1 // SPDX-License-Identifier: GPL-2.0
3 * Interface for controlling IO bandwidth on a request queue
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
14 #include "blk-cgroup-rwstat.h"
16 #include "blk-throttle.h"
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
29 /* A workqueue to queue throttle related work */
30 static struct workqueue_struct
*kthrotld_workqueue
;
32 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
36 /* service tree for active throtl groups */
37 struct throtl_service_queue service_queue
;
39 struct request_queue
*queue
;
41 /* Total Number of queued bios on READ and WRITE lists */
42 unsigned int nr_queued
[2];
44 unsigned int throtl_slice
;
46 /* Work for dispatching throttled bios */
47 struct work_struct dispatch_work
;
49 bool track_bio_latency
;
52 static void throtl_pending_timer_fn(struct timer_list
*t
);
54 static inline struct blkcg_gq
*tg_to_blkg(struct throtl_grp
*tg
)
56 return pd_to_blkg(&tg
->pd
);
60 * sq_to_tg - return the throl_grp the specified service queue belongs to
61 * @sq: the throtl_service_queue of interest
63 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
64 * embedded in throtl_data, %NULL is returned.
66 static struct throtl_grp
*sq_to_tg(struct throtl_service_queue
*sq
)
68 if (sq
&& sq
->parent_sq
)
69 return container_of(sq
, struct throtl_grp
, service_queue
);
75 * sq_to_td - return throtl_data the specified service queue belongs to
76 * @sq: the throtl_service_queue of interest
78 * A service_queue can be embedded in either a throtl_grp or throtl_data.
79 * Determine the associated throtl_data accordingly and return it.
81 static struct throtl_data
*sq_to_td(struct throtl_service_queue
*sq
)
83 struct throtl_grp
*tg
= sq_to_tg(sq
);
88 return container_of(sq
, struct throtl_data
, service_queue
);
91 static uint64_t tg_bps_limit(struct throtl_grp
*tg
, int rw
)
93 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
95 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && !blkg
->parent
)
101 static unsigned int tg_iops_limit(struct throtl_grp
*tg
, int rw
)
103 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
105 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && !blkg
->parent
)
112 * throtl_log - log debug message via blktrace
113 * @sq: the service_queue being reported
114 * @fmt: printf format string
117 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
118 * throtl_grp; otherwise, just "throtl".
120 #define throtl_log(sq, fmt, args...) do { \
121 struct throtl_grp *__tg = sq_to_tg((sq)); \
122 struct throtl_data *__td = sq_to_td((sq)); \
125 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
128 blk_add_cgroup_trace_msg(__td->queue, \
129 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
131 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
135 static inline unsigned int throtl_bio_data_size(struct bio
*bio
)
137 /* assume it's one sector */
138 if (unlikely(bio_op(bio
) == REQ_OP_DISCARD
))
140 return bio
->bi_iter
.bi_size
;
143 static void throtl_qnode_init(struct throtl_qnode
*qn
, struct throtl_grp
*tg
)
145 INIT_LIST_HEAD(&qn
->node
);
146 bio_list_init(&qn
->bios
);
151 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
152 * @bio: bio being added
153 * @qn: qnode to add bio to
154 * @queued: the service_queue->queued[] list @qn belongs to
156 * Add @bio to @qn and put @qn on @queued if it's not already on.
157 * @qn->tg's reference count is bumped when @qn is activated. See the
158 * comment on top of throtl_qnode definition for details.
160 static void throtl_qnode_add_bio(struct bio
*bio
, struct throtl_qnode
*qn
,
161 struct list_head
*queued
)
163 bio_list_add(&qn
->bios
, bio
);
164 if (list_empty(&qn
->node
)) {
165 list_add_tail(&qn
->node
, queued
);
166 blkg_get(tg_to_blkg(qn
->tg
));
171 * throtl_peek_queued - peek the first bio on a qnode list
172 * @queued: the qnode list to peek
174 static struct bio
*throtl_peek_queued(struct list_head
*queued
)
176 struct throtl_qnode
*qn
;
179 if (list_empty(queued
))
182 qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
183 bio
= bio_list_peek(&qn
->bios
);
189 * throtl_pop_queued - pop the first bio form a qnode list
190 * @queued: the qnode list to pop a bio from
191 * @tg_to_put: optional out argument for throtl_grp to put
193 * Pop the first bio from the qnode list @queued. After popping, the first
194 * qnode is removed from @queued if empty or moved to the end of @queued so
195 * that the popping order is round-robin.
197 * When the first qnode is removed, its associated throtl_grp should be put
198 * too. If @tg_to_put is NULL, this function automatically puts it;
199 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
200 * responsible for putting it.
202 static struct bio
*throtl_pop_queued(struct list_head
*queued
,
203 struct throtl_grp
**tg_to_put
)
205 struct throtl_qnode
*qn
;
208 if (list_empty(queued
))
211 qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
212 bio
= bio_list_pop(&qn
->bios
);
215 if (bio_list_empty(&qn
->bios
)) {
216 list_del_init(&qn
->node
);
220 blkg_put(tg_to_blkg(qn
->tg
));
222 list_move_tail(&qn
->node
, queued
);
228 /* init a service_queue, assumes the caller zeroed it */
229 static void throtl_service_queue_init(struct throtl_service_queue
*sq
)
231 INIT_LIST_HEAD(&sq
->queued
[READ
]);
232 INIT_LIST_HEAD(&sq
->queued
[WRITE
]);
233 sq
->pending_tree
= RB_ROOT_CACHED
;
234 timer_setup(&sq
->pending_timer
, throtl_pending_timer_fn
, 0);
237 static struct blkg_policy_data
*throtl_pd_alloc(struct gendisk
*disk
,
238 struct blkcg
*blkcg
, gfp_t gfp
)
240 struct throtl_grp
*tg
;
243 tg
= kzalloc_node(sizeof(*tg
), gfp
, disk
->node_id
);
247 if (blkg_rwstat_init(&tg
->stat_bytes
, gfp
))
250 if (blkg_rwstat_init(&tg
->stat_ios
, gfp
))
251 goto err_exit_stat_bytes
;
253 throtl_service_queue_init(&tg
->service_queue
);
255 for (rw
= READ
; rw
<= WRITE
; rw
++) {
256 throtl_qnode_init(&tg
->qnode_on_self
[rw
], tg
);
257 throtl_qnode_init(&tg
->qnode_on_parent
[rw
], tg
);
260 RB_CLEAR_NODE(&tg
->rb_node
);
261 tg
->bps
[READ
] = U64_MAX
;
262 tg
->bps
[WRITE
] = U64_MAX
;
263 tg
->iops
[READ
] = UINT_MAX
;
264 tg
->iops
[WRITE
] = UINT_MAX
;
269 blkg_rwstat_exit(&tg
->stat_bytes
);
275 static void throtl_pd_init(struct blkg_policy_data
*pd
)
277 struct throtl_grp
*tg
= pd_to_tg(pd
);
278 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
279 struct throtl_data
*td
= blkg
->q
->td
;
280 struct throtl_service_queue
*sq
= &tg
->service_queue
;
283 * If on the default hierarchy, we switch to properly hierarchical
284 * behavior where limits on a given throtl_grp are applied to the
285 * whole subtree rather than just the group itself. e.g. If 16M
286 * read_bps limit is set on a parent group, summary bps of
287 * parent group and its subtree groups can't exceed 16M for the
290 * If not on the default hierarchy, the broken flat hierarchy
291 * behavior is retained where all throtl_grps are treated as if
292 * they're all separate root groups right below throtl_data.
293 * Limits of a group don't interact with limits of other groups
294 * regardless of the position of the group in the hierarchy.
296 sq
->parent_sq
= &td
->service_queue
;
297 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && blkg
->parent
)
298 sq
->parent_sq
= &blkg_to_tg(blkg
->parent
)->service_queue
;
303 * Set has_rules[] if @tg or any of its parents have limits configured.
304 * This doesn't require walking up to the top of the hierarchy as the
305 * parent's has_rules[] is guaranteed to be correct.
307 static void tg_update_has_rules(struct throtl_grp
*tg
)
309 struct throtl_grp
*parent_tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
312 for (rw
= READ
; rw
<= WRITE
; rw
++) {
313 tg
->has_rules_iops
[rw
] =
314 (parent_tg
&& parent_tg
->has_rules_iops
[rw
]) ||
315 tg_iops_limit(tg
, rw
) != UINT_MAX
;
316 tg
->has_rules_bps
[rw
] =
317 (parent_tg
&& parent_tg
->has_rules_bps
[rw
]) ||
318 tg_bps_limit(tg
, rw
) != U64_MAX
;
322 static void throtl_pd_online(struct blkg_policy_data
*pd
)
324 struct throtl_grp
*tg
= pd_to_tg(pd
);
326 * We don't want new groups to escape the limits of its ancestors.
327 * Update has_rules[] after a new group is brought online.
329 tg_update_has_rules(tg
);
332 static void throtl_pd_free(struct blkg_policy_data
*pd
)
334 struct throtl_grp
*tg
= pd_to_tg(pd
);
336 del_timer_sync(&tg
->service_queue
.pending_timer
);
337 blkg_rwstat_exit(&tg
->stat_bytes
);
338 blkg_rwstat_exit(&tg
->stat_ios
);
342 static struct throtl_grp
*
343 throtl_rb_first(struct throtl_service_queue
*parent_sq
)
347 n
= rb_first_cached(&parent_sq
->pending_tree
);
351 return rb_entry_tg(n
);
354 static void throtl_rb_erase(struct rb_node
*n
,
355 struct throtl_service_queue
*parent_sq
)
357 rb_erase_cached(n
, &parent_sq
->pending_tree
);
361 static void update_min_dispatch_time(struct throtl_service_queue
*parent_sq
)
363 struct throtl_grp
*tg
;
365 tg
= throtl_rb_first(parent_sq
);
369 parent_sq
->first_pending_disptime
= tg
->disptime
;
372 static void tg_service_queue_add(struct throtl_grp
*tg
)
374 struct throtl_service_queue
*parent_sq
= tg
->service_queue
.parent_sq
;
375 struct rb_node
**node
= &parent_sq
->pending_tree
.rb_root
.rb_node
;
376 struct rb_node
*parent
= NULL
;
377 struct throtl_grp
*__tg
;
378 unsigned long key
= tg
->disptime
;
379 bool leftmost
= true;
381 while (*node
!= NULL
) {
383 __tg
= rb_entry_tg(parent
);
385 if (time_before(key
, __tg
->disptime
))
386 node
= &parent
->rb_left
;
388 node
= &parent
->rb_right
;
393 rb_link_node(&tg
->rb_node
, parent
, node
);
394 rb_insert_color_cached(&tg
->rb_node
, &parent_sq
->pending_tree
,
398 static void throtl_enqueue_tg(struct throtl_grp
*tg
)
400 if (!(tg
->flags
& THROTL_TG_PENDING
)) {
401 tg_service_queue_add(tg
);
402 tg
->flags
|= THROTL_TG_PENDING
;
403 tg
->service_queue
.parent_sq
->nr_pending
++;
407 static void throtl_dequeue_tg(struct throtl_grp
*tg
)
409 if (tg
->flags
& THROTL_TG_PENDING
) {
410 struct throtl_service_queue
*parent_sq
=
411 tg
->service_queue
.parent_sq
;
413 throtl_rb_erase(&tg
->rb_node
, parent_sq
);
414 --parent_sq
->nr_pending
;
415 tg
->flags
&= ~THROTL_TG_PENDING
;
419 /* Call with queue lock held */
420 static void throtl_schedule_pending_timer(struct throtl_service_queue
*sq
,
421 unsigned long expires
)
423 unsigned long max_expire
= jiffies
+ 8 * sq_to_td(sq
)->throtl_slice
;
426 * Since we are adjusting the throttle limit dynamically, the sleep
427 * time calculated according to previous limit might be invalid. It's
428 * possible the cgroup sleep time is very long and no other cgroups
429 * have IO running so notify the limit changes. Make sure the cgroup
430 * doesn't sleep too long to avoid the missed notification.
432 if (time_after(expires
, max_expire
))
433 expires
= max_expire
;
434 mod_timer(&sq
->pending_timer
, expires
);
435 throtl_log(sq
, "schedule timer. delay=%lu jiffies=%lu",
436 expires
- jiffies
, jiffies
);
440 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
441 * @sq: the service_queue to schedule dispatch for
442 * @force: force scheduling
444 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
445 * dispatch time of the first pending child. Returns %true if either timer
446 * is armed or there's no pending child left. %false if the current
447 * dispatch window is still open and the caller should continue
450 * If @force is %true, the dispatch timer is always scheduled and this
451 * function is guaranteed to return %true. This is to be used when the
452 * caller can't dispatch itself and needs to invoke pending_timer
453 * unconditionally. Note that forced scheduling is likely to induce short
454 * delay before dispatch starts even if @sq->first_pending_disptime is not
455 * in the future and thus shouldn't be used in hot paths.
457 static bool throtl_schedule_next_dispatch(struct throtl_service_queue
*sq
,
460 /* any pending children left? */
464 update_min_dispatch_time(sq
);
466 /* is the next dispatch time in the future? */
467 if (force
|| time_after(sq
->first_pending_disptime
, jiffies
)) {
468 throtl_schedule_pending_timer(sq
, sq
->first_pending_disptime
);
472 /* tell the caller to continue dispatching */
476 static inline void throtl_start_new_slice_with_credit(struct throtl_grp
*tg
,
477 bool rw
, unsigned long start
)
479 tg
->bytes_disp
[rw
] = 0;
481 tg
->carryover_bytes
[rw
] = 0;
482 tg
->carryover_ios
[rw
] = 0;
485 * Previous slice has expired. We must have trimmed it after last
486 * bio dispatch. That means since start of last slice, we never used
487 * that bandwidth. Do try to make use of that bandwidth while giving
490 if (time_after(start
, tg
->slice_start
[rw
]))
491 tg
->slice_start
[rw
] = start
;
493 tg
->slice_end
[rw
] = jiffies
+ tg
->td
->throtl_slice
;
494 throtl_log(&tg
->service_queue
,
495 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
496 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
497 tg
->slice_end
[rw
], jiffies
);
500 static inline void throtl_start_new_slice(struct throtl_grp
*tg
, bool rw
,
501 bool clear_carryover
)
503 tg
->bytes_disp
[rw
] = 0;
505 tg
->slice_start
[rw
] = jiffies
;
506 tg
->slice_end
[rw
] = jiffies
+ tg
->td
->throtl_slice
;
507 if (clear_carryover
) {
508 tg
->carryover_bytes
[rw
] = 0;
509 tg
->carryover_ios
[rw
] = 0;
512 throtl_log(&tg
->service_queue
,
513 "[%c] new slice start=%lu end=%lu jiffies=%lu",
514 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
515 tg
->slice_end
[rw
], jiffies
);
518 static inline void throtl_set_slice_end(struct throtl_grp
*tg
, bool rw
,
519 unsigned long jiffy_end
)
521 tg
->slice_end
[rw
] = roundup(jiffy_end
, tg
->td
->throtl_slice
);
524 static inline void throtl_extend_slice(struct throtl_grp
*tg
, bool rw
,
525 unsigned long jiffy_end
)
527 throtl_set_slice_end(tg
, rw
, jiffy_end
);
528 throtl_log(&tg
->service_queue
,
529 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
530 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
531 tg
->slice_end
[rw
], jiffies
);
534 /* Determine if previously allocated or extended slice is complete or not */
535 static bool throtl_slice_used(struct throtl_grp
*tg
, bool rw
)
537 if (time_in_range(jiffies
, tg
->slice_start
[rw
], tg
->slice_end
[rw
]))
543 static unsigned int calculate_io_allowed(u32 iops_limit
,
544 unsigned long jiffy_elapsed
)
546 unsigned int io_allowed
;
550 * jiffy_elapsed should not be a big value as minimum iops can be
551 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
552 * will allow dispatch after 1 second and after that slice should
556 tmp
= (u64
)iops_limit
* jiffy_elapsed
;
560 io_allowed
= UINT_MAX
;
567 static u64
calculate_bytes_allowed(u64 bps_limit
, unsigned long jiffy_elapsed
)
570 * Can result be wider than 64 bits?
571 * We check against 62, not 64, due to ilog2 truncation.
573 if (ilog2(bps_limit
) + ilog2(jiffy_elapsed
) - ilog2(HZ
) > 62)
575 return mul_u64_u64_div_u64(bps_limit
, (u64
)jiffy_elapsed
, (u64
)HZ
);
578 /* Trim the used slices and adjust slice start accordingly */
579 static inline void throtl_trim_slice(struct throtl_grp
*tg
, bool rw
)
581 unsigned long time_elapsed
;
582 long long bytes_trim
;
585 BUG_ON(time_before(tg
->slice_end
[rw
], tg
->slice_start
[rw
]));
588 * If bps are unlimited (-1), then time slice don't get
589 * renewed. Don't try to trim the slice if slice is used. A new
590 * slice will start when appropriate.
592 if (throtl_slice_used(tg
, rw
))
596 * A bio has been dispatched. Also adjust slice_end. It might happen
597 * that initially cgroup limit was very low resulting in high
598 * slice_end, but later limit was bumped up and bio was dispatched
599 * sooner, then we need to reduce slice_end. A high bogus slice_end
600 * is bad because it does not allow new slice to start.
603 throtl_set_slice_end(tg
, rw
, jiffies
+ tg
->td
->throtl_slice
);
605 time_elapsed
= rounddown(jiffies
- tg
->slice_start
[rw
],
606 tg
->td
->throtl_slice
);
610 bytes_trim
= calculate_bytes_allowed(tg_bps_limit(tg
, rw
),
612 tg
->carryover_bytes
[rw
];
613 io_trim
= calculate_io_allowed(tg_iops_limit(tg
, rw
), time_elapsed
) +
614 tg
->carryover_ios
[rw
];
615 if (bytes_trim
<= 0 && io_trim
<= 0)
618 tg
->carryover_bytes
[rw
] = 0;
619 if ((long long)tg
->bytes_disp
[rw
] >= bytes_trim
)
620 tg
->bytes_disp
[rw
] -= bytes_trim
;
622 tg
->bytes_disp
[rw
] = 0;
624 tg
->carryover_ios
[rw
] = 0;
625 if ((int)tg
->io_disp
[rw
] >= io_trim
)
626 tg
->io_disp
[rw
] -= io_trim
;
630 tg
->slice_start
[rw
] += time_elapsed
;
632 throtl_log(&tg
->service_queue
,
633 "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu",
634 rw
== READ
? 'R' : 'W', time_elapsed
/ tg
->td
->throtl_slice
,
635 bytes_trim
, io_trim
, tg
->slice_start
[rw
], tg
->slice_end
[rw
],
639 static void __tg_update_carryover(struct throtl_grp
*tg
, bool rw
)
641 unsigned long jiffy_elapsed
= jiffies
- tg
->slice_start
[rw
];
642 u64 bps_limit
= tg_bps_limit(tg
, rw
);
643 u32 iops_limit
= tg_iops_limit(tg
, rw
);
646 * If config is updated while bios are still throttled, calculate and
647 * accumulate how many bytes/ios are waited across changes. And
648 * carryover_bytes/ios will be used to calculate new wait time under new
651 if (bps_limit
!= U64_MAX
)
652 tg
->carryover_bytes
[rw
] +=
653 calculate_bytes_allowed(bps_limit
, jiffy_elapsed
) -
655 if (iops_limit
!= UINT_MAX
)
656 tg
->carryover_ios
[rw
] +=
657 calculate_io_allowed(iops_limit
, jiffy_elapsed
) -
661 static void tg_update_carryover(struct throtl_grp
*tg
)
663 if (tg
->service_queue
.nr_queued
[READ
])
664 __tg_update_carryover(tg
, READ
);
665 if (tg
->service_queue
.nr_queued
[WRITE
])
666 __tg_update_carryover(tg
, WRITE
);
668 /* see comments in struct throtl_grp for meaning of these fields. */
669 throtl_log(&tg
->service_queue
, "%s: %lld %lld %d %d\n", __func__
,
670 tg
->carryover_bytes
[READ
], tg
->carryover_bytes
[WRITE
],
671 tg
->carryover_ios
[READ
], tg
->carryover_ios
[WRITE
]);
674 static unsigned long tg_within_iops_limit(struct throtl_grp
*tg
, struct bio
*bio
,
677 bool rw
= bio_data_dir(bio
);
679 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
681 if (iops_limit
== UINT_MAX
) {
685 jiffy_elapsed
= jiffies
- tg
->slice_start
[rw
];
687 /* Round up to the next throttle slice, wait time must be nonzero */
688 jiffy_elapsed_rnd
= roundup(jiffy_elapsed
+ 1, tg
->td
->throtl_slice
);
689 io_allowed
= calculate_io_allowed(iops_limit
, jiffy_elapsed_rnd
) +
690 tg
->carryover_ios
[rw
];
691 if (io_allowed
> 0 && tg
->io_disp
[rw
] + 1 <= io_allowed
)
694 /* Calc approx time to dispatch */
695 jiffy_wait
= jiffy_elapsed_rnd
- jiffy_elapsed
;
697 /* make sure at least one io can be dispatched after waiting */
698 jiffy_wait
= max(jiffy_wait
, HZ
/ iops_limit
+ 1);
702 static unsigned long tg_within_bps_limit(struct throtl_grp
*tg
, struct bio
*bio
,
705 bool rw
= bio_data_dir(bio
);
706 long long bytes_allowed
;
708 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
709 unsigned int bio_size
= throtl_bio_data_size(bio
);
711 /* no need to throttle if this bio's bytes have been accounted */
712 if (bps_limit
== U64_MAX
|| bio_flagged(bio
, BIO_BPS_THROTTLED
)) {
716 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
718 /* Slice has just started. Consider one slice interval */
720 jiffy_elapsed_rnd
= tg
->td
->throtl_slice
;
722 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, tg
->td
->throtl_slice
);
723 bytes_allowed
= calculate_bytes_allowed(bps_limit
, jiffy_elapsed_rnd
) +
724 tg
->carryover_bytes
[rw
];
725 if (bytes_allowed
> 0 && tg
->bytes_disp
[rw
] + bio_size
<= bytes_allowed
)
728 /* Calc approx time to dispatch */
729 extra_bytes
= tg
->bytes_disp
[rw
] + bio_size
- bytes_allowed
;
730 jiffy_wait
= div64_u64(extra_bytes
* HZ
, bps_limit
);
736 * This wait time is without taking into consideration the rounding
737 * up we did. Add that time also.
739 jiffy_wait
= jiffy_wait
+ (jiffy_elapsed_rnd
- jiffy_elapsed
);
744 * Returns whether one can dispatch a bio or not. Also returns approx number
745 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
747 static bool tg_may_dispatch(struct throtl_grp
*tg
, struct bio
*bio
,
750 bool rw
= bio_data_dir(bio
);
751 unsigned long bps_wait
= 0, iops_wait
= 0, max_wait
= 0;
752 u64 bps_limit
= tg_bps_limit(tg
, rw
);
753 u32 iops_limit
= tg_iops_limit(tg
, rw
);
756 * Currently whole state machine of group depends on first bio
757 * queued in the group bio list. So one should not be calling
758 * this function with a different bio if there are other bios
761 BUG_ON(tg
->service_queue
.nr_queued
[rw
] &&
762 bio
!= throtl_peek_queued(&tg
->service_queue
.queued
[rw
]));
764 /* If tg->bps = -1, then BW is unlimited */
765 if ((bps_limit
== U64_MAX
&& iops_limit
== UINT_MAX
) ||
766 tg
->flags
& THROTL_TG_CANCELING
) {
773 * If previous slice expired, start a new one otherwise renew/extend
774 * existing slice to make sure it is at least throtl_slice interval
775 * long since now. New slice is started only for empty throttle group.
776 * If there is queued bio, that means there should be an active
777 * slice and it should be extended instead.
779 if (throtl_slice_used(tg
, rw
) && !(tg
->service_queue
.nr_queued
[rw
]))
780 throtl_start_new_slice(tg
, rw
, true);
782 if (time_before(tg
->slice_end
[rw
],
783 jiffies
+ tg
->td
->throtl_slice
))
784 throtl_extend_slice(tg
, rw
,
785 jiffies
+ tg
->td
->throtl_slice
);
788 bps_wait
= tg_within_bps_limit(tg
, bio
, bps_limit
);
789 iops_wait
= tg_within_iops_limit(tg
, bio
, iops_limit
);
790 if (bps_wait
+ iops_wait
== 0) {
796 max_wait
= max(bps_wait
, iops_wait
);
801 if (time_before(tg
->slice_end
[rw
], jiffies
+ max_wait
))
802 throtl_extend_slice(tg
, rw
, jiffies
+ max_wait
);
807 static void throtl_charge_bio(struct throtl_grp
*tg
, struct bio
*bio
)
809 bool rw
= bio_data_dir(bio
);
810 unsigned int bio_size
= throtl_bio_data_size(bio
);
812 /* Charge the bio to the group */
813 if (!bio_flagged(bio
, BIO_BPS_THROTTLED
)) {
814 tg
->bytes_disp
[rw
] += bio_size
;
815 tg
->last_bytes_disp
[rw
] += bio_size
;
819 tg
->last_io_disp
[rw
]++;
823 * throtl_add_bio_tg - add a bio to the specified throtl_grp
826 * @tg: the target throtl_grp
828 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
829 * tg->qnode_on_self[] is used.
831 static void throtl_add_bio_tg(struct bio
*bio
, struct throtl_qnode
*qn
,
832 struct throtl_grp
*tg
)
834 struct throtl_service_queue
*sq
= &tg
->service_queue
;
835 bool rw
= bio_data_dir(bio
);
838 qn
= &tg
->qnode_on_self
[rw
];
841 * If @tg doesn't currently have any bios queued in the same
842 * direction, queueing @bio can change when @tg should be
843 * dispatched. Mark that @tg was empty. This is automatically
844 * cleared on the next tg_update_disptime().
846 if (!sq
->nr_queued
[rw
])
847 tg
->flags
|= THROTL_TG_WAS_EMPTY
;
849 throtl_qnode_add_bio(bio
, qn
, &sq
->queued
[rw
]);
852 throtl_enqueue_tg(tg
);
855 static void tg_update_disptime(struct throtl_grp
*tg
)
857 struct throtl_service_queue
*sq
= &tg
->service_queue
;
858 unsigned long read_wait
= -1, write_wait
= -1, min_wait
= -1, disptime
;
861 bio
= throtl_peek_queued(&sq
->queued
[READ
]);
863 tg_may_dispatch(tg
, bio
, &read_wait
);
865 bio
= throtl_peek_queued(&sq
->queued
[WRITE
]);
867 tg_may_dispatch(tg
, bio
, &write_wait
);
869 min_wait
= min(read_wait
, write_wait
);
870 disptime
= jiffies
+ min_wait
;
872 /* Update dispatch time */
873 throtl_rb_erase(&tg
->rb_node
, tg
->service_queue
.parent_sq
);
874 tg
->disptime
= disptime
;
875 tg_service_queue_add(tg
);
877 /* see throtl_add_bio_tg() */
878 tg
->flags
&= ~THROTL_TG_WAS_EMPTY
;
881 static void start_parent_slice_with_credit(struct throtl_grp
*child_tg
,
882 struct throtl_grp
*parent_tg
, bool rw
)
884 if (throtl_slice_used(parent_tg
, rw
)) {
885 throtl_start_new_slice_with_credit(parent_tg
, rw
,
886 child_tg
->slice_start
[rw
]);
891 static void tg_dispatch_one_bio(struct throtl_grp
*tg
, bool rw
)
893 struct throtl_service_queue
*sq
= &tg
->service_queue
;
894 struct throtl_service_queue
*parent_sq
= sq
->parent_sq
;
895 struct throtl_grp
*parent_tg
= sq_to_tg(parent_sq
);
896 struct throtl_grp
*tg_to_put
= NULL
;
900 * @bio is being transferred from @tg to @parent_sq. Popping a bio
901 * from @tg may put its reference and @parent_sq might end up
902 * getting released prematurely. Remember the tg to put and put it
903 * after @bio is transferred to @parent_sq.
905 bio
= throtl_pop_queued(&sq
->queued
[rw
], &tg_to_put
);
908 throtl_charge_bio(tg
, bio
);
911 * If our parent is another tg, we just need to transfer @bio to
912 * the parent using throtl_add_bio_tg(). If our parent is
913 * @td->service_queue, @bio is ready to be issued. Put it on its
914 * bio_lists[] and decrease total number queued. The caller is
915 * responsible for issuing these bios.
918 throtl_add_bio_tg(bio
, &tg
->qnode_on_parent
[rw
], parent_tg
);
919 start_parent_slice_with_credit(tg
, parent_tg
, rw
);
921 bio_set_flag(bio
, BIO_BPS_THROTTLED
);
922 throtl_qnode_add_bio(bio
, &tg
->qnode_on_parent
[rw
],
923 &parent_sq
->queued
[rw
]);
924 BUG_ON(tg
->td
->nr_queued
[rw
] <= 0);
925 tg
->td
->nr_queued
[rw
]--;
928 throtl_trim_slice(tg
, rw
);
931 blkg_put(tg_to_blkg(tg_to_put
));
934 static int throtl_dispatch_tg(struct throtl_grp
*tg
)
936 struct throtl_service_queue
*sq
= &tg
->service_queue
;
937 unsigned int nr_reads
= 0, nr_writes
= 0;
938 unsigned int max_nr_reads
= THROTL_GRP_QUANTUM
* 3 / 4;
939 unsigned int max_nr_writes
= THROTL_GRP_QUANTUM
- max_nr_reads
;
942 /* Try to dispatch 75% READS and 25% WRITES */
944 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])) &&
945 tg_may_dispatch(tg
, bio
, NULL
)) {
947 tg_dispatch_one_bio(tg
, READ
);
950 if (nr_reads
>= max_nr_reads
)
954 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])) &&
955 tg_may_dispatch(tg
, bio
, NULL
)) {
957 tg_dispatch_one_bio(tg
, WRITE
);
960 if (nr_writes
>= max_nr_writes
)
964 return nr_reads
+ nr_writes
;
967 static int throtl_select_dispatch(struct throtl_service_queue
*parent_sq
)
969 unsigned int nr_disp
= 0;
972 struct throtl_grp
*tg
;
973 struct throtl_service_queue
*sq
;
975 if (!parent_sq
->nr_pending
)
978 tg
= throtl_rb_first(parent_sq
);
982 if (time_before(jiffies
, tg
->disptime
))
985 nr_disp
+= throtl_dispatch_tg(tg
);
987 sq
= &tg
->service_queue
;
988 if (sq
->nr_queued
[READ
] || sq
->nr_queued
[WRITE
])
989 tg_update_disptime(tg
);
991 throtl_dequeue_tg(tg
);
993 if (nr_disp
>= THROTL_QUANTUM
)
1001 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1002 * @t: the pending_timer member of the throtl_service_queue being serviced
1004 * This timer is armed when a child throtl_grp with active bio's become
1005 * pending and queued on the service_queue's pending_tree and expires when
1006 * the first child throtl_grp should be dispatched. This function
1007 * dispatches bio's from the children throtl_grps to the parent
1010 * If the parent's parent is another throtl_grp, dispatching is propagated
1011 * by either arming its pending_timer or repeating dispatch directly. If
1012 * the top-level service_tree is reached, throtl_data->dispatch_work is
1013 * kicked so that the ready bio's are issued.
1015 static void throtl_pending_timer_fn(struct timer_list
*t
)
1017 struct throtl_service_queue
*sq
= from_timer(sq
, t
, pending_timer
);
1018 struct throtl_grp
*tg
= sq_to_tg(sq
);
1019 struct throtl_data
*td
= sq_to_td(sq
);
1020 struct throtl_service_queue
*parent_sq
;
1021 struct request_queue
*q
;
1025 /* throtl_data may be gone, so figure out request queue by blkg */
1031 spin_lock_irq(&q
->queue_lock
);
1037 parent_sq
= sq
->parent_sq
;
1041 throtl_log(sq
, "dispatch nr_queued=%u read=%u write=%u",
1042 sq
->nr_queued
[READ
] + sq
->nr_queued
[WRITE
],
1043 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
1045 ret
= throtl_select_dispatch(sq
);
1047 throtl_log(sq
, "bios disp=%u", ret
);
1051 if (throtl_schedule_next_dispatch(sq
, false))
1054 /* this dispatch windows is still open, relax and repeat */
1055 spin_unlock_irq(&q
->queue_lock
);
1057 spin_lock_irq(&q
->queue_lock
);
1064 /* @parent_sq is another throl_grp, propagate dispatch */
1065 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
1066 tg_update_disptime(tg
);
1067 if (!throtl_schedule_next_dispatch(parent_sq
, false)) {
1068 /* window is already open, repeat dispatching */
1075 /* reached the top-level, queue issuing */
1076 queue_work(kthrotld_workqueue
, &td
->dispatch_work
);
1079 spin_unlock_irq(&q
->queue_lock
);
1083 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1084 * @work: work item being executed
1086 * This function is queued for execution when bios reach the bio_lists[]
1087 * of throtl_data->service_queue. Those bios are ready and issued by this
1090 static void blk_throtl_dispatch_work_fn(struct work_struct
*work
)
1092 struct throtl_data
*td
= container_of(work
, struct throtl_data
,
1094 struct throtl_service_queue
*td_sq
= &td
->service_queue
;
1095 struct request_queue
*q
= td
->queue
;
1096 struct bio_list bio_list_on_stack
;
1098 struct blk_plug plug
;
1101 bio_list_init(&bio_list_on_stack
);
1103 spin_lock_irq(&q
->queue_lock
);
1104 for (rw
= READ
; rw
<= WRITE
; rw
++)
1105 while ((bio
= throtl_pop_queued(&td_sq
->queued
[rw
], NULL
)))
1106 bio_list_add(&bio_list_on_stack
, bio
);
1107 spin_unlock_irq(&q
->queue_lock
);
1109 if (!bio_list_empty(&bio_list_on_stack
)) {
1110 blk_start_plug(&plug
);
1111 while ((bio
= bio_list_pop(&bio_list_on_stack
)))
1112 submit_bio_noacct_nocheck(bio
);
1113 blk_finish_plug(&plug
);
1117 static u64
tg_prfill_conf_u64(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1120 struct throtl_grp
*tg
= pd_to_tg(pd
);
1121 u64 v
= *(u64
*)((void *)tg
+ off
);
1125 return __blkg_prfill_u64(sf
, pd
, v
);
1128 static u64
tg_prfill_conf_uint(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1131 struct throtl_grp
*tg
= pd_to_tg(pd
);
1132 unsigned int v
= *(unsigned int *)((void *)tg
+ off
);
1136 return __blkg_prfill_u64(sf
, pd
, v
);
1139 static int tg_print_conf_u64(struct seq_file
*sf
, void *v
)
1141 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_u64
,
1142 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1146 static int tg_print_conf_uint(struct seq_file
*sf
, void *v
)
1148 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_uint
,
1149 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1153 static void tg_conf_updated(struct throtl_grp
*tg
, bool global
)
1155 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1156 struct cgroup_subsys_state
*pos_css
;
1157 struct blkcg_gq
*blkg
;
1159 throtl_log(&tg
->service_queue
,
1160 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1161 tg_bps_limit(tg
, READ
), tg_bps_limit(tg
, WRITE
),
1162 tg_iops_limit(tg
, READ
), tg_iops_limit(tg
, WRITE
));
1166 * Update has_rules[] flags for the updated tg's subtree. A tg is
1167 * considered to have rules if either the tg itself or any of its
1168 * ancestors has rules. This identifies groups without any
1169 * restrictions in the whole hierarchy and allows them to bypass
1172 blkg_for_each_descendant_pre(blkg
, pos_css
,
1173 global
? tg
->td
->queue
->root_blkg
: tg_to_blkg(tg
)) {
1174 struct throtl_grp
*this_tg
= blkg_to_tg(blkg
);
1176 tg_update_has_rules(this_tg
);
1177 /* ignore root/second level */
1178 if (!cgroup_subsys_on_dfl(io_cgrp_subsys
) || !blkg
->parent
||
1179 !blkg
->parent
->parent
)
1185 * We're already holding queue_lock and know @tg is valid. Let's
1186 * apply the new config directly.
1188 * Restart the slices for both READ and WRITES. It might happen
1189 * that a group's limit are dropped suddenly and we don't want to
1190 * account recently dispatched IO with new low rate.
1192 throtl_start_new_slice(tg
, READ
, false);
1193 throtl_start_new_slice(tg
, WRITE
, false);
1195 if (tg
->flags
& THROTL_TG_PENDING
) {
1196 tg_update_disptime(tg
);
1197 throtl_schedule_next_dispatch(sq
->parent_sq
, true);
1201 static int blk_throtl_init(struct gendisk
*disk
)
1203 struct request_queue
*q
= disk
->queue
;
1204 struct throtl_data
*td
;
1207 td
= kzalloc_node(sizeof(*td
), GFP_KERNEL
, q
->node
);
1211 INIT_WORK(&td
->dispatch_work
, blk_throtl_dispatch_work_fn
);
1212 throtl_service_queue_init(&td
->service_queue
);
1215 * Freeze queue before activating policy, to synchronize with IO path,
1216 * which is protected by 'q_usage_counter'.
1218 blk_mq_freeze_queue(disk
->queue
);
1219 blk_mq_quiesce_queue(disk
->queue
);
1224 /* activate policy */
1225 ret
= blkcg_activate_policy(disk
, &blkcg_policy_throtl
);
1232 if (blk_queue_nonrot(q
))
1233 td
->throtl_slice
= DFL_THROTL_SLICE_SSD
;
1235 td
->throtl_slice
= DFL_THROTL_SLICE_HD
;
1236 td
->track_bio_latency
= !queue_is_mq(q
);
1237 if (!td
->track_bio_latency
)
1238 blk_stat_enable_accounting(q
);
1241 blk_mq_unquiesce_queue(disk
->queue
);
1242 blk_mq_unfreeze_queue(disk
->queue
);
1248 static ssize_t
tg_set_conf(struct kernfs_open_file
*of
,
1249 char *buf
, size_t nbytes
, loff_t off
, bool is_u64
)
1251 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1252 struct blkg_conf_ctx ctx
;
1253 struct throtl_grp
*tg
;
1257 blkg_conf_init(&ctx
, buf
);
1259 ret
= blkg_conf_open_bdev(&ctx
);
1263 if (!blk_throtl_activated(ctx
.bdev
->bd_queue
)) {
1264 ret
= blk_throtl_init(ctx
.bdev
->bd_disk
);
1269 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, &ctx
);
1274 if (sscanf(ctx
.body
, "%llu", &v
) != 1)
1279 tg
= blkg_to_tg(ctx
.blkg
);
1280 tg_update_carryover(tg
);
1283 *(u64
*)((void *)tg
+ of_cft(of
)->private) = v
;
1285 *(unsigned int *)((void *)tg
+ of_cft(of
)->private) = v
;
1287 tg_conf_updated(tg
, false);
1290 blkg_conf_exit(&ctx
);
1291 return ret
?: nbytes
;
1294 static ssize_t
tg_set_conf_u64(struct kernfs_open_file
*of
,
1295 char *buf
, size_t nbytes
, loff_t off
)
1297 return tg_set_conf(of
, buf
, nbytes
, off
, true);
1300 static ssize_t
tg_set_conf_uint(struct kernfs_open_file
*of
,
1301 char *buf
, size_t nbytes
, loff_t off
)
1303 return tg_set_conf(of
, buf
, nbytes
, off
, false);
1306 static int tg_print_rwstat(struct seq_file
*sf
, void *v
)
1308 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1309 blkg_prfill_rwstat
, &blkcg_policy_throtl
,
1310 seq_cft(sf
)->private, true);
1314 static u64
tg_prfill_rwstat_recursive(struct seq_file
*sf
,
1315 struct blkg_policy_data
*pd
, int off
)
1317 struct blkg_rwstat_sample sum
;
1319 blkg_rwstat_recursive_sum(pd_to_blkg(pd
), &blkcg_policy_throtl
, off
,
1321 return __blkg_prfill_rwstat(sf
, pd
, &sum
);
1324 static int tg_print_rwstat_recursive(struct seq_file
*sf
, void *v
)
1326 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1327 tg_prfill_rwstat_recursive
, &blkcg_policy_throtl
,
1328 seq_cft(sf
)->private, true);
1332 static struct cftype throtl_legacy_files
[] = {
1334 .name
= "throttle.read_bps_device",
1335 .private = offsetof(struct throtl_grp
, bps
[READ
]),
1336 .seq_show
= tg_print_conf_u64
,
1337 .write
= tg_set_conf_u64
,
1340 .name
= "throttle.write_bps_device",
1341 .private = offsetof(struct throtl_grp
, bps
[WRITE
]),
1342 .seq_show
= tg_print_conf_u64
,
1343 .write
= tg_set_conf_u64
,
1346 .name
= "throttle.read_iops_device",
1347 .private = offsetof(struct throtl_grp
, iops
[READ
]),
1348 .seq_show
= tg_print_conf_uint
,
1349 .write
= tg_set_conf_uint
,
1352 .name
= "throttle.write_iops_device",
1353 .private = offsetof(struct throtl_grp
, iops
[WRITE
]),
1354 .seq_show
= tg_print_conf_uint
,
1355 .write
= tg_set_conf_uint
,
1358 .name
= "throttle.io_service_bytes",
1359 .private = offsetof(struct throtl_grp
, stat_bytes
),
1360 .seq_show
= tg_print_rwstat
,
1363 .name
= "throttle.io_service_bytes_recursive",
1364 .private = offsetof(struct throtl_grp
, stat_bytes
),
1365 .seq_show
= tg_print_rwstat_recursive
,
1368 .name
= "throttle.io_serviced",
1369 .private = offsetof(struct throtl_grp
, stat_ios
),
1370 .seq_show
= tg_print_rwstat
,
1373 .name
= "throttle.io_serviced_recursive",
1374 .private = offsetof(struct throtl_grp
, stat_ios
),
1375 .seq_show
= tg_print_rwstat_recursive
,
1380 static u64
tg_prfill_limit(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1383 struct throtl_grp
*tg
= pd_to_tg(pd
);
1384 const char *dname
= blkg_dev_name(pd
->blkg
);
1386 unsigned int iops_dft
;
1392 iops_dft
= UINT_MAX
;
1394 if (tg
->bps
[READ
] == bps_dft
&&
1395 tg
->bps
[WRITE
] == bps_dft
&&
1396 tg
->iops
[READ
] == iops_dft
&&
1397 tg
->iops
[WRITE
] == iops_dft
)
1400 seq_printf(sf
, "%s", dname
);
1401 if (tg
->bps
[READ
] == U64_MAX
)
1402 seq_printf(sf
, " rbps=max");
1404 seq_printf(sf
, " rbps=%llu", tg
->bps
[READ
]);
1406 if (tg
->bps
[WRITE
] == U64_MAX
)
1407 seq_printf(sf
, " wbps=max");
1409 seq_printf(sf
, " wbps=%llu", tg
->bps
[WRITE
]);
1411 if (tg
->iops
[READ
] == UINT_MAX
)
1412 seq_printf(sf
, " riops=max");
1414 seq_printf(sf
, " riops=%u", tg
->iops
[READ
]);
1416 if (tg
->iops
[WRITE
] == UINT_MAX
)
1417 seq_printf(sf
, " wiops=max");
1419 seq_printf(sf
, " wiops=%u", tg
->iops
[WRITE
]);
1421 seq_printf(sf
, "\n");
1425 static int tg_print_limit(struct seq_file
*sf
, void *v
)
1427 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_limit
,
1428 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1432 static ssize_t
tg_set_limit(struct kernfs_open_file
*of
,
1433 char *buf
, size_t nbytes
, loff_t off
)
1435 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1436 struct blkg_conf_ctx ctx
;
1437 struct throtl_grp
*tg
;
1441 blkg_conf_init(&ctx
, buf
);
1443 ret
= blkg_conf_open_bdev(&ctx
);
1447 if (!blk_throtl_activated(ctx
.bdev
->bd_queue
)) {
1448 ret
= blk_throtl_init(ctx
.bdev
->bd_disk
);
1453 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, &ctx
);
1457 tg
= blkg_to_tg(ctx
.blkg
);
1458 tg_update_carryover(tg
);
1460 v
[0] = tg
->bps
[READ
];
1461 v
[1] = tg
->bps
[WRITE
];
1462 v
[2] = tg
->iops
[READ
];
1463 v
[3] = tg
->iops
[WRITE
];
1466 char tok
[27]; /* wiops=18446744073709551616 */
1471 if (sscanf(ctx
.body
, "%26s%n", tok
, &len
) != 1)
1480 if (!p
|| (sscanf(p
, "%llu", &val
) != 1 && strcmp(p
, "max")))
1488 if (!strcmp(tok
, "rbps"))
1490 else if (!strcmp(tok
, "wbps"))
1492 else if (!strcmp(tok
, "riops"))
1493 v
[2] = min_t(u64
, val
, UINT_MAX
);
1494 else if (!strcmp(tok
, "wiops"))
1495 v
[3] = min_t(u64
, val
, UINT_MAX
);
1500 tg
->bps
[READ
] = v
[0];
1501 tg
->bps
[WRITE
] = v
[1];
1502 tg
->iops
[READ
] = v
[2];
1503 tg
->iops
[WRITE
] = v
[3];
1505 tg_conf_updated(tg
, false);
1508 blkg_conf_exit(&ctx
);
1509 return ret
?: nbytes
;
1512 static struct cftype throtl_files
[] = {
1515 .flags
= CFTYPE_NOT_ON_ROOT
,
1516 .seq_show
= tg_print_limit
,
1517 .write
= tg_set_limit
,
1522 static void throtl_shutdown_wq(struct request_queue
*q
)
1524 struct throtl_data
*td
= q
->td
;
1526 cancel_work_sync(&td
->dispatch_work
);
1529 static void tg_flush_bios(struct throtl_grp
*tg
)
1531 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1533 if (tg
->flags
& THROTL_TG_CANCELING
)
1536 * Set the flag to make sure throtl_pending_timer_fn() won't
1537 * stop until all throttled bios are dispatched.
1539 tg
->flags
|= THROTL_TG_CANCELING
;
1542 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1543 * will be inserted to service queue without THROTL_TG_PENDING
1544 * set in tg_update_disptime below. Then IO dispatched from
1545 * child in tg_dispatch_one_bio will trigger double insertion
1546 * and corrupt the tree.
1548 if (!(tg
->flags
& THROTL_TG_PENDING
))
1552 * Update disptime after setting the above flag to make sure
1553 * throtl_select_dispatch() won't exit without dispatching.
1555 tg_update_disptime(tg
);
1557 throtl_schedule_pending_timer(sq
, jiffies
+ 1);
1560 static void throtl_pd_offline(struct blkg_policy_data
*pd
)
1562 tg_flush_bios(pd_to_tg(pd
));
1565 struct blkcg_policy blkcg_policy_throtl
= {
1566 .dfl_cftypes
= throtl_files
,
1567 .legacy_cftypes
= throtl_legacy_files
,
1569 .pd_alloc_fn
= throtl_pd_alloc
,
1570 .pd_init_fn
= throtl_pd_init
,
1571 .pd_online_fn
= throtl_pd_online
,
1572 .pd_offline_fn
= throtl_pd_offline
,
1573 .pd_free_fn
= throtl_pd_free
,
1576 void blk_throtl_cancel_bios(struct gendisk
*disk
)
1578 struct request_queue
*q
= disk
->queue
;
1579 struct cgroup_subsys_state
*pos_css
;
1580 struct blkcg_gq
*blkg
;
1582 if (!blk_throtl_activated(q
))
1585 spin_lock_irq(&q
->queue_lock
);
1587 * queue_lock is held, rcu lock is not needed here technically.
1588 * However, rcu lock is still held to emphasize that following
1589 * path need RCU protection and to prevent warning from lockdep.
1592 blkg_for_each_descendant_post(blkg
, pos_css
, q
->root_blkg
) {
1594 * disk_release will call pd_offline_fn to cancel bios.
1595 * However, disk_release can't be called if someone get
1596 * the refcount of device and issued bios which are
1597 * inflight after del_gendisk.
1598 * Cancel bios here to ensure no bios are inflight after
1601 tg_flush_bios(blkg_to_tg(blkg
));
1604 spin_unlock_irq(&q
->queue_lock
);
1607 static bool tg_within_limit(struct throtl_grp
*tg
, struct bio
*bio
, bool rw
)
1609 /* throtl is FIFO - if bios are already queued, should queue */
1610 if (tg
->service_queue
.nr_queued
[rw
])
1613 return tg_may_dispatch(tg
, bio
, NULL
);
1616 static void tg_dispatch_in_debt(struct throtl_grp
*tg
, struct bio
*bio
, bool rw
)
1618 if (!bio_flagged(bio
, BIO_BPS_THROTTLED
))
1619 tg
->carryover_bytes
[rw
] -= throtl_bio_data_size(bio
);
1620 tg
->carryover_ios
[rw
]--;
1623 bool __blk_throtl_bio(struct bio
*bio
)
1625 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1626 struct blkcg_gq
*blkg
= bio
->bi_blkg
;
1627 struct throtl_qnode
*qn
= NULL
;
1628 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
1629 struct throtl_service_queue
*sq
;
1630 bool rw
= bio_data_dir(bio
);
1631 bool throttled
= false;
1632 struct throtl_data
*td
= tg
->td
;
1635 spin_lock_irq(&q
->queue_lock
);
1636 sq
= &tg
->service_queue
;
1639 if (tg_within_limit(tg
, bio
, rw
)) {
1640 /* within limits, let's charge and dispatch directly */
1641 throtl_charge_bio(tg
, bio
);
1644 * We need to trim slice even when bios are not being
1645 * queued otherwise it might happen that a bio is not
1646 * queued for a long time and slice keeps on extending
1647 * and trim is not called for a long time. Now if limits
1648 * are reduced suddenly we take into account all the IO
1649 * dispatched so far at new low rate and * newly queued
1650 * IO gets a really long dispatch time.
1652 * So keep on trimming slice even if bio is not queued.
1654 throtl_trim_slice(tg
, rw
);
1655 } else if (bio_issue_as_root_blkg(bio
)) {
1657 * IOs which may cause priority inversions are
1658 * dispatched directly, even if they're over limit.
1659 * Debts are handled by carryover_bytes/ios while
1660 * calculating wait time.
1662 tg_dispatch_in_debt(tg
, bio
, rw
);
1664 /* if above limits, break to queue */
1669 * @bio passed through this layer without being throttled.
1670 * Climb up the ladder. If we're already at the top, it
1671 * can be executed directly.
1673 qn
= &tg
->qnode_on_parent
[rw
];
1677 bio_set_flag(bio
, BIO_BPS_THROTTLED
);
1682 /* out-of-limit, queue to @tg */
1683 throtl_log(sq
, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1684 rw
== READ
? 'R' : 'W',
1685 tg
->bytes_disp
[rw
], bio
->bi_iter
.bi_size
,
1686 tg_bps_limit(tg
, rw
),
1687 tg
->io_disp
[rw
], tg_iops_limit(tg
, rw
),
1688 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
1690 td
->nr_queued
[rw
]++;
1691 throtl_add_bio_tg(bio
, qn
, tg
);
1695 * Update @tg's dispatch time and force schedule dispatch if @tg
1696 * was empty before @bio. The forced scheduling isn't likely to
1697 * cause undue delay as @bio is likely to be dispatched directly if
1698 * its @tg's disptime is not in the future.
1700 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
1701 tg_update_disptime(tg
);
1702 throtl_schedule_next_dispatch(tg
->service_queue
.parent_sq
, true);
1706 spin_unlock_irq(&q
->queue_lock
);
1712 void blk_throtl_exit(struct gendisk
*disk
)
1714 struct request_queue
*q
= disk
->queue
;
1716 if (!blk_throtl_activated(q
))
1719 del_timer_sync(&q
->td
->service_queue
.pending_timer
);
1720 throtl_shutdown_wq(q
);
1721 blkcg_deactivate_policy(disk
, &blkcg_policy_throtl
);
1725 static int __init
throtl_init(void)
1727 kthrotld_workqueue
= alloc_workqueue("kthrotld", WQ_MEM_RECLAIM
, 0);
1728 if (!kthrotld_workqueue
)
1729 panic("Failed to create kthrotld\n");
1731 return blkcg_policy_register(&blkcg_policy_throtl
);
1734 module_init(throtl_init
);