mtd/ps3vram: Cleanup ps3vram driver messages
[linux-ginger.git] / kernel / sched_stats.h
blobf2773b5d12260bbb10c3b293bd4fd1811b483848
2 #ifdef CONFIG_SCHEDSTATS
3 /*
4 * bump this up when changing the output format or the meaning of an existing
5 * format, so that tools can adapt (or abort)
6 */
7 #define SCHEDSTAT_VERSION 14
9 static int show_schedstat(struct seq_file *seq, void *v)
11 int cpu;
12 int mask_len = DIV_ROUND_UP(NR_CPUS, 32) * 9;
13 char *mask_str = kmalloc(mask_len, GFP_KERNEL);
15 if (mask_str == NULL)
16 return -ENOMEM;
18 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
19 seq_printf(seq, "timestamp %lu\n", jiffies);
20 for_each_online_cpu(cpu) {
21 struct rq *rq = cpu_rq(cpu);
22 #ifdef CONFIG_SMP
23 struct sched_domain *sd;
24 int dcount = 0;
25 #endif
27 /* runqueue-specific stats */
28 seq_printf(seq,
29 "cpu%d %u %u %u %u %u %u %u %u %u %llu %llu %lu",
30 cpu, rq->yld_both_empty,
31 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_count,
32 rq->sched_switch, rq->sched_count, rq->sched_goidle,
33 rq->ttwu_count, rq->ttwu_local,
34 rq->rq_cpu_time,
35 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount);
37 seq_printf(seq, "\n");
39 #ifdef CONFIG_SMP
40 /* domain-specific stats */
41 preempt_disable();
42 for_each_domain(cpu, sd) {
43 enum cpu_idle_type itype;
45 cpumask_scnprintf(mask_str, mask_len,
46 sched_domain_span(sd));
47 seq_printf(seq, "domain%d %s", dcount++, mask_str);
48 for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
49 itype++) {
50 seq_printf(seq, " %u %u %u %u %u %u %u %u",
51 sd->lb_count[itype],
52 sd->lb_balanced[itype],
53 sd->lb_failed[itype],
54 sd->lb_imbalance[itype],
55 sd->lb_gained[itype],
56 sd->lb_hot_gained[itype],
57 sd->lb_nobusyq[itype],
58 sd->lb_nobusyg[itype]);
60 seq_printf(seq,
61 " %u %u %u %u %u %u %u %u %u %u %u %u\n",
62 sd->alb_count, sd->alb_failed, sd->alb_pushed,
63 sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed,
64 sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed,
65 sd->ttwu_wake_remote, sd->ttwu_move_affine,
66 sd->ttwu_move_balance);
68 preempt_enable();
69 #endif
71 kfree(mask_str);
72 return 0;
75 static int schedstat_open(struct inode *inode, struct file *file)
77 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
78 char *buf = kmalloc(size, GFP_KERNEL);
79 struct seq_file *m;
80 int res;
82 if (!buf)
83 return -ENOMEM;
84 res = single_open(file, show_schedstat, NULL);
85 if (!res) {
86 m = file->private_data;
87 m->buf = buf;
88 m->size = size;
89 } else
90 kfree(buf);
91 return res;
94 static const struct file_operations proc_schedstat_operations = {
95 .open = schedstat_open,
96 .read = seq_read,
97 .llseek = seq_lseek,
98 .release = single_release,
101 static int __init proc_schedstat_init(void)
103 proc_create("schedstat", 0, NULL, &proc_schedstat_operations);
104 return 0;
106 module_init(proc_schedstat_init);
109 * Expects runqueue lock to be held for atomicity of update
111 static inline void
112 rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
114 if (rq) {
115 rq->rq_sched_info.run_delay += delta;
116 rq->rq_sched_info.pcount++;
121 * Expects runqueue lock to be held for atomicity of update
123 static inline void
124 rq_sched_info_depart(struct rq *rq, unsigned long long delta)
126 if (rq)
127 rq->rq_cpu_time += delta;
130 static inline void
131 rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
133 if (rq)
134 rq->rq_sched_info.run_delay += delta;
136 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
137 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
138 # define schedstat_set(var, val) do { var = (val); } while (0)
139 #else /* !CONFIG_SCHEDSTATS */
140 static inline void
141 rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
143 static inline void
144 rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
146 static inline void
147 rq_sched_info_depart(struct rq *rq, unsigned long long delta)
149 # define schedstat_inc(rq, field) do { } while (0)
150 # define schedstat_add(rq, field, amt) do { } while (0)
151 # define schedstat_set(var, val) do { } while (0)
152 #endif
154 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
155 static inline void sched_info_reset_dequeued(struct task_struct *t)
157 t->sched_info.last_queued = 0;
161 * Called when a process is dequeued from the active array and given
162 * the cpu. We should note that with the exception of interactive
163 * tasks, the expired queue will become the active queue after the active
164 * queue is empty, without explicitly dequeuing and requeuing tasks in the
165 * expired queue. (Interactive tasks may be requeued directly to the
166 * active queue, thus delaying tasks in the expired queue from running;
167 * see scheduler_tick()).
169 * Though we are interested in knowing how long it was from the *first* time a
170 * task was queued to the time that it finally hit a cpu, we call this routine
171 * from dequeue_task() to account for possible rq->clock skew across cpus. The
172 * delta taken on each cpu would annul the skew.
174 static inline void sched_info_dequeued(struct task_struct *t)
176 unsigned long long now = task_rq(t)->clock, delta = 0;
178 if (unlikely(sched_info_on()))
179 if (t->sched_info.last_queued)
180 delta = now - t->sched_info.last_queued;
181 sched_info_reset_dequeued(t);
182 t->sched_info.run_delay += delta;
184 rq_sched_info_dequeued(task_rq(t), delta);
188 * Called when a task finally hits the cpu. We can now calculate how
189 * long it was waiting to run. We also note when it began so that we
190 * can keep stats on how long its timeslice is.
192 static void sched_info_arrive(struct task_struct *t)
194 unsigned long long now = task_rq(t)->clock, delta = 0;
196 if (t->sched_info.last_queued)
197 delta = now - t->sched_info.last_queued;
198 sched_info_reset_dequeued(t);
199 t->sched_info.run_delay += delta;
200 t->sched_info.last_arrival = now;
201 t->sched_info.pcount++;
203 rq_sched_info_arrive(task_rq(t), delta);
207 * Called when a process is queued into either the active or expired
208 * array. The time is noted and later used to determine how long we
209 * had to wait for us to reach the cpu. Since the expired queue will
210 * become the active queue after active queue is empty, without dequeuing
211 * and requeuing any tasks, we are interested in queuing to either. It
212 * is unusual but not impossible for tasks to be dequeued and immediately
213 * requeued in the same or another array: this can happen in sched_yield(),
214 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
215 * to runqueue.
217 * This function is only called from enqueue_task(), but also only updates
218 * the timestamp if it is already not set. It's assumed that
219 * sched_info_dequeued() will clear that stamp when appropriate.
221 static inline void sched_info_queued(struct task_struct *t)
223 if (unlikely(sched_info_on()))
224 if (!t->sched_info.last_queued)
225 t->sched_info.last_queued = task_rq(t)->clock;
229 * Called when a process ceases being the active-running process, either
230 * voluntarily or involuntarily. Now we can calculate how long we ran.
231 * Also, if the process is still in the TASK_RUNNING state, call
232 * sched_info_queued() to mark that it has now again started waiting on
233 * the runqueue.
235 static inline void sched_info_depart(struct task_struct *t)
237 unsigned long long delta = task_rq(t)->clock -
238 t->sched_info.last_arrival;
240 rq_sched_info_depart(task_rq(t), delta);
242 if (t->state == TASK_RUNNING)
243 sched_info_queued(t);
247 * Called when tasks are switched involuntarily due, typically, to expiring
248 * their time slice. (This may also be called when switching to or from
249 * the idle task.) We are only called when prev != next.
251 static inline void
252 __sched_info_switch(struct task_struct *prev, struct task_struct *next)
254 struct rq *rq = task_rq(prev);
257 * prev now departs the cpu. It's not interesting to record
258 * stats about how efficient we were at scheduling the idle
259 * process, however.
261 if (prev != rq->idle)
262 sched_info_depart(prev);
264 if (next != rq->idle)
265 sched_info_arrive(next);
267 static inline void
268 sched_info_switch(struct task_struct *prev, struct task_struct *next)
270 if (unlikely(sched_info_on()))
271 __sched_info_switch(prev, next);
273 #else
274 #define sched_info_queued(t) do { } while (0)
275 #define sched_info_reset_dequeued(t) do { } while (0)
276 #define sched_info_dequeued(t) do { } while (0)
277 #define sched_info_switch(t, next) do { } while (0)
278 #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
281 * The following are functions that support scheduler-internal time accounting.
282 * These functions are generally called at the timer tick. None of this depends
283 * on CONFIG_SCHEDSTATS.
287 * account_group_user_time - Maintain utime for a thread group.
289 * @tsk: Pointer to task structure.
290 * @cputime: Time value by which to increment the utime field of the
291 * thread_group_cputime structure.
293 * If thread group time is being maintained, get the structure for the
294 * running CPU and update the utime field there.
296 static inline void account_group_user_time(struct task_struct *tsk,
297 cputime_t cputime)
299 struct signal_struct *sig;
301 /* tsk == current, ensure it is safe to use ->signal */
302 if (unlikely(tsk->exit_state))
303 return;
305 sig = tsk->signal;
306 if (sig->cputime.totals) {
307 struct task_cputime *times;
309 times = per_cpu_ptr(sig->cputime.totals, get_cpu());
310 times->utime = cputime_add(times->utime, cputime);
311 put_cpu_no_resched();
316 * account_group_system_time - Maintain stime for a thread group.
318 * @tsk: Pointer to task structure.
319 * @cputime: Time value by which to increment the stime field of the
320 * thread_group_cputime structure.
322 * If thread group time is being maintained, get the structure for the
323 * running CPU and update the stime field there.
325 static inline void account_group_system_time(struct task_struct *tsk,
326 cputime_t cputime)
328 struct signal_struct *sig;
330 /* tsk == current, ensure it is safe to use ->signal */
331 if (unlikely(tsk->exit_state))
332 return;
334 sig = tsk->signal;
335 if (sig->cputime.totals) {
336 struct task_cputime *times;
338 times = per_cpu_ptr(sig->cputime.totals, get_cpu());
339 times->stime = cputime_add(times->stime, cputime);
340 put_cpu_no_resched();
345 * account_group_exec_runtime - Maintain exec runtime for a thread group.
347 * @tsk: Pointer to task structure.
348 * @ns: Time value by which to increment the sum_exec_runtime field
349 * of the thread_group_cputime structure.
351 * If thread group time is being maintained, get the structure for the
352 * running CPU and update the sum_exec_runtime field there.
354 static inline void account_group_exec_runtime(struct task_struct *tsk,
355 unsigned long long ns)
357 struct signal_struct *sig;
359 sig = tsk->signal;
360 /* see __exit_signal()->task_rq_unlock_wait() */
361 barrier();
362 if (unlikely(!sig))
363 return;
365 if (sig->cputime.totals) {
366 struct task_cputime *times;
368 times = per_cpu_ptr(sig->cputime.totals, get_cpu());
369 times->sum_exec_runtime += ns;
370 put_cpu_no_resched();