
1434 NS_DBG("read_page: page %d not written\n", ns
->regs
.row
);
1435 memset(ns
->buf
.byte
, 0xFF, num
);
1440 NS_DBG("read_page: page %d written, reading from %d\n",
1441 ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
);
1442 if (do_read_error(ns
, num
))
1444 pos
= (loff_t
)ns
->regs
.row
* ns
->geom
.pgszoob
+ ns
->regs
.column
+ ns
->regs
.off
;
1445 tx
= read_file(ns
, ns
->cfile
, ns
->buf
.byte
, num
, &pos
);
1447 NS_ERR("read_page: read error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1450 do_bit_flips(ns
, num
);
1455 mypage
= NS_GET_PAGE(ns
);
1456 if (mypage
->byte
== NULL
) {
1457 NS_DBG("read_page: page %d not allocated\n", ns
->regs
.row
);
1458 memset(ns
->buf
.byte
, 0xFF, num
);
1460 NS_DBG("read_page: page %d allocated, reading from %d\n",
1461 ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
);
1462 if (do_read_error(ns
, num
))
1464 memcpy(ns
->buf
.byte
, NS_PAGE_BYTE_OFF(ns
), num
);
1465 do_bit_flips(ns
, num
);
1470 * Erase all pages in the specified sector.
1472 static void erase_sector(struct nandsim
*ns
)
1474 union ns_mem
*mypage
;
1478 for (i
= 0; i
< ns
->geom
.pgsec
; i
++)
1479 if (ns
->pages_written
[ns
->regs
.row
+ i
]) {
1480 NS_DBG("erase_sector: freeing page %d\n", ns
->regs
.row
+ i
);
1481 ns
->pages_written
[ns
->regs
.row
+ i
] = 0;
1486 mypage
= NS_GET_PAGE(ns
);
1487 for (i
= 0; i
< ns
->geom
.pgsec
; i
++) {
1488 if (mypage
->byte
!= NULL
) {
1489 NS_DBG("erase_sector: freeing page %d\n", ns
->regs
.row
+i
);
1490 kmem_cache_free(ns
->nand_pages_slab
, mypage
->byte
);
1491 mypage
->byte
= NULL
;
1498 * Program the specified page with the contents from the NAND buffer.
1500 static int prog_page(struct nandsim
*ns
, int num
)
1503 union ns_mem
*mypage
;
1511 NS_DBG("prog_page: writing page %d\n", ns
->regs
.row
);
1512 pg_off
= ns
->file_buf
+ ns
->regs
.column
+ ns
->regs
.off
;
1513 off
= (loff_t
)ns
->regs
.row
* ns
->geom
.pgszoob
+ ns
->regs
.column
+ ns
->regs
.off
;
1514 if (!ns
->pages_written
[ns
->regs
.row
]) {
1516 memset(ns
->file_buf
, 0xff, ns
->geom
.pgszoob
);
1520 tx
= read_file(ns
, ns
->cfile
, pg_off
, num
, &pos
);
1522 NS_ERR("prog_page: read error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1526 for (i
= 0; i
< num
; i
++)
1527 pg_off
[i
] &= ns
->buf
.byte
[i
];
1529 pos
= (loff_t
)ns
->regs
.row
* ns
->geom
.pgszoob
;
1530 tx
= write_file(ns
, ns
->cfile
, ns
->file_buf
, ns
->geom
.pgszoob
, &pos
);
1531 if (tx
!= ns
->geom
.pgszoob
) {
1532 NS_ERR("prog_page: write error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1535 ns
->pages_written
[ns
->regs
.row
] = 1;
1538 tx
= write_file(ns
, ns
->cfile
, pg_off
, num
, &pos
);
1540 NS_ERR("prog_page: write error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1547 mypage
= NS_GET_PAGE(ns
);
1548 if (mypage
->byte
== NULL
) {
1549 NS_DBG("prog_page: allocating page %d\n", ns
->regs
.row
);
1551 * We allocate memory with GFP_NOFS because a flash FS may
1552 * utilize this. If it is holding an FS lock, then gets here,
1553 * then kernel memory alloc runs writeback which goes to the FS
1554 * again and deadlocks. This was seen in practice.
1556 mypage
->byte
= kmem_cache_alloc(ns
->nand_pages_slab
, GFP_NOFS
);
1557 if (mypage
->byte
== NULL
) {
1558 NS_ERR("prog_page: error allocating memory for page %d\n", ns
->regs
.row
);
1561 memset(mypage
->byte
, 0xFF, ns
->geom
.pgszoob
);
1564 pg_off
= NS_PAGE_BYTE_OFF(ns
);
1565 for (i
= 0; i
< num
; i
++)
1566 pg_off
[i
] &= ns
->buf
.byte
[i
];
1572 * If state has any action bit, perform this action.
1574 * RETURNS: 0 if success, -1 if error.
1576 static int do_state_action(struct nandsim
*ns
, uint32_t action
)
1579 int busdiv
= ns
->busw
== 8 ? 1 : 2;
1580 unsigned int erase_block_no
, page_no
;
1582 action
&= ACTION_MASK
;
1584 /* Check that page address input is correct */
1585 if (action
!= ACTION_SECERASE
&& ns
->regs
.row
>= ns
->geom
.pgnum
) {
1586 NS_WARN("do_state_action: wrong page number (%#x)\n", ns
->regs
.row
);
1594 * Copy page data to the internal buffer.
1597 /* Column shouldn't be very large */
1598 if (ns
->regs
.column
>= (ns
->geom
.pgszoob
- ns
->regs
.off
)) {
1599 NS_ERR("do_state_action: column number is too large\n");
1602 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1605 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1606 num
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
1608 if (ns
->regs
.off
== 0)
1609 NS_LOG("read page %d\n", ns
->regs
.row
);
1610 else if (ns
->regs
.off
< ns
->geom
.pgsz
)
1611 NS_LOG("read page %d (second half)\n", ns
->regs
.row
);
1613 NS_LOG("read OOB of page %d\n", ns
->regs
.row
);
1615 NS_UDELAY(access_delay
);
1616 NS_UDELAY(input_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
1620 case ACTION_SECERASE
:
1626 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1630 if (ns
->regs
.row
>= ns
->geom
.pgnum
- ns
->geom
.pgsec
1631 || (ns
->regs
.row
& ~(ns
->geom
.secsz
- 1))) {
1632 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns
->regs
.row
);
1636 ns
->regs
.row
= (ns
->regs
.row
<<
1637 8 * (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
)) | ns
->regs
.column
;
1638 ns
->regs
.column
= 0;
1640 erase_block_no
= ns
->regs
.row
>> (ns
->geom
.secshift
- ns
->geom
.pgshift
);
1642 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1643 ns
->regs
.row
, NS_RAW_OFFSET(ns
));
1644 NS_LOG("erase sector %u\n", erase_block_no
);
1648 NS_MDELAY(erase_delay
);
1650 if (erase_block_wear
)
1651 update_wear(erase_block_no
);
1653 if (erase_error(erase_block_no
)) {
1654 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no
);
1660 case ACTION_PRGPAGE
:
1662 * Programm page - move internal buffer data to the page.
1666 NS_WARN("do_state_action: device is write-protected, programm\n");
1670 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1671 if (num
!= ns
->regs
.count
) {
1672 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1673 ns
->regs
.count
, num
);
1677 if (prog_page(ns
, num
) == -1)
1680 page_no
= ns
->regs
.row
;
1682 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1683 num
, ns
->regs
.row
, ns
->regs
.column
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
1684 NS_LOG("programm page %d\n", ns
->regs
.row
);
1686 NS_UDELAY(programm_delay
);
1687 NS_UDELAY(output_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
1689 if (write_error(page_no
)) {
1690 NS_WARN("simulating write failure in page %u\n", page_no
);
1696 case ACTION_ZEROOFF
:
1697 NS_DBG("do_state_action: set internal offset to 0\n");
1701 case ACTION_HALFOFF
:
1702 if (!(ns
->options
& OPT_PAGE512_8BIT
)) {
1703 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1704 "byte page size 8x chips\n");
1707 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
/2);
1708 ns
->regs
.off
= ns
->geom
.pgsz
/2;
1712 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
);
1713 ns
->regs
.off
= ns
->geom
.pgsz
;
1717 NS_DBG("do_state_action: BUG! unknown action\n");
1724 * Switch simulator's state.
1726 static void switch_state(struct nandsim
*ns
)
1730 * The current operation have already been identified.
1731 * Just follow the states chain.
1735 ns
->state
= ns
->nxstate
;
1736 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1738 NS_DBG("switch_state: operation is known, switch to the next state, "
1739 "state: %s, nxstate: %s\n",
1740 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1742 /* See, whether we need to do some action */
1743 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1744 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1750 * We don't yet know which operation we perform.
1751 * Try to identify it.
1755 * The only event causing the switch_state function to
1756 * be called with yet unknown operation is new command.
1758 ns
->state
= get_state_by_command(ns
->regs
.command
);
1760 NS_DBG("switch_state: operation is unknown, try to find it\n");
1762 if (find_operation(ns
, 0) != 0)
1765 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1766 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1771 /* For 16x devices column means the page offset in words */
1772 if ((ns
->nxstate
& STATE_ADDR_MASK
) && ns
->busw
== 16) {
1773 NS_DBG("switch_state: double the column number for 16x device\n");
1774 ns
->regs
.column
<<= 1;
1777 if (NS_STATE(ns
->nxstate
) == STATE_READY
) {
1779 * The current state is the last. Return to STATE_READY
1782 u_char status
= NS_STATUS_OK(ns
);
1784 /* In case of data states, see if all bytes were input/output */
1785 if ((ns
->state
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
))
1786 && ns
->regs
.count
!= ns
->regs
.num
) {
1787 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1788 ns
->regs
.num
- ns
->regs
.count
);
1789 status
= NS_STATUS_FAILED(ns
);
1792 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1794 switch_to_ready_state(ns
, status
);
1797 } else if (ns
->nxstate
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
)) {
1799 * If the next state is data input/output, switch to it now
1802 ns
->state
= ns
->nxstate
;
1803 ns
->nxstate
= ns
->op
[++ns
->stateidx
+ 1];
1804 ns
->regs
.num
= ns
->regs
.count
= 0;
1806 NS_DBG("switch_state: the next state is data I/O, switch, "
1807 "state: %s, nxstate: %s\n",
1808 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1811 * Set the internal register to the count of bytes which
1812 * are expected to be input or output
1814 switch (NS_STATE(ns
->state
)) {
1817 ns
->regs
.num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1820 case STATE_DATAOUT_ID
:
1821 ns
->regs
.num
= ns
->geom
.idbytes
;
1824 case STATE_DATAOUT_STATUS
:
1825 case STATE_DATAOUT_STATUS_M
:
1826 ns
->regs
.count
= ns
->regs
.num
= 0;
1830 NS_ERR("switch_state: BUG! unknown data state\n");
1833 } else if (ns
->nxstate
& STATE_ADDR_MASK
) {
1835 * If the next state is address input, set the internal
1836 * register to the number of expected address bytes
1841 switch (NS_STATE(ns
->nxstate
)) {
1842 case STATE_ADDR_PAGE
:
1843 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1846 case STATE_ADDR_SEC
:
1847 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1850 case STATE_ADDR_ZERO
:
1854 case STATE_ADDR_COLUMN
:
1855 /* Column address is always 2 bytes */
1856 ns
->regs
.num
= ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
;
1860 NS_ERR("switch_state: BUG! unknown address state\n");
1864 * Just reset internal counters.
1872 static u_char
ns_nand_read_byte(struct mtd_info
*mtd
)
1874 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1877 /* Sanity and correctness checks */
1878 if (!ns
->lines
.ce
) {
1879 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint
)outb
);
1882 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
1883 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint
)outb
);
1886 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
1887 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1888 "return %#x\n", get_state_name(ns
->state
), (uint
)outb
);
1892 /* Status register may be read as many times as it is wanted */
1893 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
) {
1894 NS_DBG("read_byte: return %#x status\n", ns
->regs
.status
);
1895 return ns
->regs
.status
;
1898 /* Check if there is any data in the internal buffer which may be read */
1899 if (ns
->regs
.count
== ns
->regs
.num
) {
1900 NS_WARN("read_byte: no more data to output, return %#x\n", (uint
)outb
);
1904 switch (NS_STATE(ns
->state
)) {
1906 if (ns
->busw
== 8) {
1907 outb
= ns
->buf
.byte
[ns
->regs
.count
];
1908 ns
->regs
.count
+= 1;
1910 outb
= (u_char
)cpu_to_le16(ns
->buf
.word
[ns
->regs
.count
>> 1]);
1911 ns
->regs
.count
+= 2;
1914 case STATE_DATAOUT_ID
:
1915 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns
->regs
.count
, ns
->regs
.num
);
1916 outb
= ns
->ids
[ns
->regs
.count
];
1917 ns
->regs
.count
+= 1;
1923 if (ns
->regs
.count
== ns
->regs
.num
) {
1924 NS_DBG("read_byte: all bytes were read\n");
1927 * The OPT_AUTOINCR allows to read next conseqitive pages without
1928 * new read operation cycle.
1930 if ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1932 if (ns
->regs
.row
+ 1 < ns
->geom
.pgnum
)
1934 NS_DBG("read_byte: switch to the next page (%#x)\n", ns
->regs
.row
);
1935 do_state_action(ns
, ACTION_CPY
);
1937 else if (NS_STATE(ns
->nxstate
) == STATE_READY
)
1945 static void ns_nand_write_byte(struct mtd_info
*mtd
, u_char byte
)
1947 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1949 /* Sanity and correctness checks */
1950 if (!ns
->lines
.ce
) {
1951 NS_ERR("write_byte: chip is disabled, ignore write\n");
1954 if (ns
->lines
.ale
&& ns
->lines
.cle
) {
1955 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1959 if (ns
->lines
.cle
== 1) {
1961 * The byte written is a command.
1964 if (byte
== NAND_CMD_RESET
) {
1965 NS_LOG("reset chip\n");
1966 switch_to_ready_state(ns
, NS_STATUS_OK(ns
));
1970 /* Check that the command byte is correct */
1971 if (check_command(byte
)) {
1972 NS_ERR("write_byte: unknown command %#x\n", (uint
)byte
);
1976 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
1977 || NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS_M
1978 || NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1979 int row
= ns
->regs
.row
;
1982 if (byte
== NAND_CMD_RNDOUT
)
1986 /* Check if chip is expecting command */
1987 if (NS_STATE(ns
->nxstate
) != STATE_UNKNOWN
&& !(ns
->nxstate
& STATE_CMD_MASK
)) {
1988 /* Do not warn if only 2 id bytes are read */
1989 if (!(ns
->regs
.command
== NAND_CMD_READID
&&
1990 NS_STATE(ns
->state
) == STATE_DATAOUT_ID
&& ns
->regs
.count
== 2)) {
1992 * We are in situation when something else (not command)
1993 * was expected but command was input. In this case ignore
1994 * previous command(s)/state(s) and accept the last one.
1996 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1997 "ignore previous states\n", (uint
)byte
, get_state_name(ns
->nxstate
));
1999 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2002 NS_DBG("command byte corresponding to %s state accepted\n",
2003 get_state_name(get_state_by_command(byte
)));
2004 ns
->regs
.command
= byte
;
2007 } else if (ns
->lines
.ale
== 1) {
2009 * The byte written is an address.
2012 if (NS_STATE(ns
->nxstate
) == STATE_UNKNOWN
) {
2014 NS_DBG("write_byte: operation isn't known yet, identify it\n");
2016 if (find_operation(ns
, 1) < 0)
2019 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
2020 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2025 switch (NS_STATE(ns
->nxstate
)) {
2026 case STATE_ADDR_PAGE
:
2027 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
2029 case STATE_ADDR_SEC
:
2030 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
2032 case STATE_ADDR_ZERO
:
2040 /* Check that chip is expecting address */
2041 if (!(ns
->nxstate
& STATE_ADDR_MASK
)) {
2042 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2043 "switch to STATE_READY\n", (uint
)byte
, get_state_name(ns
->nxstate
));
2044 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2048 /* Check if this is expected byte */
2049 if (ns
->regs
.count
== ns
->regs
.num
) {
2050 NS_ERR("write_byte: no more address bytes expected\n");
2051 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2055 accept_addr_byte(ns
, byte
);
2057 ns
->regs
.count
+= 1;
2059 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2060 (uint
)byte
, ns
->regs
.count
, ns
->regs
.num
);
2062 if (ns
->regs
.count
== ns
->regs
.num
) {
2063 NS_DBG("address (%#x, %#x) is accepted\n", ns
->regs
.row
, ns
->regs
.column
);
2069 * The byte written is an input data.
2072 /* Check that chip is expecting data input */
2073 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
2074 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2075 "switch to %s\n", (uint
)byte
,
2076 get_state_name(ns
->state
), get_state_name(STATE_READY
));
2077 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2081 /* Check if this is expected byte */
2082 if (ns
->regs
.count
== ns
->regs
.num
) {
2083 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2088 if (ns
->busw
== 8) {
2089 ns
->buf
.byte
[ns
->regs
.count
] = byte
;
2090 ns
->regs
.count
+= 1;
2092 ns
->buf
.word
[ns
->regs
.count
>> 1] = cpu_to_le16((uint16_t)byte
);
2093 ns
->regs
.count
+= 2;
2100 static void ns_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int bitmask
)
2102 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
2104 ns
->lines
.cle
= bitmask
& NAND_CLE
? 1 : 0;
2105 ns
->lines
.ale
= bitmask
& NAND_ALE
? 1 : 0;
2106 ns
->lines
.ce
= bitmask
& NAND_NCE
? 1 : 0;
2108 if (cmd
!= NAND_CMD_NONE
)
2109 ns_nand_write_byte(mtd
, cmd
);
2112 static int ns_device_ready(struct mtd_info
*mtd
)
2114 NS_DBG("device_ready\n");
2118 static uint16_t ns_nand_read_word(struct mtd_info
*mtd
)
2120 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
2122 NS_DBG("read_word\n");
2124 return chip
->read_byte(mtd
) | (chip
->read_byte(mtd
) << 8);
2127 static void ns_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
2129 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
2131 /* Check that chip is expecting data input */
2132 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
2133 NS_ERR("write_buf: data input isn't expected, state is %s, "
2134 "switch to STATE_READY\n", get_state_name(ns
->state
));
2135 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2139 /* Check if these are expected bytes */
2140 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
2141 NS_ERR("write_buf: too many input bytes\n");
2142 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2146 memcpy(ns
->buf
.byte
+ ns
->regs
.count
, buf
, len
);
2147 ns
->regs
.count
+= len
;
2149 if (ns
->regs
.count
== ns
->regs
.num
) {
2150 NS_DBG("write_buf: %d bytes were written\n", ns
->regs
.count
);
2154 static void ns_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
2156 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
2158 /* Sanity and correctness checks */
2159 if (!ns
->lines
.ce
) {
2160 NS_ERR("read_buf: chip is disabled\n");
2163 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
2164 NS_ERR("read_buf: ALE or CLE pin is high\n");
2167 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
2168 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2169 get_state_name(ns
->state
));
2173 if (NS_STATE(ns
->state
) != STATE_DATAOUT
) {
2176 for (i
= 0; i
< len
; i
++)
2177 buf
[i
] = ((struct nand_chip
*)mtd
->priv
)->read_byte(mtd
);
2182 /* Check if these are expected bytes */
2183 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
2184 NS_ERR("read_buf: too many bytes to read\n");
2185 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2189 memcpy(buf
, ns
->buf
.byte
+ ns
->regs
.count
, len
);
2190 ns
->regs
.count
+= len
;
2192 if (ns
->regs
.count
== ns
->regs
.num
) {
2193 if ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
) {
2195 if (ns
->regs
.row
+ 1 < ns
->geom
.pgnum
)
2197 NS_DBG("read_buf: switch to the next page (%#x)\n", ns
->regs
.row
);
2198 do_state_action(ns
, ACTION_CPY
);
2200 else if (NS_STATE(ns
->nxstate
) == STATE_READY
)
2207 static int ns_nand_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
2209 ns_nand_read_buf(mtd
, (u_char
*)&ns_verify_buf
[0], len
);
2211 if (!memcmp(buf
, &ns_verify_buf
[0], len
)) {
2212 NS_DBG("verify_buf: the buffer is OK\n");
2215 NS_DBG("verify_buf: the buffer is wrong\n");
2221 * Module initialization function
2223 static int __init
ns_init_module(void)
2225 struct nand_chip
*chip
;
2226 struct nandsim
*nand
;
2227 int retval
= -ENOMEM
, i
;
2229 if (bus_width
!= 8 && bus_width
!= 16) {
2230 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width
);
2234 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2235 nsmtd
= kzalloc(sizeof(struct mtd_info
) + sizeof(struct nand_chip
)
2236 + sizeof(struct nandsim
), GFP_KERNEL
);
2238 NS_ERR("unable to allocate core structures.\n");
2241 chip
= (struct nand_chip
*)(nsmtd
+ 1);
2242 nsmtd
->priv
= (void *)chip
;
2243 nand
= (struct nandsim
*)(chip
+ 1);
2244 chip
->priv
= (void *)nand
;
2247 * Register simulator's callbacks.
2249 chip
->cmd_ctrl
= ns_hwcontrol
;
2250 chip
->read_byte
= ns_nand_read_byte
;
2251 chip
->dev_ready
= ns_device_ready
;
2252 chip
->write_buf
= ns_nand_write_buf
;
2253 chip
->read_buf
= ns_nand_read_buf
;
2254 chip
->verify_buf
= ns_nand_verify_buf
;
2255 chip
->read_word
= ns_nand_read_word
;
2256 chip
->ecc
.mode
= NAND_ECC_SOFT
;
2257 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2258 /* and 'badblocks' parameters to work */
2259 chip
->options
|= NAND_SKIP_BBTSCAN
;
2262 * Perform minimum nandsim structure initialization to handle
2263 * the initial ID read command correctly
2265 if (third_id_byte
!= 0xFF || fourth_id_byte
!= 0xFF)
2266 nand
->geom
.idbytes
= 4;
2268 nand
->geom
.idbytes
= 2;
2269 nand
->regs
.status
= NS_STATUS_OK(nand
);
2270 nand
->nxstate
= STATE_UNKNOWN
;
2271 nand
->options
|= OPT_PAGE256
; /* temporary value */
2272 nand
->ids
[0] = first_id_byte
;
2273 nand
->ids
[1] = second_id_byte
;
2274 nand
->ids
[2] = third_id_byte
;
2275 nand
->ids
[3] = fourth_id_byte
;
2276 if (bus_width
== 16) {
2278 chip
->options
|= NAND_BUSWIDTH_16
;
2281 nsmtd
->owner
= THIS_MODULE
;
2283 if ((retval
= parse_weakblocks()) != 0)
2286 if ((retval
= parse_weakpages()) != 0)
2289 if ((retval
= parse_gravepages()) != 0)
2292 if ((retval
= nand_scan(nsmtd
, 1)) != 0) {
2293 NS_ERR("can't register NAND Simulator\n");
2300 uint64_t new_size
= (uint64_t)nsmtd
->erasesize
<< overridesize
;
2301 if (new_size
>> overridesize
!= nsmtd
->erasesize
) {
2302 NS_ERR("overridesize is too big\n");
2305 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2306 nsmtd
->size
= new_size
;
2307 chip
->chipsize
= new_size
;
2308 chip
->chip_shift
= ffs(nsmtd
->erasesize
) + overridesize
- 1;
2309 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
2312 if ((retval
= setup_wear_reporting(nsmtd
)) != 0)
2315 if ((retval
= init_nandsim(nsmtd
)) != 0)
2318 if ((retval
= parse_badblocks(nand
, nsmtd
)) != 0)
2321 if ((retval
= nand_default_bbt(nsmtd
)) != 0)
2324 /* Register NAND partitions */
2325 if ((retval
= add_mtd_partitions(nsmtd
, &nand
->partitions
[0], nand
->nbparts
)) != 0)
2332 nand_release(nsmtd
);
2333 for (i
= 0;i
< ARRAY_SIZE(nand
->partitions
); ++i
)
2334 kfree(nand
->partitions
[i
].name
);
2342 module_init(ns_init_module
);
2345 * Module clean-up function
2347 static void __exit
ns_cleanup_module(void)
2349 struct nandsim
*ns
= (struct nandsim
*)(((struct nand_chip
*)nsmtd
->priv
)->priv
);
2352 free_nandsim(ns
); /* Free nandsim private resources */
2353 nand_release(nsmtd
); /* Unregister driver */
2354 for (i
= 0;i
< ARRAY_SIZE(ns
->partitions
); ++i
)
2355 kfree(ns
->partitions
[i
].name
);
2356 kfree(nsmtd
); /* Free other structures */
2360 module_exit(ns_cleanup_module
);
2362 MODULE_LICENSE ("GPL");
2363 MODULE_AUTHOR ("Artem B. Bityuckiy");
2364 MODULE_DESCRIPTION ("The NAND flash simulator");