1 // SPDX-License-Identifier: GPL-2.0
3 * Adiantum length-preserving encryption mode
5 * Copyright 2018 Google LLC
9 * Adiantum is a tweakable, length-preserving encryption mode designed for fast
10 * and secure disk encryption, especially on CPUs without dedicated crypto
11 * instructions. Adiantum encrypts each sector using the XChaCha12 stream
12 * cipher, two passes of an ε-almost-∆-universal (ε-∆U) hash function based on
13 * NH and Poly1305, and an invocation of the AES-256 block cipher on a single
14 * 16-byte block. See the paper for details:
16 * Adiantum: length-preserving encryption for entry-level processors
17 * (https://eprint.iacr.org/2018/720.pdf)
19 * For flexibility, this implementation also allows other ciphers:
21 * - Stream cipher: XChaCha12 or XChaCha20
22 * - Block cipher: any with a 128-bit block size and 256-bit key
24 * This implementation doesn't currently allow other ε-∆U hash functions, i.e.
25 * HPolyC is not supported. This is because Adiantum is ~20% faster than HPolyC
26 * but still provably as secure, and also the ε-∆U hash function of HBSH is
27 * formally defined to take two inputs (tweak, message) which makes it difficult
28 * to wrap with the crypto_shash API. Rather, some details need to be handled
29 * here. Nevertheless, if needed in the future, support for other ε-∆U hash
30 * functions could be added here.
33 #include <crypto/b128ops.h>
34 #include <crypto/chacha.h>
35 #include <crypto/internal/cipher.h>
36 #include <crypto/internal/hash.h>
37 #include <crypto/internal/poly1305.h>
38 #include <crypto/internal/skcipher.h>
39 #include <crypto/nhpoly1305.h>
40 #include <crypto/scatterwalk.h>
41 #include <linux/module.h>
44 * Size of right-hand part of input data, in bytes; also the size of the block
45 * cipher's block size and the hash function's output.
47 #define BLOCKCIPHER_BLOCK_SIZE 16
49 /* Size of the block cipher key (K_E) in bytes */
50 #define BLOCKCIPHER_KEY_SIZE 32
52 /* Size of the hash key (K_H) in bytes */
53 #define HASH_KEY_SIZE (POLY1305_BLOCK_SIZE + NHPOLY1305_KEY_SIZE)
56 * The specification allows variable-length tweaks, but Linux's crypto API
57 * currently only allows algorithms to support a single length. The "natural"
58 * tweak length for Adiantum is 16, since that fits into one Poly1305 block for
59 * the best performance. But longer tweaks are useful for fscrypt, to avoid
60 * needing to derive per-file keys. So instead we use two blocks, or 32 bytes.
64 struct adiantum_instance_ctx
{
65 struct crypto_skcipher_spawn streamcipher_spawn
;
66 struct crypto_cipher_spawn blockcipher_spawn
;
67 struct crypto_shash_spawn hash_spawn
;
70 struct adiantum_tfm_ctx
{
71 struct crypto_skcipher
*streamcipher
;
72 struct crypto_cipher
*blockcipher
;
73 struct crypto_shash
*hash
;
74 struct poly1305_core_key header_hash_key
;
77 struct adiantum_request_ctx
{
80 * Buffer for right-hand part of data, i.e.
82 * P_L => P_M => C_M => C_R when encrypting, or
83 * C_R => C_M => P_M => P_L when decrypting.
85 * Also used to build the IV for the stream cipher.
88 u8 bytes
[XCHACHA_IV_SIZE
];
89 __le32 words
[XCHACHA_IV_SIZE
/ sizeof(__le32
)];
90 le128 bignum
; /* interpret as element of Z/(2^{128}Z) */
93 bool enc
; /* true if encrypting, false if decrypting */
96 * The result of the Poly1305 ε-∆U hash function applied to
97 * (bulk length, tweak)
101 /* Sub-requests, must be last */
103 struct shash_desc hash_desc
;
104 struct skcipher_request streamcipher_req
;
109 * Given the XChaCha stream key K_S, derive the block cipher key K_E and the
110 * hash key K_H as follows:
112 * K_E || K_H || ... = XChaCha(key=K_S, nonce=1||0^191)
114 * Note that this denotes using bits from the XChaCha keystream, which here we
115 * get indirectly by encrypting a buffer containing all 0's.
117 static int adiantum_setkey(struct crypto_skcipher
*tfm
, const u8
*key
,
120 struct adiantum_tfm_ctx
*tctx
= crypto_skcipher_ctx(tfm
);
122 u8 iv
[XCHACHA_IV_SIZE
];
123 u8 derived_keys
[BLOCKCIPHER_KEY_SIZE
+ HASH_KEY_SIZE
];
124 struct scatterlist sg
;
125 struct crypto_wait wait
;
126 struct skcipher_request req
; /* must be last */
131 /* Set the stream cipher key (K_S) */
132 crypto_skcipher_clear_flags(tctx
->streamcipher
, CRYPTO_TFM_REQ_MASK
);
133 crypto_skcipher_set_flags(tctx
->streamcipher
,
134 crypto_skcipher_get_flags(tfm
) &
135 CRYPTO_TFM_REQ_MASK
);
136 err
= crypto_skcipher_setkey(tctx
->streamcipher
, key
, keylen
);
140 /* Derive the subkeys */
141 data
= kzalloc(sizeof(*data
) +
142 crypto_skcipher_reqsize(tctx
->streamcipher
), GFP_KERNEL
);
146 sg_init_one(&data
->sg
, data
->derived_keys
, sizeof(data
->derived_keys
));
147 crypto_init_wait(&data
->wait
);
148 skcipher_request_set_tfm(&data
->req
, tctx
->streamcipher
);
149 skcipher_request_set_callback(&data
->req
, CRYPTO_TFM_REQ_MAY_SLEEP
|
150 CRYPTO_TFM_REQ_MAY_BACKLOG
,
151 crypto_req_done
, &data
->wait
);
152 skcipher_request_set_crypt(&data
->req
, &data
->sg
, &data
->sg
,
153 sizeof(data
->derived_keys
), data
->iv
);
154 err
= crypto_wait_req(crypto_skcipher_encrypt(&data
->req
), &data
->wait
);
157 keyp
= data
->derived_keys
;
159 /* Set the block cipher key (K_E) */
160 crypto_cipher_clear_flags(tctx
->blockcipher
, CRYPTO_TFM_REQ_MASK
);
161 crypto_cipher_set_flags(tctx
->blockcipher
,
162 crypto_skcipher_get_flags(tfm
) &
163 CRYPTO_TFM_REQ_MASK
);
164 err
= crypto_cipher_setkey(tctx
->blockcipher
, keyp
,
165 BLOCKCIPHER_KEY_SIZE
);
168 keyp
+= BLOCKCIPHER_KEY_SIZE
;
170 /* Set the hash key (K_H) */
171 poly1305_core_setkey(&tctx
->header_hash_key
, keyp
);
172 keyp
+= POLY1305_BLOCK_SIZE
;
174 crypto_shash_clear_flags(tctx
->hash
, CRYPTO_TFM_REQ_MASK
);
175 crypto_shash_set_flags(tctx
->hash
, crypto_skcipher_get_flags(tfm
) &
176 CRYPTO_TFM_REQ_MASK
);
177 err
= crypto_shash_setkey(tctx
->hash
, keyp
, NHPOLY1305_KEY_SIZE
);
178 keyp
+= NHPOLY1305_KEY_SIZE
;
179 WARN_ON(keyp
!= &data
->derived_keys
[ARRAY_SIZE(data
->derived_keys
)]);
181 kfree_sensitive(data
);
185 /* Addition in Z/(2^{128}Z) */
186 static inline void le128_add(le128
*r
, const le128
*v1
, const le128
*v2
)
188 u64 x
= le64_to_cpu(v1
->b
);
189 u64 y
= le64_to_cpu(v2
->b
);
191 r
->b
= cpu_to_le64(x
+ y
);
192 r
->a
= cpu_to_le64(le64_to_cpu(v1
->a
) + le64_to_cpu(v2
->a
) +
196 /* Subtraction in Z/(2^{128}Z) */
197 static inline void le128_sub(le128
*r
, const le128
*v1
, const le128
*v2
)
199 u64 x
= le64_to_cpu(v1
->b
);
200 u64 y
= le64_to_cpu(v2
->b
);
202 r
->b
= cpu_to_le64(x
- y
);
203 r
->a
= cpu_to_le64(le64_to_cpu(v1
->a
) - le64_to_cpu(v2
->a
) -
208 * Apply the Poly1305 ε-∆U hash function to (bulk length, tweak) and save the
209 * result to rctx->header_hash. This is the calculation
211 * H_T ← Poly1305_{K_T}(bin_{128}(|L|) || T)
213 * from the procedure in section 6.4 of the Adiantum paper. The resulting value
214 * is reused in both the first and second hash steps. Specifically, it's added
215 * to the result of an independently keyed ε-∆U hash function (for equal length
216 * inputs only) taken over the left-hand part (the "bulk") of the message, to
217 * give the overall Adiantum hash of the (tweak, left-hand part) pair.
219 static void adiantum_hash_header(struct skcipher_request
*req
)
221 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
222 const struct adiantum_tfm_ctx
*tctx
= crypto_skcipher_ctx(tfm
);
223 struct adiantum_request_ctx
*rctx
= skcipher_request_ctx(req
);
224 const unsigned int bulk_len
= req
->cryptlen
- BLOCKCIPHER_BLOCK_SIZE
;
229 .message_bits
= cpu_to_le64((u64
)bulk_len
* 8)
231 struct poly1305_state state
;
233 poly1305_core_init(&state
);
235 BUILD_BUG_ON(sizeof(header
) % POLY1305_BLOCK_SIZE
!= 0);
236 poly1305_core_blocks(&state
, &tctx
->header_hash_key
,
237 &header
, sizeof(header
) / POLY1305_BLOCK_SIZE
, 1);
239 BUILD_BUG_ON(TWEAK_SIZE
% POLY1305_BLOCK_SIZE
!= 0);
240 poly1305_core_blocks(&state
, &tctx
->header_hash_key
, req
->iv
,
241 TWEAK_SIZE
/ POLY1305_BLOCK_SIZE
, 1);
243 poly1305_core_emit(&state
, NULL
, &rctx
->header_hash
);
246 /* Hash the left-hand part (the "bulk") of the message using NHPoly1305 */
247 static int adiantum_hash_message(struct skcipher_request
*req
,
248 struct scatterlist
*sgl
, unsigned int nents
,
251 struct adiantum_request_ctx
*rctx
= skcipher_request_ctx(req
);
252 const unsigned int bulk_len
= req
->cryptlen
- BLOCKCIPHER_BLOCK_SIZE
;
253 struct shash_desc
*hash_desc
= &rctx
->u
.hash_desc
;
254 struct sg_mapping_iter miter
;
258 err
= crypto_shash_init(hash_desc
);
262 sg_miter_start(&miter
, sgl
, nents
, SG_MITER_FROM_SG
| SG_MITER_ATOMIC
);
263 for (i
= 0; i
< bulk_len
; i
+= n
) {
264 sg_miter_next(&miter
);
265 n
= min_t(unsigned int, miter
.length
, bulk_len
- i
);
266 err
= crypto_shash_update(hash_desc
, miter
.addr
, n
);
270 sg_miter_stop(&miter
);
274 return crypto_shash_final(hash_desc
, (u8
*)digest
);
277 /* Continue Adiantum encryption/decryption after the stream cipher step */
278 static int adiantum_finish(struct skcipher_request
*req
)
280 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
281 const struct adiantum_tfm_ctx
*tctx
= crypto_skcipher_ctx(tfm
);
282 struct adiantum_request_ctx
*rctx
= skcipher_request_ctx(req
);
283 const unsigned int bulk_len
= req
->cryptlen
- BLOCKCIPHER_BLOCK_SIZE
;
284 struct scatterlist
*dst
= req
->dst
;
285 const unsigned int dst_nents
= sg_nents(dst
);
289 /* If decrypting, decrypt C_M with the block cipher to get P_M */
291 crypto_cipher_decrypt_one(tctx
->blockcipher
, rctx
->rbuf
.bytes
,
296 * enc: C_R = C_M - H_{K_H}(T, C_L)
297 * dec: P_R = P_M - H_{K_H}(T, P_L)
299 rctx
->u
.hash_desc
.tfm
= tctx
->hash
;
300 le128_sub(&rctx
->rbuf
.bignum
, &rctx
->rbuf
.bignum
, &rctx
->header_hash
);
301 if (dst_nents
== 1 && dst
->offset
+ req
->cryptlen
<= PAGE_SIZE
) {
302 /* Fast path for single-page destination */
303 struct page
*page
= sg_page(dst
);
304 void *virt
= kmap_local_page(page
) + dst
->offset
;
306 err
= crypto_shash_digest(&rctx
->u
.hash_desc
, virt
, bulk_len
,
312 le128_sub(&rctx
->rbuf
.bignum
, &rctx
->rbuf
.bignum
, &digest
);
313 memcpy(virt
+ bulk_len
, &rctx
->rbuf
.bignum
, sizeof(le128
));
314 flush_dcache_page(page
);
317 /* Slow path that works for any destination scatterlist */
318 err
= adiantum_hash_message(req
, dst
, dst_nents
, &digest
);
321 le128_sub(&rctx
->rbuf
.bignum
, &rctx
->rbuf
.bignum
, &digest
);
322 scatterwalk_map_and_copy(&rctx
->rbuf
.bignum
, dst
,
323 bulk_len
, sizeof(le128
), 1);
328 static void adiantum_streamcipher_done(void *data
, int err
)
330 struct skcipher_request
*req
= data
;
333 err
= adiantum_finish(req
);
335 skcipher_request_complete(req
, err
);
338 static int adiantum_crypt(struct skcipher_request
*req
, bool enc
)
340 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
341 const struct adiantum_tfm_ctx
*tctx
= crypto_skcipher_ctx(tfm
);
342 struct adiantum_request_ctx
*rctx
= skcipher_request_ctx(req
);
343 const unsigned int bulk_len
= req
->cryptlen
- BLOCKCIPHER_BLOCK_SIZE
;
344 struct scatterlist
*src
= req
->src
;
345 const unsigned int src_nents
= sg_nents(src
);
346 unsigned int stream_len
;
350 if (req
->cryptlen
< BLOCKCIPHER_BLOCK_SIZE
)
357 * enc: P_M = P_R + H_{K_H}(T, P_L)
358 * dec: C_M = C_R + H_{K_H}(T, C_L)
360 adiantum_hash_header(req
);
361 rctx
->u
.hash_desc
.tfm
= tctx
->hash
;
362 if (src_nents
== 1 && src
->offset
+ req
->cryptlen
<= PAGE_SIZE
) {
363 /* Fast path for single-page source */
364 void *virt
= kmap_local_page(sg_page(src
)) + src
->offset
;
366 err
= crypto_shash_digest(&rctx
->u
.hash_desc
, virt
, bulk_len
,
368 memcpy(&rctx
->rbuf
.bignum
, virt
+ bulk_len
, sizeof(le128
));
371 /* Slow path that works for any source scatterlist */
372 err
= adiantum_hash_message(req
, src
, src_nents
, &digest
);
373 scatterwalk_map_and_copy(&rctx
->rbuf
.bignum
, src
,
374 bulk_len
, sizeof(le128
), 0);
378 le128_add(&rctx
->rbuf
.bignum
, &rctx
->rbuf
.bignum
, &rctx
->header_hash
);
379 le128_add(&rctx
->rbuf
.bignum
, &rctx
->rbuf
.bignum
, &digest
);
381 /* If encrypting, encrypt P_M with the block cipher to get C_M */
383 crypto_cipher_encrypt_one(tctx
->blockcipher
, rctx
->rbuf
.bytes
,
386 /* Initialize the rest of the XChaCha IV (first part is C_M) */
387 BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE
!= 16);
388 BUILD_BUG_ON(XCHACHA_IV_SIZE
!= 32); /* nonce || stream position */
389 rctx
->rbuf
.words
[4] = cpu_to_le32(1);
390 rctx
->rbuf
.words
[5] = 0;
391 rctx
->rbuf
.words
[6] = 0;
392 rctx
->rbuf
.words
[7] = 0;
395 * XChaCha needs to be done on all the data except the last 16 bytes;
396 * for disk encryption that usually means 4080 or 496 bytes. But ChaCha
397 * implementations tend to be most efficient when passed a whole number
398 * of 64-byte ChaCha blocks, or sometimes even a multiple of 256 bytes.
399 * And here it doesn't matter whether the last 16 bytes are written to,
400 * as the second hash step will overwrite them. Thus, round the XChaCha
401 * length up to the next 64-byte boundary if possible.
403 stream_len
= bulk_len
;
404 if (round_up(stream_len
, CHACHA_BLOCK_SIZE
) <= req
->cryptlen
)
405 stream_len
= round_up(stream_len
, CHACHA_BLOCK_SIZE
);
407 skcipher_request_set_tfm(&rctx
->u
.streamcipher_req
, tctx
->streamcipher
);
408 skcipher_request_set_crypt(&rctx
->u
.streamcipher_req
, req
->src
,
409 req
->dst
, stream_len
, &rctx
->rbuf
);
410 skcipher_request_set_callback(&rctx
->u
.streamcipher_req
,
412 adiantum_streamcipher_done
, req
);
413 return crypto_skcipher_encrypt(&rctx
->u
.streamcipher_req
) ?:
414 adiantum_finish(req
);
417 static int adiantum_encrypt(struct skcipher_request
*req
)
419 return adiantum_crypt(req
, true);
422 static int adiantum_decrypt(struct skcipher_request
*req
)
424 return adiantum_crypt(req
, false);
427 static int adiantum_init_tfm(struct crypto_skcipher
*tfm
)
429 struct skcipher_instance
*inst
= skcipher_alg_instance(tfm
);
430 struct adiantum_instance_ctx
*ictx
= skcipher_instance_ctx(inst
);
431 struct adiantum_tfm_ctx
*tctx
= crypto_skcipher_ctx(tfm
);
432 struct crypto_skcipher
*streamcipher
;
433 struct crypto_cipher
*blockcipher
;
434 struct crypto_shash
*hash
;
435 unsigned int subreq_size
;
438 streamcipher
= crypto_spawn_skcipher(&ictx
->streamcipher_spawn
);
439 if (IS_ERR(streamcipher
))
440 return PTR_ERR(streamcipher
);
442 blockcipher
= crypto_spawn_cipher(&ictx
->blockcipher_spawn
);
443 if (IS_ERR(blockcipher
)) {
444 err
= PTR_ERR(blockcipher
);
445 goto err_free_streamcipher
;
448 hash
= crypto_spawn_shash(&ictx
->hash_spawn
);
451 goto err_free_blockcipher
;
454 tctx
->streamcipher
= streamcipher
;
455 tctx
->blockcipher
= blockcipher
;
458 BUILD_BUG_ON(offsetofend(struct adiantum_request_ctx
, u
) !=
459 sizeof(struct adiantum_request_ctx
));
460 subreq_size
= max(sizeof_field(struct adiantum_request_ctx
,
462 crypto_shash_descsize(hash
),
463 sizeof_field(struct adiantum_request_ctx
,
464 u
.streamcipher_req
) +
465 crypto_skcipher_reqsize(streamcipher
));
467 crypto_skcipher_set_reqsize(tfm
,
468 offsetof(struct adiantum_request_ctx
, u
) +
472 err_free_blockcipher
:
473 crypto_free_cipher(blockcipher
);
474 err_free_streamcipher
:
475 crypto_free_skcipher(streamcipher
);
479 static void adiantum_exit_tfm(struct crypto_skcipher
*tfm
)
481 struct adiantum_tfm_ctx
*tctx
= crypto_skcipher_ctx(tfm
);
483 crypto_free_skcipher(tctx
->streamcipher
);
484 crypto_free_cipher(tctx
->blockcipher
);
485 crypto_free_shash(tctx
->hash
);
488 static void adiantum_free_instance(struct skcipher_instance
*inst
)
490 struct adiantum_instance_ctx
*ictx
= skcipher_instance_ctx(inst
);
492 crypto_drop_skcipher(&ictx
->streamcipher_spawn
);
493 crypto_drop_cipher(&ictx
->blockcipher_spawn
);
494 crypto_drop_shash(&ictx
->hash_spawn
);
499 * Check for a supported set of inner algorithms.
500 * See the comment at the beginning of this file.
502 static bool adiantum_supported_algorithms(struct skcipher_alg_common
*streamcipher_alg
,
503 struct crypto_alg
*blockcipher_alg
,
504 struct shash_alg
*hash_alg
)
506 if (strcmp(streamcipher_alg
->base
.cra_name
, "xchacha12") != 0 &&
507 strcmp(streamcipher_alg
->base
.cra_name
, "xchacha20") != 0)
510 if (blockcipher_alg
->cra_cipher
.cia_min_keysize
> BLOCKCIPHER_KEY_SIZE
||
511 blockcipher_alg
->cra_cipher
.cia_max_keysize
< BLOCKCIPHER_KEY_SIZE
)
513 if (blockcipher_alg
->cra_blocksize
!= BLOCKCIPHER_BLOCK_SIZE
)
516 if (strcmp(hash_alg
->base
.cra_name
, "nhpoly1305") != 0)
522 static int adiantum_create(struct crypto_template
*tmpl
, struct rtattr
**tb
)
525 const char *nhpoly1305_name
;
526 struct skcipher_instance
*inst
;
527 struct adiantum_instance_ctx
*ictx
;
528 struct skcipher_alg_common
*streamcipher_alg
;
529 struct crypto_alg
*blockcipher_alg
;
530 struct shash_alg
*hash_alg
;
533 err
= crypto_check_attr_type(tb
, CRYPTO_ALG_TYPE_SKCIPHER
, &mask
);
537 inst
= kzalloc(sizeof(*inst
) + sizeof(*ictx
), GFP_KERNEL
);
540 ictx
= skcipher_instance_ctx(inst
);
542 /* Stream cipher, e.g. "xchacha12" */
543 err
= crypto_grab_skcipher(&ictx
->streamcipher_spawn
,
544 skcipher_crypto_instance(inst
),
545 crypto_attr_alg_name(tb
[1]), 0, mask
);
548 streamcipher_alg
= crypto_spawn_skcipher_alg_common(&ictx
->streamcipher_spawn
);
550 /* Block cipher, e.g. "aes" */
551 err
= crypto_grab_cipher(&ictx
->blockcipher_spawn
,
552 skcipher_crypto_instance(inst
),
553 crypto_attr_alg_name(tb
[2]), 0, mask
);
556 blockcipher_alg
= crypto_spawn_cipher_alg(&ictx
->blockcipher_spawn
);
558 /* NHPoly1305 ε-∆U hash function */
559 nhpoly1305_name
= crypto_attr_alg_name(tb
[3]);
560 if (nhpoly1305_name
== ERR_PTR(-ENOENT
))
561 nhpoly1305_name
= "nhpoly1305";
562 err
= crypto_grab_shash(&ictx
->hash_spawn
,
563 skcipher_crypto_instance(inst
),
564 nhpoly1305_name
, 0, mask
);
567 hash_alg
= crypto_spawn_shash_alg(&ictx
->hash_spawn
);
569 /* Check the set of algorithms */
570 if (!adiantum_supported_algorithms(streamcipher_alg
, blockcipher_alg
,
572 pr_warn("Unsupported Adiantum instantiation: (%s,%s,%s)\n",
573 streamcipher_alg
->base
.cra_name
,
574 blockcipher_alg
->cra_name
, hash_alg
->base
.cra_name
);
579 /* Instance fields */
582 if (snprintf(inst
->alg
.base
.cra_name
, CRYPTO_MAX_ALG_NAME
,
583 "adiantum(%s,%s)", streamcipher_alg
->base
.cra_name
,
584 blockcipher_alg
->cra_name
) >= CRYPTO_MAX_ALG_NAME
)
586 if (snprintf(inst
->alg
.base
.cra_driver_name
, CRYPTO_MAX_ALG_NAME
,
587 "adiantum(%s,%s,%s)",
588 streamcipher_alg
->base
.cra_driver_name
,
589 blockcipher_alg
->cra_driver_name
,
590 hash_alg
->base
.cra_driver_name
) >= CRYPTO_MAX_ALG_NAME
)
593 inst
->alg
.base
.cra_blocksize
= BLOCKCIPHER_BLOCK_SIZE
;
594 inst
->alg
.base
.cra_ctxsize
= sizeof(struct adiantum_tfm_ctx
);
595 inst
->alg
.base
.cra_alignmask
= streamcipher_alg
->base
.cra_alignmask
;
597 * The block cipher is only invoked once per message, so for long
598 * messages (e.g. sectors for disk encryption) its performance doesn't
599 * matter as much as that of the stream cipher and hash function. Thus,
600 * weigh the block cipher's ->cra_priority less.
602 inst
->alg
.base
.cra_priority
= (4 * streamcipher_alg
->base
.cra_priority
+
603 2 * hash_alg
->base
.cra_priority
+
604 blockcipher_alg
->cra_priority
) / 7;
606 inst
->alg
.setkey
= adiantum_setkey
;
607 inst
->alg
.encrypt
= adiantum_encrypt
;
608 inst
->alg
.decrypt
= adiantum_decrypt
;
609 inst
->alg
.init
= adiantum_init_tfm
;
610 inst
->alg
.exit
= adiantum_exit_tfm
;
611 inst
->alg
.min_keysize
= streamcipher_alg
->min_keysize
;
612 inst
->alg
.max_keysize
= streamcipher_alg
->max_keysize
;
613 inst
->alg
.ivsize
= TWEAK_SIZE
;
615 inst
->free
= adiantum_free_instance
;
617 err
= skcipher_register_instance(tmpl
, inst
);
620 adiantum_free_instance(inst
);
625 /* adiantum(streamcipher_name, blockcipher_name [, nhpoly1305_name]) */
626 static struct crypto_template adiantum_tmpl
= {
628 .create
= adiantum_create
,
629 .module
= THIS_MODULE
,
632 static int __init
adiantum_module_init(void)
634 return crypto_register_template(&adiantum_tmpl
);
637 static void __exit
adiantum_module_exit(void)
639 crypto_unregister_template(&adiantum_tmpl
);
642 subsys_initcall(adiantum_module_init
);
643 module_exit(adiantum_module_exit
);
645 MODULE_DESCRIPTION("Adiantum length-preserving encryption mode");
646 MODULE_LICENSE("GPL v2");
647 MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
648 MODULE_ALIAS_CRYPTO("adiantum");
649 MODULE_IMPORT_NS("CRYPTO_INTERNAL");