1 // SPDX-License-Identifier: GPL-2.0
5 * Support for ATMEL SHA1/SHA256 HW acceleration.
7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
10 * Some ideas are from omap-sham.c drivers.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/sha1.h>
37 #include <crypto/sha2.h>
38 #include <crypto/hash.h>
39 #include <crypto/internal/hash.h>
40 #include "atmel-sha-regs.h"
41 #include "atmel-authenc.h"
43 #define ATMEL_SHA_PRIORITY 300
46 #define SHA_FLAGS_BUSY BIT(0)
47 #define SHA_FLAGS_FINAL BIT(1)
48 #define SHA_FLAGS_DMA_ACTIVE BIT(2)
49 #define SHA_FLAGS_OUTPUT_READY BIT(3)
50 #define SHA_FLAGS_INIT BIT(4)
51 #define SHA_FLAGS_CPU BIT(5)
52 #define SHA_FLAGS_DMA_READY BIT(6)
53 #define SHA_FLAGS_DUMP_REG BIT(7)
55 /* bits[11:8] are reserved. */
57 #define SHA_FLAGS_FINUP BIT(16)
58 #define SHA_FLAGS_SG BIT(17)
59 #define SHA_FLAGS_ERROR BIT(23)
60 #define SHA_FLAGS_PAD BIT(24)
61 #define SHA_FLAGS_RESTORE BIT(25)
62 #define SHA_FLAGS_IDATAR0 BIT(26)
63 #define SHA_FLAGS_WAIT_DATARDY BIT(27)
66 #define SHA_OP_UPDATE 1
67 #define SHA_OP_FINAL 2
68 #define SHA_OP_DIGEST 3
70 #define SHA_BUFFER_LEN (PAGE_SIZE / 16)
72 #define ATMEL_SHA_DMA_THRESHOLD 56
74 struct atmel_sha_caps
{
86 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
87 * tested by the ahash_prepare_alg() function.
89 struct atmel_sha_reqctx
{
90 struct atmel_sha_dev
*dd
;
94 u8 digest
[SHA512_DIGEST_SIZE
] __aligned(sizeof(u32
));
101 struct scatterlist
*sg
;
102 unsigned int offset
; /* offset in current sg */
103 unsigned int total
; /* total request */
108 u8 buffer
[SHA_BUFFER_LEN
+ SHA512_BLOCK_SIZE
] __aligned(sizeof(u32
));
111 typedef int (*atmel_sha_fn_t
)(struct atmel_sha_dev
*);
113 struct atmel_sha_ctx
{
114 struct atmel_sha_dev
*dd
;
115 atmel_sha_fn_t start
;
120 #define ATMEL_SHA_QUEUE_LENGTH 50
122 struct atmel_sha_dma
{
123 struct dma_chan
*chan
;
124 struct dma_slave_config dma_conf
;
125 struct scatterlist
*sg
;
127 unsigned int last_sg_length
;
130 struct atmel_sha_dev
{
131 struct list_head list
;
132 unsigned long phys_base
;
136 void __iomem
*io_base
;
139 struct tasklet_struct done_task
;
140 struct tasklet_struct queue_task
;
143 struct crypto_queue queue
;
144 struct ahash_request
*req
;
147 atmel_sha_fn_t resume
;
148 atmel_sha_fn_t cpu_transfer_complete
;
150 struct atmel_sha_dma dma_lch_in
;
152 struct atmel_sha_caps caps
;
154 struct scatterlist tmp
;
159 struct atmel_sha_drv
{
160 struct list_head dev_list
;
164 static struct atmel_sha_drv atmel_sha
= {
165 .dev_list
= LIST_HEAD_INIT(atmel_sha
.dev_list
),
166 .lock
= __SPIN_LOCK_UNLOCKED(atmel_sha
.lock
),
170 static const char *atmel_sha_reg_name(u32 offset
, char *tmp
, size_t sz
, bool wr
)
207 case SHA_REG_DIN(10):
208 case SHA_REG_DIN(11):
209 case SHA_REG_DIN(12):
210 case SHA_REG_DIN(13):
211 case SHA_REG_DIN(14):
212 case SHA_REG_DIN(15):
213 snprintf(tmp
, sz
, "IDATAR[%u]", (offset
- SHA_REG_DIN(0)) >> 2);
216 case SHA_REG_DIGEST(0):
217 case SHA_REG_DIGEST(1):
218 case SHA_REG_DIGEST(2):
219 case SHA_REG_DIGEST(3):
220 case SHA_REG_DIGEST(4):
221 case SHA_REG_DIGEST(5):
222 case SHA_REG_DIGEST(6):
223 case SHA_REG_DIGEST(7):
224 case SHA_REG_DIGEST(8):
225 case SHA_REG_DIGEST(9):
226 case SHA_REG_DIGEST(10):
227 case SHA_REG_DIGEST(11):
228 case SHA_REG_DIGEST(12):
229 case SHA_REG_DIGEST(13):
230 case SHA_REG_DIGEST(14):
231 case SHA_REG_DIGEST(15):
233 snprintf(tmp
, sz
, "IDATAR[%u]",
234 16u + ((offset
- SHA_REG_DIGEST(0)) >> 2));
236 snprintf(tmp
, sz
, "ODATAR[%u]",
237 (offset
- SHA_REG_DIGEST(0)) >> 2);
244 snprintf(tmp
, sz
, "0x%02x", offset
);
251 #endif /* VERBOSE_DEBUG */
253 static inline u32
atmel_sha_read(struct atmel_sha_dev
*dd
, u32 offset
)
255 u32 value
= readl_relaxed(dd
->io_base
+ offset
);
258 if (dd
->flags
& SHA_FLAGS_DUMP_REG
) {
261 dev_vdbg(dd
->dev
, "read 0x%08x from %s\n", value
,
262 atmel_sha_reg_name(offset
, tmp
, sizeof(tmp
), false));
264 #endif /* VERBOSE_DEBUG */
269 static inline void atmel_sha_write(struct atmel_sha_dev
*dd
,
270 u32 offset
, u32 value
)
273 if (dd
->flags
& SHA_FLAGS_DUMP_REG
) {
276 dev_vdbg(dd
->dev
, "write 0x%08x into %s\n", value
,
277 atmel_sha_reg_name(offset
, tmp
, sizeof(tmp
), true));
279 #endif /* VERBOSE_DEBUG */
281 writel_relaxed(value
, dd
->io_base
+ offset
);
284 static inline int atmel_sha_complete(struct atmel_sha_dev
*dd
, int err
)
286 struct ahash_request
*req
= dd
->req
;
288 dd
->flags
&= ~(SHA_FLAGS_BUSY
| SHA_FLAGS_FINAL
| SHA_FLAGS_CPU
|
289 SHA_FLAGS_DMA_READY
| SHA_FLAGS_OUTPUT_READY
|
292 clk_disable(dd
->iclk
);
294 if ((dd
->is_async
|| dd
->force_complete
) && req
->base
.complete
)
295 ahash_request_complete(req
, err
);
297 /* handle new request */
298 tasklet_schedule(&dd
->queue_task
);
303 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx
*ctx
)
307 while ((ctx
->bufcnt
< ctx
->buflen
) && ctx
->total
) {
308 count
= min(ctx
->sg
->length
- ctx
->offset
, ctx
->total
);
309 count
= min(count
, ctx
->buflen
- ctx
->bufcnt
);
313 * Check if count <= 0 because the buffer is full or
314 * because the sg length is 0. In the latest case,
315 * check if there is another sg in the list, a 0 length
316 * sg doesn't necessarily mean the end of the sg list.
318 if ((ctx
->sg
->length
== 0) && !sg_is_last(ctx
->sg
)) {
319 ctx
->sg
= sg_next(ctx
->sg
);
326 scatterwalk_map_and_copy(ctx
->buffer
+ ctx
->bufcnt
, ctx
->sg
,
327 ctx
->offset
, count
, 0);
329 ctx
->bufcnt
+= count
;
330 ctx
->offset
+= count
;
333 if (ctx
->offset
== ctx
->sg
->length
) {
334 ctx
->sg
= sg_next(ctx
->sg
);
346 * The purpose of this padding is to ensure that the padded message is a
347 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
348 * The bit "1" is appended at the end of the message followed by
349 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
350 * 128 bits block (SHA384/SHA512) equals to the message length in bits
353 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
354 * - if message length < 56 bytes then padlen = 56 - message length
355 * - else padlen = 64 + 56 - message length
357 * For SHA384/SHA512, padlen is calculated as followed:
358 * - if message length < 112 bytes then padlen = 112 - message length
359 * - else padlen = 128 + 112 - message length
361 static void atmel_sha_fill_padding(struct atmel_sha_reqctx
*ctx
, int length
)
363 unsigned int index
, padlen
;
367 size
[0] = ctx
->digcnt
[0];
368 size
[1] = ctx
->digcnt
[1];
370 size
[0] += ctx
->bufcnt
;
371 if (size
[0] < ctx
->bufcnt
)
375 if (size
[0] < length
)
378 bits
[1] = cpu_to_be64(size
[0] << 3);
379 bits
[0] = cpu_to_be64(size
[1] << 3 | size
[0] >> 61);
381 switch (ctx
->flags
& SHA_FLAGS_ALGO_MASK
) {
382 case SHA_FLAGS_SHA384
:
383 case SHA_FLAGS_SHA512
:
384 index
= ctx
->bufcnt
& 0x7f;
385 padlen
= (index
< 112) ? (112 - index
) : ((128+112) - index
);
386 *(ctx
->buffer
+ ctx
->bufcnt
) = 0x80;
387 memset(ctx
->buffer
+ ctx
->bufcnt
+ 1, 0, padlen
-1);
388 memcpy(ctx
->buffer
+ ctx
->bufcnt
+ padlen
, bits
, 16);
389 ctx
->bufcnt
+= padlen
+ 16;
390 ctx
->flags
|= SHA_FLAGS_PAD
;
394 index
= ctx
->bufcnt
& 0x3f;
395 padlen
= (index
< 56) ? (56 - index
) : ((64+56) - index
);
396 *(ctx
->buffer
+ ctx
->bufcnt
) = 0x80;
397 memset(ctx
->buffer
+ ctx
->bufcnt
+ 1, 0, padlen
-1);
398 memcpy(ctx
->buffer
+ ctx
->bufcnt
+ padlen
, &bits
[1], 8);
399 ctx
->bufcnt
+= padlen
+ 8;
400 ctx
->flags
|= SHA_FLAGS_PAD
;
405 static struct atmel_sha_dev
*atmel_sha_find_dev(struct atmel_sha_ctx
*tctx
)
407 struct atmel_sha_dev
*dd
= NULL
;
408 struct atmel_sha_dev
*tmp
;
410 spin_lock_bh(&atmel_sha
.lock
);
412 list_for_each_entry(tmp
, &atmel_sha
.dev_list
, list
) {
421 spin_unlock_bh(&atmel_sha
.lock
);
426 static int atmel_sha_init(struct ahash_request
*req
)
428 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
429 struct atmel_sha_ctx
*tctx
= crypto_ahash_ctx(tfm
);
430 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
431 struct atmel_sha_dev
*dd
= atmel_sha_find_dev(tctx
);
437 dev_dbg(dd
->dev
, "init: digest size: %u\n",
438 crypto_ahash_digestsize(tfm
));
440 switch (crypto_ahash_digestsize(tfm
)) {
441 case SHA1_DIGEST_SIZE
:
442 ctx
->flags
|= SHA_FLAGS_SHA1
;
443 ctx
->block_size
= SHA1_BLOCK_SIZE
;
445 case SHA224_DIGEST_SIZE
:
446 ctx
->flags
|= SHA_FLAGS_SHA224
;
447 ctx
->block_size
= SHA224_BLOCK_SIZE
;
449 case SHA256_DIGEST_SIZE
:
450 ctx
->flags
|= SHA_FLAGS_SHA256
;
451 ctx
->block_size
= SHA256_BLOCK_SIZE
;
453 case SHA384_DIGEST_SIZE
:
454 ctx
->flags
|= SHA_FLAGS_SHA384
;
455 ctx
->block_size
= SHA384_BLOCK_SIZE
;
457 case SHA512_DIGEST_SIZE
:
458 ctx
->flags
|= SHA_FLAGS_SHA512
;
459 ctx
->block_size
= SHA512_BLOCK_SIZE
;
468 ctx
->buflen
= SHA_BUFFER_LEN
;
473 static void atmel_sha_write_ctrl(struct atmel_sha_dev
*dd
, int dma
)
475 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(dd
->req
);
476 u32 valmr
= SHA_MR_MODE_AUTO
;
477 unsigned int i
, hashsize
= 0;
480 if (!dd
->caps
.has_dma
)
481 atmel_sha_write(dd
, SHA_IER
, SHA_INT_TXBUFE
);
482 valmr
= SHA_MR_MODE_PDC
;
483 if (dd
->caps
.has_dualbuff
)
484 valmr
|= SHA_MR_DUALBUFF
;
486 atmel_sha_write(dd
, SHA_IER
, SHA_INT_DATARDY
);
489 switch (ctx
->flags
& SHA_FLAGS_ALGO_MASK
) {
491 valmr
|= SHA_MR_ALGO_SHA1
;
492 hashsize
= SHA1_DIGEST_SIZE
;
495 case SHA_FLAGS_SHA224
:
496 valmr
|= SHA_MR_ALGO_SHA224
;
497 hashsize
= SHA256_DIGEST_SIZE
;
500 case SHA_FLAGS_SHA256
:
501 valmr
|= SHA_MR_ALGO_SHA256
;
502 hashsize
= SHA256_DIGEST_SIZE
;
505 case SHA_FLAGS_SHA384
:
506 valmr
|= SHA_MR_ALGO_SHA384
;
507 hashsize
= SHA512_DIGEST_SIZE
;
510 case SHA_FLAGS_SHA512
:
511 valmr
|= SHA_MR_ALGO_SHA512
;
512 hashsize
= SHA512_DIGEST_SIZE
;
519 /* Setting CR_FIRST only for the first iteration */
520 if (!(ctx
->digcnt
[0] || ctx
->digcnt
[1])) {
521 atmel_sha_write(dd
, SHA_CR
, SHA_CR_FIRST
);
522 } else if (dd
->caps
.has_uihv
&& (ctx
->flags
& SHA_FLAGS_RESTORE
)) {
523 const u32
*hash
= (const u32
*)ctx
->digest
;
526 * Restore the hardware context: update the User Initialize
527 * Hash Value (UIHV) with the value saved when the latest
528 * 'update' operation completed on this very same crypto
531 ctx
->flags
&= ~SHA_FLAGS_RESTORE
;
532 atmel_sha_write(dd
, SHA_CR
, SHA_CR_WUIHV
);
533 for (i
= 0; i
< hashsize
/ sizeof(u32
); ++i
)
534 atmel_sha_write(dd
, SHA_REG_DIN(i
), hash
[i
]);
535 atmel_sha_write(dd
, SHA_CR
, SHA_CR_FIRST
);
536 valmr
|= SHA_MR_UIHV
;
539 * WARNING: If the UIHV feature is not available, the hardware CANNOT
540 * process concurrent requests: the internal registers used to store
541 * the hash/digest are still set to the partial digest output values
542 * computed during the latest round.
545 atmel_sha_write(dd
, SHA_MR
, valmr
);
548 static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev
*dd
,
549 atmel_sha_fn_t resume
)
551 u32 isr
= atmel_sha_read(dd
, SHA_ISR
);
553 if (unlikely(isr
& SHA_INT_DATARDY
))
557 atmel_sha_write(dd
, SHA_IER
, SHA_INT_DATARDY
);
561 static int atmel_sha_xmit_cpu(struct atmel_sha_dev
*dd
, const u8
*buf
,
562 size_t length
, int final
)
564 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(dd
->req
);
566 const u32
*buffer
= (const u32
*)buf
;
568 dev_dbg(dd
->dev
, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
569 ctx
->digcnt
[1], ctx
->digcnt
[0], length
, final
);
571 atmel_sha_write_ctrl(dd
, 0);
573 /* should be non-zero before next lines to disable clocks later */
574 ctx
->digcnt
[0] += length
;
575 if (ctx
->digcnt
[0] < length
)
579 dd
->flags
|= SHA_FLAGS_FINAL
; /* catch last interrupt */
581 len32
= DIV_ROUND_UP(length
, sizeof(u32
));
583 dd
->flags
|= SHA_FLAGS_CPU
;
585 for (count
= 0; count
< len32
; count
++)
586 atmel_sha_write(dd
, SHA_REG_DIN(count
), buffer
[count
]);
591 static int atmel_sha_xmit_pdc(struct atmel_sha_dev
*dd
, dma_addr_t dma_addr1
,
592 size_t length1
, dma_addr_t dma_addr2
, size_t length2
, int final
)
594 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(dd
->req
);
597 dev_dbg(dd
->dev
, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
598 ctx
->digcnt
[1], ctx
->digcnt
[0], length1
, final
);
600 len32
= DIV_ROUND_UP(length1
, sizeof(u32
));
601 atmel_sha_write(dd
, SHA_PTCR
, SHA_PTCR_TXTDIS
);
602 atmel_sha_write(dd
, SHA_TPR
, dma_addr1
);
603 atmel_sha_write(dd
, SHA_TCR
, len32
);
605 len32
= DIV_ROUND_UP(length2
, sizeof(u32
));
606 atmel_sha_write(dd
, SHA_TNPR
, dma_addr2
);
607 atmel_sha_write(dd
, SHA_TNCR
, len32
);
609 atmel_sha_write_ctrl(dd
, 1);
611 /* should be non-zero before next lines to disable clocks later */
612 ctx
->digcnt
[0] += length1
;
613 if (ctx
->digcnt
[0] < length1
)
617 dd
->flags
|= SHA_FLAGS_FINAL
; /* catch last interrupt */
619 dd
->flags
|= SHA_FLAGS_DMA_ACTIVE
;
621 /* Start DMA transfer */
622 atmel_sha_write(dd
, SHA_PTCR
, SHA_PTCR_TXTEN
);
627 static void atmel_sha_dma_callback(void *data
)
629 struct atmel_sha_dev
*dd
= data
;
633 /* dma_lch_in - completed - wait DATRDY */
634 atmel_sha_write(dd
, SHA_IER
, SHA_INT_DATARDY
);
637 static int atmel_sha_xmit_dma(struct atmel_sha_dev
*dd
, dma_addr_t dma_addr1
,
638 size_t length1
, dma_addr_t dma_addr2
, size_t length2
, int final
)
640 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(dd
->req
);
641 struct dma_async_tx_descriptor
*in_desc
;
642 struct scatterlist sg
[2];
644 dev_dbg(dd
->dev
, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
645 ctx
->digcnt
[1], ctx
->digcnt
[0], length1
, final
);
647 dd
->dma_lch_in
.dma_conf
.src_maxburst
= 16;
648 dd
->dma_lch_in
.dma_conf
.dst_maxburst
= 16;
650 dmaengine_slave_config(dd
->dma_lch_in
.chan
, &dd
->dma_lch_in
.dma_conf
);
653 sg_init_table(sg
, 2);
654 sg_dma_address(&sg
[0]) = dma_addr1
;
655 sg_dma_len(&sg
[0]) = length1
;
656 sg_dma_address(&sg
[1]) = dma_addr2
;
657 sg_dma_len(&sg
[1]) = length2
;
658 in_desc
= dmaengine_prep_slave_sg(dd
->dma_lch_in
.chan
, sg
, 2,
659 DMA_MEM_TO_DEV
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
661 sg_init_table(sg
, 1);
662 sg_dma_address(&sg
[0]) = dma_addr1
;
663 sg_dma_len(&sg
[0]) = length1
;
664 in_desc
= dmaengine_prep_slave_sg(dd
->dma_lch_in
.chan
, sg
, 1,
665 DMA_MEM_TO_DEV
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
668 return atmel_sha_complete(dd
, -EINVAL
);
670 in_desc
->callback
= atmel_sha_dma_callback
;
671 in_desc
->callback_param
= dd
;
673 atmel_sha_write_ctrl(dd
, 1);
675 /* should be non-zero before next lines to disable clocks later */
676 ctx
->digcnt
[0] += length1
;
677 if (ctx
->digcnt
[0] < length1
)
681 dd
->flags
|= SHA_FLAGS_FINAL
; /* catch last interrupt */
683 dd
->flags
|= SHA_FLAGS_DMA_ACTIVE
;
685 /* Start DMA transfer */
686 dmaengine_submit(in_desc
);
687 dma_async_issue_pending(dd
->dma_lch_in
.chan
);
692 static int atmel_sha_xmit_start(struct atmel_sha_dev
*dd
, dma_addr_t dma_addr1
,
693 size_t length1
, dma_addr_t dma_addr2
, size_t length2
, int final
)
695 if (dd
->caps
.has_dma
)
696 return atmel_sha_xmit_dma(dd
, dma_addr1
, length1
,
697 dma_addr2
, length2
, final
);
699 return atmel_sha_xmit_pdc(dd
, dma_addr1
, length1
,
700 dma_addr2
, length2
, final
);
703 static int atmel_sha_update_cpu(struct atmel_sha_dev
*dd
)
705 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(dd
->req
);
708 atmel_sha_append_sg(ctx
);
709 atmel_sha_fill_padding(ctx
, 0);
710 bufcnt
= ctx
->bufcnt
;
713 return atmel_sha_xmit_cpu(dd
, ctx
->buffer
, bufcnt
, 1);
716 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev
*dd
,
717 struct atmel_sha_reqctx
*ctx
,
718 size_t length
, int final
)
720 ctx
->dma_addr
= dma_map_single(dd
->dev
, ctx
->buffer
,
721 ctx
->buflen
+ ctx
->block_size
, DMA_TO_DEVICE
);
722 if (dma_mapping_error(dd
->dev
, ctx
->dma_addr
)) {
723 dev_err(dd
->dev
, "dma %zu bytes error\n", ctx
->buflen
+
725 return atmel_sha_complete(dd
, -EINVAL
);
728 ctx
->flags
&= ~SHA_FLAGS_SG
;
730 /* next call does not fail... so no unmap in the case of error */
731 return atmel_sha_xmit_start(dd
, ctx
->dma_addr
, length
, 0, 0, final
);
734 static int atmel_sha_update_dma_slow(struct atmel_sha_dev
*dd
)
736 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(dd
->req
);
740 atmel_sha_append_sg(ctx
);
742 final
= (ctx
->flags
& SHA_FLAGS_FINUP
) && !ctx
->total
;
744 dev_dbg(dd
->dev
, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
745 ctx
->bufcnt
, ctx
->digcnt
[1], ctx
->digcnt
[0], final
);
748 atmel_sha_fill_padding(ctx
, 0);
750 if (final
|| (ctx
->bufcnt
== ctx
->buflen
)) {
753 return atmel_sha_xmit_dma_map(dd
, ctx
, count
, final
);
759 static int atmel_sha_update_dma_start(struct atmel_sha_dev
*dd
)
761 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(dd
->req
);
762 unsigned int length
, final
, tail
;
763 struct scatterlist
*sg
;
769 if (ctx
->bufcnt
|| ctx
->offset
)
770 return atmel_sha_update_dma_slow(dd
);
772 dev_dbg(dd
->dev
, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
773 ctx
->digcnt
[1], ctx
->digcnt
[0], ctx
->bufcnt
, ctx
->total
);
777 if (!IS_ALIGNED(sg
->offset
, sizeof(u32
)))
778 return atmel_sha_update_dma_slow(dd
);
780 if (!sg_is_last(sg
) && !IS_ALIGNED(sg
->length
, ctx
->block_size
))
781 /* size is not ctx->block_size aligned */
782 return atmel_sha_update_dma_slow(dd
);
784 length
= min(ctx
->total
, sg
->length
);
786 if (sg_is_last(sg
)) {
787 if (!(ctx
->flags
& SHA_FLAGS_FINUP
)) {
788 /* not last sg must be ctx->block_size aligned */
789 tail
= length
& (ctx
->block_size
- 1);
794 ctx
->total
-= length
;
795 ctx
->offset
= length
; /* offset where to start slow */
797 final
= (ctx
->flags
& SHA_FLAGS_FINUP
) && !ctx
->total
;
801 tail
= length
& (ctx
->block_size
- 1);
804 ctx
->offset
= length
; /* offset where to start slow */
807 atmel_sha_append_sg(ctx
);
809 atmel_sha_fill_padding(ctx
, length
);
811 ctx
->dma_addr
= dma_map_single(dd
->dev
, ctx
->buffer
,
812 ctx
->buflen
+ ctx
->block_size
, DMA_TO_DEVICE
);
813 if (dma_mapping_error(dd
->dev
, ctx
->dma_addr
)) {
814 dev_err(dd
->dev
, "dma %zu bytes error\n",
815 ctx
->buflen
+ ctx
->block_size
);
816 return atmel_sha_complete(dd
, -EINVAL
);
820 ctx
->flags
&= ~SHA_FLAGS_SG
;
823 return atmel_sha_xmit_start(dd
, ctx
->dma_addr
, count
, 0,
827 if (!dma_map_sg(dd
->dev
, ctx
->sg
, 1,
829 dev_err(dd
->dev
, "dma_map_sg error\n");
830 return atmel_sha_complete(dd
, -EINVAL
);
833 ctx
->flags
|= SHA_FLAGS_SG
;
837 return atmel_sha_xmit_start(dd
, sg_dma_address(ctx
->sg
),
838 length
, ctx
->dma_addr
, count
, final
);
842 if (!dma_map_sg(dd
->dev
, ctx
->sg
, 1, DMA_TO_DEVICE
)) {
843 dev_err(dd
->dev
, "dma_map_sg error\n");
844 return atmel_sha_complete(dd
, -EINVAL
);
847 ctx
->flags
|= SHA_FLAGS_SG
;
849 /* next call does not fail... so no unmap in the case of error */
850 return atmel_sha_xmit_start(dd
, sg_dma_address(ctx
->sg
), length
, 0,
854 static void atmel_sha_update_dma_stop(struct atmel_sha_dev
*dd
)
856 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(dd
->req
);
858 if (ctx
->flags
& SHA_FLAGS_SG
) {
859 dma_unmap_sg(dd
->dev
, ctx
->sg
, 1, DMA_TO_DEVICE
);
860 if (ctx
->sg
->length
== ctx
->offset
) {
861 ctx
->sg
= sg_next(ctx
->sg
);
865 if (ctx
->flags
& SHA_FLAGS_PAD
) {
866 dma_unmap_single(dd
->dev
, ctx
->dma_addr
,
867 ctx
->buflen
+ ctx
->block_size
, DMA_TO_DEVICE
);
870 dma_unmap_single(dd
->dev
, ctx
->dma_addr
, ctx
->buflen
+
871 ctx
->block_size
, DMA_TO_DEVICE
);
875 static int atmel_sha_update_req(struct atmel_sha_dev
*dd
)
877 struct ahash_request
*req
= dd
->req
;
878 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
881 dev_dbg(dd
->dev
, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
882 ctx
->total
, ctx
->digcnt
[1], ctx
->digcnt
[0]);
884 if (ctx
->flags
& SHA_FLAGS_CPU
)
885 err
= atmel_sha_update_cpu(dd
);
887 err
= atmel_sha_update_dma_start(dd
);
889 /* wait for dma completion before can take more data */
890 dev_dbg(dd
->dev
, "update: err: %d, digcnt: 0x%llx 0%llx\n",
891 err
, ctx
->digcnt
[1], ctx
->digcnt
[0]);
896 static int atmel_sha_final_req(struct atmel_sha_dev
*dd
)
898 struct ahash_request
*req
= dd
->req
;
899 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
903 if (ctx
->bufcnt
>= ATMEL_SHA_DMA_THRESHOLD
) {
904 atmel_sha_fill_padding(ctx
, 0);
907 err
= atmel_sha_xmit_dma_map(dd
, ctx
, count
, 1);
909 /* faster to handle last block with cpu */
911 atmel_sha_fill_padding(ctx
, 0);
914 err
= atmel_sha_xmit_cpu(dd
, ctx
->buffer
, count
, 1);
917 dev_dbg(dd
->dev
, "final_req: err: %d\n", err
);
922 static void atmel_sha_copy_hash(struct ahash_request
*req
)
924 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
925 u32
*hash
= (u32
*)ctx
->digest
;
926 unsigned int i
, hashsize
;
928 switch (ctx
->flags
& SHA_FLAGS_ALGO_MASK
) {
930 hashsize
= SHA1_DIGEST_SIZE
;
933 case SHA_FLAGS_SHA224
:
934 case SHA_FLAGS_SHA256
:
935 hashsize
= SHA256_DIGEST_SIZE
;
938 case SHA_FLAGS_SHA384
:
939 case SHA_FLAGS_SHA512
:
940 hashsize
= SHA512_DIGEST_SIZE
;
944 /* Should not happen... */
948 for (i
= 0; i
< hashsize
/ sizeof(u32
); ++i
)
949 hash
[i
] = atmel_sha_read(ctx
->dd
, SHA_REG_DIGEST(i
));
950 ctx
->flags
|= SHA_FLAGS_RESTORE
;
953 static void atmel_sha_copy_ready_hash(struct ahash_request
*req
)
955 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
960 switch (ctx
->flags
& SHA_FLAGS_ALGO_MASK
) {
963 memcpy(req
->result
, ctx
->digest
, SHA1_DIGEST_SIZE
);
966 case SHA_FLAGS_SHA224
:
967 memcpy(req
->result
, ctx
->digest
, SHA224_DIGEST_SIZE
);
970 case SHA_FLAGS_SHA256
:
971 memcpy(req
->result
, ctx
->digest
, SHA256_DIGEST_SIZE
);
974 case SHA_FLAGS_SHA384
:
975 memcpy(req
->result
, ctx
->digest
, SHA384_DIGEST_SIZE
);
978 case SHA_FLAGS_SHA512
:
979 memcpy(req
->result
, ctx
->digest
, SHA512_DIGEST_SIZE
);
984 static int atmel_sha_finish(struct ahash_request
*req
)
986 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
987 struct atmel_sha_dev
*dd
= ctx
->dd
;
989 if (ctx
->digcnt
[0] || ctx
->digcnt
[1])
990 atmel_sha_copy_ready_hash(req
);
992 dev_dbg(dd
->dev
, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx
->digcnt
[1],
993 ctx
->digcnt
[0], ctx
->bufcnt
);
998 static void atmel_sha_finish_req(struct ahash_request
*req
, int err
)
1000 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1001 struct atmel_sha_dev
*dd
= ctx
->dd
;
1004 atmel_sha_copy_hash(req
);
1005 if (SHA_FLAGS_FINAL
& dd
->flags
)
1006 err
= atmel_sha_finish(req
);
1008 ctx
->flags
|= SHA_FLAGS_ERROR
;
1011 /* atomic operation is not needed here */
1012 (void)atmel_sha_complete(dd
, err
);
1015 static int atmel_sha_hw_init(struct atmel_sha_dev
*dd
)
1019 err
= clk_enable(dd
->iclk
);
1023 if (!(SHA_FLAGS_INIT
& dd
->flags
)) {
1024 atmel_sha_write(dd
, SHA_CR
, SHA_CR_SWRST
);
1025 dd
->flags
|= SHA_FLAGS_INIT
;
1031 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev
*dd
)
1033 return atmel_sha_read(dd
, SHA_HW_VERSION
) & 0x00000fff;
1036 static int atmel_sha_hw_version_init(struct atmel_sha_dev
*dd
)
1040 err
= atmel_sha_hw_init(dd
);
1044 dd
->hw_version
= atmel_sha_get_version(dd
);
1047 "version: 0x%x\n", dd
->hw_version
);
1049 clk_disable(dd
->iclk
);
1054 static int atmel_sha_handle_queue(struct atmel_sha_dev
*dd
,
1055 struct ahash_request
*req
)
1057 struct crypto_async_request
*async_req
, *backlog
;
1058 struct atmel_sha_ctx
*ctx
;
1059 unsigned long flags
;
1061 int err
= 0, ret
= 0;
1063 spin_lock_irqsave(&dd
->lock
, flags
);
1065 ret
= ahash_enqueue_request(&dd
->queue
, req
);
1067 if (SHA_FLAGS_BUSY
& dd
->flags
) {
1068 spin_unlock_irqrestore(&dd
->lock
, flags
);
1072 backlog
= crypto_get_backlog(&dd
->queue
);
1073 async_req
= crypto_dequeue_request(&dd
->queue
);
1075 dd
->flags
|= SHA_FLAGS_BUSY
;
1077 spin_unlock_irqrestore(&dd
->lock
, flags
);
1083 crypto_request_complete(backlog
, -EINPROGRESS
);
1085 ctx
= crypto_tfm_ctx(async_req
->tfm
);
1087 dd
->req
= ahash_request_cast(async_req
);
1088 start_async
= (dd
->req
!= req
);
1089 dd
->is_async
= start_async
;
1090 dd
->force_complete
= false;
1092 /* WARNING: ctx->start() MAY change dd->is_async. */
1093 err
= ctx
->start(dd
);
1094 return (start_async
) ? ret
: err
;
1097 static int atmel_sha_done(struct atmel_sha_dev
*dd
);
1099 static int atmel_sha_start(struct atmel_sha_dev
*dd
)
1101 struct ahash_request
*req
= dd
->req
;
1102 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1105 dev_dbg(dd
->dev
, "handling new req, op: %lu, nbytes: %u\n",
1106 ctx
->op
, req
->nbytes
);
1108 err
= atmel_sha_hw_init(dd
);
1110 return atmel_sha_complete(dd
, err
);
1113 * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114 * -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115 * its job later in the done_task.
1116 * This is the main path.
1118 * 0: the SHA driver can continue its job then release the hardware
1119 * later, if needed, with atmel_sha_finish_req().
1120 * This is the alternate path.
1122 * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123 * been called, hence the hardware has been released.
1124 * The SHA driver must stop its job without calling
1125 * atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126 * called a second time.
1128 * Please note that currently, atmel_sha_final_req() never returns 0.
1131 dd
->resume
= atmel_sha_done
;
1132 if (ctx
->op
== SHA_OP_UPDATE
) {
1133 err
= atmel_sha_update_req(dd
);
1134 if (!err
&& (ctx
->flags
& SHA_FLAGS_FINUP
))
1135 /* no final() after finup() */
1136 err
= atmel_sha_final_req(dd
);
1137 } else if (ctx
->op
== SHA_OP_FINAL
) {
1138 err
= atmel_sha_final_req(dd
);
1142 /* done_task will not finish it, so do it here */
1143 atmel_sha_finish_req(req
, err
);
1145 dev_dbg(dd
->dev
, "exit, err: %d\n", err
);
1150 static int atmel_sha_enqueue(struct ahash_request
*req
, unsigned int op
)
1152 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1153 struct atmel_sha_ctx
*tctx
= crypto_tfm_ctx(req
->base
.tfm
);
1154 struct atmel_sha_dev
*dd
= tctx
->dd
;
1158 return atmel_sha_handle_queue(dd
, req
);
1161 static int atmel_sha_update(struct ahash_request
*req
)
1163 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1168 ctx
->total
= req
->nbytes
;
1172 if (ctx
->flags
& SHA_FLAGS_FINUP
) {
1173 if (ctx
->bufcnt
+ ctx
->total
< ATMEL_SHA_DMA_THRESHOLD
)
1174 /* faster to use CPU for short transfers */
1175 ctx
->flags
|= SHA_FLAGS_CPU
;
1176 } else if (ctx
->bufcnt
+ ctx
->total
< ctx
->buflen
) {
1177 atmel_sha_append_sg(ctx
);
1180 return atmel_sha_enqueue(req
, SHA_OP_UPDATE
);
1183 static int atmel_sha_final(struct ahash_request
*req
)
1185 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1187 ctx
->flags
|= SHA_FLAGS_FINUP
;
1189 if (ctx
->flags
& SHA_FLAGS_ERROR
)
1190 return 0; /* uncompleted hash is not needed */
1192 if (ctx
->flags
& SHA_FLAGS_PAD
)
1193 /* copy ready hash (+ finalize hmac) */
1194 return atmel_sha_finish(req
);
1196 return atmel_sha_enqueue(req
, SHA_OP_FINAL
);
1199 static int atmel_sha_finup(struct ahash_request
*req
)
1201 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1204 ctx
->flags
|= SHA_FLAGS_FINUP
;
1206 err1
= atmel_sha_update(req
);
1207 if (err1
== -EINPROGRESS
||
1208 (err1
== -EBUSY
&& (ahash_request_flags(req
) &
1209 CRYPTO_TFM_REQ_MAY_BACKLOG
)))
1213 * final() has to be always called to cleanup resources
1214 * even if udpate() failed, except EINPROGRESS
1216 err2
= atmel_sha_final(req
);
1218 return err1
?: err2
;
1221 static int atmel_sha_digest(struct ahash_request
*req
)
1223 return atmel_sha_init(req
) ?: atmel_sha_finup(req
);
1227 static int atmel_sha_export(struct ahash_request
*req
, void *out
)
1229 const struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1231 memcpy(out
, ctx
, sizeof(*ctx
));
1235 static int atmel_sha_import(struct ahash_request
*req
, const void *in
)
1237 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1239 memcpy(ctx
, in
, sizeof(*ctx
));
1243 static int atmel_sha_cra_init(struct crypto_tfm
*tfm
)
1245 struct atmel_sha_ctx
*ctx
= crypto_tfm_ctx(tfm
);
1247 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
1248 sizeof(struct atmel_sha_reqctx
));
1249 ctx
->start
= atmel_sha_start
;
1254 static void atmel_sha_alg_init(struct ahash_alg
*alg
)
1256 alg
->halg
.base
.cra_priority
= ATMEL_SHA_PRIORITY
;
1257 alg
->halg
.base
.cra_flags
= CRYPTO_ALG_ASYNC
;
1258 alg
->halg
.base
.cra_ctxsize
= sizeof(struct atmel_sha_ctx
);
1259 alg
->halg
.base
.cra_module
= THIS_MODULE
;
1260 alg
->halg
.base
.cra_init
= atmel_sha_cra_init
;
1262 alg
->halg
.statesize
= sizeof(struct atmel_sha_reqctx
);
1264 alg
->init
= atmel_sha_init
;
1265 alg
->update
= atmel_sha_update
;
1266 alg
->final
= atmel_sha_final
;
1267 alg
->finup
= atmel_sha_finup
;
1268 alg
->digest
= atmel_sha_digest
;
1269 alg
->export
= atmel_sha_export
;
1270 alg
->import
= atmel_sha_import
;
1273 static struct ahash_alg sha_1_256_algs
[] = {
1275 .halg
.base
.cra_name
= "sha1",
1276 .halg
.base
.cra_driver_name
= "atmel-sha1",
1277 .halg
.base
.cra_blocksize
= SHA1_BLOCK_SIZE
,
1279 .halg
.digestsize
= SHA1_DIGEST_SIZE
,
1282 .halg
.base
.cra_name
= "sha256",
1283 .halg
.base
.cra_driver_name
= "atmel-sha256",
1284 .halg
.base
.cra_blocksize
= SHA256_BLOCK_SIZE
,
1286 .halg
.digestsize
= SHA256_DIGEST_SIZE
,
1290 static struct ahash_alg sha_224_alg
= {
1291 .halg
.base
.cra_name
= "sha224",
1292 .halg
.base
.cra_driver_name
= "atmel-sha224",
1293 .halg
.base
.cra_blocksize
= SHA224_BLOCK_SIZE
,
1295 .halg
.digestsize
= SHA224_DIGEST_SIZE
,
1298 static struct ahash_alg sha_384_512_algs
[] = {
1300 .halg
.base
.cra_name
= "sha384",
1301 .halg
.base
.cra_driver_name
= "atmel-sha384",
1302 .halg
.base
.cra_blocksize
= SHA384_BLOCK_SIZE
,
1304 .halg
.digestsize
= SHA384_DIGEST_SIZE
,
1307 .halg
.base
.cra_name
= "sha512",
1308 .halg
.base
.cra_driver_name
= "atmel-sha512",
1309 .halg
.base
.cra_blocksize
= SHA512_BLOCK_SIZE
,
1311 .halg
.digestsize
= SHA512_DIGEST_SIZE
,
1315 static void atmel_sha_queue_task(unsigned long data
)
1317 struct atmel_sha_dev
*dd
= (struct atmel_sha_dev
*)data
;
1319 atmel_sha_handle_queue(dd
, NULL
);
1322 static int atmel_sha_done(struct atmel_sha_dev
*dd
)
1326 if (SHA_FLAGS_CPU
& dd
->flags
) {
1327 if (SHA_FLAGS_OUTPUT_READY
& dd
->flags
) {
1328 dd
->flags
&= ~SHA_FLAGS_OUTPUT_READY
;
1331 } else if (SHA_FLAGS_DMA_READY
& dd
->flags
) {
1332 if (SHA_FLAGS_DMA_ACTIVE
& dd
->flags
) {
1333 dd
->flags
&= ~SHA_FLAGS_DMA_ACTIVE
;
1334 atmel_sha_update_dma_stop(dd
);
1336 if (SHA_FLAGS_OUTPUT_READY
& dd
->flags
) {
1337 /* hash or semi-hash ready */
1338 dd
->flags
&= ~(SHA_FLAGS_DMA_READY
|
1339 SHA_FLAGS_OUTPUT_READY
);
1340 err
= atmel_sha_update_dma_start(dd
);
1341 if (err
!= -EINPROGRESS
)
1348 /* finish curent request */
1349 atmel_sha_finish_req(dd
->req
, err
);
1354 static void atmel_sha_done_task(unsigned long data
)
1356 struct atmel_sha_dev
*dd
= (struct atmel_sha_dev
*)data
;
1358 dd
->is_async
= true;
1359 (void)dd
->resume(dd
);
1362 static irqreturn_t
atmel_sha_irq(int irq
, void *dev_id
)
1364 struct atmel_sha_dev
*sha_dd
= dev_id
;
1367 reg
= atmel_sha_read(sha_dd
, SHA_ISR
);
1368 if (reg
& atmel_sha_read(sha_dd
, SHA_IMR
)) {
1369 atmel_sha_write(sha_dd
, SHA_IDR
, reg
);
1370 if (SHA_FLAGS_BUSY
& sha_dd
->flags
) {
1371 sha_dd
->flags
|= SHA_FLAGS_OUTPUT_READY
;
1372 if (!(SHA_FLAGS_CPU
& sha_dd
->flags
))
1373 sha_dd
->flags
|= SHA_FLAGS_DMA_READY
;
1374 tasklet_schedule(&sha_dd
->done_task
);
1376 dev_warn(sha_dd
->dev
, "SHA interrupt when no active requests.\n");
1385 /* DMA transfer functions */
1387 static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev
*dd
,
1388 struct scatterlist
*sg
,
1391 struct atmel_sha_dma
*dma
= &dd
->dma_lch_in
;
1392 struct ahash_request
*req
= dd
->req
;
1393 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1394 size_t bs
= ctx
->block_size
;
1397 for (nents
= 0; sg
; sg
= sg_next(sg
), ++nents
) {
1398 if (!IS_ALIGNED(sg
->offset
, sizeof(u32
)))
1402 * This is the last sg, the only one that is allowed to
1403 * have an unaligned length.
1405 if (len
<= sg
->length
) {
1406 dma
->nents
= nents
+ 1;
1407 dma
->last_sg_length
= sg
->length
;
1408 sg
->length
= ALIGN(len
, sizeof(u32
));
1412 /* All other sg lengths MUST be aligned to the block size. */
1413 if (!IS_ALIGNED(sg
->length
, bs
))
1422 static void atmel_sha_dma_callback2(void *data
)
1424 struct atmel_sha_dev
*dd
= data
;
1425 struct atmel_sha_dma
*dma
= &dd
->dma_lch_in
;
1426 struct scatterlist
*sg
;
1429 dma_unmap_sg(dd
->dev
, dma
->sg
, dma
->nents
, DMA_TO_DEVICE
);
1432 for (nents
= 0; nents
< dma
->nents
- 1; ++nents
)
1434 sg
->length
= dma
->last_sg_length
;
1436 dd
->is_async
= true;
1437 (void)atmel_sha_wait_for_data_ready(dd
, dd
->resume
);
1440 static int atmel_sha_dma_start(struct atmel_sha_dev
*dd
,
1441 struct scatterlist
*src
,
1443 atmel_sha_fn_t resume
)
1445 struct atmel_sha_dma
*dma
= &dd
->dma_lch_in
;
1446 struct dma_slave_config
*config
= &dma
->dma_conf
;
1447 struct dma_chan
*chan
= dma
->chan
;
1448 struct dma_async_tx_descriptor
*desc
;
1449 dma_cookie_t cookie
;
1450 unsigned int sg_len
;
1453 dd
->resume
= resume
;
1456 * dma->nents has already been initialized by
1457 * atmel_sha_dma_check_aligned().
1460 sg_len
= dma_map_sg(dd
->dev
, dma
->sg
, dma
->nents
, DMA_TO_DEVICE
);
1466 config
->src_maxburst
= 16;
1467 config
->dst_maxburst
= 16;
1468 err
= dmaengine_slave_config(chan
, config
);
1472 desc
= dmaengine_prep_slave_sg(chan
, dma
->sg
, sg_len
, DMA_MEM_TO_DEV
,
1473 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1479 desc
->callback
= atmel_sha_dma_callback2
;
1480 desc
->callback_param
= dd
;
1481 cookie
= dmaengine_submit(desc
);
1482 err
= dma_submit_error(cookie
);
1486 dma_async_issue_pending(chan
);
1488 return -EINPROGRESS
;
1491 dma_unmap_sg(dd
->dev
, dma
->sg
, dma
->nents
, DMA_TO_DEVICE
);
1493 return atmel_sha_complete(dd
, err
);
1497 /* CPU transfer functions */
1499 static int atmel_sha_cpu_transfer(struct atmel_sha_dev
*dd
)
1501 struct ahash_request
*req
= dd
->req
;
1502 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1503 const u32
*words
= (const u32
*)ctx
->buffer
;
1504 size_t i
, num_words
;
1505 u32 isr
, din
, din_inc
;
1507 din_inc
= (ctx
->flags
& SHA_FLAGS_IDATAR0
) ? 0 : 1;
1509 /* Write data into the Input Data Registers. */
1510 num_words
= DIV_ROUND_UP(ctx
->bufcnt
, sizeof(u32
));
1511 for (i
= 0, din
= 0; i
< num_words
; ++i
, din
+= din_inc
)
1512 atmel_sha_write(dd
, SHA_REG_DIN(din
), words
[i
]);
1514 ctx
->offset
+= ctx
->bufcnt
;
1515 ctx
->total
-= ctx
->bufcnt
;
1521 * Prepare next block:
1522 * Fill ctx->buffer now with the next data to be written into
1523 * IDATARx: it gives time for the SHA hardware to process
1524 * the current data so the SHA_INT_DATARDY flag might be set
1525 * in SHA_ISR when polling this register at the beginning of
1528 ctx
->bufcnt
= min_t(size_t, ctx
->block_size
, ctx
->total
);
1529 scatterwalk_map_and_copy(ctx
->buffer
, ctx
->sg
,
1530 ctx
->offset
, ctx
->bufcnt
, 0);
1532 /* Wait for hardware to be ready again. */
1533 isr
= atmel_sha_read(dd
, SHA_ISR
);
1534 if (!(isr
& SHA_INT_DATARDY
)) {
1535 /* Not ready yet. */
1536 dd
->resume
= atmel_sha_cpu_transfer
;
1537 atmel_sha_write(dd
, SHA_IER
, SHA_INT_DATARDY
);
1538 return -EINPROGRESS
;
1542 if (unlikely(!(ctx
->flags
& SHA_FLAGS_WAIT_DATARDY
)))
1543 return dd
->cpu_transfer_complete(dd
);
1545 return atmel_sha_wait_for_data_ready(dd
, dd
->cpu_transfer_complete
);
1548 static int atmel_sha_cpu_start(struct atmel_sha_dev
*dd
,
1549 struct scatterlist
*sg
,
1552 bool wait_data_ready
,
1553 atmel_sha_fn_t resume
)
1555 struct ahash_request
*req
= dd
->req
;
1556 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1561 ctx
->flags
&= ~(SHA_FLAGS_IDATAR0
| SHA_FLAGS_WAIT_DATARDY
);
1564 ctx
->flags
|= SHA_FLAGS_IDATAR0
;
1566 if (wait_data_ready
)
1567 ctx
->flags
|= SHA_FLAGS_WAIT_DATARDY
;
1573 /* Prepare the first block to be written. */
1574 ctx
->bufcnt
= min_t(size_t, ctx
->block_size
, ctx
->total
);
1575 scatterwalk_map_and_copy(ctx
->buffer
, ctx
->sg
,
1576 ctx
->offset
, ctx
->bufcnt
, 0);
1578 dd
->cpu_transfer_complete
= resume
;
1579 return atmel_sha_cpu_transfer(dd
);
1582 static int atmel_sha_cpu_hash(struct atmel_sha_dev
*dd
,
1583 const void *data
, unsigned int datalen
,
1585 atmel_sha_fn_t resume
)
1587 struct ahash_request
*req
= dd
->req
;
1588 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1589 u32 msglen
= (auto_padding
) ? datalen
: 0;
1590 u32 mr
= SHA_MR_MODE_AUTO
;
1592 if (!(IS_ALIGNED(datalen
, ctx
->block_size
) || auto_padding
))
1593 return atmel_sha_complete(dd
, -EINVAL
);
1595 mr
|= (ctx
->flags
& SHA_FLAGS_ALGO_MASK
);
1596 atmel_sha_write(dd
, SHA_MR
, mr
);
1597 atmel_sha_write(dd
, SHA_MSR
, msglen
);
1598 atmel_sha_write(dd
, SHA_BCR
, msglen
);
1599 atmel_sha_write(dd
, SHA_CR
, SHA_CR_FIRST
);
1601 sg_init_one(&dd
->tmp
, data
, datalen
);
1602 return atmel_sha_cpu_start(dd
, &dd
->tmp
, datalen
, false, true, resume
);
1606 /* hmac functions */
1608 struct atmel_sha_hmac_key
{
1610 unsigned int keylen
;
1611 u8 buffer
[SHA512_BLOCK_SIZE
];
1615 static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key
*hkey
)
1617 memset(hkey
, 0, sizeof(*hkey
));
1620 static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key
*hkey
)
1622 kfree(hkey
->keydup
);
1623 memset(hkey
, 0, sizeof(*hkey
));
1626 static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key
*hkey
,
1628 unsigned int keylen
)
1630 atmel_sha_hmac_key_release(hkey
);
1632 if (keylen
> sizeof(hkey
->buffer
)) {
1633 hkey
->keydup
= kmemdup(key
, keylen
, GFP_KERNEL
);
1638 memcpy(hkey
->buffer
, key
, keylen
);
1642 hkey
->keylen
= keylen
;
1646 static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key
*hkey
,
1648 unsigned int *keylen
)
1653 *keylen
= hkey
->keylen
;
1654 *key
= (hkey
->keydup
) ? hkey
->keydup
: hkey
->buffer
;
1659 struct atmel_sha_hmac_ctx
{
1660 struct atmel_sha_ctx base
;
1662 struct atmel_sha_hmac_key hkey
;
1663 u32 ipad
[SHA512_BLOCK_SIZE
/ sizeof(u32
)];
1664 u32 opad
[SHA512_BLOCK_SIZE
/ sizeof(u32
)];
1665 atmel_sha_fn_t resume
;
1668 static int atmel_sha_hmac_setup(struct atmel_sha_dev
*dd
,
1669 atmel_sha_fn_t resume
);
1670 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev
*dd
,
1671 const u8
*key
, unsigned int keylen
);
1672 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev
*dd
);
1673 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev
*dd
);
1674 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev
*dd
);
1675 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev
*dd
);
1677 static int atmel_sha_hmac_init_done(struct atmel_sha_dev
*dd
);
1678 static int atmel_sha_hmac_final(struct atmel_sha_dev
*dd
);
1679 static int atmel_sha_hmac_final_done(struct atmel_sha_dev
*dd
);
1680 static int atmel_sha_hmac_digest2(struct atmel_sha_dev
*dd
);
1682 static int atmel_sha_hmac_setup(struct atmel_sha_dev
*dd
,
1683 atmel_sha_fn_t resume
)
1685 struct ahash_request
*req
= dd
->req
;
1686 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1687 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1688 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1689 unsigned int keylen
;
1693 hmac
->resume
= resume
;
1694 switch (ctx
->flags
& SHA_FLAGS_ALGO_MASK
) {
1695 case SHA_FLAGS_SHA1
:
1696 ctx
->block_size
= SHA1_BLOCK_SIZE
;
1697 ctx
->hash_size
= SHA1_DIGEST_SIZE
;
1700 case SHA_FLAGS_SHA224
:
1701 ctx
->block_size
= SHA224_BLOCK_SIZE
;
1702 ctx
->hash_size
= SHA256_DIGEST_SIZE
;
1705 case SHA_FLAGS_SHA256
:
1706 ctx
->block_size
= SHA256_BLOCK_SIZE
;
1707 ctx
->hash_size
= SHA256_DIGEST_SIZE
;
1710 case SHA_FLAGS_SHA384
:
1711 ctx
->block_size
= SHA384_BLOCK_SIZE
;
1712 ctx
->hash_size
= SHA512_DIGEST_SIZE
;
1715 case SHA_FLAGS_SHA512
:
1716 ctx
->block_size
= SHA512_BLOCK_SIZE
;
1717 ctx
->hash_size
= SHA512_DIGEST_SIZE
;
1721 return atmel_sha_complete(dd
, -EINVAL
);
1723 bs
= ctx
->block_size
;
1725 if (likely(!atmel_sha_hmac_key_get(&hmac
->hkey
, &key
, &keylen
)))
1728 /* Compute K' from K. */
1729 if (unlikely(keylen
> bs
))
1730 return atmel_sha_hmac_prehash_key(dd
, key
, keylen
);
1733 memcpy((u8
*)hmac
->ipad
, key
, keylen
);
1734 memset((u8
*)hmac
->ipad
+ keylen
, 0, bs
- keylen
);
1735 return atmel_sha_hmac_compute_ipad_hash(dd
);
1738 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev
*dd
,
1739 const u8
*key
, unsigned int keylen
)
1741 return atmel_sha_cpu_hash(dd
, key
, keylen
, true,
1742 atmel_sha_hmac_prehash_key_done
);
1745 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev
*dd
)
1747 struct ahash_request
*req
= dd
->req
;
1748 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1749 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1750 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1751 size_t ds
= crypto_ahash_digestsize(tfm
);
1752 size_t bs
= ctx
->block_size
;
1753 size_t i
, num_words
= ds
/ sizeof(u32
);
1756 for (i
= 0; i
< num_words
; ++i
)
1757 hmac
->ipad
[i
] = atmel_sha_read(dd
, SHA_REG_DIGEST(i
));
1758 memset((u8
*)hmac
->ipad
+ ds
, 0, bs
- ds
);
1759 return atmel_sha_hmac_compute_ipad_hash(dd
);
1762 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev
*dd
)
1764 struct ahash_request
*req
= dd
->req
;
1765 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1766 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1767 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1768 size_t bs
= ctx
->block_size
;
1769 size_t i
, num_words
= bs
/ sizeof(u32
);
1771 unsafe_memcpy(hmac
->opad
, hmac
->ipad
, bs
,
1772 "fortified memcpy causes -Wrestrict warning");
1773 for (i
= 0; i
< num_words
; ++i
) {
1774 hmac
->ipad
[i
] ^= 0x36363636;
1775 hmac
->opad
[i
] ^= 0x5c5c5c5c;
1778 return atmel_sha_cpu_hash(dd
, hmac
->ipad
, bs
, false,
1779 atmel_sha_hmac_compute_opad_hash
);
1782 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev
*dd
)
1784 struct ahash_request
*req
= dd
->req
;
1785 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1786 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1787 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1788 size_t bs
= ctx
->block_size
;
1789 size_t hs
= ctx
->hash_size
;
1790 size_t i
, num_words
= hs
/ sizeof(u32
);
1792 for (i
= 0; i
< num_words
; ++i
)
1793 hmac
->ipad
[i
] = atmel_sha_read(dd
, SHA_REG_DIGEST(i
));
1794 return atmel_sha_cpu_hash(dd
, hmac
->opad
, bs
, false,
1795 atmel_sha_hmac_setup_done
);
1798 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev
*dd
)
1800 struct ahash_request
*req
= dd
->req
;
1801 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1802 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1803 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1804 size_t hs
= ctx
->hash_size
;
1805 size_t i
, num_words
= hs
/ sizeof(u32
);
1807 for (i
= 0; i
< num_words
; ++i
)
1808 hmac
->opad
[i
] = atmel_sha_read(dd
, SHA_REG_DIGEST(i
));
1809 atmel_sha_hmac_key_release(&hmac
->hkey
);
1810 return hmac
->resume(dd
);
1813 static int atmel_sha_hmac_start(struct atmel_sha_dev
*dd
)
1815 struct ahash_request
*req
= dd
->req
;
1816 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1819 err
= atmel_sha_hw_init(dd
);
1821 return atmel_sha_complete(dd
, err
);
1825 err
= atmel_sha_hmac_setup(dd
, atmel_sha_hmac_init_done
);
1829 dd
->resume
= atmel_sha_done
;
1830 err
= atmel_sha_update_req(dd
);
1834 dd
->resume
= atmel_sha_hmac_final
;
1835 err
= atmel_sha_final_req(dd
);
1839 err
= atmel_sha_hmac_setup(dd
, atmel_sha_hmac_digest2
);
1843 return atmel_sha_complete(dd
, -EINVAL
);
1849 static int atmel_sha_hmac_setkey(struct crypto_ahash
*tfm
, const u8
*key
,
1850 unsigned int keylen
)
1852 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1854 return atmel_sha_hmac_key_set(&hmac
->hkey
, key
, keylen
);
1857 static int atmel_sha_hmac_init(struct ahash_request
*req
)
1861 err
= atmel_sha_init(req
);
1865 return atmel_sha_enqueue(req
, SHA_OP_INIT
);
1868 static int atmel_sha_hmac_init_done(struct atmel_sha_dev
*dd
)
1870 struct ahash_request
*req
= dd
->req
;
1871 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1872 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1873 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1874 size_t bs
= ctx
->block_size
;
1875 size_t hs
= ctx
->hash_size
;
1878 ctx
->digcnt
[0] = bs
;
1880 ctx
->flags
|= SHA_FLAGS_RESTORE
;
1881 memcpy(ctx
->digest
, hmac
->ipad
, hs
);
1882 return atmel_sha_complete(dd
, 0);
1885 static int atmel_sha_hmac_final(struct atmel_sha_dev
*dd
)
1887 struct ahash_request
*req
= dd
->req
;
1888 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1889 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1890 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1891 u32
*digest
= (u32
*)ctx
->digest
;
1892 size_t ds
= crypto_ahash_digestsize(tfm
);
1893 size_t bs
= ctx
->block_size
;
1894 size_t hs
= ctx
->hash_size
;
1895 size_t i
, num_words
;
1898 /* Save d = SHA((K' + ipad) | msg). */
1899 num_words
= ds
/ sizeof(u32
);
1900 for (i
= 0; i
< num_words
; ++i
)
1901 digest
[i
] = atmel_sha_read(dd
, SHA_REG_DIGEST(i
));
1903 /* Restore context to finish computing SHA((K' + opad) | d). */
1904 atmel_sha_write(dd
, SHA_CR
, SHA_CR_WUIHV
);
1905 num_words
= hs
/ sizeof(u32
);
1906 for (i
= 0; i
< num_words
; ++i
)
1907 atmel_sha_write(dd
, SHA_REG_DIN(i
), hmac
->opad
[i
]);
1909 mr
= SHA_MR_MODE_AUTO
| SHA_MR_UIHV
;
1910 mr
|= (ctx
->flags
& SHA_FLAGS_ALGO_MASK
);
1911 atmel_sha_write(dd
, SHA_MR
, mr
);
1912 atmel_sha_write(dd
, SHA_MSR
, bs
+ ds
);
1913 atmel_sha_write(dd
, SHA_BCR
, ds
);
1914 atmel_sha_write(dd
, SHA_CR
, SHA_CR_FIRST
);
1916 sg_init_one(&dd
->tmp
, digest
, ds
);
1917 return atmel_sha_cpu_start(dd
, &dd
->tmp
, ds
, false, true,
1918 atmel_sha_hmac_final_done
);
1921 static int atmel_sha_hmac_final_done(struct atmel_sha_dev
*dd
)
1924 * req->result might not be sizeof(u32) aligned, so copy the
1925 * digest into ctx->digest[] before memcpy() the data into
1928 atmel_sha_copy_hash(dd
->req
);
1929 atmel_sha_copy_ready_hash(dd
->req
);
1930 return atmel_sha_complete(dd
, 0);
1933 static int atmel_sha_hmac_digest(struct ahash_request
*req
)
1937 err
= atmel_sha_init(req
);
1941 return atmel_sha_enqueue(req
, SHA_OP_DIGEST
);
1944 static int atmel_sha_hmac_digest2(struct atmel_sha_dev
*dd
)
1946 struct ahash_request
*req
= dd
->req
;
1947 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1948 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1949 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1950 struct scatterlist
*sgbuf
;
1951 size_t hs
= ctx
->hash_size
;
1952 size_t i
, num_words
= hs
/ sizeof(u32
);
1953 bool use_dma
= false;
1956 /* Special case for empty message. */
1962 switch (ctx
->flags
& SHA_FLAGS_ALGO_MASK
) {
1963 case SHA_FLAGS_SHA1
:
1964 case SHA_FLAGS_SHA224
:
1965 case SHA_FLAGS_SHA256
:
1966 atmel_sha_fill_padding(ctx
, 64);
1969 case SHA_FLAGS_SHA384
:
1970 case SHA_FLAGS_SHA512
:
1971 atmel_sha_fill_padding(ctx
, 128);
1974 sg_init_one(&dd
->tmp
, ctx
->buffer
, ctx
->bufcnt
);
1977 /* Check DMA threshold and alignment. */
1978 if (req
->nbytes
> ATMEL_SHA_DMA_THRESHOLD
&&
1979 atmel_sha_dma_check_aligned(dd
, req
->src
, req
->nbytes
))
1982 /* Write both initial hash values to compute a HMAC. */
1983 atmel_sha_write(dd
, SHA_CR
, SHA_CR_WUIHV
);
1984 for (i
= 0; i
< num_words
; ++i
)
1985 atmel_sha_write(dd
, SHA_REG_DIN(i
), hmac
->ipad
[i
]);
1987 atmel_sha_write(dd
, SHA_CR
, SHA_CR_WUIEHV
);
1988 for (i
= 0; i
< num_words
; ++i
)
1989 atmel_sha_write(dd
, SHA_REG_DIN(i
), hmac
->opad
[i
]);
1991 /* Write the Mode, Message Size, Bytes Count then Control Registers. */
1992 mr
= (SHA_MR_HMAC
| SHA_MR_DUALBUFF
);
1993 mr
|= ctx
->flags
& SHA_FLAGS_ALGO_MASK
;
1995 mr
|= SHA_MR_MODE_IDATAR0
;
1997 mr
|= SHA_MR_MODE_AUTO
;
1998 atmel_sha_write(dd
, SHA_MR
, mr
);
2000 atmel_sha_write(dd
, SHA_MSR
, req
->nbytes
);
2001 atmel_sha_write(dd
, SHA_BCR
, req
->nbytes
);
2003 atmel_sha_write(dd
, SHA_CR
, SHA_CR_FIRST
);
2005 /* Special case for empty message. */
2008 req
->nbytes
= ctx
->bufcnt
;
2015 return atmel_sha_dma_start(dd
, sgbuf
, req
->nbytes
,
2016 atmel_sha_hmac_final_done
);
2018 return atmel_sha_cpu_start(dd
, sgbuf
, req
->nbytes
, false, true,
2019 atmel_sha_hmac_final_done
);
2022 static int atmel_sha_hmac_cra_init(struct crypto_tfm
*tfm
)
2024 struct atmel_sha_hmac_ctx
*hmac
= crypto_tfm_ctx(tfm
);
2026 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
2027 sizeof(struct atmel_sha_reqctx
));
2028 hmac
->base
.start
= atmel_sha_hmac_start
;
2029 atmel_sha_hmac_key_init(&hmac
->hkey
);
2034 static void atmel_sha_hmac_cra_exit(struct crypto_tfm
*tfm
)
2036 struct atmel_sha_hmac_ctx
*hmac
= crypto_tfm_ctx(tfm
);
2038 atmel_sha_hmac_key_release(&hmac
->hkey
);
2041 static void atmel_sha_hmac_alg_init(struct ahash_alg
*alg
)
2043 alg
->halg
.base
.cra_priority
= ATMEL_SHA_PRIORITY
;
2044 alg
->halg
.base
.cra_flags
= CRYPTO_ALG_ASYNC
;
2045 alg
->halg
.base
.cra_ctxsize
= sizeof(struct atmel_sha_hmac_ctx
);
2046 alg
->halg
.base
.cra_module
= THIS_MODULE
;
2047 alg
->halg
.base
.cra_init
= atmel_sha_hmac_cra_init
;
2048 alg
->halg
.base
.cra_exit
= atmel_sha_hmac_cra_exit
;
2050 alg
->halg
.statesize
= sizeof(struct atmel_sha_reqctx
);
2052 alg
->init
= atmel_sha_hmac_init
;
2053 alg
->update
= atmel_sha_update
;
2054 alg
->final
= atmel_sha_final
;
2055 alg
->digest
= atmel_sha_hmac_digest
;
2056 alg
->setkey
= atmel_sha_hmac_setkey
;
2057 alg
->export
= atmel_sha_export
;
2058 alg
->import
= atmel_sha_import
;
2061 static struct ahash_alg sha_hmac_algs
[] = {
2063 .halg
.base
.cra_name
= "hmac(sha1)",
2064 .halg
.base
.cra_driver_name
= "atmel-hmac-sha1",
2065 .halg
.base
.cra_blocksize
= SHA1_BLOCK_SIZE
,
2067 .halg
.digestsize
= SHA1_DIGEST_SIZE
,
2070 .halg
.base
.cra_name
= "hmac(sha224)",
2071 .halg
.base
.cra_driver_name
= "atmel-hmac-sha224",
2072 .halg
.base
.cra_blocksize
= SHA224_BLOCK_SIZE
,
2074 .halg
.digestsize
= SHA224_DIGEST_SIZE
,
2077 .halg
.base
.cra_name
= "hmac(sha256)",
2078 .halg
.base
.cra_driver_name
= "atmel-hmac-sha256",
2079 .halg
.base
.cra_blocksize
= SHA256_BLOCK_SIZE
,
2081 .halg
.digestsize
= SHA256_DIGEST_SIZE
,
2084 .halg
.base
.cra_name
= "hmac(sha384)",
2085 .halg
.base
.cra_driver_name
= "atmel-hmac-sha384",
2086 .halg
.base
.cra_blocksize
= SHA384_BLOCK_SIZE
,
2088 .halg
.digestsize
= SHA384_DIGEST_SIZE
,
2091 .halg
.base
.cra_name
= "hmac(sha512)",
2092 .halg
.base
.cra_driver_name
= "atmel-hmac-sha512",
2093 .halg
.base
.cra_blocksize
= SHA512_BLOCK_SIZE
,
2095 .halg
.digestsize
= SHA512_DIGEST_SIZE
,
2099 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2100 /* authenc functions */
2102 static int atmel_sha_authenc_init2(struct atmel_sha_dev
*dd
);
2103 static int atmel_sha_authenc_init_done(struct atmel_sha_dev
*dd
);
2104 static int atmel_sha_authenc_final_done(struct atmel_sha_dev
*dd
);
2107 struct atmel_sha_authenc_ctx
{
2108 struct crypto_ahash
*tfm
;
2111 struct atmel_sha_authenc_reqctx
{
2112 struct atmel_sha_reqctx base
;
2114 atmel_aes_authenc_fn_t cb
;
2115 struct atmel_aes_dev
*aes_dev
;
2117 /* _init() parameters. */
2118 struct scatterlist
*assoc
;
2122 /* _final() parameters. */
2124 unsigned int digestlen
;
2127 static void atmel_sha_authenc_complete(void *data
, int err
)
2129 struct ahash_request
*req
= data
;
2130 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2132 authctx
->cb(authctx
->aes_dev
, err
, authctx
->base
.dd
->is_async
);
2135 static int atmel_sha_authenc_start(struct atmel_sha_dev
*dd
)
2137 struct ahash_request
*req
= dd
->req
;
2138 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2142 * Force atmel_sha_complete() to call req->base.complete(), ie
2143 * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2145 dd
->force_complete
= true;
2147 err
= atmel_sha_hw_init(dd
);
2148 return authctx
->cb(authctx
->aes_dev
, err
, dd
->is_async
);
2151 bool atmel_sha_authenc_is_ready(void)
2153 struct atmel_sha_ctx dummy
;
2156 return (atmel_sha_find_dev(&dummy
) != NULL
);
2158 EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready
);
2160 unsigned int atmel_sha_authenc_get_reqsize(void)
2162 return sizeof(struct atmel_sha_authenc_reqctx
);
2164 EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize
);
2166 struct atmel_sha_authenc_ctx
*atmel_sha_authenc_spawn(unsigned long mode
)
2168 struct atmel_sha_authenc_ctx
*auth
;
2169 struct crypto_ahash
*tfm
;
2170 struct atmel_sha_ctx
*tctx
;
2174 switch (mode
& SHA_FLAGS_MODE_MASK
) {
2175 case SHA_FLAGS_HMAC_SHA1
:
2176 name
= "atmel-hmac-sha1";
2179 case SHA_FLAGS_HMAC_SHA224
:
2180 name
= "atmel-hmac-sha224";
2183 case SHA_FLAGS_HMAC_SHA256
:
2184 name
= "atmel-hmac-sha256";
2187 case SHA_FLAGS_HMAC_SHA384
:
2188 name
= "atmel-hmac-sha384";
2191 case SHA_FLAGS_HMAC_SHA512
:
2192 name
= "atmel-hmac-sha512";
2199 tfm
= crypto_alloc_ahash(name
, 0, 0);
2204 tctx
= crypto_ahash_ctx(tfm
);
2205 tctx
->start
= atmel_sha_authenc_start
;
2208 auth
= kzalloc(sizeof(*auth
), GFP_KERNEL
);
2211 goto err_free_ahash
;
2218 crypto_free_ahash(tfm
);
2220 return ERR_PTR(err
);
2222 EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn
);
2224 void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx
*auth
)
2227 crypto_free_ahash(auth
->tfm
);
2230 EXPORT_SYMBOL_GPL(atmel_sha_authenc_free
);
2232 int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx
*auth
,
2233 const u8
*key
, unsigned int keylen
, u32 flags
)
2235 struct crypto_ahash
*tfm
= auth
->tfm
;
2237 crypto_ahash_clear_flags(tfm
, CRYPTO_TFM_REQ_MASK
);
2238 crypto_ahash_set_flags(tfm
, flags
& CRYPTO_TFM_REQ_MASK
);
2239 return crypto_ahash_setkey(tfm
, key
, keylen
);
2241 EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey
);
2243 int atmel_sha_authenc_schedule(struct ahash_request
*req
,
2244 struct atmel_sha_authenc_ctx
*auth
,
2245 atmel_aes_authenc_fn_t cb
,
2246 struct atmel_aes_dev
*aes_dev
)
2248 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2249 struct atmel_sha_reqctx
*ctx
= &authctx
->base
;
2250 struct crypto_ahash
*tfm
= auth
->tfm
;
2251 struct atmel_sha_ctx
*tctx
= crypto_ahash_ctx(tfm
);
2252 struct atmel_sha_dev
*dd
;
2254 /* Reset request context (MUST be done first). */
2255 memset(authctx
, 0, sizeof(*authctx
));
2257 /* Get SHA device. */
2258 dd
= atmel_sha_find_dev(tctx
);
2260 return cb(aes_dev
, -ENODEV
, false);
2262 /* Init request context. */
2264 ctx
->buflen
= SHA_BUFFER_LEN
;
2266 authctx
->aes_dev
= aes_dev
;
2267 ahash_request_set_tfm(req
, tfm
);
2268 ahash_request_set_callback(req
, 0, atmel_sha_authenc_complete
, req
);
2270 return atmel_sha_handle_queue(dd
, req
);
2272 EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule
);
2274 int atmel_sha_authenc_init(struct ahash_request
*req
,
2275 struct scatterlist
*assoc
, unsigned int assoclen
,
2276 unsigned int textlen
,
2277 atmel_aes_authenc_fn_t cb
,
2278 struct atmel_aes_dev
*aes_dev
)
2280 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2281 struct atmel_sha_reqctx
*ctx
= &authctx
->base
;
2282 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2283 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
2284 struct atmel_sha_dev
*dd
= ctx
->dd
;
2286 if (unlikely(!IS_ALIGNED(assoclen
, sizeof(u32
))))
2287 return atmel_sha_complete(dd
, -EINVAL
);
2290 authctx
->aes_dev
= aes_dev
;
2291 authctx
->assoc
= assoc
;
2292 authctx
->assoclen
= assoclen
;
2293 authctx
->textlen
= textlen
;
2295 ctx
->flags
= hmac
->base
.flags
;
2296 return atmel_sha_hmac_setup(dd
, atmel_sha_authenc_init2
);
2298 EXPORT_SYMBOL_GPL(atmel_sha_authenc_init
);
2300 static int atmel_sha_authenc_init2(struct atmel_sha_dev
*dd
)
2302 struct ahash_request
*req
= dd
->req
;
2303 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2304 struct atmel_sha_reqctx
*ctx
= &authctx
->base
;
2305 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2306 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
2307 size_t hs
= ctx
->hash_size
;
2308 size_t i
, num_words
= hs
/ sizeof(u32
);
2311 atmel_sha_write(dd
, SHA_CR
, SHA_CR_WUIHV
);
2312 for (i
= 0; i
< num_words
; ++i
)
2313 atmel_sha_write(dd
, SHA_REG_DIN(i
), hmac
->ipad
[i
]);
2315 atmel_sha_write(dd
, SHA_CR
, SHA_CR_WUIEHV
);
2316 for (i
= 0; i
< num_words
; ++i
)
2317 atmel_sha_write(dd
, SHA_REG_DIN(i
), hmac
->opad
[i
]);
2319 mr
= (SHA_MR_MODE_IDATAR0
|
2322 mr
|= ctx
->flags
& SHA_FLAGS_ALGO_MASK
;
2323 atmel_sha_write(dd
, SHA_MR
, mr
);
2325 msg_size
= authctx
->assoclen
+ authctx
->textlen
;
2326 atmel_sha_write(dd
, SHA_MSR
, msg_size
);
2327 atmel_sha_write(dd
, SHA_BCR
, msg_size
);
2329 atmel_sha_write(dd
, SHA_CR
, SHA_CR_FIRST
);
2331 /* Process assoc data. */
2332 return atmel_sha_cpu_start(dd
, authctx
->assoc
, authctx
->assoclen
,
2334 atmel_sha_authenc_init_done
);
2337 static int atmel_sha_authenc_init_done(struct atmel_sha_dev
*dd
)
2339 struct ahash_request
*req
= dd
->req
;
2340 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2342 return authctx
->cb(authctx
->aes_dev
, 0, dd
->is_async
);
2345 int atmel_sha_authenc_final(struct ahash_request
*req
,
2346 u32
*digest
, unsigned int digestlen
,
2347 atmel_aes_authenc_fn_t cb
,
2348 struct atmel_aes_dev
*aes_dev
)
2350 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2351 struct atmel_sha_reqctx
*ctx
= &authctx
->base
;
2352 struct atmel_sha_dev
*dd
= ctx
->dd
;
2354 switch (ctx
->flags
& SHA_FLAGS_ALGO_MASK
) {
2355 case SHA_FLAGS_SHA1
:
2356 authctx
->digestlen
= SHA1_DIGEST_SIZE
;
2359 case SHA_FLAGS_SHA224
:
2360 authctx
->digestlen
= SHA224_DIGEST_SIZE
;
2363 case SHA_FLAGS_SHA256
:
2364 authctx
->digestlen
= SHA256_DIGEST_SIZE
;
2367 case SHA_FLAGS_SHA384
:
2368 authctx
->digestlen
= SHA384_DIGEST_SIZE
;
2371 case SHA_FLAGS_SHA512
:
2372 authctx
->digestlen
= SHA512_DIGEST_SIZE
;
2376 return atmel_sha_complete(dd
, -EINVAL
);
2378 if (authctx
->digestlen
> digestlen
)
2379 authctx
->digestlen
= digestlen
;
2382 authctx
->aes_dev
= aes_dev
;
2383 authctx
->digest
= digest
;
2384 return atmel_sha_wait_for_data_ready(dd
,
2385 atmel_sha_authenc_final_done
);
2387 EXPORT_SYMBOL_GPL(atmel_sha_authenc_final
);
2389 static int atmel_sha_authenc_final_done(struct atmel_sha_dev
*dd
)
2391 struct ahash_request
*req
= dd
->req
;
2392 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2393 size_t i
, num_words
= authctx
->digestlen
/ sizeof(u32
);
2395 for (i
= 0; i
< num_words
; ++i
)
2396 authctx
->digest
[i
] = atmel_sha_read(dd
, SHA_REG_DIGEST(i
));
2398 return atmel_sha_complete(dd
, 0);
2401 void atmel_sha_authenc_abort(struct ahash_request
*req
)
2403 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2404 struct atmel_sha_reqctx
*ctx
= &authctx
->base
;
2405 struct atmel_sha_dev
*dd
= ctx
->dd
;
2407 /* Prevent atmel_sha_complete() from calling req->base.complete(). */
2408 dd
->is_async
= false;
2409 dd
->force_complete
= false;
2410 (void)atmel_sha_complete(dd
, 0);
2412 EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort
);
2414 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2417 static void atmel_sha_unregister_algs(struct atmel_sha_dev
*dd
)
2421 if (dd
->caps
.has_hmac
)
2422 for (i
= 0; i
< ARRAY_SIZE(sha_hmac_algs
); i
++)
2423 crypto_unregister_ahash(&sha_hmac_algs
[i
]);
2425 for (i
= 0; i
< ARRAY_SIZE(sha_1_256_algs
); i
++)
2426 crypto_unregister_ahash(&sha_1_256_algs
[i
]);
2428 if (dd
->caps
.has_sha224
)
2429 crypto_unregister_ahash(&sha_224_alg
);
2431 if (dd
->caps
.has_sha_384_512
) {
2432 for (i
= 0; i
< ARRAY_SIZE(sha_384_512_algs
); i
++)
2433 crypto_unregister_ahash(&sha_384_512_algs
[i
]);
2437 static int atmel_sha_register_algs(struct atmel_sha_dev
*dd
)
2441 for (i
= 0; i
< ARRAY_SIZE(sha_1_256_algs
); i
++) {
2442 atmel_sha_alg_init(&sha_1_256_algs
[i
]);
2444 err
= crypto_register_ahash(&sha_1_256_algs
[i
]);
2446 goto err_sha_1_256_algs
;
2449 if (dd
->caps
.has_sha224
) {
2450 atmel_sha_alg_init(&sha_224_alg
);
2452 err
= crypto_register_ahash(&sha_224_alg
);
2454 goto err_sha_224_algs
;
2457 if (dd
->caps
.has_sha_384_512
) {
2458 for (i
= 0; i
< ARRAY_SIZE(sha_384_512_algs
); i
++) {
2459 atmel_sha_alg_init(&sha_384_512_algs
[i
]);
2461 err
= crypto_register_ahash(&sha_384_512_algs
[i
]);
2463 goto err_sha_384_512_algs
;
2467 if (dd
->caps
.has_hmac
) {
2468 for (i
= 0; i
< ARRAY_SIZE(sha_hmac_algs
); i
++) {
2469 atmel_sha_hmac_alg_init(&sha_hmac_algs
[i
]);
2471 err
= crypto_register_ahash(&sha_hmac_algs
[i
]);
2473 goto err_sha_hmac_algs
;
2479 /*i = ARRAY_SIZE(sha_hmac_algs);*/
2481 for (j
= 0; j
< i
; j
++)
2482 crypto_unregister_ahash(&sha_hmac_algs
[j
]);
2483 i
= ARRAY_SIZE(sha_384_512_algs
);
2484 err_sha_384_512_algs
:
2485 for (j
= 0; j
< i
; j
++)
2486 crypto_unregister_ahash(&sha_384_512_algs
[j
]);
2487 crypto_unregister_ahash(&sha_224_alg
);
2489 i
= ARRAY_SIZE(sha_1_256_algs
);
2491 for (j
= 0; j
< i
; j
++)
2492 crypto_unregister_ahash(&sha_1_256_algs
[j
]);
2497 static int atmel_sha_dma_init(struct atmel_sha_dev
*dd
)
2499 dd
->dma_lch_in
.chan
= dma_request_chan(dd
->dev
, "tx");
2500 if (IS_ERR(dd
->dma_lch_in
.chan
)) {
2501 return dev_err_probe(dd
->dev
, PTR_ERR(dd
->dma_lch_in
.chan
),
2502 "DMA channel is not available\n");
2505 dd
->dma_lch_in
.dma_conf
.dst_addr
= dd
->phys_base
+
2507 dd
->dma_lch_in
.dma_conf
.src_maxburst
= 1;
2508 dd
->dma_lch_in
.dma_conf
.src_addr_width
=
2509 DMA_SLAVE_BUSWIDTH_4_BYTES
;
2510 dd
->dma_lch_in
.dma_conf
.dst_maxburst
= 1;
2511 dd
->dma_lch_in
.dma_conf
.dst_addr_width
=
2512 DMA_SLAVE_BUSWIDTH_4_BYTES
;
2513 dd
->dma_lch_in
.dma_conf
.device_fc
= false;
2518 static void atmel_sha_dma_cleanup(struct atmel_sha_dev
*dd
)
2520 dma_release_channel(dd
->dma_lch_in
.chan
);
2523 static void atmel_sha_get_cap(struct atmel_sha_dev
*dd
)
2526 dd
->caps
.has_dma
= 0;
2527 dd
->caps
.has_dualbuff
= 0;
2528 dd
->caps
.has_sha224
= 0;
2529 dd
->caps
.has_sha_384_512
= 0;
2530 dd
->caps
.has_uihv
= 0;
2531 dd
->caps
.has_hmac
= 0;
2533 /* keep only major version number */
2534 switch (dd
->hw_version
& 0xff0) {
2538 dd
->caps
.has_dma
= 1;
2539 dd
->caps
.has_dualbuff
= 1;
2540 dd
->caps
.has_sha224
= 1;
2541 dd
->caps
.has_sha_384_512
= 1;
2542 dd
->caps
.has_uihv
= 1;
2543 dd
->caps
.has_hmac
= 1;
2546 dd
->caps
.has_dma
= 1;
2547 dd
->caps
.has_dualbuff
= 1;
2548 dd
->caps
.has_sha224
= 1;
2549 dd
->caps
.has_sha_384_512
= 1;
2550 dd
->caps
.has_uihv
= 1;
2553 dd
->caps
.has_dma
= 1;
2554 dd
->caps
.has_dualbuff
= 1;
2555 dd
->caps
.has_sha224
= 1;
2556 dd
->caps
.has_sha_384_512
= 1;
2559 dd
->caps
.has_dma
= 1;
2560 dd
->caps
.has_dualbuff
= 1;
2561 dd
->caps
.has_sha224
= 1;
2567 "Unmanaged sha version, set minimum capabilities\n");
2572 static const struct of_device_id atmel_sha_dt_ids
[] = {
2573 { .compatible
= "atmel,at91sam9g46-sha" },
2577 MODULE_DEVICE_TABLE(of
, atmel_sha_dt_ids
);
2579 static int atmel_sha_probe(struct platform_device
*pdev
)
2581 struct atmel_sha_dev
*sha_dd
;
2582 struct device
*dev
= &pdev
->dev
;
2583 struct resource
*sha_res
;
2586 sha_dd
= devm_kzalloc(&pdev
->dev
, sizeof(*sha_dd
), GFP_KERNEL
);
2592 platform_set_drvdata(pdev
, sha_dd
);
2594 INIT_LIST_HEAD(&sha_dd
->list
);
2595 spin_lock_init(&sha_dd
->lock
);
2597 tasklet_init(&sha_dd
->done_task
, atmel_sha_done_task
,
2598 (unsigned long)sha_dd
);
2599 tasklet_init(&sha_dd
->queue_task
, atmel_sha_queue_task
,
2600 (unsigned long)sha_dd
);
2602 crypto_init_queue(&sha_dd
->queue
, ATMEL_SHA_QUEUE_LENGTH
);
2604 sha_dd
->io_base
= devm_platform_get_and_ioremap_resource(pdev
, 0, &sha_res
);
2605 if (IS_ERR(sha_dd
->io_base
)) {
2606 err
= PTR_ERR(sha_dd
->io_base
);
2607 goto err_tasklet_kill
;
2609 sha_dd
->phys_base
= sha_res
->start
;
2612 sha_dd
->irq
= platform_get_irq(pdev
, 0);
2613 if (sha_dd
->irq
< 0) {
2615 goto err_tasklet_kill
;
2618 err
= devm_request_irq(&pdev
->dev
, sha_dd
->irq
, atmel_sha_irq
,
2619 IRQF_SHARED
, "atmel-sha", sha_dd
);
2621 dev_err(dev
, "unable to request sha irq.\n");
2622 goto err_tasklet_kill
;
2625 /* Initializing the clock */
2626 sha_dd
->iclk
= devm_clk_get_prepared(&pdev
->dev
, "sha_clk");
2627 if (IS_ERR(sha_dd
->iclk
)) {
2628 dev_err(dev
, "clock initialization failed.\n");
2629 err
= PTR_ERR(sha_dd
->iclk
);
2630 goto err_tasklet_kill
;
2633 err
= atmel_sha_hw_version_init(sha_dd
);
2635 goto err_tasklet_kill
;
2637 atmel_sha_get_cap(sha_dd
);
2639 if (sha_dd
->caps
.has_dma
) {
2640 err
= atmel_sha_dma_init(sha_dd
);
2642 goto err_tasklet_kill
;
2644 dev_info(dev
, "using %s for DMA transfers\n",
2645 dma_chan_name(sha_dd
->dma_lch_in
.chan
));
2648 spin_lock(&atmel_sha
.lock
);
2649 list_add_tail(&sha_dd
->list
, &atmel_sha
.dev_list
);
2650 spin_unlock(&atmel_sha
.lock
);
2652 err
= atmel_sha_register_algs(sha_dd
);
2656 dev_info(dev
, "Atmel SHA1/SHA256%s%s\n",
2657 sha_dd
->caps
.has_sha224
? "/SHA224" : "",
2658 sha_dd
->caps
.has_sha_384_512
? "/SHA384/SHA512" : "");
2663 spin_lock(&atmel_sha
.lock
);
2664 list_del(&sha_dd
->list
);
2665 spin_unlock(&atmel_sha
.lock
);
2666 if (sha_dd
->caps
.has_dma
)
2667 atmel_sha_dma_cleanup(sha_dd
);
2669 tasklet_kill(&sha_dd
->queue_task
);
2670 tasklet_kill(&sha_dd
->done_task
);
2675 static void atmel_sha_remove(struct platform_device
*pdev
)
2677 struct atmel_sha_dev
*sha_dd
= platform_get_drvdata(pdev
);
2679 spin_lock(&atmel_sha
.lock
);
2680 list_del(&sha_dd
->list
);
2681 spin_unlock(&atmel_sha
.lock
);
2683 atmel_sha_unregister_algs(sha_dd
);
2685 tasklet_kill(&sha_dd
->queue_task
);
2686 tasklet_kill(&sha_dd
->done_task
);
2688 if (sha_dd
->caps
.has_dma
)
2689 atmel_sha_dma_cleanup(sha_dd
);
2692 static struct platform_driver atmel_sha_driver
= {
2693 .probe
= atmel_sha_probe
,
2694 .remove
= atmel_sha_remove
,
2696 .name
= "atmel_sha",
2697 .of_match_table
= atmel_sha_dt_ids
,
2701 module_platform_driver(atmel_sha_driver
);
2703 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2704 MODULE_LICENSE("GPL v2");
2705 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");