repo init
[linux-rt-nao.git] / arch / x86 / kernel / cpu / addon_cpuid_features.c
blob8220ae69849d4aa3e5405a412a6bca2b03c4b958
1 /*
2 * Routines to indentify additional cpu features that are scattered in
3 * cpuid space.
4 */
5 #include <linux/cpu.h>
7 #include <asm/pat.h>
8 #include <asm/processor.h>
10 #include <asm/apic.h>
12 struct cpuid_bit {
13 u16 feature;
14 u8 reg;
15 u8 bit;
16 u32 level;
19 enum cpuid_regs {
20 CR_EAX = 0,
21 CR_ECX,
22 CR_EDX,
23 CR_EBX
26 void __cpuinit init_scattered_cpuid_features(struct cpuinfo_x86 *c)
28 u32 max_level;
29 u32 regs[4];
30 const struct cpuid_bit *cb;
32 static const struct cpuid_bit __cpuinitconst cpuid_bits[] = {
33 { X86_FEATURE_IDA, CR_EAX, 1, 0x00000006 },
34 { 0, 0, 0, 0 }
37 for (cb = cpuid_bits; cb->feature; cb++) {
39 /* Verify that the level is valid */
40 max_level = cpuid_eax(cb->level & 0xffff0000);
41 if (max_level < cb->level ||
42 max_level > (cb->level | 0xffff))
43 continue;
45 cpuid(cb->level, &regs[CR_EAX], &regs[CR_EBX],
46 &regs[CR_ECX], &regs[CR_EDX]);
48 if (regs[cb->reg] & (1 << cb->bit))
49 set_cpu_cap(c, cb->feature);
53 /* leaf 0xb SMT level */
54 #define SMT_LEVEL 0
56 /* leaf 0xb sub-leaf types */
57 #define INVALID_TYPE 0
58 #define SMT_TYPE 1
59 #define CORE_TYPE 2
61 #define LEAFB_SUBTYPE(ecx) (((ecx) >> 8) & 0xff)
62 #define BITS_SHIFT_NEXT_LEVEL(eax) ((eax) & 0x1f)
63 #define LEVEL_MAX_SIBLINGS(ebx) ((ebx) & 0xffff)
66 * Check for extended topology enumeration cpuid leaf 0xb and if it
67 * exists, use it for populating initial_apicid and cpu topology
68 * detection.
70 void __cpuinit detect_extended_topology(struct cpuinfo_x86 *c)
72 #ifdef CONFIG_SMP
73 unsigned int eax, ebx, ecx, edx, sub_index;
74 unsigned int ht_mask_width, core_plus_mask_width;
75 unsigned int core_select_mask, core_level_siblings;
77 if (c->cpuid_level < 0xb)
78 return;
80 cpuid_count(0xb, SMT_LEVEL, &eax, &ebx, &ecx, &edx);
83 * check if the cpuid leaf 0xb is actually implemented.
85 if (ebx == 0 || (LEAFB_SUBTYPE(ecx) != SMT_TYPE))
86 return;
88 set_cpu_cap(c, X86_FEATURE_XTOPOLOGY);
91 * initial apic id, which also represents 32-bit extended x2apic id.
93 c->initial_apicid = edx;
96 * Populate HT related information from sub-leaf level 0.
98 core_level_siblings = smp_num_siblings = LEVEL_MAX_SIBLINGS(ebx);
99 core_plus_mask_width = ht_mask_width = BITS_SHIFT_NEXT_LEVEL(eax);
101 sub_index = 1;
102 do {
103 cpuid_count(0xb, sub_index, &eax, &ebx, &ecx, &edx);
106 * Check for the Core type in the implemented sub leaves.
108 if (LEAFB_SUBTYPE(ecx) == CORE_TYPE) {
109 core_level_siblings = LEVEL_MAX_SIBLINGS(ebx);
110 core_plus_mask_width = BITS_SHIFT_NEXT_LEVEL(eax);
111 break;
114 sub_index++;
115 } while (LEAFB_SUBTYPE(ecx) != INVALID_TYPE);
117 core_select_mask = (~(-1 << core_plus_mask_width)) >> ht_mask_width;
119 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, ht_mask_width)
120 & core_select_mask;
121 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, core_plus_mask_width);
123 * Reinit the apicid, now that we have extended initial_apicid.
125 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
127 c->x86_max_cores = (core_level_siblings / smp_num_siblings);
130 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
131 c->phys_proc_id);
132 if (c->x86_max_cores > 1)
133 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
134 c->cpu_core_id);
135 return;
136 #endif