[PATCH] swap: get_swap_page drop swap_list_lock
[linux-ginger.git] / mm / swapfile.c
blobe54d60af6b58cc37797837675ea601b6f6fcfd6f
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/config.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/syscalls.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlbflush.h>
32 #include <linux/swapops.h>
34 DEFINE_SPINLOCK(swaplock);
35 unsigned int nr_swapfiles;
36 long total_swap_pages;
37 static int swap_overflow;
39 EXPORT_SYMBOL(total_swap_pages);
41 static const char Bad_file[] = "Bad swap file entry ";
42 static const char Unused_file[] = "Unused swap file entry ";
43 static const char Bad_offset[] = "Bad swap offset entry ";
44 static const char Unused_offset[] = "Unused swap offset entry ";
46 struct swap_list_t swap_list = {-1, -1};
48 struct swap_info_struct swap_info[MAX_SWAPFILES];
50 static DECLARE_MUTEX(swapon_sem);
53 * We need this because the bdev->unplug_fn can sleep and we cannot
54 * hold swap_list_lock while calling the unplug_fn. And swap_list_lock
55 * cannot be turned into a semaphore.
57 static DECLARE_RWSEM(swap_unplug_sem);
59 #define SWAPFILE_CLUSTER 256
61 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
63 swp_entry_t entry;
65 down_read(&swap_unplug_sem);
66 entry.val = page->private;
67 if (PageSwapCache(page)) {
68 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
69 struct backing_dev_info *bdi;
72 * If the page is removed from swapcache from under us (with a
73 * racy try_to_unuse/swapoff) we need an additional reference
74 * count to avoid reading garbage from page->private above. If
75 * the WARN_ON triggers during a swapoff it maybe the race
76 * condition and it's harmless. However if it triggers without
77 * swapoff it signals a problem.
79 WARN_ON(page_count(page) <= 1);
81 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
82 blk_run_backing_dev(bdi, page);
84 up_read(&swap_unplug_sem);
87 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
89 unsigned long offset;
90 /*
91 * We try to cluster swap pages by allocating them
92 * sequentially in swap. Once we've allocated
93 * SWAPFILE_CLUSTER pages this way, however, we resort to
94 * first-free allocation, starting a new cluster. This
95 * prevents us from scattering swap pages all over the entire
96 * swap partition, so that we reduce overall disk seek times
97 * between swap pages. -- sct */
98 if (si->cluster_nr) {
99 while (si->cluster_next <= si->highest_bit) {
100 offset = si->cluster_next++;
101 if (si->swap_map[offset])
102 continue;
103 si->cluster_nr--;
104 goto got_page;
107 si->cluster_nr = SWAPFILE_CLUSTER;
109 /* try to find an empty (even not aligned) cluster. */
110 offset = si->lowest_bit;
111 check_next_cluster:
112 if (offset+SWAPFILE_CLUSTER-1 <= si->highest_bit)
114 unsigned long nr;
115 for (nr = offset; nr < offset+SWAPFILE_CLUSTER; nr++)
116 if (si->swap_map[nr])
118 offset = nr+1;
119 goto check_next_cluster;
121 /* We found a completly empty cluster, so start
122 * using it.
124 goto got_page;
126 /* No luck, so now go finegrined as usual. -Andrea */
127 for (offset = si->lowest_bit; offset <= si->highest_bit ; offset++) {
128 if (si->swap_map[offset])
129 continue;
130 si->lowest_bit = offset+1;
131 got_page:
132 if (offset == si->lowest_bit)
133 si->lowest_bit++;
134 if (offset == si->highest_bit)
135 si->highest_bit--;
136 if (si->lowest_bit > si->highest_bit) {
137 si->lowest_bit = si->max;
138 si->highest_bit = 0;
140 si->swap_map[offset] = 1;
141 si->inuse_pages++;
142 si->cluster_next = offset+1;
143 return offset;
145 si->lowest_bit = si->max;
146 si->highest_bit = 0;
147 return 0;
150 swp_entry_t get_swap_page(void)
152 struct swap_info_struct *si;
153 pgoff_t offset;
154 int type, next;
155 int wrapped = 0;
157 swap_list_lock();
158 if (nr_swap_pages <= 0)
159 goto noswap;
160 nr_swap_pages--;
162 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
163 si = swap_info + type;
164 next = si->next;
165 if (next < 0 ||
166 (!wrapped && si->prio != swap_info[next].prio)) {
167 next = swap_list.head;
168 wrapped++;
171 if (!si->highest_bit)
172 continue;
173 if (!(si->flags & SWP_WRITEOK))
174 continue;
176 swap_list.next = next;
177 swap_device_lock(si);
178 swap_list_unlock();
179 offset = scan_swap_map(si);
180 swap_device_unlock(si);
181 if (offset)
182 return swp_entry(type, offset);
183 swap_list_lock();
184 next = swap_list.next;
187 nr_swap_pages++;
188 noswap:
189 swap_list_unlock();
190 return (swp_entry_t) {0};
193 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
195 struct swap_info_struct * p;
196 unsigned long offset, type;
198 if (!entry.val)
199 goto out;
200 type = swp_type(entry);
201 if (type >= nr_swapfiles)
202 goto bad_nofile;
203 p = & swap_info[type];
204 if (!(p->flags & SWP_USED))
205 goto bad_device;
206 offset = swp_offset(entry);
207 if (offset >= p->max)
208 goto bad_offset;
209 if (!p->swap_map[offset])
210 goto bad_free;
211 swap_list_lock();
212 swap_device_lock(p);
213 return p;
215 bad_free:
216 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
217 goto out;
218 bad_offset:
219 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
220 goto out;
221 bad_device:
222 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
223 goto out;
224 bad_nofile:
225 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
226 out:
227 return NULL;
230 static void swap_info_put(struct swap_info_struct * p)
232 swap_device_unlock(p);
233 swap_list_unlock();
236 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
238 int count = p->swap_map[offset];
240 if (count < SWAP_MAP_MAX) {
241 count--;
242 p->swap_map[offset] = count;
243 if (!count) {
244 if (offset < p->lowest_bit)
245 p->lowest_bit = offset;
246 if (offset > p->highest_bit)
247 p->highest_bit = offset;
248 if (p->prio > swap_info[swap_list.next].prio)
249 swap_list.next = p - swap_info;
250 nr_swap_pages++;
251 p->inuse_pages--;
254 return count;
258 * Caller has made sure that the swapdevice corresponding to entry
259 * is still around or has not been recycled.
261 void swap_free(swp_entry_t entry)
263 struct swap_info_struct * p;
265 p = swap_info_get(entry);
266 if (p) {
267 swap_entry_free(p, swp_offset(entry));
268 swap_info_put(p);
273 * How many references to page are currently swapped out?
275 static inline int page_swapcount(struct page *page)
277 int count = 0;
278 struct swap_info_struct *p;
279 swp_entry_t entry;
281 entry.val = page->private;
282 p = swap_info_get(entry);
283 if (p) {
284 /* Subtract the 1 for the swap cache itself */
285 count = p->swap_map[swp_offset(entry)] - 1;
286 swap_info_put(p);
288 return count;
292 * We can use this swap cache entry directly
293 * if there are no other references to it.
295 int can_share_swap_page(struct page *page)
297 int count;
299 BUG_ON(!PageLocked(page));
300 count = page_mapcount(page);
301 if (count <= 1 && PageSwapCache(page))
302 count += page_swapcount(page);
303 return count == 1;
307 * Work out if there are any other processes sharing this
308 * swap cache page. Free it if you can. Return success.
310 int remove_exclusive_swap_page(struct page *page)
312 int retval;
313 struct swap_info_struct * p;
314 swp_entry_t entry;
316 BUG_ON(PagePrivate(page));
317 BUG_ON(!PageLocked(page));
319 if (!PageSwapCache(page))
320 return 0;
321 if (PageWriteback(page))
322 return 0;
323 if (page_count(page) != 2) /* 2: us + cache */
324 return 0;
326 entry.val = page->private;
327 p = swap_info_get(entry);
328 if (!p)
329 return 0;
331 /* Is the only swap cache user the cache itself? */
332 retval = 0;
333 if (p->swap_map[swp_offset(entry)] == 1) {
334 /* Recheck the page count with the swapcache lock held.. */
335 write_lock_irq(&swapper_space.tree_lock);
336 if ((page_count(page) == 2) && !PageWriteback(page)) {
337 __delete_from_swap_cache(page);
338 SetPageDirty(page);
339 retval = 1;
341 write_unlock_irq(&swapper_space.tree_lock);
343 swap_info_put(p);
345 if (retval) {
346 swap_free(entry);
347 page_cache_release(page);
350 return retval;
354 * Free the swap entry like above, but also try to
355 * free the page cache entry if it is the last user.
357 void free_swap_and_cache(swp_entry_t entry)
359 struct swap_info_struct * p;
360 struct page *page = NULL;
362 p = swap_info_get(entry);
363 if (p) {
364 if (swap_entry_free(p, swp_offset(entry)) == 1)
365 page = find_trylock_page(&swapper_space, entry.val);
366 swap_info_put(p);
368 if (page) {
369 int one_user;
371 BUG_ON(PagePrivate(page));
372 page_cache_get(page);
373 one_user = (page_count(page) == 2);
374 /* Only cache user (+us), or swap space full? Free it! */
375 if (!PageWriteback(page) && (one_user || vm_swap_full())) {
376 delete_from_swap_cache(page);
377 SetPageDirty(page);
379 unlock_page(page);
380 page_cache_release(page);
385 * Always set the resulting pte to be nowrite (the same as COW pages
386 * after one process has exited). We don't know just how many PTEs will
387 * share this swap entry, so be cautious and let do_wp_page work out
388 * what to do if a write is requested later.
390 * vma->vm_mm->page_table_lock is held.
392 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
393 unsigned long addr, swp_entry_t entry, struct page *page)
395 inc_mm_counter(vma->vm_mm, rss);
396 get_page(page);
397 set_pte_at(vma->vm_mm, addr, pte,
398 pte_mkold(mk_pte(page, vma->vm_page_prot)));
399 page_add_anon_rmap(page, vma, addr);
400 swap_free(entry);
402 * Move the page to the active list so it is not
403 * immediately swapped out again after swapon.
405 activate_page(page);
408 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
409 unsigned long addr, unsigned long end,
410 swp_entry_t entry, struct page *page)
412 pte_t *pte;
413 pte_t swp_pte = swp_entry_to_pte(entry);
415 pte = pte_offset_map(pmd, addr);
416 do {
418 * swapoff spends a _lot_ of time in this loop!
419 * Test inline before going to call unuse_pte.
421 if (unlikely(pte_same(*pte, swp_pte))) {
422 unuse_pte(vma, pte, addr, entry, page);
423 pte_unmap(pte);
424 return 1;
426 } while (pte++, addr += PAGE_SIZE, addr != end);
427 pte_unmap(pte - 1);
428 return 0;
431 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
432 unsigned long addr, unsigned long end,
433 swp_entry_t entry, struct page *page)
435 pmd_t *pmd;
436 unsigned long next;
438 pmd = pmd_offset(pud, addr);
439 do {
440 next = pmd_addr_end(addr, end);
441 if (pmd_none_or_clear_bad(pmd))
442 continue;
443 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
444 return 1;
445 } while (pmd++, addr = next, addr != end);
446 return 0;
449 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
450 unsigned long addr, unsigned long end,
451 swp_entry_t entry, struct page *page)
453 pud_t *pud;
454 unsigned long next;
456 pud = pud_offset(pgd, addr);
457 do {
458 next = pud_addr_end(addr, end);
459 if (pud_none_or_clear_bad(pud))
460 continue;
461 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
462 return 1;
463 } while (pud++, addr = next, addr != end);
464 return 0;
467 static int unuse_vma(struct vm_area_struct *vma,
468 swp_entry_t entry, struct page *page)
470 pgd_t *pgd;
471 unsigned long addr, end, next;
473 if (page->mapping) {
474 addr = page_address_in_vma(page, vma);
475 if (addr == -EFAULT)
476 return 0;
477 else
478 end = addr + PAGE_SIZE;
479 } else {
480 addr = vma->vm_start;
481 end = vma->vm_end;
484 pgd = pgd_offset(vma->vm_mm, addr);
485 do {
486 next = pgd_addr_end(addr, end);
487 if (pgd_none_or_clear_bad(pgd))
488 continue;
489 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
490 return 1;
491 } while (pgd++, addr = next, addr != end);
492 return 0;
495 static int unuse_mm(struct mm_struct *mm,
496 swp_entry_t entry, struct page *page)
498 struct vm_area_struct *vma;
500 if (!down_read_trylock(&mm->mmap_sem)) {
502 * Activate page so shrink_cache is unlikely to unmap its
503 * ptes while lock is dropped, so swapoff can make progress.
505 activate_page(page);
506 unlock_page(page);
507 down_read(&mm->mmap_sem);
508 lock_page(page);
510 spin_lock(&mm->page_table_lock);
511 for (vma = mm->mmap; vma; vma = vma->vm_next) {
512 if (vma->anon_vma && unuse_vma(vma, entry, page))
513 break;
515 spin_unlock(&mm->page_table_lock);
516 up_read(&mm->mmap_sem);
518 * Currently unuse_mm cannot fail, but leave error handling
519 * at call sites for now, since we change it from time to time.
521 return 0;
525 * Scan swap_map from current position to next entry still in use.
526 * Recycle to start on reaching the end, returning 0 when empty.
528 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
529 unsigned int prev)
531 unsigned int max = si->max;
532 unsigned int i = prev;
533 int count;
536 * No need for swap_device_lock(si) here: we're just looking
537 * for whether an entry is in use, not modifying it; false
538 * hits are okay, and sys_swapoff() has already prevented new
539 * allocations from this area (while holding swap_list_lock()).
541 for (;;) {
542 if (++i >= max) {
543 if (!prev) {
544 i = 0;
545 break;
548 * No entries in use at top of swap_map,
549 * loop back to start and recheck there.
551 max = prev + 1;
552 prev = 0;
553 i = 1;
555 count = si->swap_map[i];
556 if (count && count != SWAP_MAP_BAD)
557 break;
559 return i;
563 * We completely avoid races by reading each swap page in advance,
564 * and then search for the process using it. All the necessary
565 * page table adjustments can then be made atomically.
567 static int try_to_unuse(unsigned int type)
569 struct swap_info_struct * si = &swap_info[type];
570 struct mm_struct *start_mm;
571 unsigned short *swap_map;
572 unsigned short swcount;
573 struct page *page;
574 swp_entry_t entry;
575 unsigned int i = 0;
576 int retval = 0;
577 int reset_overflow = 0;
578 int shmem;
581 * When searching mms for an entry, a good strategy is to
582 * start at the first mm we freed the previous entry from
583 * (though actually we don't notice whether we or coincidence
584 * freed the entry). Initialize this start_mm with a hold.
586 * A simpler strategy would be to start at the last mm we
587 * freed the previous entry from; but that would take less
588 * advantage of mmlist ordering, which clusters forked mms
589 * together, child after parent. If we race with dup_mmap(), we
590 * prefer to resolve parent before child, lest we miss entries
591 * duplicated after we scanned child: using last mm would invert
592 * that. Though it's only a serious concern when an overflowed
593 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
595 start_mm = &init_mm;
596 atomic_inc(&init_mm.mm_users);
599 * Keep on scanning until all entries have gone. Usually,
600 * one pass through swap_map is enough, but not necessarily:
601 * there are races when an instance of an entry might be missed.
603 while ((i = find_next_to_unuse(si, i)) != 0) {
604 if (signal_pending(current)) {
605 retval = -EINTR;
606 break;
610 * Get a page for the entry, using the existing swap
611 * cache page if there is one. Otherwise, get a clean
612 * page and read the swap into it.
614 swap_map = &si->swap_map[i];
615 entry = swp_entry(type, i);
616 page = read_swap_cache_async(entry, NULL, 0);
617 if (!page) {
619 * Either swap_duplicate() failed because entry
620 * has been freed independently, and will not be
621 * reused since sys_swapoff() already disabled
622 * allocation from here, or alloc_page() failed.
624 if (!*swap_map)
625 continue;
626 retval = -ENOMEM;
627 break;
631 * Don't hold on to start_mm if it looks like exiting.
633 if (atomic_read(&start_mm->mm_users) == 1) {
634 mmput(start_mm);
635 start_mm = &init_mm;
636 atomic_inc(&init_mm.mm_users);
640 * Wait for and lock page. When do_swap_page races with
641 * try_to_unuse, do_swap_page can handle the fault much
642 * faster than try_to_unuse can locate the entry. This
643 * apparently redundant "wait_on_page_locked" lets try_to_unuse
644 * defer to do_swap_page in such a case - in some tests,
645 * do_swap_page and try_to_unuse repeatedly compete.
647 wait_on_page_locked(page);
648 wait_on_page_writeback(page);
649 lock_page(page);
650 wait_on_page_writeback(page);
653 * Remove all references to entry.
654 * Whenever we reach init_mm, there's no address space
655 * to search, but use it as a reminder to search shmem.
657 shmem = 0;
658 swcount = *swap_map;
659 if (swcount > 1) {
660 if (start_mm == &init_mm)
661 shmem = shmem_unuse(entry, page);
662 else
663 retval = unuse_mm(start_mm, entry, page);
665 if (*swap_map > 1) {
666 int set_start_mm = (*swap_map >= swcount);
667 struct list_head *p = &start_mm->mmlist;
668 struct mm_struct *new_start_mm = start_mm;
669 struct mm_struct *prev_mm = start_mm;
670 struct mm_struct *mm;
672 atomic_inc(&new_start_mm->mm_users);
673 atomic_inc(&prev_mm->mm_users);
674 spin_lock(&mmlist_lock);
675 while (*swap_map > 1 && !retval &&
676 (p = p->next) != &start_mm->mmlist) {
677 mm = list_entry(p, struct mm_struct, mmlist);
678 if (atomic_inc_return(&mm->mm_users) == 1) {
679 atomic_dec(&mm->mm_users);
680 continue;
682 spin_unlock(&mmlist_lock);
683 mmput(prev_mm);
684 prev_mm = mm;
686 cond_resched();
688 swcount = *swap_map;
689 if (swcount <= 1)
691 else if (mm == &init_mm) {
692 set_start_mm = 1;
693 shmem = shmem_unuse(entry, page);
694 } else
695 retval = unuse_mm(mm, entry, page);
696 if (set_start_mm && *swap_map < swcount) {
697 mmput(new_start_mm);
698 atomic_inc(&mm->mm_users);
699 new_start_mm = mm;
700 set_start_mm = 0;
702 spin_lock(&mmlist_lock);
704 spin_unlock(&mmlist_lock);
705 mmput(prev_mm);
706 mmput(start_mm);
707 start_mm = new_start_mm;
709 if (retval) {
710 unlock_page(page);
711 page_cache_release(page);
712 break;
716 * How could swap count reach 0x7fff when the maximum
717 * pid is 0x7fff, and there's no way to repeat a swap
718 * page within an mm (except in shmem, where it's the
719 * shared object which takes the reference count)?
720 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
722 * If that's wrong, then we should worry more about
723 * exit_mmap() and do_munmap() cases described above:
724 * we might be resetting SWAP_MAP_MAX too early here.
725 * We know "Undead"s can happen, they're okay, so don't
726 * report them; but do report if we reset SWAP_MAP_MAX.
728 if (*swap_map == SWAP_MAP_MAX) {
729 swap_device_lock(si);
730 *swap_map = 1;
731 swap_device_unlock(si);
732 reset_overflow = 1;
736 * If a reference remains (rare), we would like to leave
737 * the page in the swap cache; but try_to_unmap could
738 * then re-duplicate the entry once we drop page lock,
739 * so we might loop indefinitely; also, that page could
740 * not be swapped out to other storage meanwhile. So:
741 * delete from cache even if there's another reference,
742 * after ensuring that the data has been saved to disk -
743 * since if the reference remains (rarer), it will be
744 * read from disk into another page. Splitting into two
745 * pages would be incorrect if swap supported "shared
746 * private" pages, but they are handled by tmpfs files.
748 * Note shmem_unuse already deleted a swappage from
749 * the swap cache, unless the move to filepage failed:
750 * in which case it left swappage in cache, lowered its
751 * swap count to pass quickly through the loops above,
752 * and now we must reincrement count to try again later.
754 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
755 struct writeback_control wbc = {
756 .sync_mode = WB_SYNC_NONE,
759 swap_writepage(page, &wbc);
760 lock_page(page);
761 wait_on_page_writeback(page);
763 if (PageSwapCache(page)) {
764 if (shmem)
765 swap_duplicate(entry);
766 else
767 delete_from_swap_cache(page);
771 * So we could skip searching mms once swap count went
772 * to 1, we did not mark any present ptes as dirty: must
773 * mark page dirty so shrink_list will preserve it.
775 SetPageDirty(page);
776 unlock_page(page);
777 page_cache_release(page);
780 * Make sure that we aren't completely killing
781 * interactive performance.
783 cond_resched();
786 mmput(start_mm);
787 if (reset_overflow) {
788 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
789 swap_overflow = 0;
791 return retval;
795 * After a successful try_to_unuse, if no swap is now in use, we know we
796 * can empty the mmlist. swap_list_lock must be held on entry and exit.
797 * Note that mmlist_lock nests inside swap_list_lock, and an mm must be
798 * added to the mmlist just after page_duplicate - before would be racy.
800 static void drain_mmlist(void)
802 struct list_head *p, *next;
803 unsigned int i;
805 for (i = 0; i < nr_swapfiles; i++)
806 if (swap_info[i].inuse_pages)
807 return;
808 spin_lock(&mmlist_lock);
809 list_for_each_safe(p, next, &init_mm.mmlist)
810 list_del_init(p);
811 spin_unlock(&mmlist_lock);
815 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
816 * corresponds to page offset `offset'.
818 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
820 struct swap_extent *se = sis->curr_swap_extent;
821 struct swap_extent *start_se = se;
823 for ( ; ; ) {
824 struct list_head *lh;
826 if (se->start_page <= offset &&
827 offset < (se->start_page + se->nr_pages)) {
828 return se->start_block + (offset - se->start_page);
830 lh = se->list.next;
831 if (lh == &sis->extent_list)
832 lh = lh->next;
833 se = list_entry(lh, struct swap_extent, list);
834 sis->curr_swap_extent = se;
835 BUG_ON(se == start_se); /* It *must* be present */
840 * Free all of a swapdev's extent information
842 static void destroy_swap_extents(struct swap_info_struct *sis)
844 while (!list_empty(&sis->extent_list)) {
845 struct swap_extent *se;
847 se = list_entry(sis->extent_list.next,
848 struct swap_extent, list);
849 list_del(&se->list);
850 kfree(se);
855 * Add a block range (and the corresponding page range) into this swapdev's
856 * extent list. The extent list is kept sorted in page order.
858 * This function rather assumes that it is called in ascending page order.
860 static int
861 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
862 unsigned long nr_pages, sector_t start_block)
864 struct swap_extent *se;
865 struct swap_extent *new_se;
866 struct list_head *lh;
868 lh = sis->extent_list.prev; /* The highest page extent */
869 if (lh != &sis->extent_list) {
870 se = list_entry(lh, struct swap_extent, list);
871 BUG_ON(se->start_page + se->nr_pages != start_page);
872 if (se->start_block + se->nr_pages == start_block) {
873 /* Merge it */
874 se->nr_pages += nr_pages;
875 return 0;
880 * No merge. Insert a new extent, preserving ordering.
882 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
883 if (new_se == NULL)
884 return -ENOMEM;
885 new_se->start_page = start_page;
886 new_se->nr_pages = nr_pages;
887 new_se->start_block = start_block;
889 list_add_tail(&new_se->list, &sis->extent_list);
890 return 1;
894 * A `swap extent' is a simple thing which maps a contiguous range of pages
895 * onto a contiguous range of disk blocks. An ordered list of swap extents
896 * is built at swapon time and is then used at swap_writepage/swap_readpage
897 * time for locating where on disk a page belongs.
899 * If the swapfile is an S_ISBLK block device, a single extent is installed.
900 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
901 * swap files identically.
903 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
904 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
905 * swapfiles are handled *identically* after swapon time.
907 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
908 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
909 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
910 * requirements, they are simply tossed out - we will never use those blocks
911 * for swapping.
913 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
914 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
915 * which will scribble on the fs.
917 * The amount of disk space which a single swap extent represents varies.
918 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
919 * extents in the list. To avoid much list walking, we cache the previous
920 * search location in `curr_swap_extent', and start new searches from there.
921 * This is extremely effective. The average number of iterations in
922 * map_swap_page() has been measured at about 0.3 per page. - akpm.
924 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
926 struct inode *inode;
927 unsigned blocks_per_page;
928 unsigned long page_no;
929 unsigned blkbits;
930 sector_t probe_block;
931 sector_t last_block;
932 sector_t lowest_block = -1;
933 sector_t highest_block = 0;
934 int nr_extents = 0;
935 int ret;
937 inode = sis->swap_file->f_mapping->host;
938 if (S_ISBLK(inode->i_mode)) {
939 ret = add_swap_extent(sis, 0, sis->max, 0);
940 *span = sis->pages;
941 goto done;
944 blkbits = inode->i_blkbits;
945 blocks_per_page = PAGE_SIZE >> blkbits;
948 * Map all the blocks into the extent list. This code doesn't try
949 * to be very smart.
951 probe_block = 0;
952 page_no = 0;
953 last_block = i_size_read(inode) >> blkbits;
954 while ((probe_block + blocks_per_page) <= last_block &&
955 page_no < sis->max) {
956 unsigned block_in_page;
957 sector_t first_block;
959 first_block = bmap(inode, probe_block);
960 if (first_block == 0)
961 goto bad_bmap;
964 * It must be PAGE_SIZE aligned on-disk
966 if (first_block & (blocks_per_page - 1)) {
967 probe_block++;
968 goto reprobe;
971 for (block_in_page = 1; block_in_page < blocks_per_page;
972 block_in_page++) {
973 sector_t block;
975 block = bmap(inode, probe_block + block_in_page);
976 if (block == 0)
977 goto bad_bmap;
978 if (block != first_block + block_in_page) {
979 /* Discontiguity */
980 probe_block++;
981 goto reprobe;
985 first_block >>= (PAGE_SHIFT - blkbits);
986 if (page_no) { /* exclude the header page */
987 if (first_block < lowest_block)
988 lowest_block = first_block;
989 if (first_block > highest_block)
990 highest_block = first_block;
994 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
996 ret = add_swap_extent(sis, page_no, 1, first_block);
997 if (ret < 0)
998 goto out;
999 nr_extents += ret;
1000 page_no++;
1001 probe_block += blocks_per_page;
1002 reprobe:
1003 continue;
1005 ret = nr_extents;
1006 *span = 1 + highest_block - lowest_block;
1007 if (page_no == 0)
1008 page_no = 1; /* force Empty message */
1009 sis->max = page_no;
1010 sis->pages = page_no - 1;
1011 sis->highest_bit = page_no - 1;
1012 done:
1013 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1014 struct swap_extent, list);
1015 goto out;
1016 bad_bmap:
1017 printk(KERN_ERR "swapon: swapfile has holes\n");
1018 ret = -EINVAL;
1019 out:
1020 return ret;
1023 #if 0 /* We don't need this yet */
1024 #include <linux/backing-dev.h>
1025 int page_queue_congested(struct page *page)
1027 struct backing_dev_info *bdi;
1029 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1031 if (PageSwapCache(page)) {
1032 swp_entry_t entry = { .val = page->private };
1033 struct swap_info_struct *sis;
1035 sis = get_swap_info_struct(swp_type(entry));
1036 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1037 } else
1038 bdi = page->mapping->backing_dev_info;
1039 return bdi_write_congested(bdi);
1041 #endif
1043 asmlinkage long sys_swapoff(const char __user * specialfile)
1045 struct swap_info_struct * p = NULL;
1046 unsigned short *swap_map;
1047 struct file *swap_file, *victim;
1048 struct address_space *mapping;
1049 struct inode *inode;
1050 char * pathname;
1051 int i, type, prev;
1052 int err;
1054 if (!capable(CAP_SYS_ADMIN))
1055 return -EPERM;
1057 pathname = getname(specialfile);
1058 err = PTR_ERR(pathname);
1059 if (IS_ERR(pathname))
1060 goto out;
1062 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1063 putname(pathname);
1064 err = PTR_ERR(victim);
1065 if (IS_ERR(victim))
1066 goto out;
1068 mapping = victim->f_mapping;
1069 prev = -1;
1070 swap_list_lock();
1071 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1072 p = swap_info + type;
1073 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1074 if (p->swap_file->f_mapping == mapping)
1075 break;
1077 prev = type;
1079 if (type < 0) {
1080 err = -EINVAL;
1081 swap_list_unlock();
1082 goto out_dput;
1084 if (!security_vm_enough_memory(p->pages))
1085 vm_unacct_memory(p->pages);
1086 else {
1087 err = -ENOMEM;
1088 swap_list_unlock();
1089 goto out_dput;
1091 if (prev < 0) {
1092 swap_list.head = p->next;
1093 } else {
1094 swap_info[prev].next = p->next;
1096 if (type == swap_list.next) {
1097 /* just pick something that's safe... */
1098 swap_list.next = swap_list.head;
1100 nr_swap_pages -= p->pages;
1101 total_swap_pages -= p->pages;
1102 swap_device_lock(p);
1103 p->flags &= ~SWP_WRITEOK;
1104 swap_device_unlock(p);
1105 swap_list_unlock();
1107 current->flags |= PF_SWAPOFF;
1108 err = try_to_unuse(type);
1109 current->flags &= ~PF_SWAPOFF;
1111 /* wait for any unplug function to finish */
1112 down_write(&swap_unplug_sem);
1113 up_write(&swap_unplug_sem);
1115 if (err) {
1116 /* re-insert swap space back into swap_list */
1117 swap_list_lock();
1118 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1119 if (p->prio >= swap_info[i].prio)
1120 break;
1121 p->next = i;
1122 if (prev < 0)
1123 swap_list.head = swap_list.next = p - swap_info;
1124 else
1125 swap_info[prev].next = p - swap_info;
1126 nr_swap_pages += p->pages;
1127 total_swap_pages += p->pages;
1128 p->flags |= SWP_WRITEOK;
1129 swap_list_unlock();
1130 goto out_dput;
1132 destroy_swap_extents(p);
1133 down(&swapon_sem);
1134 swap_list_lock();
1135 drain_mmlist();
1136 swap_device_lock(p);
1137 swap_file = p->swap_file;
1138 p->swap_file = NULL;
1139 p->max = 0;
1140 swap_map = p->swap_map;
1141 p->swap_map = NULL;
1142 p->flags = 0;
1143 swap_device_unlock(p);
1144 swap_list_unlock();
1145 up(&swapon_sem);
1146 vfree(swap_map);
1147 inode = mapping->host;
1148 if (S_ISBLK(inode->i_mode)) {
1149 struct block_device *bdev = I_BDEV(inode);
1150 set_blocksize(bdev, p->old_block_size);
1151 bd_release(bdev);
1152 } else {
1153 down(&inode->i_sem);
1154 inode->i_flags &= ~S_SWAPFILE;
1155 up(&inode->i_sem);
1157 filp_close(swap_file, NULL);
1158 err = 0;
1160 out_dput:
1161 filp_close(victim, NULL);
1162 out:
1163 return err;
1166 #ifdef CONFIG_PROC_FS
1167 /* iterator */
1168 static void *swap_start(struct seq_file *swap, loff_t *pos)
1170 struct swap_info_struct *ptr = swap_info;
1171 int i;
1172 loff_t l = *pos;
1174 down(&swapon_sem);
1176 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1177 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1178 continue;
1179 if (!l--)
1180 return ptr;
1183 return NULL;
1186 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1188 struct swap_info_struct *ptr = v;
1189 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1191 for (++ptr; ptr < endptr; ptr++) {
1192 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1193 continue;
1194 ++*pos;
1195 return ptr;
1198 return NULL;
1201 static void swap_stop(struct seq_file *swap, void *v)
1203 up(&swapon_sem);
1206 static int swap_show(struct seq_file *swap, void *v)
1208 struct swap_info_struct *ptr = v;
1209 struct file *file;
1210 int len;
1212 if (v == swap_info)
1213 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1215 file = ptr->swap_file;
1216 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1217 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1218 len < 40 ? 40 - len : 1, " ",
1219 S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1220 "partition" : "file\t",
1221 ptr->pages << (PAGE_SHIFT - 10),
1222 ptr->inuse_pages << (PAGE_SHIFT - 10),
1223 ptr->prio);
1224 return 0;
1227 static struct seq_operations swaps_op = {
1228 .start = swap_start,
1229 .next = swap_next,
1230 .stop = swap_stop,
1231 .show = swap_show
1234 static int swaps_open(struct inode *inode, struct file *file)
1236 return seq_open(file, &swaps_op);
1239 static struct file_operations proc_swaps_operations = {
1240 .open = swaps_open,
1241 .read = seq_read,
1242 .llseek = seq_lseek,
1243 .release = seq_release,
1246 static int __init procswaps_init(void)
1248 struct proc_dir_entry *entry;
1250 entry = create_proc_entry("swaps", 0, NULL);
1251 if (entry)
1252 entry->proc_fops = &proc_swaps_operations;
1253 return 0;
1255 __initcall(procswaps_init);
1256 #endif /* CONFIG_PROC_FS */
1259 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1261 * The swapon system call
1263 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1265 struct swap_info_struct * p;
1266 char *name = NULL;
1267 struct block_device *bdev = NULL;
1268 struct file *swap_file = NULL;
1269 struct address_space *mapping;
1270 unsigned int type;
1271 int i, prev;
1272 int error;
1273 static int least_priority;
1274 union swap_header *swap_header = NULL;
1275 int swap_header_version;
1276 unsigned int nr_good_pages = 0;
1277 int nr_extents = 0;
1278 sector_t span;
1279 unsigned long maxpages = 1;
1280 int swapfilesize;
1281 unsigned short *swap_map;
1282 struct page *page = NULL;
1283 struct inode *inode = NULL;
1284 int did_down = 0;
1286 if (!capable(CAP_SYS_ADMIN))
1287 return -EPERM;
1288 swap_list_lock();
1289 p = swap_info;
1290 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1291 if (!(p->flags & SWP_USED))
1292 break;
1293 error = -EPERM;
1295 * Test if adding another swap device is possible. There are
1296 * two limiting factors: 1) the number of bits for the swap
1297 * type swp_entry_t definition and 2) the number of bits for
1298 * the swap type in the swap ptes as defined by the different
1299 * architectures. To honor both limitations a swap entry
1300 * with swap offset 0 and swap type ~0UL is created, encoded
1301 * to a swap pte, decoded to a swp_entry_t again and finally
1302 * the swap type part is extracted. This will mask all bits
1303 * from the initial ~0UL that can't be encoded in either the
1304 * swp_entry_t or the architecture definition of a swap pte.
1306 if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1307 swap_list_unlock();
1308 goto out;
1310 if (type >= nr_swapfiles)
1311 nr_swapfiles = type+1;
1312 INIT_LIST_HEAD(&p->extent_list);
1313 p->flags = SWP_USED;
1314 p->swap_file = NULL;
1315 p->old_block_size = 0;
1316 p->swap_map = NULL;
1317 p->lowest_bit = 0;
1318 p->highest_bit = 0;
1319 p->cluster_nr = 0;
1320 p->inuse_pages = 0;
1321 spin_lock_init(&p->sdev_lock);
1322 p->next = -1;
1323 if (swap_flags & SWAP_FLAG_PREFER) {
1324 p->prio =
1325 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1326 } else {
1327 p->prio = --least_priority;
1329 swap_list_unlock();
1330 name = getname(specialfile);
1331 error = PTR_ERR(name);
1332 if (IS_ERR(name)) {
1333 name = NULL;
1334 goto bad_swap_2;
1336 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1337 error = PTR_ERR(swap_file);
1338 if (IS_ERR(swap_file)) {
1339 swap_file = NULL;
1340 goto bad_swap_2;
1343 p->swap_file = swap_file;
1344 mapping = swap_file->f_mapping;
1345 inode = mapping->host;
1347 error = -EBUSY;
1348 for (i = 0; i < nr_swapfiles; i++) {
1349 struct swap_info_struct *q = &swap_info[i];
1351 if (i == type || !q->swap_file)
1352 continue;
1353 if (mapping == q->swap_file->f_mapping)
1354 goto bad_swap;
1357 error = -EINVAL;
1358 if (S_ISBLK(inode->i_mode)) {
1359 bdev = I_BDEV(inode);
1360 error = bd_claim(bdev, sys_swapon);
1361 if (error < 0) {
1362 bdev = NULL;
1363 goto bad_swap;
1365 p->old_block_size = block_size(bdev);
1366 error = set_blocksize(bdev, PAGE_SIZE);
1367 if (error < 0)
1368 goto bad_swap;
1369 p->bdev = bdev;
1370 } else if (S_ISREG(inode->i_mode)) {
1371 p->bdev = inode->i_sb->s_bdev;
1372 down(&inode->i_sem);
1373 did_down = 1;
1374 if (IS_SWAPFILE(inode)) {
1375 error = -EBUSY;
1376 goto bad_swap;
1378 } else {
1379 goto bad_swap;
1382 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1385 * Read the swap header.
1387 if (!mapping->a_ops->readpage) {
1388 error = -EINVAL;
1389 goto bad_swap;
1391 page = read_cache_page(mapping, 0,
1392 (filler_t *)mapping->a_ops->readpage, swap_file);
1393 if (IS_ERR(page)) {
1394 error = PTR_ERR(page);
1395 goto bad_swap;
1397 wait_on_page_locked(page);
1398 if (!PageUptodate(page))
1399 goto bad_swap;
1400 kmap(page);
1401 swap_header = page_address(page);
1403 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1404 swap_header_version = 1;
1405 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1406 swap_header_version = 2;
1407 else {
1408 printk("Unable to find swap-space signature\n");
1409 error = -EINVAL;
1410 goto bad_swap;
1413 switch (swap_header_version) {
1414 case 1:
1415 printk(KERN_ERR "version 0 swap is no longer supported. "
1416 "Use mkswap -v1 %s\n", name);
1417 error = -EINVAL;
1418 goto bad_swap;
1419 case 2:
1420 /* Check the swap header's sub-version and the size of
1421 the swap file and bad block lists */
1422 if (swap_header->info.version != 1) {
1423 printk(KERN_WARNING
1424 "Unable to handle swap header version %d\n",
1425 swap_header->info.version);
1426 error = -EINVAL;
1427 goto bad_swap;
1430 p->lowest_bit = 1;
1432 * Find out how many pages are allowed for a single swap
1433 * device. There are two limiting factors: 1) the number of
1434 * bits for the swap offset in the swp_entry_t type and
1435 * 2) the number of bits in the a swap pte as defined by
1436 * the different architectures. In order to find the
1437 * largest possible bit mask a swap entry with swap type 0
1438 * and swap offset ~0UL is created, encoded to a swap pte,
1439 * decoded to a swp_entry_t again and finally the swap
1440 * offset is extracted. This will mask all the bits from
1441 * the initial ~0UL mask that can't be encoded in either
1442 * the swp_entry_t or the architecture definition of a
1443 * swap pte.
1445 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1446 if (maxpages > swap_header->info.last_page)
1447 maxpages = swap_header->info.last_page;
1448 p->highest_bit = maxpages - 1;
1450 error = -EINVAL;
1451 if (!maxpages)
1452 goto bad_swap;
1453 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1454 goto bad_swap;
1455 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1456 goto bad_swap;
1458 /* OK, set up the swap map and apply the bad block list */
1459 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1460 error = -ENOMEM;
1461 goto bad_swap;
1464 error = 0;
1465 memset(p->swap_map, 0, maxpages * sizeof(short));
1466 for (i=0; i<swap_header->info.nr_badpages; i++) {
1467 int page = swap_header->info.badpages[i];
1468 if (page <= 0 || page >= swap_header->info.last_page)
1469 error = -EINVAL;
1470 else
1471 p->swap_map[page] = SWAP_MAP_BAD;
1473 nr_good_pages = swap_header->info.last_page -
1474 swap_header->info.nr_badpages -
1475 1 /* header page */;
1476 if (error)
1477 goto bad_swap;
1480 if (swapfilesize && maxpages > swapfilesize) {
1481 printk(KERN_WARNING
1482 "Swap area shorter than signature indicates\n");
1483 error = -EINVAL;
1484 goto bad_swap;
1486 if (nr_good_pages) {
1487 p->swap_map[0] = SWAP_MAP_BAD;
1488 p->max = maxpages;
1489 p->pages = nr_good_pages;
1490 nr_extents = setup_swap_extents(p, &span);
1491 if (nr_extents < 0) {
1492 error = nr_extents;
1493 goto bad_swap;
1495 nr_good_pages = p->pages;
1497 if (!nr_good_pages) {
1498 printk(KERN_WARNING "Empty swap-file\n");
1499 error = -EINVAL;
1500 goto bad_swap;
1503 down(&swapon_sem);
1504 swap_list_lock();
1505 swap_device_lock(p);
1506 p->flags = SWP_ACTIVE;
1507 nr_swap_pages += nr_good_pages;
1508 total_swap_pages += nr_good_pages;
1510 printk(KERN_INFO "Adding %uk swap on %s. "
1511 "Priority:%d extents:%d across:%lluk\n",
1512 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1513 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1515 /* insert swap space into swap_list: */
1516 prev = -1;
1517 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1518 if (p->prio >= swap_info[i].prio) {
1519 break;
1521 prev = i;
1523 p->next = i;
1524 if (prev < 0) {
1525 swap_list.head = swap_list.next = p - swap_info;
1526 } else {
1527 swap_info[prev].next = p - swap_info;
1529 swap_device_unlock(p);
1530 swap_list_unlock();
1531 up(&swapon_sem);
1532 error = 0;
1533 goto out;
1534 bad_swap:
1535 if (bdev) {
1536 set_blocksize(bdev, p->old_block_size);
1537 bd_release(bdev);
1539 destroy_swap_extents(p);
1540 bad_swap_2:
1541 swap_list_lock();
1542 swap_map = p->swap_map;
1543 p->swap_file = NULL;
1544 p->swap_map = NULL;
1545 p->flags = 0;
1546 if (!(swap_flags & SWAP_FLAG_PREFER))
1547 ++least_priority;
1548 swap_list_unlock();
1549 vfree(swap_map);
1550 if (swap_file)
1551 filp_close(swap_file, NULL);
1552 out:
1553 if (page && !IS_ERR(page)) {
1554 kunmap(page);
1555 page_cache_release(page);
1557 if (name)
1558 putname(name);
1559 if (did_down) {
1560 if (!error)
1561 inode->i_flags |= S_SWAPFILE;
1562 up(&inode->i_sem);
1564 return error;
1567 void si_swapinfo(struct sysinfo *val)
1569 unsigned int i;
1570 unsigned long nr_to_be_unused = 0;
1572 swap_list_lock();
1573 for (i = 0; i < nr_swapfiles; i++) {
1574 if (!(swap_info[i].flags & SWP_USED) ||
1575 (swap_info[i].flags & SWP_WRITEOK))
1576 continue;
1577 nr_to_be_unused += swap_info[i].inuse_pages;
1579 val->freeswap = nr_swap_pages + nr_to_be_unused;
1580 val->totalswap = total_swap_pages + nr_to_be_unused;
1581 swap_list_unlock();
1585 * Verify that a swap entry is valid and increment its swap map count.
1587 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1588 * "permanent", but will be reclaimed by the next swapoff.
1590 int swap_duplicate(swp_entry_t entry)
1592 struct swap_info_struct * p;
1593 unsigned long offset, type;
1594 int result = 0;
1596 type = swp_type(entry);
1597 if (type >= nr_swapfiles)
1598 goto bad_file;
1599 p = type + swap_info;
1600 offset = swp_offset(entry);
1602 swap_device_lock(p);
1603 if (offset < p->max && p->swap_map[offset]) {
1604 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1605 p->swap_map[offset]++;
1606 result = 1;
1607 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1608 if (swap_overflow++ < 5)
1609 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1610 p->swap_map[offset] = SWAP_MAP_MAX;
1611 result = 1;
1614 swap_device_unlock(p);
1615 out:
1616 return result;
1618 bad_file:
1619 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1620 goto out;
1623 struct swap_info_struct *
1624 get_swap_info_struct(unsigned type)
1626 return &swap_info[type];
1630 * swap_device_lock prevents swap_map being freed. Don't grab an extra
1631 * reference on the swaphandle, it doesn't matter if it becomes unused.
1633 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1635 int ret = 0, i = 1 << page_cluster;
1636 unsigned long toff;
1637 struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1639 if (!page_cluster) /* no readahead */
1640 return 0;
1641 toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1642 if (!toff) /* first page is swap header */
1643 toff++, i--;
1644 *offset = toff;
1646 swap_device_lock(swapdev);
1647 do {
1648 /* Don't read-ahead past the end of the swap area */
1649 if (toff >= swapdev->max)
1650 break;
1651 /* Don't read in free or bad pages */
1652 if (!swapdev->swap_map[toff])
1653 break;
1654 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1655 break;
1656 toff++;
1657 ret++;
1658 } while (--i);
1659 swap_device_unlock(swapdev);
1660 return ret;