1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 2016 Broadcom
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/errno.h>
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/platform_device.h>
13 #include <linux/scatterlist.h>
14 #include <linux/crypto.h>
15 #include <linux/kthread.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/sched.h>
20 #include <linux/bitops.h>
22 #include <crypto/algapi.h>
23 #include <crypto/aead.h>
24 #include <crypto/internal/aead.h>
25 #include <crypto/aes.h>
26 #include <crypto/internal/des.h>
27 #include <crypto/hmac.h>
28 #include <crypto/md5.h>
29 #include <crypto/authenc.h>
30 #include <crypto/skcipher.h>
31 #include <crypto/hash.h>
32 #include <crypto/sha1.h>
33 #include <crypto/sha2.h>
34 #include <crypto/sha3.h>
42 /* ================= Device Structure ================== */
44 struct bcm_device_private iproc_priv
;
46 /* ==================== Parameters ===================== */
48 int flow_debug_logging
;
49 module_param(flow_debug_logging
, int, 0644);
50 MODULE_PARM_DESC(flow_debug_logging
, "Enable Flow Debug Logging");
52 int packet_debug_logging
;
53 module_param(packet_debug_logging
, int, 0644);
54 MODULE_PARM_DESC(packet_debug_logging
, "Enable Packet Debug Logging");
56 int debug_logging_sleep
;
57 module_param(debug_logging_sleep
, int, 0644);
58 MODULE_PARM_DESC(debug_logging_sleep
, "Packet Debug Logging Sleep");
61 * The value of these module parameters is used to set the priority for each
62 * algo type when this driver registers algos with the kernel crypto API.
63 * To use a priority other than the default, set the priority in the insmod or
64 * modprobe. Changing the module priority after init time has no effect.
66 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
67 * algos, but more preferred than generic software algos.
69 static int cipher_pri
= 150;
70 module_param(cipher_pri
, int, 0644);
71 MODULE_PARM_DESC(cipher_pri
, "Priority for cipher algos");
73 static int hash_pri
= 100;
74 module_param(hash_pri
, int, 0644);
75 MODULE_PARM_DESC(hash_pri
, "Priority for hash algos");
77 static int aead_pri
= 150;
78 module_param(aead_pri
, int, 0644);
79 MODULE_PARM_DESC(aead_pri
, "Priority for AEAD algos");
81 /* A type 3 BCM header, expected to precede the SPU header for SPU-M.
82 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
88 static char BCMHEADER
[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
90 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
91 * is set dynamically after reading SPU type from device tree.
93 #define BCM_HDR_LEN iproc_priv.bcm_hdr_len
95 /* min and max time to sleep before retrying when mbox queue is full. usec */
96 #define MBOX_SLEEP_MIN 800
97 #define MBOX_SLEEP_MAX 1000
100 * select_channel() - Select a SPU channel to handle a crypto request. Selects
101 * channel in round robin order.
103 * Return: channel index
105 static u8
select_channel(void)
107 u8 chan_idx
= atomic_inc_return(&iproc_priv
.next_chan
);
109 return chan_idx
% iproc_priv
.spu
.num_chan
;
113 * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to
114 * receive a SPU response message for an skcipher request. Includes buffers to
115 * catch SPU message headers and the response data.
116 * @mssg: mailbox message containing the receive sg
117 * @rctx: crypto request context
118 * @rx_frag_num: number of scatterlist elements required to hold the
119 * SPU response message
120 * @chunksize: Number of bytes of response data expected
121 * @stat_pad_len: Number of bytes required to pad the STAT field to
124 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
125 * when the request completes, whether the request is handled successfully or
133 spu_skcipher_rx_sg_create(struct brcm_message
*mssg
,
134 struct iproc_reqctx_s
*rctx
,
136 unsigned int chunksize
, u32 stat_pad_len
)
138 struct spu_hw
*spu
= &iproc_priv
.spu
;
139 struct scatterlist
*sg
; /* used to build sgs in mbox message */
140 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
141 u32 datalen
; /* Number of bytes of response data expected */
143 mssg
->spu
.dst
= kcalloc(rx_frag_num
, sizeof(struct scatterlist
),
149 sg_init_table(sg
, rx_frag_num
);
150 /* Space for SPU message header */
151 sg_set_buf(sg
++, rctx
->msg_buf
.spu_resp_hdr
, ctx
->spu_resp_hdr_len
);
153 /* If XTS tweak in payload, add buffer to receive encrypted tweak */
154 if ((ctx
->cipher
.mode
== CIPHER_MODE_XTS
) &&
155 spu
->spu_xts_tweak_in_payload())
156 sg_set_buf(sg
++, rctx
->msg_buf
.c
.supdt_tweak
,
159 /* Copy in each dst sg entry from request, up to chunksize */
160 datalen
= spu_msg_sg_add(&sg
, &rctx
->dst_sg
, &rctx
->dst_skip
,
161 rctx
->dst_nents
, chunksize
);
162 if (datalen
< chunksize
) {
163 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
164 __func__
, chunksize
, datalen
);
169 sg_set_buf(sg
++, rctx
->msg_buf
.rx_stat_pad
, stat_pad_len
);
171 memset(rctx
->msg_buf
.rx_stat
, 0, SPU_RX_STATUS_LEN
);
172 sg_set_buf(sg
, rctx
->msg_buf
.rx_stat
, spu
->spu_rx_status_len());
178 * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to
179 * send a SPU request message for an skcipher request. Includes SPU message
180 * headers and the request data.
181 * @mssg: mailbox message containing the transmit sg
182 * @rctx: crypto request context
183 * @tx_frag_num: number of scatterlist elements required to construct the
184 * SPU request message
185 * @chunksize: Number of bytes of request data
186 * @pad_len: Number of pad bytes
188 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
189 * when the request completes, whether the request is handled successfully or
197 spu_skcipher_tx_sg_create(struct brcm_message
*mssg
,
198 struct iproc_reqctx_s
*rctx
,
199 u8 tx_frag_num
, unsigned int chunksize
, u32 pad_len
)
201 struct spu_hw
*spu
= &iproc_priv
.spu
;
202 struct scatterlist
*sg
; /* used to build sgs in mbox message */
203 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
204 u32 datalen
; /* Number of bytes of response data expected */
207 mssg
->spu
.src
= kcalloc(tx_frag_num
, sizeof(struct scatterlist
),
209 if (unlikely(!mssg
->spu
.src
))
213 sg_init_table(sg
, tx_frag_num
);
215 sg_set_buf(sg
++, rctx
->msg_buf
.bcm_spu_req_hdr
,
216 BCM_HDR_LEN
+ ctx
->spu_req_hdr_len
);
218 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */
219 if ((ctx
->cipher
.mode
== CIPHER_MODE_XTS
) &&
220 spu
->spu_xts_tweak_in_payload())
221 sg_set_buf(sg
++, rctx
->msg_buf
.iv_ctr
, SPU_XTS_TWEAK_SIZE
);
223 /* Copy in each src sg entry from request, up to chunksize */
224 datalen
= spu_msg_sg_add(&sg
, &rctx
->src_sg
, &rctx
->src_skip
,
225 rctx
->src_nents
, chunksize
);
226 if (unlikely(datalen
< chunksize
)) {
227 pr_err("%s(): failed to copy src sg to mbox msg",
233 sg_set_buf(sg
++, rctx
->msg_buf
.spu_req_pad
, pad_len
);
235 stat_len
= spu
->spu_tx_status_len();
237 memset(rctx
->msg_buf
.tx_stat
, 0, stat_len
);
238 sg_set_buf(sg
, rctx
->msg_buf
.tx_stat
, stat_len
);
243 static int mailbox_send_message(struct brcm_message
*mssg
, u32 flags
,
248 struct device
*dev
= &(iproc_priv
.pdev
->dev
);
250 err
= mbox_send_message(iproc_priv
.mbox
[chan_idx
], mssg
);
251 if (flags
& CRYPTO_TFM_REQ_MAY_SLEEP
) {
252 while ((err
== -ENOBUFS
) && (retry_cnt
< SPU_MB_RETRY_MAX
)) {
254 * Mailbox queue is full. Since MAY_SLEEP is set, assume
255 * not in atomic context and we can wait and try again.
258 usleep_range(MBOX_SLEEP_MIN
, MBOX_SLEEP_MAX
);
259 err
= mbox_send_message(iproc_priv
.mbox
[chan_idx
],
261 atomic_inc(&iproc_priv
.mb_no_spc
);
265 atomic_inc(&iproc_priv
.mb_send_fail
);
269 /* Check error returned by mailbox controller */
271 if (unlikely(err
< 0)) {
272 dev_err(dev
, "message error %d", err
);
273 /* Signal txdone for mailbox channel */
276 /* Signal txdone for mailbox channel */
277 mbox_client_txdone(iproc_priv
.mbox
[chan_idx
], err
);
282 * handle_skcipher_req() - Submit as much of a block cipher request as fits in
283 * a single SPU request message, starting at the current position in the request
285 * @rctx: Crypto request context
287 * This may be called on the crypto API thread, or, when a request is so large
288 * it must be broken into multiple SPU messages, on the thread used to invoke
289 * the response callback. When requests are broken into multiple SPU
290 * messages, we assume subsequent messages depend on previous results, and
291 * thus always wait for previous results before submitting the next message.
292 * Because requests are submitted in lock step like this, there is no need
293 * to synchronize access to request data structures.
295 * Return: -EINPROGRESS: request has been accepted and result will be returned
297 * Any other value indicates an error
299 static int handle_skcipher_req(struct iproc_reqctx_s
*rctx
)
301 struct spu_hw
*spu
= &iproc_priv
.spu
;
302 struct crypto_async_request
*areq
= rctx
->parent
;
303 struct skcipher_request
*req
=
304 container_of(areq
, struct skcipher_request
, base
);
305 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
306 struct spu_cipher_parms cipher_parms
;
308 unsigned int chunksize
; /* Num bytes of request to submit */
309 int remaining
; /* Bytes of request still to process */
310 int chunk_start
; /* Beginning of data for current SPU msg */
312 /* IV or ctr value to use in this SPU msg */
313 u8 local_iv_ctr
[MAX_IV_SIZE
];
314 u32 stat_pad_len
; /* num bytes to align status field */
315 u32 pad_len
; /* total length of all padding */
316 struct brcm_message
*mssg
; /* mailbox message */
318 /* number of entries in src and dst sg in mailbox message. */
319 u8 rx_frag_num
= 2; /* response header and STATUS */
320 u8 tx_frag_num
= 1; /* request header */
322 flow_log("%s\n", __func__
);
324 cipher_parms
.alg
= ctx
->cipher
.alg
;
325 cipher_parms
.mode
= ctx
->cipher
.mode
;
326 cipher_parms
.type
= ctx
->cipher_type
;
327 cipher_parms
.key_len
= ctx
->enckeylen
;
328 cipher_parms
.key_buf
= ctx
->enckey
;
329 cipher_parms
.iv_buf
= local_iv_ctr
;
330 cipher_parms
.iv_len
= rctx
->iv_ctr_len
;
332 mssg
= &rctx
->mb_mssg
;
333 chunk_start
= rctx
->src_sent
;
334 remaining
= rctx
->total_todo
- chunk_start
;
336 /* determine the chunk we are breaking off and update the indexes */
337 if ((ctx
->max_payload
!= SPU_MAX_PAYLOAD_INF
) &&
338 (remaining
> ctx
->max_payload
))
339 chunksize
= ctx
->max_payload
;
341 chunksize
= remaining
;
343 rctx
->src_sent
+= chunksize
;
344 rctx
->total_sent
= rctx
->src_sent
;
346 /* Count number of sg entries to be included in this request */
347 rctx
->src_nents
= spu_sg_count(rctx
->src_sg
, rctx
->src_skip
, chunksize
);
348 rctx
->dst_nents
= spu_sg_count(rctx
->dst_sg
, rctx
->dst_skip
, chunksize
);
350 if ((ctx
->cipher
.mode
== CIPHER_MODE_CBC
) &&
351 rctx
->is_encrypt
&& chunk_start
)
353 * Encrypting non-first first chunk. Copy last block of
354 * previous result to IV for this chunk.
356 sg_copy_part_to_buf(req
->dst
, rctx
->msg_buf
.iv_ctr
,
358 chunk_start
- rctx
->iv_ctr_len
);
360 if (rctx
->iv_ctr_len
) {
361 /* get our local copy of the iv */
362 __builtin_memcpy(local_iv_ctr
, rctx
->msg_buf
.iv_ctr
,
365 /* generate the next IV if possible */
366 if ((ctx
->cipher
.mode
== CIPHER_MODE_CBC
) &&
369 * CBC Decrypt: next IV is the last ciphertext block in
372 sg_copy_part_to_buf(req
->src
, rctx
->msg_buf
.iv_ctr
,
374 rctx
->src_sent
- rctx
->iv_ctr_len
);
375 } else if (ctx
->cipher
.mode
== CIPHER_MODE_CTR
) {
377 * The SPU hardware increments the counter once for
378 * each AES block of 16 bytes. So update the counter
379 * for the next chunk, if there is one. Note that for
380 * this chunk, the counter has already been copied to
381 * local_iv_ctr. We can assume a block size of 16,
382 * because we only support CTR mode for AES, not for
383 * any other cipher alg.
385 add_to_ctr(rctx
->msg_buf
.iv_ctr
, chunksize
>> 4);
389 if (ctx
->max_payload
== SPU_MAX_PAYLOAD_INF
)
390 flow_log("max_payload infinite\n");
392 flow_log("max_payload %u\n", ctx
->max_payload
);
394 flow_log("sent:%u start:%u remains:%u size:%u\n",
395 rctx
->src_sent
, chunk_start
, remaining
, chunksize
);
397 /* Copy SPU header template created at setkey time */
398 memcpy(rctx
->msg_buf
.bcm_spu_req_hdr
, ctx
->bcm_spu_req_hdr
,
399 sizeof(rctx
->msg_buf
.bcm_spu_req_hdr
));
401 spu
->spu_cipher_req_finish(rctx
->msg_buf
.bcm_spu_req_hdr
+ BCM_HDR_LEN
,
402 ctx
->spu_req_hdr_len
, !(rctx
->is_encrypt
),
403 &cipher_parms
, chunksize
);
405 atomic64_add(chunksize
, &iproc_priv
.bytes_out
);
407 stat_pad_len
= spu
->spu_wordalign_padlen(chunksize
);
410 pad_len
= stat_pad_len
;
413 spu
->spu_request_pad(rctx
->msg_buf
.spu_req_pad
, 0,
414 0, ctx
->auth
.alg
, ctx
->auth
.mode
,
415 rctx
->total_sent
, stat_pad_len
);
418 spu
->spu_dump_msg_hdr(rctx
->msg_buf
.bcm_spu_req_hdr
+ BCM_HDR_LEN
,
419 ctx
->spu_req_hdr_len
);
420 packet_log("payload:\n");
421 dump_sg(rctx
->src_sg
, rctx
->src_skip
, chunksize
);
422 packet_dump(" pad: ", rctx
->msg_buf
.spu_req_pad
, pad_len
);
425 * Build mailbox message containing SPU request msg and rx buffers
426 * to catch response message
428 memset(mssg
, 0, sizeof(*mssg
));
429 mssg
->type
= BRCM_MESSAGE_SPU
;
430 mssg
->ctx
= rctx
; /* Will be returned in response */
432 /* Create rx scatterlist to catch result */
433 rx_frag_num
+= rctx
->dst_nents
;
435 if ((ctx
->cipher
.mode
== CIPHER_MODE_XTS
) &&
436 spu
->spu_xts_tweak_in_payload())
437 rx_frag_num
++; /* extra sg to insert tweak */
439 err
= spu_skcipher_rx_sg_create(mssg
, rctx
, rx_frag_num
, chunksize
,
444 /* Create tx scatterlist containing SPU request message */
445 tx_frag_num
+= rctx
->src_nents
;
446 if (spu
->spu_tx_status_len())
449 if ((ctx
->cipher
.mode
== CIPHER_MODE_XTS
) &&
450 spu
->spu_xts_tweak_in_payload())
451 tx_frag_num
++; /* extra sg to insert tweak */
453 err
= spu_skcipher_tx_sg_create(mssg
, rctx
, tx_frag_num
, chunksize
,
458 err
= mailbox_send_message(mssg
, req
->base
.flags
, rctx
->chan_idx
);
459 if (unlikely(err
< 0))
466 * handle_skcipher_resp() - Process a block cipher SPU response. Updates the
467 * total received count for the request and updates global stats.
468 * @rctx: Crypto request context
470 static void handle_skcipher_resp(struct iproc_reqctx_s
*rctx
)
472 struct spu_hw
*spu
= &iproc_priv
.spu
;
473 struct crypto_async_request
*areq
= rctx
->parent
;
474 struct skcipher_request
*req
= skcipher_request_cast(areq
);
475 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
478 /* See how much data was returned */
479 payload_len
= spu
->spu_payload_length(rctx
->msg_buf
.spu_resp_hdr
);
482 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
483 * encrypted tweak ("i") value; we don't count those.
485 if ((ctx
->cipher
.mode
== CIPHER_MODE_XTS
) &&
486 spu
->spu_xts_tweak_in_payload() &&
487 (payload_len
>= SPU_XTS_TWEAK_SIZE
))
488 payload_len
-= SPU_XTS_TWEAK_SIZE
;
490 atomic64_add(payload_len
, &iproc_priv
.bytes_in
);
492 flow_log("%s() offset: %u, bd_len: %u BD:\n",
493 __func__
, rctx
->total_received
, payload_len
);
495 dump_sg(req
->dst
, rctx
->total_received
, payload_len
);
497 rctx
->total_received
+= payload_len
;
498 if (rctx
->total_received
== rctx
->total_todo
) {
499 atomic_inc(&iproc_priv
.op_counts
[SPU_OP_CIPHER
]);
501 &iproc_priv
.cipher_cnt
[ctx
->cipher
.alg
][ctx
->cipher
.mode
]);
506 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
507 * receive a SPU response message for an ahash request.
508 * @mssg: mailbox message containing the receive sg
509 * @rctx: crypto request context
510 * @rx_frag_num: number of scatterlist elements required to hold the
511 * SPU response message
512 * @digestsize: length of hash digest, in bytes
513 * @stat_pad_len: Number of bytes required to pad the STAT field to
516 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
517 * when the request completes, whether the request is handled successfully or
525 spu_ahash_rx_sg_create(struct brcm_message
*mssg
,
526 struct iproc_reqctx_s
*rctx
,
527 u8 rx_frag_num
, unsigned int digestsize
,
530 struct spu_hw
*spu
= &iproc_priv
.spu
;
531 struct scatterlist
*sg
; /* used to build sgs in mbox message */
532 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
534 mssg
->spu
.dst
= kcalloc(rx_frag_num
, sizeof(struct scatterlist
),
540 sg_init_table(sg
, rx_frag_num
);
541 /* Space for SPU message header */
542 sg_set_buf(sg
++, rctx
->msg_buf
.spu_resp_hdr
, ctx
->spu_resp_hdr_len
);
544 /* Space for digest */
545 sg_set_buf(sg
++, rctx
->msg_buf
.digest
, digestsize
);
548 sg_set_buf(sg
++, rctx
->msg_buf
.rx_stat_pad
, stat_pad_len
);
550 memset(rctx
->msg_buf
.rx_stat
, 0, SPU_RX_STATUS_LEN
);
551 sg_set_buf(sg
, rctx
->msg_buf
.rx_stat
, spu
->spu_rx_status_len());
556 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send
557 * a SPU request message for an ahash request. Includes SPU message headers and
559 * @mssg: mailbox message containing the transmit sg
560 * @rctx: crypto request context
561 * @tx_frag_num: number of scatterlist elements required to construct the
562 * SPU request message
563 * @spu_hdr_len: length in bytes of SPU message header
564 * @hash_carry_len: Number of bytes of data carried over from previous req
565 * @new_data_len: Number of bytes of new request data
566 * @pad_len: Number of pad bytes
568 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
569 * when the request completes, whether the request is handled successfully or
577 spu_ahash_tx_sg_create(struct brcm_message
*mssg
,
578 struct iproc_reqctx_s
*rctx
,
581 unsigned int hash_carry_len
,
582 unsigned int new_data_len
, u32 pad_len
)
584 struct spu_hw
*spu
= &iproc_priv
.spu
;
585 struct scatterlist
*sg
; /* used to build sgs in mbox message */
586 u32 datalen
; /* Number of bytes of response data expected */
589 mssg
->spu
.src
= kcalloc(tx_frag_num
, sizeof(struct scatterlist
),
595 sg_init_table(sg
, tx_frag_num
);
597 sg_set_buf(sg
++, rctx
->msg_buf
.bcm_spu_req_hdr
,
598 BCM_HDR_LEN
+ spu_hdr_len
);
601 sg_set_buf(sg
++, rctx
->hash_carry
, hash_carry_len
);
604 /* Copy in each src sg entry from request, up to chunksize */
605 datalen
= spu_msg_sg_add(&sg
, &rctx
->src_sg
, &rctx
->src_skip
,
606 rctx
->src_nents
, new_data_len
);
607 if (datalen
< new_data_len
) {
608 pr_err("%s(): failed to copy src sg to mbox msg",
615 sg_set_buf(sg
++, rctx
->msg_buf
.spu_req_pad
, pad_len
);
617 stat_len
= spu
->spu_tx_status_len();
619 memset(rctx
->msg_buf
.tx_stat
, 0, stat_len
);
620 sg_set_buf(sg
, rctx
->msg_buf
.tx_stat
, stat_len
);
627 * handle_ahash_req() - Process an asynchronous hash request from the crypto
629 * @rctx: Crypto request context
631 * Builds a SPU request message embedded in a mailbox message and submits the
632 * mailbox message on a selected mailbox channel. The SPU request message is
633 * constructed as a scatterlist, including entries from the crypto API's
634 * src scatterlist to avoid copying the data to be hashed. This function is
635 * called either on the thread from the crypto API, or, in the case that the
636 * crypto API request is too large to fit in a single SPU request message,
637 * on the thread that invokes the receive callback with a response message.
638 * Because some operations require the response from one chunk before the next
639 * chunk can be submitted, we always wait for the response for the previous
640 * chunk before submitting the next chunk. Because requests are submitted in
641 * lock step like this, there is no need to synchronize access to request data
645 * -EINPROGRESS: request has been submitted to SPU and response will be
646 * returned asynchronously
647 * -EAGAIN: non-final request included a small amount of data, which for
648 * efficiency we did not submit to the SPU, but instead stored
649 * to be submitted to the SPU with the next part of the request
650 * other: an error code
652 static int handle_ahash_req(struct iproc_reqctx_s
*rctx
)
654 struct spu_hw
*spu
= &iproc_priv
.spu
;
655 struct crypto_async_request
*areq
= rctx
->parent
;
656 struct ahash_request
*req
= ahash_request_cast(areq
);
657 struct crypto_ahash
*ahash
= crypto_ahash_reqtfm(req
);
658 struct crypto_tfm
*tfm
= crypto_ahash_tfm(ahash
);
659 unsigned int blocksize
= crypto_tfm_alg_blocksize(tfm
);
660 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
662 /* number of bytes still to be hashed in this req */
663 unsigned int nbytes_to_hash
= 0;
665 unsigned int chunksize
= 0; /* length of hash carry + new data */
667 * length of new data, not from hash carry, to be submitted in
670 unsigned int new_data_len
;
672 unsigned int __maybe_unused chunk_start
= 0;
673 u32 db_size
; /* Length of data field, incl gcm and hash padding */
674 int pad_len
= 0; /* total pad len, including gcm, hash, stat padding */
675 u32 data_pad_len
= 0; /* length of GCM/CCM padding */
676 u32 stat_pad_len
= 0; /* length of padding to align STATUS word */
677 struct brcm_message
*mssg
; /* mailbox message */
678 struct spu_request_opts req_opts
;
679 struct spu_cipher_parms cipher_parms
;
680 struct spu_hash_parms hash_parms
;
681 struct spu_aead_parms aead_parms
;
682 unsigned int local_nbuf
;
684 unsigned int digestsize
;
688 * number of entries in src and dst sg. Always includes SPU msg header.
689 * rx always includes a buffer to catch digest and STATUS.
694 flow_log("total_todo %u, total_sent %u\n",
695 rctx
->total_todo
, rctx
->total_sent
);
697 memset(&req_opts
, 0, sizeof(req_opts
));
698 memset(&cipher_parms
, 0, sizeof(cipher_parms
));
699 memset(&hash_parms
, 0, sizeof(hash_parms
));
700 memset(&aead_parms
, 0, sizeof(aead_parms
));
702 req_opts
.bd_suppress
= true;
703 hash_parms
.alg
= ctx
->auth
.alg
;
704 hash_parms
.mode
= ctx
->auth
.mode
;
705 hash_parms
.type
= HASH_TYPE_NONE
;
706 hash_parms
.key_buf
= (u8
*)ctx
->authkey
;
707 hash_parms
.key_len
= ctx
->authkeylen
;
710 * For hash algorithms below assignment looks bit odd but
711 * it's needed for AES-XCBC and AES-CMAC hash algorithms
712 * to differentiate between 128, 192, 256 bit key values.
713 * Based on the key values, hash algorithm is selected.
714 * For example for 128 bit key, hash algorithm is AES-128.
716 cipher_parms
.type
= ctx
->cipher_type
;
718 mssg
= &rctx
->mb_mssg
;
719 chunk_start
= rctx
->src_sent
;
722 * Compute the amount remaining to hash. This may include data
723 * carried over from previous requests.
725 nbytes_to_hash
= rctx
->total_todo
- rctx
->total_sent
;
726 chunksize
= nbytes_to_hash
;
727 if ((ctx
->max_payload
!= SPU_MAX_PAYLOAD_INF
) &&
728 (chunksize
> ctx
->max_payload
))
729 chunksize
= ctx
->max_payload
;
732 * If this is not a final request and the request data is not a multiple
733 * of a full block, then simply park the extra data and prefix it to the
734 * data for the next request.
736 if (!rctx
->is_final
) {
737 u8
*dest
= rctx
->hash_carry
+ rctx
->hash_carry_len
;
738 u16 new_len
; /* len of data to add to hash carry */
740 rem
= chunksize
% blocksize
; /* remainder */
742 /* chunksize not a multiple of blocksize */
744 if (chunksize
== 0) {
745 /* Don't have a full block to submit to hw */
746 new_len
= rem
- rctx
->hash_carry_len
;
747 sg_copy_part_to_buf(req
->src
, dest
, new_len
,
749 rctx
->hash_carry_len
= rem
;
750 flow_log("Exiting with hash carry len: %u\n",
751 rctx
->hash_carry_len
);
752 packet_dump(" buf: ",
754 rctx
->hash_carry_len
);
760 /* if we have hash carry, then prefix it to the data in this request */
761 local_nbuf
= rctx
->hash_carry_len
;
762 rctx
->hash_carry_len
= 0;
765 new_data_len
= chunksize
- local_nbuf
;
767 /* Count number of sg entries to be used in this request */
768 rctx
->src_nents
= spu_sg_count(rctx
->src_sg
, rctx
->src_skip
,
771 /* AES hashing keeps key size in type field, so need to copy it here */
772 if (hash_parms
.alg
== HASH_ALG_AES
)
773 hash_parms
.type
= (enum hash_type
)cipher_parms
.type
;
775 hash_parms
.type
= spu
->spu_hash_type(rctx
->total_sent
);
777 digestsize
= spu
->spu_digest_size(ctx
->digestsize
, ctx
->auth
.alg
,
779 hash_parms
.digestsize
= digestsize
;
781 /* update the indexes */
782 rctx
->total_sent
+= chunksize
;
783 /* if you sent a prebuf then that wasn't from this req->src */
784 rctx
->src_sent
+= new_data_len
;
786 if ((rctx
->total_sent
== rctx
->total_todo
) && rctx
->is_final
)
787 hash_parms
.pad_len
= spu
->spu_hash_pad_len(hash_parms
.alg
,
793 * If a non-first chunk, then include the digest returned from the
794 * previous chunk so that hw can add to it (except for AES types).
796 if ((hash_parms
.type
== HASH_TYPE_UPDT
) &&
797 (hash_parms
.alg
!= HASH_ALG_AES
)) {
798 hash_parms
.key_buf
= rctx
->incr_hash
;
799 hash_parms
.key_len
= digestsize
;
802 atomic64_add(chunksize
, &iproc_priv
.bytes_out
);
804 flow_log("%s() final: %u nbuf: %u ",
805 __func__
, rctx
->is_final
, local_nbuf
);
807 if (ctx
->max_payload
== SPU_MAX_PAYLOAD_INF
)
808 flow_log("max_payload infinite\n");
810 flow_log("max_payload %u\n", ctx
->max_payload
);
812 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start
, chunksize
);
814 /* Prepend SPU header with type 3 BCM header */
815 memcpy(rctx
->msg_buf
.bcm_spu_req_hdr
, BCMHEADER
, BCM_HDR_LEN
);
817 hash_parms
.prebuf_len
= local_nbuf
;
818 spu_hdr_len
= spu
->spu_create_request(rctx
->msg_buf
.bcm_spu_req_hdr
+
820 &req_opts
, &cipher_parms
,
821 &hash_parms
, &aead_parms
,
824 if (spu_hdr_len
== 0) {
825 pr_err("Failed to create SPU request header\n");
830 * Determine total length of padding required. Put all padding in one
833 data_pad_len
= spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
, chunksize
);
834 db_size
= spu_real_db_size(0, 0, local_nbuf
, new_data_len
,
835 0, 0, hash_parms
.pad_len
);
836 if (spu
->spu_tx_status_len())
837 stat_pad_len
= spu
->spu_wordalign_padlen(db_size
);
840 pad_len
= hash_parms
.pad_len
+ data_pad_len
+ stat_pad_len
;
843 spu
->spu_request_pad(rctx
->msg_buf
.spu_req_pad
, data_pad_len
,
844 hash_parms
.pad_len
, ctx
->auth
.alg
,
845 ctx
->auth
.mode
, rctx
->total_sent
,
849 spu
->spu_dump_msg_hdr(rctx
->msg_buf
.bcm_spu_req_hdr
+ BCM_HDR_LEN
,
851 packet_dump(" prebuf: ", rctx
->hash_carry
, local_nbuf
);
853 dump_sg(rctx
->src_sg
, rctx
->src_skip
, new_data_len
);
854 packet_dump(" pad: ", rctx
->msg_buf
.spu_req_pad
, pad_len
);
857 * Build mailbox message containing SPU request msg and rx buffers
858 * to catch response message
860 memset(mssg
, 0, sizeof(*mssg
));
861 mssg
->type
= BRCM_MESSAGE_SPU
;
862 mssg
->ctx
= rctx
; /* Will be returned in response */
864 /* Create rx scatterlist to catch result */
865 err
= spu_ahash_rx_sg_create(mssg
, rctx
, rx_frag_num
, digestsize
,
870 /* Create tx scatterlist containing SPU request message */
871 tx_frag_num
+= rctx
->src_nents
;
872 if (spu
->spu_tx_status_len())
874 err
= spu_ahash_tx_sg_create(mssg
, rctx
, tx_frag_num
, spu_hdr_len
,
875 local_nbuf
, new_data_len
, pad_len
);
879 err
= mailbox_send_message(mssg
, req
->base
.flags
, rctx
->chan_idx
);
880 if (unlikely(err
< 0))
887 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
888 * for an HMAC request.
889 * @req: The HMAC request from the crypto API
890 * @ctx: The session context
892 * Return: 0 if synchronous hash operation successful
893 * -EINVAL if the hash algo is unrecognized
894 * any other value indicates an error
896 static int spu_hmac_outer_hash(struct ahash_request
*req
,
897 struct iproc_ctx_s
*ctx
)
899 struct crypto_ahash
*ahash
= crypto_ahash_reqtfm(req
);
900 unsigned int blocksize
=
901 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash
));
904 switch (ctx
->auth
.alg
) {
906 rc
= do_shash("md5", req
->result
, ctx
->opad
, blocksize
,
907 req
->result
, ctx
->digestsize
, NULL
, 0);
910 rc
= do_shash("sha1", req
->result
, ctx
->opad
, blocksize
,
911 req
->result
, ctx
->digestsize
, NULL
, 0);
913 case HASH_ALG_SHA224
:
914 rc
= do_shash("sha224", req
->result
, ctx
->opad
, blocksize
,
915 req
->result
, ctx
->digestsize
, NULL
, 0);
917 case HASH_ALG_SHA256
:
918 rc
= do_shash("sha256", req
->result
, ctx
->opad
, blocksize
,
919 req
->result
, ctx
->digestsize
, NULL
, 0);
921 case HASH_ALG_SHA384
:
922 rc
= do_shash("sha384", req
->result
, ctx
->opad
, blocksize
,
923 req
->result
, ctx
->digestsize
, NULL
, 0);
925 case HASH_ALG_SHA512
:
926 rc
= do_shash("sha512", req
->result
, ctx
->opad
, blocksize
,
927 req
->result
, ctx
->digestsize
, NULL
, 0);
930 pr_err("%s() Error : unknown hmac type\n", __func__
);
937 * ahash_req_done() - Process a hash result from the SPU hardware.
938 * @rctx: Crypto request context
940 * Return: 0 if successful
943 static int ahash_req_done(struct iproc_reqctx_s
*rctx
)
945 struct spu_hw
*spu
= &iproc_priv
.spu
;
946 struct crypto_async_request
*areq
= rctx
->parent
;
947 struct ahash_request
*req
= ahash_request_cast(areq
);
948 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
951 memcpy(req
->result
, rctx
->msg_buf
.digest
, ctx
->digestsize
);
953 if (spu
->spu_type
== SPU_TYPE_SPUM
) {
954 /* byte swap the output from the UPDT function to network byte
957 if (ctx
->auth
.alg
== HASH_ALG_MD5
) {
958 __swab32s((u32
*)req
->result
);
959 __swab32s(((u32
*)req
->result
) + 1);
960 __swab32s(((u32
*)req
->result
) + 2);
961 __swab32s(((u32
*)req
->result
) + 3);
962 __swab32s(((u32
*)req
->result
) + 4);
966 flow_dump(" digest ", req
->result
, ctx
->digestsize
);
968 /* if this an HMAC then do the outer hash */
969 if (rctx
->is_sw_hmac
) {
970 err
= spu_hmac_outer_hash(req
, ctx
);
973 flow_dump(" hmac: ", req
->result
, ctx
->digestsize
);
976 if (rctx
->is_sw_hmac
|| ctx
->auth
.mode
== HASH_MODE_HMAC
) {
977 atomic_inc(&iproc_priv
.op_counts
[SPU_OP_HMAC
]);
978 atomic_inc(&iproc_priv
.hmac_cnt
[ctx
->auth
.alg
]);
980 atomic_inc(&iproc_priv
.op_counts
[SPU_OP_HASH
]);
981 atomic_inc(&iproc_priv
.hash_cnt
[ctx
->auth
.alg
]);
988 * handle_ahash_resp() - Process a SPU response message for a hash request.
989 * Checks if the entire crypto API request has been processed, and if so,
990 * invokes post processing on the result.
991 * @rctx: Crypto request context
993 static void handle_ahash_resp(struct iproc_reqctx_s
*rctx
)
995 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
996 struct crypto_async_request
*areq
= rctx
->parent
;
997 struct ahash_request
*req
= ahash_request_cast(areq
);
998 struct crypto_ahash
*ahash
= crypto_ahash_reqtfm(req
);
999 unsigned int blocksize
=
1000 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash
));
1002 * Save hash to use as input to next op if incremental. Might be copying
1003 * too much, but that's easier than figuring out actual digest size here
1005 memcpy(rctx
->incr_hash
, rctx
->msg_buf
.digest
, MAX_DIGEST_SIZE
);
1007 flow_log("%s() blocksize:%u digestsize:%u\n",
1008 __func__
, blocksize
, ctx
->digestsize
);
1010 atomic64_add(ctx
->digestsize
, &iproc_priv
.bytes_in
);
1012 if (rctx
->is_final
&& (rctx
->total_sent
== rctx
->total_todo
))
1013 ahash_req_done(rctx
);
1017 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1018 * a SPU response message for an AEAD request. Includes buffers to catch SPU
1019 * message headers and the response data.
1020 * @mssg: mailbox message containing the receive sg
1021 * @req: Crypto API request
1022 * @rctx: crypto request context
1023 * @rx_frag_num: number of scatterlist elements required to hold the
1024 * SPU response message
1025 * @assoc_len: Length of associated data included in the crypto request
1026 * @ret_iv_len: Length of IV returned in response
1027 * @resp_len: Number of bytes of response data expected to be written to
1028 * dst buffer from crypto API
1029 * @digestsize: Length of hash digest, in bytes
1030 * @stat_pad_len: Number of bytes required to pad the STAT field to
1033 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1034 * when the request completes, whether the request is handled successfully or
1035 * there is an error.
1041 static int spu_aead_rx_sg_create(struct brcm_message
*mssg
,
1042 struct aead_request
*req
,
1043 struct iproc_reqctx_s
*rctx
,
1045 unsigned int assoc_len
,
1046 u32 ret_iv_len
, unsigned int resp_len
,
1047 unsigned int digestsize
, u32 stat_pad_len
)
1049 struct spu_hw
*spu
= &iproc_priv
.spu
;
1050 struct scatterlist
*sg
; /* used to build sgs in mbox message */
1051 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
1052 u32 datalen
; /* Number of bytes of response data expected */
1056 if (ctx
->is_rfc4543
) {
1057 /* RFC4543: only pad after data, not after AAD */
1058 data_padlen
= spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
,
1059 assoc_len
+ resp_len
);
1060 assoc_buf_len
= assoc_len
;
1062 data_padlen
= spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
,
1064 assoc_buf_len
= spu
->spu_assoc_resp_len(ctx
->cipher
.mode
,
1065 assoc_len
, ret_iv_len
,
1069 if (ctx
->cipher
.mode
== CIPHER_MODE_CCM
)
1070 /* ICV (after data) must be in the next 32-bit word for CCM */
1071 data_padlen
+= spu
->spu_wordalign_padlen(assoc_buf_len
+
1076 /* have to catch gcm pad in separate buffer */
1079 mssg
->spu
.dst
= kcalloc(rx_frag_num
, sizeof(struct scatterlist
),
1085 sg_init_table(sg
, rx_frag_num
);
1087 /* Space for SPU message header */
1088 sg_set_buf(sg
++, rctx
->msg_buf
.spu_resp_hdr
, ctx
->spu_resp_hdr_len
);
1090 if (assoc_buf_len
) {
1092 * Don't write directly to req->dst, because SPU may pad the
1093 * assoc data in the response
1095 memset(rctx
->msg_buf
.a
.resp_aad
, 0, assoc_buf_len
);
1096 sg_set_buf(sg
++, rctx
->msg_buf
.a
.resp_aad
, assoc_buf_len
);
1101 * Copy in each dst sg entry from request, up to chunksize.
1102 * dst sg catches just the data. digest caught in separate buf.
1104 datalen
= spu_msg_sg_add(&sg
, &rctx
->dst_sg
, &rctx
->dst_skip
,
1105 rctx
->dst_nents
, resp_len
);
1106 if (datalen
< (resp_len
)) {
1107 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1108 __func__
, resp_len
, datalen
);
1113 /* If GCM/CCM data is padded, catch padding in separate buffer */
1115 memset(rctx
->msg_buf
.a
.gcmpad
, 0, data_padlen
);
1116 sg_set_buf(sg
++, rctx
->msg_buf
.a
.gcmpad
, data_padlen
);
1119 /* Always catch ICV in separate buffer */
1120 sg_set_buf(sg
++, rctx
->msg_buf
.digest
, digestsize
);
1122 flow_log("stat_pad_len %u\n", stat_pad_len
);
1124 memset(rctx
->msg_buf
.rx_stat_pad
, 0, stat_pad_len
);
1125 sg_set_buf(sg
++, rctx
->msg_buf
.rx_stat_pad
, stat_pad_len
);
1128 memset(rctx
->msg_buf
.rx_stat
, 0, SPU_RX_STATUS_LEN
);
1129 sg_set_buf(sg
, rctx
->msg_buf
.rx_stat
, spu
->spu_rx_status_len());
1135 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1136 * SPU request message for an AEAD request. Includes SPU message headers and the
1138 * @mssg: mailbox message containing the transmit sg
1139 * @rctx: crypto request context
1140 * @tx_frag_num: number of scatterlist elements required to construct the
1141 * SPU request message
1142 * @spu_hdr_len: length of SPU message header in bytes
1143 * @assoc: crypto API associated data scatterlist
1144 * @assoc_len: length of associated data
1145 * @assoc_nents: number of scatterlist entries containing assoc data
1146 * @aead_iv_len: length of AEAD IV, if included
1147 * @chunksize: Number of bytes of request data
1148 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1149 * @pad_len: Number of pad bytes
1150 * @incl_icv: If true, write separate ICV buffer after data and
1153 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1154 * when the request completes, whether the request is handled successfully or
1155 * there is an error.
1161 static int spu_aead_tx_sg_create(struct brcm_message
*mssg
,
1162 struct iproc_reqctx_s
*rctx
,
1165 struct scatterlist
*assoc
,
1166 unsigned int assoc_len
,
1168 unsigned int aead_iv_len
,
1169 unsigned int chunksize
,
1170 u32 aad_pad_len
, u32 pad_len
, bool incl_icv
)
1172 struct spu_hw
*spu
= &iproc_priv
.spu
;
1173 struct scatterlist
*sg
; /* used to build sgs in mbox message */
1174 struct scatterlist
*assoc_sg
= assoc
;
1175 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
1176 u32 datalen
; /* Number of bytes of data to write */
1177 u32 written
; /* Number of bytes of data written */
1178 u32 assoc_offset
= 0;
1181 mssg
->spu
.src
= kcalloc(tx_frag_num
, sizeof(struct scatterlist
),
1187 sg_init_table(sg
, tx_frag_num
);
1189 sg_set_buf(sg
++, rctx
->msg_buf
.bcm_spu_req_hdr
,
1190 BCM_HDR_LEN
+ spu_hdr_len
);
1193 /* Copy in each associated data sg entry from request */
1194 written
= spu_msg_sg_add(&sg
, &assoc_sg
, &assoc_offset
,
1195 assoc_nents
, assoc_len
);
1196 if (written
< assoc_len
) {
1197 pr_err("%s(): failed to copy assoc sg to mbox msg",
1204 sg_set_buf(sg
++, rctx
->msg_buf
.iv_ctr
, aead_iv_len
);
1207 memset(rctx
->msg_buf
.a
.req_aad_pad
, 0, aad_pad_len
);
1208 sg_set_buf(sg
++, rctx
->msg_buf
.a
.req_aad_pad
, aad_pad_len
);
1211 datalen
= chunksize
;
1212 if ((chunksize
> ctx
->digestsize
) && incl_icv
)
1213 datalen
-= ctx
->digestsize
;
1215 /* For aead, a single msg should consume the entire src sg */
1216 written
= spu_msg_sg_add(&sg
, &rctx
->src_sg
, &rctx
->src_skip
,
1217 rctx
->src_nents
, datalen
);
1218 if (written
< datalen
) {
1219 pr_err("%s(): failed to copy src sg to mbox msg",
1226 memset(rctx
->msg_buf
.spu_req_pad
, 0, pad_len
);
1227 sg_set_buf(sg
++, rctx
->msg_buf
.spu_req_pad
, pad_len
);
1231 sg_set_buf(sg
++, rctx
->msg_buf
.digest
, ctx
->digestsize
);
1233 stat_len
= spu
->spu_tx_status_len();
1235 memset(rctx
->msg_buf
.tx_stat
, 0, stat_len
);
1236 sg_set_buf(sg
, rctx
->msg_buf
.tx_stat
, stat_len
);
1242 * handle_aead_req() - Submit a SPU request message for the next chunk of the
1243 * current AEAD request.
1244 * @rctx: Crypto request context
1246 * Unlike other operation types, we assume the length of the request fits in
1247 * a single SPU request message. aead_enqueue() makes sure this is true.
1248 * Comments for other op types regarding threads applies here as well.
1250 * Unlike incremental hash ops, where the spu returns the entire hash for
1251 * truncated algs like sha-224, the SPU returns just the truncated hash in
1252 * response to aead requests. So digestsize is always ctx->digestsize here.
1254 * Return: -EINPROGRESS: crypto request has been accepted and result will be
1255 * returned asynchronously
1256 * Any other value indicates an error
1258 static int handle_aead_req(struct iproc_reqctx_s
*rctx
)
1260 struct spu_hw
*spu
= &iproc_priv
.spu
;
1261 struct crypto_async_request
*areq
= rctx
->parent
;
1262 struct aead_request
*req
= container_of(areq
,
1263 struct aead_request
, base
);
1264 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
1266 unsigned int chunksize
;
1267 unsigned int resp_len
;
1272 struct brcm_message
*mssg
; /* mailbox message */
1273 struct spu_request_opts req_opts
;
1274 struct spu_cipher_parms cipher_parms
;
1275 struct spu_hash_parms hash_parms
;
1276 struct spu_aead_parms aead_parms
;
1277 int assoc_nents
= 0;
1278 bool incl_icv
= false;
1279 unsigned int digestsize
= ctx
->digestsize
;
1281 /* number of entries in src and dst sg. Always includes SPU msg header.
1283 u8 rx_frag_num
= 2; /* and STATUS */
1286 /* doing the whole thing at once */
1287 chunksize
= rctx
->total_todo
;
1289 flow_log("%s: chunksize %u\n", __func__
, chunksize
);
1291 memset(&req_opts
, 0, sizeof(req_opts
));
1292 memset(&hash_parms
, 0, sizeof(hash_parms
));
1293 memset(&aead_parms
, 0, sizeof(aead_parms
));
1295 req_opts
.is_inbound
= !(rctx
->is_encrypt
);
1296 req_opts
.auth_first
= ctx
->auth_first
;
1297 req_opts
.is_aead
= true;
1298 req_opts
.is_esp
= ctx
->is_esp
;
1300 cipher_parms
.alg
= ctx
->cipher
.alg
;
1301 cipher_parms
.mode
= ctx
->cipher
.mode
;
1302 cipher_parms
.type
= ctx
->cipher_type
;
1303 cipher_parms
.key_buf
= ctx
->enckey
;
1304 cipher_parms
.key_len
= ctx
->enckeylen
;
1305 cipher_parms
.iv_buf
= rctx
->msg_buf
.iv_ctr
;
1306 cipher_parms
.iv_len
= rctx
->iv_ctr_len
;
1308 hash_parms
.alg
= ctx
->auth
.alg
;
1309 hash_parms
.mode
= ctx
->auth
.mode
;
1310 hash_parms
.type
= HASH_TYPE_NONE
;
1311 hash_parms
.key_buf
= (u8
*)ctx
->authkey
;
1312 hash_parms
.key_len
= ctx
->authkeylen
;
1313 hash_parms
.digestsize
= digestsize
;
1315 if ((ctx
->auth
.alg
== HASH_ALG_SHA224
) &&
1316 (ctx
->authkeylen
< SHA224_DIGEST_SIZE
))
1317 hash_parms
.key_len
= SHA224_DIGEST_SIZE
;
1319 aead_parms
.assoc_size
= req
->assoclen
;
1320 if (ctx
->is_esp
&& !ctx
->is_rfc4543
) {
1322 * 8-byte IV is included assoc data in request. SPU2
1323 * expects AAD to include just SPI and seqno. So
1324 * subtract off the IV len.
1326 aead_parms
.assoc_size
-= GCM_RFC4106_IV_SIZE
;
1328 if (rctx
->is_encrypt
) {
1329 aead_parms
.return_iv
= true;
1330 aead_parms
.ret_iv_len
= GCM_RFC4106_IV_SIZE
;
1331 aead_parms
.ret_iv_off
= GCM_ESP_SALT_SIZE
;
1334 aead_parms
.ret_iv_len
= 0;
1338 * Count number of sg entries from the crypto API request that are to
1339 * be included in this mailbox message. For dst sg, don't count space
1340 * for digest. Digest gets caught in a separate buffer and copied back
1341 * to dst sg when processing response.
1343 rctx
->src_nents
= spu_sg_count(rctx
->src_sg
, rctx
->src_skip
, chunksize
);
1344 rctx
->dst_nents
= spu_sg_count(rctx
->dst_sg
, rctx
->dst_skip
, chunksize
);
1345 if (aead_parms
.assoc_size
)
1346 assoc_nents
= spu_sg_count(rctx
->assoc
, 0,
1347 aead_parms
.assoc_size
);
1349 mssg
= &rctx
->mb_mssg
;
1351 rctx
->total_sent
= chunksize
;
1352 rctx
->src_sent
= chunksize
;
1353 if (spu
->spu_assoc_resp_len(ctx
->cipher
.mode
,
1354 aead_parms
.assoc_size
,
1355 aead_parms
.ret_iv_len
,
1359 aead_parms
.iv_len
= spu
->spu_aead_ivlen(ctx
->cipher
.mode
,
1362 if (ctx
->auth
.alg
== HASH_ALG_AES
)
1363 hash_parms
.type
= (enum hash_type
)ctx
->cipher_type
;
1365 /* General case AAD padding (CCM and RFC4543 special cases below) */
1366 aead_parms
.aad_pad_len
= spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
,
1367 aead_parms
.assoc_size
);
1369 /* General case data padding (CCM decrypt special case below) */
1370 aead_parms
.data_pad_len
= spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
,
1373 if (ctx
->cipher
.mode
== CIPHER_MODE_CCM
) {
1375 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1378 aead_parms
.aad_pad_len
= spu
->spu_gcm_ccm_pad_len(
1380 aead_parms
.assoc_size
+ 2);
1383 * And when decrypting CCM, need to pad without including
1384 * size of ICV which is tacked on to end of chunk
1386 if (!rctx
->is_encrypt
)
1387 aead_parms
.data_pad_len
=
1388 spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
,
1389 chunksize
- digestsize
);
1391 /* CCM also requires software to rewrite portions of IV: */
1392 spu
->spu_ccm_update_iv(digestsize
, &cipher_parms
, req
->assoclen
,
1393 chunksize
, rctx
->is_encrypt
,
1397 if (ctx
->is_rfc4543
) {
1399 * RFC4543: data is included in AAD, so don't pad after AAD
1400 * and pad data based on both AAD + data size
1402 aead_parms
.aad_pad_len
= 0;
1403 if (!rctx
->is_encrypt
)
1404 aead_parms
.data_pad_len
= spu
->spu_gcm_ccm_pad_len(
1406 aead_parms
.assoc_size
+ chunksize
-
1409 aead_parms
.data_pad_len
= spu
->spu_gcm_ccm_pad_len(
1411 aead_parms
.assoc_size
+ chunksize
);
1413 req_opts
.is_rfc4543
= true;
1416 if (spu_req_incl_icv(ctx
->cipher
.mode
, rctx
->is_encrypt
)) {
1419 /* Copy ICV from end of src scatterlist to digest buf */
1420 sg_copy_part_to_buf(req
->src
, rctx
->msg_buf
.digest
, digestsize
,
1421 req
->assoclen
+ rctx
->total_sent
-
1425 atomic64_add(chunksize
, &iproc_priv
.bytes_out
);
1427 flow_log("%s()-sent chunksize:%u\n", __func__
, chunksize
);
1429 /* Prepend SPU header with type 3 BCM header */
1430 memcpy(rctx
->msg_buf
.bcm_spu_req_hdr
, BCMHEADER
, BCM_HDR_LEN
);
1432 spu_hdr_len
= spu
->spu_create_request(rctx
->msg_buf
.bcm_spu_req_hdr
+
1433 BCM_HDR_LEN
, &req_opts
,
1434 &cipher_parms
, &hash_parms
,
1435 &aead_parms
, chunksize
);
1437 /* Determine total length of padding. Put all padding in one buffer. */
1438 db_size
= spu_real_db_size(aead_parms
.assoc_size
, aead_parms
.iv_len
, 0,
1439 chunksize
, aead_parms
.aad_pad_len
,
1440 aead_parms
.data_pad_len
, 0);
1442 stat_pad_len
= spu
->spu_wordalign_padlen(db_size
);
1446 pad_len
= aead_parms
.data_pad_len
+ stat_pad_len
;
1449 spu
->spu_request_pad(rctx
->msg_buf
.spu_req_pad
,
1450 aead_parms
.data_pad_len
, 0,
1451 ctx
->auth
.alg
, ctx
->auth
.mode
,
1452 rctx
->total_sent
, stat_pad_len
);
1455 spu
->spu_dump_msg_hdr(rctx
->msg_buf
.bcm_spu_req_hdr
+ BCM_HDR_LEN
,
1457 dump_sg(rctx
->assoc
, 0, aead_parms
.assoc_size
);
1458 packet_dump(" aead iv: ", rctx
->msg_buf
.iv_ctr
, aead_parms
.iv_len
);
1459 packet_log("BD:\n");
1460 dump_sg(rctx
->src_sg
, rctx
->src_skip
, chunksize
);
1461 packet_dump(" pad: ", rctx
->msg_buf
.spu_req_pad
, pad_len
);
1464 * Build mailbox message containing SPU request msg and rx buffers
1465 * to catch response message
1467 memset(mssg
, 0, sizeof(*mssg
));
1468 mssg
->type
= BRCM_MESSAGE_SPU
;
1469 mssg
->ctx
= rctx
; /* Will be returned in response */
1471 /* Create rx scatterlist to catch result */
1472 rx_frag_num
+= rctx
->dst_nents
;
1473 resp_len
= chunksize
;
1476 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1477 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1478 * sends entire digest back.
1482 if (((ctx
->cipher
.mode
== CIPHER_MODE_GCM
) ||
1483 (ctx
->cipher
.mode
== CIPHER_MODE_CCM
)) && !rctx
->is_encrypt
) {
1485 * Input is ciphertxt plus ICV, but ICV not incl
1488 resp_len
-= ctx
->digestsize
;
1490 /* no rx frags to catch output data */
1491 rx_frag_num
-= rctx
->dst_nents
;
1494 err
= spu_aead_rx_sg_create(mssg
, req
, rctx
, rx_frag_num
,
1495 aead_parms
.assoc_size
,
1496 aead_parms
.ret_iv_len
, resp_len
, digestsize
,
1501 /* Create tx scatterlist containing SPU request message */
1502 tx_frag_num
+= rctx
->src_nents
;
1503 tx_frag_num
+= assoc_nents
;
1504 if (aead_parms
.aad_pad_len
)
1506 if (aead_parms
.iv_len
)
1508 if (spu
->spu_tx_status_len())
1510 err
= spu_aead_tx_sg_create(mssg
, rctx
, tx_frag_num
, spu_hdr_len
,
1511 rctx
->assoc
, aead_parms
.assoc_size
,
1512 assoc_nents
, aead_parms
.iv_len
, chunksize
,
1513 aead_parms
.aad_pad_len
, pad_len
, incl_icv
);
1517 err
= mailbox_send_message(mssg
, req
->base
.flags
, rctx
->chan_idx
);
1518 if (unlikely(err
< 0))
1521 return -EINPROGRESS
;
1525 * handle_aead_resp() - Process a SPU response message for an AEAD request.
1526 * @rctx: Crypto request context
1528 static void handle_aead_resp(struct iproc_reqctx_s
*rctx
)
1530 struct spu_hw
*spu
= &iproc_priv
.spu
;
1531 struct crypto_async_request
*areq
= rctx
->parent
;
1532 struct aead_request
*req
= container_of(areq
,
1533 struct aead_request
, base
);
1534 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
1536 unsigned int icv_offset
;
1539 /* See how much data was returned */
1540 payload_len
= spu
->spu_payload_length(rctx
->msg_buf
.spu_resp_hdr
);
1541 flow_log("payload_len %u\n", payload_len
);
1543 /* only count payload */
1544 atomic64_add(payload_len
, &iproc_priv
.bytes_in
);
1547 packet_dump(" assoc_data ", rctx
->msg_buf
.a
.resp_aad
,
1551 * Copy the ICV back to the destination
1552 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1553 * API doesn't expect ICV in dst buffer.
1555 result_len
= req
->cryptlen
;
1556 if (rctx
->is_encrypt
) {
1557 icv_offset
= req
->assoclen
+ rctx
->total_sent
;
1558 packet_dump(" ICV: ", rctx
->msg_buf
.digest
, ctx
->digestsize
);
1559 flow_log("copying ICV to dst sg at offset %u\n", icv_offset
);
1560 sg_copy_part_from_buf(req
->dst
, rctx
->msg_buf
.digest
,
1561 ctx
->digestsize
, icv_offset
);
1562 result_len
+= ctx
->digestsize
;
1565 packet_log("response data: ");
1566 dump_sg(req
->dst
, req
->assoclen
, result_len
);
1568 atomic_inc(&iproc_priv
.op_counts
[SPU_OP_AEAD
]);
1569 if (ctx
->cipher
.alg
== CIPHER_ALG_AES
) {
1570 if (ctx
->cipher
.mode
== CIPHER_MODE_CCM
)
1571 atomic_inc(&iproc_priv
.aead_cnt
[AES_CCM
]);
1572 else if (ctx
->cipher
.mode
== CIPHER_MODE_GCM
)
1573 atomic_inc(&iproc_priv
.aead_cnt
[AES_GCM
]);
1575 atomic_inc(&iproc_priv
.aead_cnt
[AUTHENC
]);
1577 atomic_inc(&iproc_priv
.aead_cnt
[AUTHENC
]);
1582 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1583 * @rctx: request context
1585 * Mailbox scatterlists are allocated for each chunk. So free them after
1586 * processing each chunk.
1588 static void spu_chunk_cleanup(struct iproc_reqctx_s
*rctx
)
1590 /* mailbox message used to tx request */
1591 struct brcm_message
*mssg
= &rctx
->mb_mssg
;
1593 kfree(mssg
->spu
.src
);
1594 kfree(mssg
->spu
.dst
);
1595 memset(mssg
, 0, sizeof(struct brcm_message
));
1599 * finish_req() - Used to invoke the complete callback from the requester when
1600 * a request has been handled asynchronously.
1601 * @rctx: Request context
1602 * @err: Indicates whether the request was successful or not
1604 * Ensures that cleanup has been done for request
1606 static void finish_req(struct iproc_reqctx_s
*rctx
, int err
)
1608 struct crypto_async_request
*areq
= rctx
->parent
;
1610 flow_log("%s() err:%d\n\n", __func__
, err
);
1612 /* No harm done if already called */
1613 spu_chunk_cleanup(rctx
);
1616 crypto_request_complete(areq
, err
);
1620 * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1621 * @cl: mailbox client structure for SPU driver
1622 * @msg: mailbox message containing SPU response
1624 static void spu_rx_callback(struct mbox_client
*cl
, void *msg
)
1626 struct spu_hw
*spu
= &iproc_priv
.spu
;
1627 struct brcm_message
*mssg
= msg
;
1628 struct iproc_reqctx_s
*rctx
;
1632 if (unlikely(!rctx
)) {
1634 pr_err("%s(): no request context", __func__
);
1639 /* process the SPU status */
1640 err
= spu
->spu_status_process(rctx
->msg_buf
.rx_stat
);
1642 if (err
== SPU_INVALID_ICV
)
1643 atomic_inc(&iproc_priv
.bad_icv
);
1648 /* Process the SPU response message */
1649 switch (rctx
->ctx
->alg
->type
) {
1650 case CRYPTO_ALG_TYPE_SKCIPHER
:
1651 handle_skcipher_resp(rctx
);
1653 case CRYPTO_ALG_TYPE_AHASH
:
1654 handle_ahash_resp(rctx
);
1656 case CRYPTO_ALG_TYPE_AEAD
:
1657 handle_aead_resp(rctx
);
1665 * If this response does not complete the request, then send the next
1668 if (rctx
->total_sent
< rctx
->total_todo
) {
1669 /* Deallocate anything specific to previous chunk */
1670 spu_chunk_cleanup(rctx
);
1672 switch (rctx
->ctx
->alg
->type
) {
1673 case CRYPTO_ALG_TYPE_SKCIPHER
:
1674 err
= handle_skcipher_req(rctx
);
1676 case CRYPTO_ALG_TYPE_AHASH
:
1677 err
= handle_ahash_req(rctx
);
1680 * we saved data in hash carry, but tell crypto
1681 * API we successfully completed request.
1685 case CRYPTO_ALG_TYPE_AEAD
:
1686 err
= handle_aead_req(rctx
);
1692 if (err
== -EINPROGRESS
)
1693 /* Successfully submitted request for next chunk */
1698 finish_req(rctx
, err
);
1701 /* ==================== Kernel Cryptographic API ==================== */
1704 * skcipher_enqueue() - Handle skcipher encrypt or decrypt request.
1705 * @req: Crypto API request
1706 * @encrypt: true if encrypting; false if decrypting
1708 * Return: -EINPROGRESS if request accepted and result will be returned
1712 static int skcipher_enqueue(struct skcipher_request
*req
, bool encrypt
)
1714 struct iproc_reqctx_s
*rctx
= skcipher_request_ctx(req
);
1715 struct iproc_ctx_s
*ctx
=
1716 crypto_skcipher_ctx(crypto_skcipher_reqtfm(req
));
1719 flow_log("%s() enc:%u\n", __func__
, encrypt
);
1721 rctx
->gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
1722 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
1723 rctx
->parent
= &req
->base
;
1724 rctx
->is_encrypt
= encrypt
;
1725 rctx
->bd_suppress
= false;
1726 rctx
->total_todo
= req
->cryptlen
;
1728 rctx
->total_sent
= 0;
1729 rctx
->total_received
= 0;
1732 /* Initialize current position in src and dst scatterlists */
1733 rctx
->src_sg
= req
->src
;
1734 rctx
->src_nents
= 0;
1736 rctx
->dst_sg
= req
->dst
;
1737 rctx
->dst_nents
= 0;
1740 if (ctx
->cipher
.mode
== CIPHER_MODE_CBC
||
1741 ctx
->cipher
.mode
== CIPHER_MODE_CTR
||
1742 ctx
->cipher
.mode
== CIPHER_MODE_OFB
||
1743 ctx
->cipher
.mode
== CIPHER_MODE_XTS
||
1744 ctx
->cipher
.mode
== CIPHER_MODE_GCM
||
1745 ctx
->cipher
.mode
== CIPHER_MODE_CCM
) {
1747 crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req
));
1748 memcpy(rctx
->msg_buf
.iv_ctr
, req
->iv
, rctx
->iv_ctr_len
);
1750 rctx
->iv_ctr_len
= 0;
1753 /* Choose a SPU to process this request */
1754 rctx
->chan_idx
= select_channel();
1755 err
= handle_skcipher_req(rctx
);
1756 if (err
!= -EINPROGRESS
)
1757 /* synchronous result */
1758 spu_chunk_cleanup(rctx
);
1763 static int des_setkey(struct crypto_skcipher
*cipher
, const u8
*key
,
1764 unsigned int keylen
)
1766 struct iproc_ctx_s
*ctx
= crypto_skcipher_ctx(cipher
);
1769 err
= verify_skcipher_des_key(cipher
, key
);
1773 ctx
->cipher_type
= CIPHER_TYPE_DES
;
1777 static int threedes_setkey(struct crypto_skcipher
*cipher
, const u8
*key
,
1778 unsigned int keylen
)
1780 struct iproc_ctx_s
*ctx
= crypto_skcipher_ctx(cipher
);
1783 err
= verify_skcipher_des3_key(cipher
, key
);
1787 ctx
->cipher_type
= CIPHER_TYPE_3DES
;
1791 static int aes_setkey(struct crypto_skcipher
*cipher
, const u8
*key
,
1792 unsigned int keylen
)
1794 struct iproc_ctx_s
*ctx
= crypto_skcipher_ctx(cipher
);
1796 if (ctx
->cipher
.mode
== CIPHER_MODE_XTS
)
1797 /* XTS includes two keys of equal length */
1798 keylen
= keylen
/ 2;
1801 case AES_KEYSIZE_128
:
1802 ctx
->cipher_type
= CIPHER_TYPE_AES128
;
1804 case AES_KEYSIZE_192
:
1805 ctx
->cipher_type
= CIPHER_TYPE_AES192
;
1807 case AES_KEYSIZE_256
:
1808 ctx
->cipher_type
= CIPHER_TYPE_AES256
;
1813 WARN_ON((ctx
->max_payload
!= SPU_MAX_PAYLOAD_INF
) &&
1814 ((ctx
->max_payload
% AES_BLOCK_SIZE
) != 0));
1818 static int skcipher_setkey(struct crypto_skcipher
*cipher
, const u8
*key
,
1819 unsigned int keylen
)
1821 struct spu_hw
*spu
= &iproc_priv
.spu
;
1822 struct iproc_ctx_s
*ctx
= crypto_skcipher_ctx(cipher
);
1823 struct spu_cipher_parms cipher_parms
;
1827 flow_log("skcipher_setkey() keylen: %d\n", keylen
);
1828 flow_dump(" key: ", key
, keylen
);
1830 switch (ctx
->cipher
.alg
) {
1831 case CIPHER_ALG_DES
:
1832 err
= des_setkey(cipher
, key
, keylen
);
1834 case CIPHER_ALG_3DES
:
1835 err
= threedes_setkey(cipher
, key
, keylen
);
1837 case CIPHER_ALG_AES
:
1838 err
= aes_setkey(cipher
, key
, keylen
);
1841 pr_err("%s() Error: unknown cipher alg\n", __func__
);
1847 memcpy(ctx
->enckey
, key
, keylen
);
1848 ctx
->enckeylen
= keylen
;
1850 /* SPU needs XTS keys in the reverse order the crypto API presents */
1851 if ((ctx
->cipher
.alg
== CIPHER_ALG_AES
) &&
1852 (ctx
->cipher
.mode
== CIPHER_MODE_XTS
)) {
1853 unsigned int xts_keylen
= keylen
/ 2;
1855 memcpy(ctx
->enckey
, key
+ xts_keylen
, xts_keylen
);
1856 memcpy(ctx
->enckey
+ xts_keylen
, key
, xts_keylen
);
1859 if (spu
->spu_type
== SPU_TYPE_SPUM
)
1860 alloc_len
= BCM_HDR_LEN
+ SPU_HEADER_ALLOC_LEN
;
1861 else if (spu
->spu_type
== SPU_TYPE_SPU2
)
1862 alloc_len
= BCM_HDR_LEN
+ SPU2_HEADER_ALLOC_LEN
;
1863 memset(ctx
->bcm_spu_req_hdr
, 0, alloc_len
);
1864 cipher_parms
.iv_buf
= NULL
;
1865 cipher_parms
.iv_len
= crypto_skcipher_ivsize(cipher
);
1866 flow_log("%s: iv_len %u\n", __func__
, cipher_parms
.iv_len
);
1868 cipher_parms
.alg
= ctx
->cipher
.alg
;
1869 cipher_parms
.mode
= ctx
->cipher
.mode
;
1870 cipher_parms
.type
= ctx
->cipher_type
;
1871 cipher_parms
.key_buf
= ctx
->enckey
;
1872 cipher_parms
.key_len
= ctx
->enckeylen
;
1874 /* Prepend SPU request message with BCM header */
1875 memcpy(ctx
->bcm_spu_req_hdr
, BCMHEADER
, BCM_HDR_LEN
);
1876 ctx
->spu_req_hdr_len
=
1877 spu
->spu_cipher_req_init(ctx
->bcm_spu_req_hdr
+ BCM_HDR_LEN
,
1880 ctx
->spu_resp_hdr_len
= spu
->spu_response_hdr_len(ctx
->authkeylen
,
1884 atomic_inc(&iproc_priv
.setkey_cnt
[SPU_OP_CIPHER
]);
1889 static int skcipher_encrypt(struct skcipher_request
*req
)
1891 flow_log("skcipher_encrypt() nbytes:%u\n", req
->cryptlen
);
1893 return skcipher_enqueue(req
, true);
1896 static int skcipher_decrypt(struct skcipher_request
*req
)
1898 flow_log("skcipher_decrypt() nbytes:%u\n", req
->cryptlen
);
1899 return skcipher_enqueue(req
, false);
1902 static int ahash_enqueue(struct ahash_request
*req
)
1904 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
1905 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1906 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
1908 const char *alg_name
;
1910 flow_log("ahash_enqueue() nbytes:%u\n", req
->nbytes
);
1912 rctx
->gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
1913 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
1914 rctx
->parent
= &req
->base
;
1916 rctx
->bd_suppress
= true;
1917 memset(&rctx
->mb_mssg
, 0, sizeof(struct brcm_message
));
1919 /* Initialize position in src scatterlist */
1920 rctx
->src_sg
= req
->src
;
1922 rctx
->src_nents
= 0;
1923 rctx
->dst_sg
= NULL
;
1925 rctx
->dst_nents
= 0;
1927 /* SPU2 hardware does not compute hash of zero length data */
1928 if ((rctx
->is_final
== 1) && (rctx
->total_todo
== 0) &&
1929 (iproc_priv
.spu
.spu_type
== SPU_TYPE_SPU2
)) {
1930 alg_name
= crypto_ahash_alg_name(tfm
);
1931 flow_log("Doing %sfinal %s zero-len hash request in software\n",
1932 rctx
->is_final
? "" : "non-", alg_name
);
1933 err
= do_shash((unsigned char *)alg_name
, req
->result
,
1934 NULL
, 0, NULL
, 0, ctx
->authkey
,
1937 flow_log("Hash request failed with error %d\n", err
);
1940 /* Choose a SPU to process this request */
1941 rctx
->chan_idx
= select_channel();
1943 err
= handle_ahash_req(rctx
);
1944 if (err
!= -EINPROGRESS
)
1945 /* synchronous result */
1946 spu_chunk_cleanup(rctx
);
1950 * we saved data in hash carry, but tell crypto API
1951 * we successfully completed request.
1958 static int __ahash_init(struct ahash_request
*req
)
1960 struct spu_hw
*spu
= &iproc_priv
.spu
;
1961 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
1962 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1963 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
1965 flow_log("%s()\n", __func__
);
1967 /* Initialize the context */
1968 rctx
->hash_carry_len
= 0;
1971 rctx
->total_todo
= 0;
1973 rctx
->total_sent
= 0;
1974 rctx
->total_received
= 0;
1976 ctx
->digestsize
= crypto_ahash_digestsize(tfm
);
1977 /* If we add a hash whose digest is larger, catch it here. */
1978 WARN_ON(ctx
->digestsize
> MAX_DIGEST_SIZE
);
1980 rctx
->is_sw_hmac
= false;
1982 ctx
->spu_resp_hdr_len
= spu
->spu_response_hdr_len(ctx
->authkeylen
, 0,
1989 * spu_no_incr_hash() - Determine whether incremental hashing is supported.
1990 * @ctx: Crypto session context
1992 * SPU-2 does not support incremental hashing (we'll have to revisit and
1993 * condition based on chip revision or device tree entry if future versions do
1994 * support incremental hash)
1996 * SPU-M also doesn't support incremental hashing of AES-XCBC
1998 * Return: true if incremental hashing is not supported
2001 static bool spu_no_incr_hash(struct iproc_ctx_s
*ctx
)
2003 struct spu_hw
*spu
= &iproc_priv
.spu
;
2005 if (spu
->spu_type
== SPU_TYPE_SPU2
)
2008 if ((ctx
->auth
.alg
== HASH_ALG_AES
) &&
2009 (ctx
->auth
.mode
== HASH_MODE_XCBC
))
2012 /* Otherwise, incremental hashing is supported */
2016 static int ahash_init(struct ahash_request
*req
)
2018 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2019 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2020 const char *alg_name
;
2021 struct crypto_shash
*hash
;
2025 if (spu_no_incr_hash(ctx
)) {
2027 * If we get an incremental hashing request and it's not
2028 * supported by the hardware, we need to handle it in software
2029 * by calling synchronous hash functions.
2031 alg_name
= crypto_ahash_alg_name(tfm
);
2032 hash
= crypto_alloc_shash(alg_name
, 0, 0);
2034 ret
= PTR_ERR(hash
);
2038 gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
2039 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
2040 ctx
->shash
= kmalloc(sizeof(*ctx
->shash
) +
2041 crypto_shash_descsize(hash
), gfp
);
2046 ctx
->shash
->tfm
= hash
;
2048 /* Set the key using data we already have from setkey */
2049 if (ctx
->authkeylen
> 0) {
2050 ret
= crypto_shash_setkey(hash
, ctx
->authkey
,
2056 /* Initialize hash w/ this key and other params */
2057 ret
= crypto_shash_init(ctx
->shash
);
2061 /* Otherwise call the internal function which uses SPU hw */
2062 ret
= __ahash_init(req
);
2070 crypto_free_shash(hash
);
2075 static int __ahash_update(struct ahash_request
*req
)
2077 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2079 flow_log("ahash_update() nbytes:%u\n", req
->nbytes
);
2083 rctx
->total_todo
+= req
->nbytes
;
2086 return ahash_enqueue(req
);
2089 static int ahash_update(struct ahash_request
*req
)
2091 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2092 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2098 if (spu_no_incr_hash(ctx
)) {
2100 * If we get an incremental hashing request and it's not
2101 * supported by the hardware, we need to handle it in software
2102 * by calling synchronous hash functions.
2105 nents
= sg_nents(req
->src
);
2109 /* Copy data from req scatterlist to tmp buffer */
2110 gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
2111 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
2112 tmpbuf
= kmalloc(req
->nbytes
, gfp
);
2116 if (sg_copy_to_buffer(req
->src
, nents
, tmpbuf
, req
->nbytes
) !=
2122 /* Call synchronous update */
2123 ret
= crypto_shash_update(ctx
->shash
, tmpbuf
, req
->nbytes
);
2126 /* Otherwise call the internal function which uses SPU hw */
2127 ret
= __ahash_update(req
);
2133 static int __ahash_final(struct ahash_request
*req
)
2135 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2137 flow_log("ahash_final() nbytes:%u\n", req
->nbytes
);
2141 return ahash_enqueue(req
);
2144 static int ahash_final(struct ahash_request
*req
)
2146 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2147 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2150 if (spu_no_incr_hash(ctx
)) {
2152 * If we get an incremental hashing request and it's not
2153 * supported by the hardware, we need to handle it in software
2154 * by calling synchronous hash functions.
2156 ret
= crypto_shash_final(ctx
->shash
, req
->result
);
2158 /* Done with hash, can deallocate it now */
2159 crypto_free_shash(ctx
->shash
->tfm
);
2163 /* Otherwise call the internal function which uses SPU hw */
2164 ret
= __ahash_final(req
);
2170 static int __ahash_finup(struct ahash_request
*req
)
2172 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2174 flow_log("ahash_finup() nbytes:%u\n", req
->nbytes
);
2176 rctx
->total_todo
+= req
->nbytes
;
2180 return ahash_enqueue(req
);
2183 static int ahash_finup(struct ahash_request
*req
)
2185 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2186 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2192 if (spu_no_incr_hash(ctx
)) {
2194 * If we get an incremental hashing request and it's not
2195 * supported by the hardware, we need to handle it in software
2196 * by calling synchronous hash functions.
2199 nents
= sg_nents(req
->src
);
2202 goto ahash_finup_exit
;
2205 /* Copy data from req scatterlist to tmp buffer */
2206 gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
2207 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
2208 tmpbuf
= kmalloc(req
->nbytes
, gfp
);
2211 goto ahash_finup_exit
;
2214 if (sg_copy_to_buffer(req
->src
, nents
, tmpbuf
, req
->nbytes
) !=
2217 goto ahash_finup_free
;
2220 /* Call synchronous update */
2221 ret
= crypto_shash_finup(ctx
->shash
, tmpbuf
, req
->nbytes
,
2224 /* Otherwise call the internal function which uses SPU hw */
2225 return __ahash_finup(req
);
2231 /* Done with hash, can deallocate it now */
2232 crypto_free_shash(ctx
->shash
->tfm
);
2237 static int ahash_digest(struct ahash_request
*req
)
2241 flow_log("ahash_digest() nbytes:%u\n", req
->nbytes
);
2243 /* whole thing at once */
2244 err
= __ahash_init(req
);
2246 err
= __ahash_finup(req
);
2251 static int ahash_setkey(struct crypto_ahash
*ahash
, const u8
*key
,
2252 unsigned int keylen
)
2254 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(ahash
);
2256 flow_log("%s() ahash:%p key:%p keylen:%u\n",
2257 __func__
, ahash
, key
, keylen
);
2258 flow_dump(" key: ", key
, keylen
);
2260 if (ctx
->auth
.alg
== HASH_ALG_AES
) {
2262 case AES_KEYSIZE_128
:
2263 ctx
->cipher_type
= CIPHER_TYPE_AES128
;
2265 case AES_KEYSIZE_192
:
2266 ctx
->cipher_type
= CIPHER_TYPE_AES192
;
2268 case AES_KEYSIZE_256
:
2269 ctx
->cipher_type
= CIPHER_TYPE_AES256
;
2272 pr_err("%s() Error: Invalid key length\n", __func__
);
2276 pr_err("%s() Error: unknown hash alg\n", __func__
);
2279 memcpy(ctx
->authkey
, key
, keylen
);
2280 ctx
->authkeylen
= keylen
;
2285 static int ahash_export(struct ahash_request
*req
, void *out
)
2287 const struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2288 struct spu_hash_export_s
*spu_exp
= (struct spu_hash_export_s
*)out
;
2290 spu_exp
->total_todo
= rctx
->total_todo
;
2291 spu_exp
->total_sent
= rctx
->total_sent
;
2292 spu_exp
->is_sw_hmac
= rctx
->is_sw_hmac
;
2293 memcpy(spu_exp
->hash_carry
, rctx
->hash_carry
, sizeof(rctx
->hash_carry
));
2294 spu_exp
->hash_carry_len
= rctx
->hash_carry_len
;
2295 memcpy(spu_exp
->incr_hash
, rctx
->incr_hash
, sizeof(rctx
->incr_hash
));
2300 static int ahash_import(struct ahash_request
*req
, const void *in
)
2302 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2303 struct spu_hash_export_s
*spu_exp
= (struct spu_hash_export_s
*)in
;
2305 rctx
->total_todo
= spu_exp
->total_todo
;
2306 rctx
->total_sent
= spu_exp
->total_sent
;
2307 rctx
->is_sw_hmac
= spu_exp
->is_sw_hmac
;
2308 memcpy(rctx
->hash_carry
, spu_exp
->hash_carry
, sizeof(rctx
->hash_carry
));
2309 rctx
->hash_carry_len
= spu_exp
->hash_carry_len
;
2310 memcpy(rctx
->incr_hash
, spu_exp
->incr_hash
, sizeof(rctx
->incr_hash
));
2315 static int ahash_hmac_setkey(struct crypto_ahash
*ahash
, const u8
*key
,
2316 unsigned int keylen
)
2318 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(ahash
);
2319 unsigned int blocksize
=
2320 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash
));
2321 unsigned int digestsize
= crypto_ahash_digestsize(ahash
);
2325 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2326 __func__
, ahash
, key
, keylen
, blocksize
, digestsize
);
2327 flow_dump(" key: ", key
, keylen
);
2329 if (keylen
> blocksize
) {
2330 switch (ctx
->auth
.alg
) {
2332 rc
= do_shash("md5", ctx
->authkey
, key
, keylen
, NULL
,
2336 rc
= do_shash("sha1", ctx
->authkey
, key
, keylen
, NULL
,
2339 case HASH_ALG_SHA224
:
2340 rc
= do_shash("sha224", ctx
->authkey
, key
, keylen
, NULL
,
2343 case HASH_ALG_SHA256
:
2344 rc
= do_shash("sha256", ctx
->authkey
, key
, keylen
, NULL
,
2347 case HASH_ALG_SHA384
:
2348 rc
= do_shash("sha384", ctx
->authkey
, key
, keylen
, NULL
,
2351 case HASH_ALG_SHA512
:
2352 rc
= do_shash("sha512", ctx
->authkey
, key
, keylen
, NULL
,
2355 case HASH_ALG_SHA3_224
:
2356 rc
= do_shash("sha3-224", ctx
->authkey
, key
, keylen
,
2359 case HASH_ALG_SHA3_256
:
2360 rc
= do_shash("sha3-256", ctx
->authkey
, key
, keylen
,
2363 case HASH_ALG_SHA3_384
:
2364 rc
= do_shash("sha3-384", ctx
->authkey
, key
, keylen
,
2367 case HASH_ALG_SHA3_512
:
2368 rc
= do_shash("sha3-512", ctx
->authkey
, key
, keylen
,
2372 pr_err("%s() Error: unknown hash alg\n", __func__
);
2376 pr_err("%s() Error %d computing shash for %s\n",
2377 __func__
, rc
, hash_alg_name
[ctx
->auth
.alg
]);
2380 ctx
->authkeylen
= digestsize
;
2382 flow_log(" keylen > digestsize... hashed\n");
2383 flow_dump(" newkey: ", ctx
->authkey
, ctx
->authkeylen
);
2385 memcpy(ctx
->authkey
, key
, keylen
);
2386 ctx
->authkeylen
= keylen
;
2390 * Full HMAC operation in SPUM is not verified,
2391 * So keeping the generation of IPAD, OPAD and
2392 * outer hashing in software.
2394 if (iproc_priv
.spu
.spu_type
== SPU_TYPE_SPUM
) {
2395 memcpy(ctx
->ipad
, ctx
->authkey
, ctx
->authkeylen
);
2396 memset(ctx
->ipad
+ ctx
->authkeylen
, 0,
2397 blocksize
- ctx
->authkeylen
);
2398 ctx
->authkeylen
= 0;
2399 unsafe_memcpy(ctx
->opad
, ctx
->ipad
, blocksize
,
2400 "fortified memcpy causes -Wrestrict warning");
2402 for (index
= 0; index
< blocksize
; index
++) {
2403 ctx
->ipad
[index
] ^= HMAC_IPAD_VALUE
;
2404 ctx
->opad
[index
] ^= HMAC_OPAD_VALUE
;
2407 flow_dump(" ipad: ", ctx
->ipad
, blocksize
);
2408 flow_dump(" opad: ", ctx
->opad
, blocksize
);
2410 ctx
->digestsize
= digestsize
;
2411 atomic_inc(&iproc_priv
.setkey_cnt
[SPU_OP_HMAC
]);
2416 static int ahash_hmac_init(struct ahash_request
*req
)
2419 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2420 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2421 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2422 unsigned int blocksize
=
2423 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm
));
2425 flow_log("ahash_hmac_init()\n");
2427 /* init the context as a hash */
2428 ret
= ahash_init(req
);
2432 if (!spu_no_incr_hash(ctx
)) {
2433 /* SPU-M can do incr hashing but needs sw for outer HMAC */
2434 rctx
->is_sw_hmac
= true;
2435 ctx
->auth
.mode
= HASH_MODE_HASH
;
2436 /* start with a prepended ipad */
2437 memcpy(rctx
->hash_carry
, ctx
->ipad
, blocksize
);
2438 rctx
->hash_carry_len
= blocksize
;
2439 rctx
->total_todo
+= blocksize
;
2445 static int ahash_hmac_update(struct ahash_request
*req
)
2447 flow_log("ahash_hmac_update() nbytes:%u\n", req
->nbytes
);
2452 return ahash_update(req
);
2455 static int ahash_hmac_final(struct ahash_request
*req
)
2457 flow_log("ahash_hmac_final() nbytes:%u\n", req
->nbytes
);
2459 return ahash_final(req
);
2462 static int ahash_hmac_finup(struct ahash_request
*req
)
2464 flow_log("ahash_hmac_finupl() nbytes:%u\n", req
->nbytes
);
2466 return ahash_finup(req
);
2469 static int ahash_hmac_digest(struct ahash_request
*req
)
2471 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2472 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2473 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2474 unsigned int blocksize
=
2475 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm
));
2477 flow_log("ahash_hmac_digest() nbytes:%u\n", req
->nbytes
);
2479 /* Perform initialization and then call finup */
2482 if (iproc_priv
.spu
.spu_type
== SPU_TYPE_SPU2
) {
2484 * SPU2 supports full HMAC implementation in the
2485 * hardware, need not to generate IPAD, OPAD and
2486 * outer hash in software.
2487 * Only for hash key len > hash block size, SPU2
2488 * expects to perform hashing on the key, shorten
2489 * it to digest size and feed it as hash key.
2491 rctx
->is_sw_hmac
= false;
2492 ctx
->auth
.mode
= HASH_MODE_HMAC
;
2494 rctx
->is_sw_hmac
= true;
2495 ctx
->auth
.mode
= HASH_MODE_HASH
;
2496 /* start with a prepended ipad */
2497 memcpy(rctx
->hash_carry
, ctx
->ipad
, blocksize
);
2498 rctx
->hash_carry_len
= blocksize
;
2499 rctx
->total_todo
+= blocksize
;
2502 return __ahash_finup(req
);
2507 static int aead_need_fallback(struct aead_request
*req
)
2509 struct iproc_reqctx_s
*rctx
= aead_request_ctx(req
);
2510 struct spu_hw
*spu
= &iproc_priv
.spu
;
2511 struct crypto_aead
*aead
= crypto_aead_reqtfm(req
);
2512 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(aead
);
2516 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2517 * and AAD are both 0 bytes long. So use fallback in this case.
2519 if (((ctx
->cipher
.mode
== CIPHER_MODE_GCM
) ||
2520 (ctx
->cipher
.mode
== CIPHER_MODE_CCM
)) &&
2521 (req
->assoclen
== 0)) {
2522 if ((rctx
->is_encrypt
&& (req
->cryptlen
== 0)) ||
2523 (!rctx
->is_encrypt
&& (req
->cryptlen
== ctx
->digestsize
))) {
2524 flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2529 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2530 if ((ctx
->cipher
.mode
== CIPHER_MODE_CCM
) &&
2531 (spu
->spu_type
== SPU_TYPE_SPUM
) &&
2532 (ctx
->digestsize
!= 8) && (ctx
->digestsize
!= 12) &&
2533 (ctx
->digestsize
!= 16)) {
2534 flow_log("%s() AES CCM needs fallback for digest size %d\n",
2535 __func__
, ctx
->digestsize
);
2540 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2541 * when AAD size is 0
2543 if ((ctx
->cipher
.mode
== CIPHER_MODE_CCM
) &&
2544 (spu
->spu_subtype
== SPU_SUBTYPE_SPUM_NSP
) &&
2545 (req
->assoclen
== 0)) {
2546 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2552 * RFC4106 and RFC4543 cannot handle the case where AAD is other than
2553 * 16 or 20 bytes long. So use fallback in this case.
2555 if (ctx
->cipher
.mode
== CIPHER_MODE_GCM
&&
2556 ctx
->cipher
.alg
== CIPHER_ALG_AES
&&
2557 rctx
->iv_ctr_len
== GCM_RFC4106_IV_SIZE
&&
2558 req
->assoclen
!= 16 && req
->assoclen
!= 20) {
2559 flow_log("RFC4106/RFC4543 needs fallback for assoclen"
2560 " other than 16 or 20 bytes\n");
2564 payload_len
= req
->cryptlen
;
2565 if (spu
->spu_type
== SPU_TYPE_SPUM
)
2566 payload_len
+= req
->assoclen
;
2568 flow_log("%s() payload len: %u\n", __func__
, payload_len
);
2570 if (ctx
->max_payload
== SPU_MAX_PAYLOAD_INF
)
2573 return payload_len
> ctx
->max_payload
;
2576 static int aead_do_fallback(struct aead_request
*req
, bool is_encrypt
)
2578 struct crypto_aead
*aead
= crypto_aead_reqtfm(req
);
2579 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
2580 struct iproc_reqctx_s
*rctx
= aead_request_ctx(req
);
2581 struct iproc_ctx_s
*ctx
= crypto_tfm_ctx(tfm
);
2582 struct aead_request
*subreq
;
2584 flow_log("%s() enc:%u\n", __func__
, is_encrypt
);
2586 if (!ctx
->fallback_cipher
)
2589 subreq
= &rctx
->req
;
2590 aead_request_set_tfm(subreq
, ctx
->fallback_cipher
);
2591 aead_request_set_callback(subreq
, aead_request_flags(req
),
2592 req
->base
.complete
, req
->base
.data
);
2593 aead_request_set_crypt(subreq
, req
->src
, req
->dst
, req
->cryptlen
,
2595 aead_request_set_ad(subreq
, req
->assoclen
);
2597 return is_encrypt
? crypto_aead_encrypt(req
) :
2598 crypto_aead_decrypt(req
);
2601 static int aead_enqueue(struct aead_request
*req
, bool is_encrypt
)
2603 struct iproc_reqctx_s
*rctx
= aead_request_ctx(req
);
2604 struct crypto_aead
*aead
= crypto_aead_reqtfm(req
);
2605 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(aead
);
2608 flow_log("%s() enc:%u\n", __func__
, is_encrypt
);
2610 if (req
->assoclen
> MAX_ASSOC_SIZE
) {
2612 ("%s() Error: associated data too long. (%u > %u bytes)\n",
2613 __func__
, req
->assoclen
, MAX_ASSOC_SIZE
);
2617 rctx
->gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
2618 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
2619 rctx
->parent
= &req
->base
;
2620 rctx
->is_encrypt
= is_encrypt
;
2621 rctx
->bd_suppress
= false;
2622 rctx
->total_todo
= req
->cryptlen
;
2624 rctx
->total_sent
= 0;
2625 rctx
->total_received
= 0;
2626 rctx
->is_sw_hmac
= false;
2628 memset(&rctx
->mb_mssg
, 0, sizeof(struct brcm_message
));
2630 /* assoc data is at start of src sg */
2631 rctx
->assoc
= req
->src
;
2634 * Init current position in src scatterlist to be after assoc data.
2635 * src_skip set to buffer offset where data begins. (Assoc data could
2636 * end in the middle of a buffer.)
2638 if (spu_sg_at_offset(req
->src
, req
->assoclen
, &rctx
->src_sg
,
2639 &rctx
->src_skip
) < 0) {
2640 pr_err("%s() Error: Unable to find start of src data\n",
2645 rctx
->src_nents
= 0;
2646 rctx
->dst_nents
= 0;
2647 if (req
->dst
== req
->src
) {
2648 rctx
->dst_sg
= rctx
->src_sg
;
2649 rctx
->dst_skip
= rctx
->src_skip
;
2652 * Expect req->dst to have room for assoc data followed by
2653 * output data and ICV, if encrypt. So initialize dst_sg
2654 * to point beyond assoc len offset.
2656 if (spu_sg_at_offset(req
->dst
, req
->assoclen
, &rctx
->dst_sg
,
2657 &rctx
->dst_skip
) < 0) {
2658 pr_err("%s() Error: Unable to find start of dst data\n",
2664 if (ctx
->cipher
.mode
== CIPHER_MODE_CBC
||
2665 ctx
->cipher
.mode
== CIPHER_MODE_CTR
||
2666 ctx
->cipher
.mode
== CIPHER_MODE_OFB
||
2667 ctx
->cipher
.mode
== CIPHER_MODE_XTS
||
2668 ctx
->cipher
.mode
== CIPHER_MODE_GCM
) {
2671 crypto_aead_ivsize(crypto_aead_reqtfm(req
));
2672 } else if (ctx
->cipher
.mode
== CIPHER_MODE_CCM
) {
2673 rctx
->iv_ctr_len
= CCM_AES_IV_SIZE
;
2675 rctx
->iv_ctr_len
= 0;
2678 rctx
->hash_carry_len
= 0;
2680 flow_log(" src sg: %p\n", req
->src
);
2681 flow_log(" rctx->src_sg: %p, src_skip %u\n",
2682 rctx
->src_sg
, rctx
->src_skip
);
2683 flow_log(" assoc: %p, assoclen %u\n", rctx
->assoc
, req
->assoclen
);
2684 flow_log(" dst sg: %p\n", req
->dst
);
2685 flow_log(" rctx->dst_sg: %p, dst_skip %u\n",
2686 rctx
->dst_sg
, rctx
->dst_skip
);
2687 flow_log(" iv_ctr_len:%u\n", rctx
->iv_ctr_len
);
2688 flow_dump(" iv: ", req
->iv
, rctx
->iv_ctr_len
);
2689 flow_log(" authkeylen:%u\n", ctx
->authkeylen
);
2690 flow_log(" is_esp: %s\n", ctx
->is_esp
? "yes" : "no");
2692 if (ctx
->max_payload
== SPU_MAX_PAYLOAD_INF
)
2693 flow_log(" max_payload infinite");
2695 flow_log(" max_payload: %u\n", ctx
->max_payload
);
2697 if (unlikely(aead_need_fallback(req
)))
2698 return aead_do_fallback(req
, is_encrypt
);
2701 * Do memory allocations for request after fallback check, because if we
2702 * do fallback, we won't call finish_req() to dealloc.
2704 if (rctx
->iv_ctr_len
) {
2706 memcpy(rctx
->msg_buf
.iv_ctr
+ ctx
->salt_offset
,
2707 ctx
->salt
, ctx
->salt_len
);
2708 memcpy(rctx
->msg_buf
.iv_ctr
+ ctx
->salt_offset
+ ctx
->salt_len
,
2710 rctx
->iv_ctr_len
- ctx
->salt_len
- ctx
->salt_offset
);
2713 rctx
->chan_idx
= select_channel();
2714 err
= handle_aead_req(rctx
);
2715 if (err
!= -EINPROGRESS
)
2716 /* synchronous result */
2717 spu_chunk_cleanup(rctx
);
2722 static int aead_authenc_setkey(struct crypto_aead
*cipher
,
2723 const u8
*key
, unsigned int keylen
)
2725 struct spu_hw
*spu
= &iproc_priv
.spu
;
2726 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
2727 struct crypto_tfm
*tfm
= crypto_aead_tfm(cipher
);
2728 struct crypto_authenc_keys keys
;
2731 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__
, cipher
, key
,
2733 flow_dump(" key: ", key
, keylen
);
2735 ret
= crypto_authenc_extractkeys(&keys
, key
, keylen
);
2739 if (keys
.enckeylen
> MAX_KEY_SIZE
||
2740 keys
.authkeylen
> MAX_KEY_SIZE
)
2743 ctx
->enckeylen
= keys
.enckeylen
;
2744 ctx
->authkeylen
= keys
.authkeylen
;
2746 memcpy(ctx
->enckey
, keys
.enckey
, keys
.enckeylen
);
2747 /* May end up padding auth key. So make sure it's zeroed. */
2748 memset(ctx
->authkey
, 0, sizeof(ctx
->authkey
));
2749 memcpy(ctx
->authkey
, keys
.authkey
, keys
.authkeylen
);
2751 switch (ctx
->alg
->cipher_info
.alg
) {
2752 case CIPHER_ALG_DES
:
2753 if (verify_aead_des_key(cipher
, keys
.enckey
, keys
.enckeylen
))
2756 ctx
->cipher_type
= CIPHER_TYPE_DES
;
2758 case CIPHER_ALG_3DES
:
2759 if (verify_aead_des3_key(cipher
, keys
.enckey
, keys
.enckeylen
))
2762 ctx
->cipher_type
= CIPHER_TYPE_3DES
;
2764 case CIPHER_ALG_AES
:
2765 switch (ctx
->enckeylen
) {
2766 case AES_KEYSIZE_128
:
2767 ctx
->cipher_type
= CIPHER_TYPE_AES128
;
2769 case AES_KEYSIZE_192
:
2770 ctx
->cipher_type
= CIPHER_TYPE_AES192
;
2772 case AES_KEYSIZE_256
:
2773 ctx
->cipher_type
= CIPHER_TYPE_AES256
;
2780 pr_err("%s() Error: Unknown cipher alg\n", __func__
);
2784 flow_log(" enckeylen:%u authkeylen:%u\n", ctx
->enckeylen
,
2786 flow_dump(" enc: ", ctx
->enckey
, ctx
->enckeylen
);
2787 flow_dump(" auth: ", ctx
->authkey
, ctx
->authkeylen
);
2789 /* setkey the fallback just in case we needto use it */
2790 if (ctx
->fallback_cipher
) {
2791 flow_log(" running fallback setkey()\n");
2793 ctx
->fallback_cipher
->base
.crt_flags
&= ~CRYPTO_TFM_REQ_MASK
;
2794 ctx
->fallback_cipher
->base
.crt_flags
|=
2795 tfm
->crt_flags
& CRYPTO_TFM_REQ_MASK
;
2796 ret
= crypto_aead_setkey(ctx
->fallback_cipher
, key
, keylen
);
2798 flow_log(" fallback setkey() returned:%d\n", ret
);
2801 ctx
->spu_resp_hdr_len
= spu
->spu_response_hdr_len(ctx
->authkeylen
,
2805 atomic_inc(&iproc_priv
.setkey_cnt
[SPU_OP_AEAD
]);
2811 ctx
->authkeylen
= 0;
2812 ctx
->digestsize
= 0;
2817 static int aead_gcm_ccm_setkey(struct crypto_aead
*cipher
,
2818 const u8
*key
, unsigned int keylen
)
2820 struct spu_hw
*spu
= &iproc_priv
.spu
;
2821 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
2822 struct crypto_tfm
*tfm
= crypto_aead_tfm(cipher
);
2826 flow_log("%s() keylen:%u\n", __func__
, keylen
);
2827 flow_dump(" key: ", key
, keylen
);
2830 ctx
->digestsize
= keylen
;
2832 ctx
->enckeylen
= keylen
;
2833 ctx
->authkeylen
= 0;
2835 switch (ctx
->enckeylen
) {
2836 case AES_KEYSIZE_128
:
2837 ctx
->cipher_type
= CIPHER_TYPE_AES128
;
2839 case AES_KEYSIZE_192
:
2840 ctx
->cipher_type
= CIPHER_TYPE_AES192
;
2842 case AES_KEYSIZE_256
:
2843 ctx
->cipher_type
= CIPHER_TYPE_AES256
;
2849 memcpy(ctx
->enckey
, key
, ctx
->enckeylen
);
2851 flow_log(" enckeylen:%u authkeylen:%u\n", ctx
->enckeylen
,
2853 flow_dump(" enc: ", ctx
->enckey
, ctx
->enckeylen
);
2854 flow_dump(" auth: ", ctx
->authkey
, ctx
->authkeylen
);
2856 /* setkey the fallback just in case we need to use it */
2857 if (ctx
->fallback_cipher
) {
2858 flow_log(" running fallback setkey()\n");
2860 ctx
->fallback_cipher
->base
.crt_flags
&= ~CRYPTO_TFM_REQ_MASK
;
2861 ctx
->fallback_cipher
->base
.crt_flags
|=
2862 tfm
->crt_flags
& CRYPTO_TFM_REQ_MASK
;
2863 ret
= crypto_aead_setkey(ctx
->fallback_cipher
, key
,
2864 keylen
+ ctx
->salt_len
);
2866 flow_log(" fallback setkey() returned:%d\n", ret
);
2869 ctx
->spu_resp_hdr_len
= spu
->spu_response_hdr_len(ctx
->authkeylen
,
2873 atomic_inc(&iproc_priv
.setkey_cnt
[SPU_OP_AEAD
]);
2875 flow_log(" enckeylen:%u authkeylen:%u\n", ctx
->enckeylen
,
2882 ctx
->authkeylen
= 0;
2883 ctx
->digestsize
= 0;
2889 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
2890 * @cipher: AEAD structure
2891 * @key: Key followed by 4 bytes of salt
2892 * @keylen: Length of key plus salt, in bytes
2894 * Extracts salt from key and stores it to be prepended to IV on each request.
2895 * Digest is always 16 bytes
2897 * Return: Value from generic gcm setkey.
2899 static int aead_gcm_esp_setkey(struct crypto_aead
*cipher
,
2900 const u8
*key
, unsigned int keylen
)
2902 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
2904 flow_log("%s\n", __func__
);
2906 if (keylen
< GCM_ESP_SALT_SIZE
)
2909 ctx
->salt_len
= GCM_ESP_SALT_SIZE
;
2910 ctx
->salt_offset
= GCM_ESP_SALT_OFFSET
;
2911 memcpy(ctx
->salt
, key
+ keylen
- GCM_ESP_SALT_SIZE
, GCM_ESP_SALT_SIZE
);
2912 keylen
-= GCM_ESP_SALT_SIZE
;
2913 ctx
->digestsize
= GCM_ESP_DIGESTSIZE
;
2915 flow_dump("salt: ", ctx
->salt
, GCM_ESP_SALT_SIZE
);
2917 return aead_gcm_ccm_setkey(cipher
, key
, keylen
);
2921 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
2922 * @cipher: AEAD structure
2923 * @key: Key followed by 4 bytes of salt
2924 * @keylen: Length of key plus salt, in bytes
2926 * Extracts salt from key and stores it to be prepended to IV on each request.
2927 * Digest is always 16 bytes
2929 * Return: Value from generic gcm setkey.
2931 static int rfc4543_gcm_esp_setkey(struct crypto_aead
*cipher
,
2932 const u8
*key
, unsigned int keylen
)
2934 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
2936 flow_log("%s\n", __func__
);
2938 if (keylen
< GCM_ESP_SALT_SIZE
)
2941 ctx
->salt_len
= GCM_ESP_SALT_SIZE
;
2942 ctx
->salt_offset
= GCM_ESP_SALT_OFFSET
;
2943 memcpy(ctx
->salt
, key
+ keylen
- GCM_ESP_SALT_SIZE
, GCM_ESP_SALT_SIZE
);
2944 keylen
-= GCM_ESP_SALT_SIZE
;
2945 ctx
->digestsize
= GCM_ESP_DIGESTSIZE
;
2947 ctx
->is_rfc4543
= true;
2948 flow_dump("salt: ", ctx
->salt
, GCM_ESP_SALT_SIZE
);
2950 return aead_gcm_ccm_setkey(cipher
, key
, keylen
);
2954 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
2955 * @cipher: AEAD structure
2956 * @key: Key followed by 4 bytes of salt
2957 * @keylen: Length of key plus salt, in bytes
2959 * Extracts salt from key and stores it to be prepended to IV on each request.
2960 * Digest is always 16 bytes
2962 * Return: Value from generic ccm setkey.
2964 static int aead_ccm_esp_setkey(struct crypto_aead
*cipher
,
2965 const u8
*key
, unsigned int keylen
)
2967 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
2969 flow_log("%s\n", __func__
);
2971 if (keylen
< CCM_ESP_SALT_SIZE
)
2974 ctx
->salt_len
= CCM_ESP_SALT_SIZE
;
2975 ctx
->salt_offset
= CCM_ESP_SALT_OFFSET
;
2976 memcpy(ctx
->salt
, key
+ keylen
- CCM_ESP_SALT_SIZE
, CCM_ESP_SALT_SIZE
);
2977 keylen
-= CCM_ESP_SALT_SIZE
;
2979 flow_dump("salt: ", ctx
->salt
, CCM_ESP_SALT_SIZE
);
2981 return aead_gcm_ccm_setkey(cipher
, key
, keylen
);
2984 static int aead_setauthsize(struct crypto_aead
*cipher
, unsigned int authsize
)
2986 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
2989 flow_log("%s() authkeylen:%u authsize:%u\n",
2990 __func__
, ctx
->authkeylen
, authsize
);
2992 ctx
->digestsize
= authsize
;
2994 /* setkey the fallback just in case we needto use it */
2995 if (ctx
->fallback_cipher
) {
2996 flow_log(" running fallback setauth()\n");
2998 ret
= crypto_aead_setauthsize(ctx
->fallback_cipher
, authsize
);
3000 flow_log(" fallback setauth() returned:%d\n", ret
);
3006 static int aead_encrypt(struct aead_request
*req
)
3008 flow_log("%s() cryptlen:%u %08x\n", __func__
, req
->cryptlen
,
3010 dump_sg(req
->src
, 0, req
->cryptlen
+ req
->assoclen
);
3011 flow_log(" assoc_len:%u\n", req
->assoclen
);
3013 return aead_enqueue(req
, true);
3016 static int aead_decrypt(struct aead_request
*req
)
3018 flow_log("%s() cryptlen:%u\n", __func__
, req
->cryptlen
);
3019 dump_sg(req
->src
, 0, req
->cryptlen
+ req
->assoclen
);
3020 flow_log(" assoc_len:%u\n", req
->assoclen
);
3022 return aead_enqueue(req
, false);
3025 /* ==================== Supported Cipher Algorithms ==================== */
3027 static struct iproc_alg_s driver_algs
[] = {
3029 .type
= CRYPTO_ALG_TYPE_AEAD
,
3032 .cra_name
= "gcm(aes)",
3033 .cra_driver_name
= "gcm-aes-iproc",
3034 .cra_blocksize
= AES_BLOCK_SIZE
,
3035 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
3037 .setkey
= aead_gcm_ccm_setkey
,
3038 .ivsize
= GCM_AES_IV_SIZE
,
3039 .maxauthsize
= AES_BLOCK_SIZE
,
3042 .alg
= CIPHER_ALG_AES
,
3043 .mode
= CIPHER_MODE_GCM
,
3046 .alg
= HASH_ALG_AES
,
3047 .mode
= HASH_MODE_GCM
,
3052 .type
= CRYPTO_ALG_TYPE_AEAD
,
3055 .cra_name
= "ccm(aes)",
3056 .cra_driver_name
= "ccm-aes-iproc",
3057 .cra_blocksize
= AES_BLOCK_SIZE
,
3058 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
3060 .setkey
= aead_gcm_ccm_setkey
,
3061 .ivsize
= CCM_AES_IV_SIZE
,
3062 .maxauthsize
= AES_BLOCK_SIZE
,
3065 .alg
= CIPHER_ALG_AES
,
3066 .mode
= CIPHER_MODE_CCM
,
3069 .alg
= HASH_ALG_AES
,
3070 .mode
= HASH_MODE_CCM
,
3075 .type
= CRYPTO_ALG_TYPE_AEAD
,
3078 .cra_name
= "rfc4106(gcm(aes))",
3079 .cra_driver_name
= "gcm-aes-esp-iproc",
3080 .cra_blocksize
= AES_BLOCK_SIZE
,
3081 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
3083 .setkey
= aead_gcm_esp_setkey
,
3084 .ivsize
= GCM_RFC4106_IV_SIZE
,
3085 .maxauthsize
= AES_BLOCK_SIZE
,
3088 .alg
= CIPHER_ALG_AES
,
3089 .mode
= CIPHER_MODE_GCM
,
3092 .alg
= HASH_ALG_AES
,
3093 .mode
= HASH_MODE_GCM
,
3098 .type
= CRYPTO_ALG_TYPE_AEAD
,
3101 .cra_name
= "rfc4309(ccm(aes))",
3102 .cra_driver_name
= "ccm-aes-esp-iproc",
3103 .cra_blocksize
= AES_BLOCK_SIZE
,
3104 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
3106 .setkey
= aead_ccm_esp_setkey
,
3107 .ivsize
= CCM_AES_IV_SIZE
,
3108 .maxauthsize
= AES_BLOCK_SIZE
,
3111 .alg
= CIPHER_ALG_AES
,
3112 .mode
= CIPHER_MODE_CCM
,
3115 .alg
= HASH_ALG_AES
,
3116 .mode
= HASH_MODE_CCM
,
3121 .type
= CRYPTO_ALG_TYPE_AEAD
,
3124 .cra_name
= "rfc4543(gcm(aes))",
3125 .cra_driver_name
= "gmac-aes-esp-iproc",
3126 .cra_blocksize
= AES_BLOCK_SIZE
,
3127 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
3129 .setkey
= rfc4543_gcm_esp_setkey
,
3130 .ivsize
= GCM_RFC4106_IV_SIZE
,
3131 .maxauthsize
= AES_BLOCK_SIZE
,
3134 .alg
= CIPHER_ALG_AES
,
3135 .mode
= CIPHER_MODE_GCM
,
3138 .alg
= HASH_ALG_AES
,
3139 .mode
= HASH_MODE_GCM
,
3144 .type
= CRYPTO_ALG_TYPE_AEAD
,
3147 .cra_name
= "authenc(hmac(md5),cbc(aes))",
3148 .cra_driver_name
= "authenc-hmac-md5-cbc-aes-iproc",
3149 .cra_blocksize
= AES_BLOCK_SIZE
,
3150 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3152 CRYPTO_ALG_ALLOCATES_MEMORY
3154 .setkey
= aead_authenc_setkey
,
3155 .ivsize
= AES_BLOCK_SIZE
,
3156 .maxauthsize
= MD5_DIGEST_SIZE
,
3159 .alg
= CIPHER_ALG_AES
,
3160 .mode
= CIPHER_MODE_CBC
,
3163 .alg
= HASH_ALG_MD5
,
3164 .mode
= HASH_MODE_HMAC
,
3169 .type
= CRYPTO_ALG_TYPE_AEAD
,
3172 .cra_name
= "authenc(hmac(sha1),cbc(aes))",
3173 .cra_driver_name
= "authenc-hmac-sha1-cbc-aes-iproc",
3174 .cra_blocksize
= AES_BLOCK_SIZE
,
3175 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3177 CRYPTO_ALG_ALLOCATES_MEMORY
3179 .setkey
= aead_authenc_setkey
,
3180 .ivsize
= AES_BLOCK_SIZE
,
3181 .maxauthsize
= SHA1_DIGEST_SIZE
,
3184 .alg
= CIPHER_ALG_AES
,
3185 .mode
= CIPHER_MODE_CBC
,
3188 .alg
= HASH_ALG_SHA1
,
3189 .mode
= HASH_MODE_HMAC
,
3194 .type
= CRYPTO_ALG_TYPE_AEAD
,
3197 .cra_name
= "authenc(hmac(sha256),cbc(aes))",
3198 .cra_driver_name
= "authenc-hmac-sha256-cbc-aes-iproc",
3199 .cra_blocksize
= AES_BLOCK_SIZE
,
3200 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3202 CRYPTO_ALG_ALLOCATES_MEMORY
3204 .setkey
= aead_authenc_setkey
,
3205 .ivsize
= AES_BLOCK_SIZE
,
3206 .maxauthsize
= SHA256_DIGEST_SIZE
,
3209 .alg
= CIPHER_ALG_AES
,
3210 .mode
= CIPHER_MODE_CBC
,
3213 .alg
= HASH_ALG_SHA256
,
3214 .mode
= HASH_MODE_HMAC
,
3219 .type
= CRYPTO_ALG_TYPE_AEAD
,
3222 .cra_name
= "authenc(hmac(md5),cbc(des))",
3223 .cra_driver_name
= "authenc-hmac-md5-cbc-des-iproc",
3224 .cra_blocksize
= DES_BLOCK_SIZE
,
3225 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3227 CRYPTO_ALG_ALLOCATES_MEMORY
3229 .setkey
= aead_authenc_setkey
,
3230 .ivsize
= DES_BLOCK_SIZE
,
3231 .maxauthsize
= MD5_DIGEST_SIZE
,
3234 .alg
= CIPHER_ALG_DES
,
3235 .mode
= CIPHER_MODE_CBC
,
3238 .alg
= HASH_ALG_MD5
,
3239 .mode
= HASH_MODE_HMAC
,
3244 .type
= CRYPTO_ALG_TYPE_AEAD
,
3247 .cra_name
= "authenc(hmac(sha1),cbc(des))",
3248 .cra_driver_name
= "authenc-hmac-sha1-cbc-des-iproc",
3249 .cra_blocksize
= DES_BLOCK_SIZE
,
3250 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3252 CRYPTO_ALG_ALLOCATES_MEMORY
3254 .setkey
= aead_authenc_setkey
,
3255 .ivsize
= DES_BLOCK_SIZE
,
3256 .maxauthsize
= SHA1_DIGEST_SIZE
,
3259 .alg
= CIPHER_ALG_DES
,
3260 .mode
= CIPHER_MODE_CBC
,
3263 .alg
= HASH_ALG_SHA1
,
3264 .mode
= HASH_MODE_HMAC
,
3269 .type
= CRYPTO_ALG_TYPE_AEAD
,
3272 .cra_name
= "authenc(hmac(sha224),cbc(des))",
3273 .cra_driver_name
= "authenc-hmac-sha224-cbc-des-iproc",
3274 .cra_blocksize
= DES_BLOCK_SIZE
,
3275 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3277 CRYPTO_ALG_ALLOCATES_MEMORY
3279 .setkey
= aead_authenc_setkey
,
3280 .ivsize
= DES_BLOCK_SIZE
,
3281 .maxauthsize
= SHA224_DIGEST_SIZE
,
3284 .alg
= CIPHER_ALG_DES
,
3285 .mode
= CIPHER_MODE_CBC
,
3288 .alg
= HASH_ALG_SHA224
,
3289 .mode
= HASH_MODE_HMAC
,
3294 .type
= CRYPTO_ALG_TYPE_AEAD
,
3297 .cra_name
= "authenc(hmac(sha256),cbc(des))",
3298 .cra_driver_name
= "authenc-hmac-sha256-cbc-des-iproc",
3299 .cra_blocksize
= DES_BLOCK_SIZE
,
3300 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3302 CRYPTO_ALG_ALLOCATES_MEMORY
3304 .setkey
= aead_authenc_setkey
,
3305 .ivsize
= DES_BLOCK_SIZE
,
3306 .maxauthsize
= SHA256_DIGEST_SIZE
,
3309 .alg
= CIPHER_ALG_DES
,
3310 .mode
= CIPHER_MODE_CBC
,
3313 .alg
= HASH_ALG_SHA256
,
3314 .mode
= HASH_MODE_HMAC
,
3319 .type
= CRYPTO_ALG_TYPE_AEAD
,
3322 .cra_name
= "authenc(hmac(sha384),cbc(des))",
3323 .cra_driver_name
= "authenc-hmac-sha384-cbc-des-iproc",
3324 .cra_blocksize
= DES_BLOCK_SIZE
,
3325 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3327 CRYPTO_ALG_ALLOCATES_MEMORY
3329 .setkey
= aead_authenc_setkey
,
3330 .ivsize
= DES_BLOCK_SIZE
,
3331 .maxauthsize
= SHA384_DIGEST_SIZE
,
3334 .alg
= CIPHER_ALG_DES
,
3335 .mode
= CIPHER_MODE_CBC
,
3338 .alg
= HASH_ALG_SHA384
,
3339 .mode
= HASH_MODE_HMAC
,
3344 .type
= CRYPTO_ALG_TYPE_AEAD
,
3347 .cra_name
= "authenc(hmac(sha512),cbc(des))",
3348 .cra_driver_name
= "authenc-hmac-sha512-cbc-des-iproc",
3349 .cra_blocksize
= DES_BLOCK_SIZE
,
3350 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3352 CRYPTO_ALG_ALLOCATES_MEMORY
3354 .setkey
= aead_authenc_setkey
,
3355 .ivsize
= DES_BLOCK_SIZE
,
3356 .maxauthsize
= SHA512_DIGEST_SIZE
,
3359 .alg
= CIPHER_ALG_DES
,
3360 .mode
= CIPHER_MODE_CBC
,
3363 .alg
= HASH_ALG_SHA512
,
3364 .mode
= HASH_MODE_HMAC
,
3369 .type
= CRYPTO_ALG_TYPE_AEAD
,
3372 .cra_name
= "authenc(hmac(md5),cbc(des3_ede))",
3373 .cra_driver_name
= "authenc-hmac-md5-cbc-des3-iproc",
3374 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3375 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3377 CRYPTO_ALG_ALLOCATES_MEMORY
3379 .setkey
= aead_authenc_setkey
,
3380 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3381 .maxauthsize
= MD5_DIGEST_SIZE
,
3384 .alg
= CIPHER_ALG_3DES
,
3385 .mode
= CIPHER_MODE_CBC
,
3388 .alg
= HASH_ALG_MD5
,
3389 .mode
= HASH_MODE_HMAC
,
3394 .type
= CRYPTO_ALG_TYPE_AEAD
,
3397 .cra_name
= "authenc(hmac(sha1),cbc(des3_ede))",
3398 .cra_driver_name
= "authenc-hmac-sha1-cbc-des3-iproc",
3399 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3400 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3402 CRYPTO_ALG_ALLOCATES_MEMORY
3404 .setkey
= aead_authenc_setkey
,
3405 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3406 .maxauthsize
= SHA1_DIGEST_SIZE
,
3409 .alg
= CIPHER_ALG_3DES
,
3410 .mode
= CIPHER_MODE_CBC
,
3413 .alg
= HASH_ALG_SHA1
,
3414 .mode
= HASH_MODE_HMAC
,
3419 .type
= CRYPTO_ALG_TYPE_AEAD
,
3422 .cra_name
= "authenc(hmac(sha224),cbc(des3_ede))",
3423 .cra_driver_name
= "authenc-hmac-sha224-cbc-des3-iproc",
3424 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3425 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3427 CRYPTO_ALG_ALLOCATES_MEMORY
3429 .setkey
= aead_authenc_setkey
,
3430 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3431 .maxauthsize
= SHA224_DIGEST_SIZE
,
3434 .alg
= CIPHER_ALG_3DES
,
3435 .mode
= CIPHER_MODE_CBC
,
3438 .alg
= HASH_ALG_SHA224
,
3439 .mode
= HASH_MODE_HMAC
,
3444 .type
= CRYPTO_ALG_TYPE_AEAD
,
3447 .cra_name
= "authenc(hmac(sha256),cbc(des3_ede))",
3448 .cra_driver_name
= "authenc-hmac-sha256-cbc-des3-iproc",
3449 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3450 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3452 CRYPTO_ALG_ALLOCATES_MEMORY
3454 .setkey
= aead_authenc_setkey
,
3455 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3456 .maxauthsize
= SHA256_DIGEST_SIZE
,
3459 .alg
= CIPHER_ALG_3DES
,
3460 .mode
= CIPHER_MODE_CBC
,
3463 .alg
= HASH_ALG_SHA256
,
3464 .mode
= HASH_MODE_HMAC
,
3469 .type
= CRYPTO_ALG_TYPE_AEAD
,
3472 .cra_name
= "authenc(hmac(sha384),cbc(des3_ede))",
3473 .cra_driver_name
= "authenc-hmac-sha384-cbc-des3-iproc",
3474 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3475 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3477 CRYPTO_ALG_ALLOCATES_MEMORY
3479 .setkey
= aead_authenc_setkey
,
3480 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3481 .maxauthsize
= SHA384_DIGEST_SIZE
,
3484 .alg
= CIPHER_ALG_3DES
,
3485 .mode
= CIPHER_MODE_CBC
,
3488 .alg
= HASH_ALG_SHA384
,
3489 .mode
= HASH_MODE_HMAC
,
3494 .type
= CRYPTO_ALG_TYPE_AEAD
,
3497 .cra_name
= "authenc(hmac(sha512),cbc(des3_ede))",
3498 .cra_driver_name
= "authenc-hmac-sha512-cbc-des3-iproc",
3499 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3500 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3502 CRYPTO_ALG_ALLOCATES_MEMORY
3504 .setkey
= aead_authenc_setkey
,
3505 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3506 .maxauthsize
= SHA512_DIGEST_SIZE
,
3509 .alg
= CIPHER_ALG_3DES
,
3510 .mode
= CIPHER_MODE_CBC
,
3513 .alg
= HASH_ALG_SHA512
,
3514 .mode
= HASH_MODE_HMAC
,
3519 /* SKCIPHER algorithms. */
3521 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3523 .base
.cra_name
= "cbc(des)",
3524 .base
.cra_driver_name
= "cbc-des-iproc",
3525 .base
.cra_blocksize
= DES_BLOCK_SIZE
,
3526 .min_keysize
= DES_KEY_SIZE
,
3527 .max_keysize
= DES_KEY_SIZE
,
3528 .ivsize
= DES_BLOCK_SIZE
,
3531 .alg
= CIPHER_ALG_DES
,
3532 .mode
= CIPHER_MODE_CBC
,
3535 .alg
= HASH_ALG_NONE
,
3536 .mode
= HASH_MODE_NONE
,
3540 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3542 .base
.cra_name
= "ecb(des)",
3543 .base
.cra_driver_name
= "ecb-des-iproc",
3544 .base
.cra_blocksize
= DES_BLOCK_SIZE
,
3545 .min_keysize
= DES_KEY_SIZE
,
3546 .max_keysize
= DES_KEY_SIZE
,
3550 .alg
= CIPHER_ALG_DES
,
3551 .mode
= CIPHER_MODE_ECB
,
3554 .alg
= HASH_ALG_NONE
,
3555 .mode
= HASH_MODE_NONE
,
3559 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3561 .base
.cra_name
= "cbc(des3_ede)",
3562 .base
.cra_driver_name
= "cbc-des3-iproc",
3563 .base
.cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3564 .min_keysize
= DES3_EDE_KEY_SIZE
,
3565 .max_keysize
= DES3_EDE_KEY_SIZE
,
3566 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3569 .alg
= CIPHER_ALG_3DES
,
3570 .mode
= CIPHER_MODE_CBC
,
3573 .alg
= HASH_ALG_NONE
,
3574 .mode
= HASH_MODE_NONE
,
3578 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3580 .base
.cra_name
= "ecb(des3_ede)",
3581 .base
.cra_driver_name
= "ecb-des3-iproc",
3582 .base
.cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3583 .min_keysize
= DES3_EDE_KEY_SIZE
,
3584 .max_keysize
= DES3_EDE_KEY_SIZE
,
3588 .alg
= CIPHER_ALG_3DES
,
3589 .mode
= CIPHER_MODE_ECB
,
3592 .alg
= HASH_ALG_NONE
,
3593 .mode
= HASH_MODE_NONE
,
3597 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3599 .base
.cra_name
= "cbc(aes)",
3600 .base
.cra_driver_name
= "cbc-aes-iproc",
3601 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
3602 .min_keysize
= AES_MIN_KEY_SIZE
,
3603 .max_keysize
= AES_MAX_KEY_SIZE
,
3604 .ivsize
= AES_BLOCK_SIZE
,
3607 .alg
= CIPHER_ALG_AES
,
3608 .mode
= CIPHER_MODE_CBC
,
3611 .alg
= HASH_ALG_NONE
,
3612 .mode
= HASH_MODE_NONE
,
3616 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3618 .base
.cra_name
= "ecb(aes)",
3619 .base
.cra_driver_name
= "ecb-aes-iproc",
3620 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
3621 .min_keysize
= AES_MIN_KEY_SIZE
,
3622 .max_keysize
= AES_MAX_KEY_SIZE
,
3626 .alg
= CIPHER_ALG_AES
,
3627 .mode
= CIPHER_MODE_ECB
,
3630 .alg
= HASH_ALG_NONE
,
3631 .mode
= HASH_MODE_NONE
,
3635 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3637 .base
.cra_name
= "ctr(aes)",
3638 .base
.cra_driver_name
= "ctr-aes-iproc",
3639 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
3640 .min_keysize
= AES_MIN_KEY_SIZE
,
3641 .max_keysize
= AES_MAX_KEY_SIZE
,
3642 .ivsize
= AES_BLOCK_SIZE
,
3645 .alg
= CIPHER_ALG_AES
,
3646 .mode
= CIPHER_MODE_CTR
,
3649 .alg
= HASH_ALG_NONE
,
3650 .mode
= HASH_MODE_NONE
,
3654 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3656 .base
.cra_name
= "xts(aes)",
3657 .base
.cra_driver_name
= "xts-aes-iproc",
3658 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
3659 .min_keysize
= 2 * AES_MIN_KEY_SIZE
,
3660 .max_keysize
= 2 * AES_MAX_KEY_SIZE
,
3661 .ivsize
= AES_BLOCK_SIZE
,
3664 .alg
= CIPHER_ALG_AES
,
3665 .mode
= CIPHER_MODE_XTS
,
3668 .alg
= HASH_ALG_NONE
,
3669 .mode
= HASH_MODE_NONE
,
3673 /* AHASH algorithms. */
3675 .type
= CRYPTO_ALG_TYPE_AHASH
,
3677 .halg
.digestsize
= MD5_DIGEST_SIZE
,
3680 .cra_driver_name
= "md5-iproc",
3681 .cra_blocksize
= MD5_BLOCK_WORDS
* 4,
3682 .cra_flags
= CRYPTO_ALG_ASYNC
|
3683 CRYPTO_ALG_ALLOCATES_MEMORY
,
3687 .alg
= CIPHER_ALG_NONE
,
3688 .mode
= CIPHER_MODE_NONE
,
3691 .alg
= HASH_ALG_MD5
,
3692 .mode
= HASH_MODE_HASH
,
3696 .type
= CRYPTO_ALG_TYPE_AHASH
,
3698 .halg
.digestsize
= MD5_DIGEST_SIZE
,
3700 .cra_name
= "hmac(md5)",
3701 .cra_driver_name
= "hmac-md5-iproc",
3702 .cra_blocksize
= MD5_BLOCK_WORDS
* 4,
3706 .alg
= CIPHER_ALG_NONE
,
3707 .mode
= CIPHER_MODE_NONE
,
3710 .alg
= HASH_ALG_MD5
,
3711 .mode
= HASH_MODE_HMAC
,
3714 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3716 .halg
.digestsize
= SHA1_DIGEST_SIZE
,
3719 .cra_driver_name
= "sha1-iproc",
3720 .cra_blocksize
= SHA1_BLOCK_SIZE
,
3724 .alg
= CIPHER_ALG_NONE
,
3725 .mode
= CIPHER_MODE_NONE
,
3728 .alg
= HASH_ALG_SHA1
,
3729 .mode
= HASH_MODE_HASH
,
3732 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3734 .halg
.digestsize
= SHA1_DIGEST_SIZE
,
3736 .cra_name
= "hmac(sha1)",
3737 .cra_driver_name
= "hmac-sha1-iproc",
3738 .cra_blocksize
= SHA1_BLOCK_SIZE
,
3742 .alg
= CIPHER_ALG_NONE
,
3743 .mode
= CIPHER_MODE_NONE
,
3746 .alg
= HASH_ALG_SHA1
,
3747 .mode
= HASH_MODE_HMAC
,
3750 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3752 .halg
.digestsize
= SHA224_DIGEST_SIZE
,
3754 .cra_name
= "sha224",
3755 .cra_driver_name
= "sha224-iproc",
3756 .cra_blocksize
= SHA224_BLOCK_SIZE
,
3760 .alg
= CIPHER_ALG_NONE
,
3761 .mode
= CIPHER_MODE_NONE
,
3764 .alg
= HASH_ALG_SHA224
,
3765 .mode
= HASH_MODE_HASH
,
3768 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3770 .halg
.digestsize
= SHA224_DIGEST_SIZE
,
3772 .cra_name
= "hmac(sha224)",
3773 .cra_driver_name
= "hmac-sha224-iproc",
3774 .cra_blocksize
= SHA224_BLOCK_SIZE
,
3778 .alg
= CIPHER_ALG_NONE
,
3779 .mode
= CIPHER_MODE_NONE
,
3782 .alg
= HASH_ALG_SHA224
,
3783 .mode
= HASH_MODE_HMAC
,
3786 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3788 .halg
.digestsize
= SHA256_DIGEST_SIZE
,
3790 .cra_name
= "sha256",
3791 .cra_driver_name
= "sha256-iproc",
3792 .cra_blocksize
= SHA256_BLOCK_SIZE
,
3796 .alg
= CIPHER_ALG_NONE
,
3797 .mode
= CIPHER_MODE_NONE
,
3800 .alg
= HASH_ALG_SHA256
,
3801 .mode
= HASH_MODE_HASH
,
3804 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3806 .halg
.digestsize
= SHA256_DIGEST_SIZE
,
3808 .cra_name
= "hmac(sha256)",
3809 .cra_driver_name
= "hmac-sha256-iproc",
3810 .cra_blocksize
= SHA256_BLOCK_SIZE
,
3814 .alg
= CIPHER_ALG_NONE
,
3815 .mode
= CIPHER_MODE_NONE
,
3818 .alg
= HASH_ALG_SHA256
,
3819 .mode
= HASH_MODE_HMAC
,
3823 .type
= CRYPTO_ALG_TYPE_AHASH
,
3825 .halg
.digestsize
= SHA384_DIGEST_SIZE
,
3827 .cra_name
= "sha384",
3828 .cra_driver_name
= "sha384-iproc",
3829 .cra_blocksize
= SHA384_BLOCK_SIZE
,
3833 .alg
= CIPHER_ALG_NONE
,
3834 .mode
= CIPHER_MODE_NONE
,
3837 .alg
= HASH_ALG_SHA384
,
3838 .mode
= HASH_MODE_HASH
,
3842 .type
= CRYPTO_ALG_TYPE_AHASH
,
3844 .halg
.digestsize
= SHA384_DIGEST_SIZE
,
3846 .cra_name
= "hmac(sha384)",
3847 .cra_driver_name
= "hmac-sha384-iproc",
3848 .cra_blocksize
= SHA384_BLOCK_SIZE
,
3852 .alg
= CIPHER_ALG_NONE
,
3853 .mode
= CIPHER_MODE_NONE
,
3856 .alg
= HASH_ALG_SHA384
,
3857 .mode
= HASH_MODE_HMAC
,
3861 .type
= CRYPTO_ALG_TYPE_AHASH
,
3863 .halg
.digestsize
= SHA512_DIGEST_SIZE
,
3865 .cra_name
= "sha512",
3866 .cra_driver_name
= "sha512-iproc",
3867 .cra_blocksize
= SHA512_BLOCK_SIZE
,
3871 .alg
= CIPHER_ALG_NONE
,
3872 .mode
= CIPHER_MODE_NONE
,
3875 .alg
= HASH_ALG_SHA512
,
3876 .mode
= HASH_MODE_HASH
,
3880 .type
= CRYPTO_ALG_TYPE_AHASH
,
3882 .halg
.digestsize
= SHA512_DIGEST_SIZE
,
3884 .cra_name
= "hmac(sha512)",
3885 .cra_driver_name
= "hmac-sha512-iproc",
3886 .cra_blocksize
= SHA512_BLOCK_SIZE
,
3890 .alg
= CIPHER_ALG_NONE
,
3891 .mode
= CIPHER_MODE_NONE
,
3894 .alg
= HASH_ALG_SHA512
,
3895 .mode
= HASH_MODE_HMAC
,
3899 .type
= CRYPTO_ALG_TYPE_AHASH
,
3901 .halg
.digestsize
= SHA3_224_DIGEST_SIZE
,
3903 .cra_name
= "sha3-224",
3904 .cra_driver_name
= "sha3-224-iproc",
3905 .cra_blocksize
= SHA3_224_BLOCK_SIZE
,
3909 .alg
= CIPHER_ALG_NONE
,
3910 .mode
= CIPHER_MODE_NONE
,
3913 .alg
= HASH_ALG_SHA3_224
,
3914 .mode
= HASH_MODE_HASH
,
3918 .type
= CRYPTO_ALG_TYPE_AHASH
,
3920 .halg
.digestsize
= SHA3_224_DIGEST_SIZE
,
3922 .cra_name
= "hmac(sha3-224)",
3923 .cra_driver_name
= "hmac-sha3-224-iproc",
3924 .cra_blocksize
= SHA3_224_BLOCK_SIZE
,
3928 .alg
= CIPHER_ALG_NONE
,
3929 .mode
= CIPHER_MODE_NONE
,
3932 .alg
= HASH_ALG_SHA3_224
,
3933 .mode
= HASH_MODE_HMAC
3937 .type
= CRYPTO_ALG_TYPE_AHASH
,
3939 .halg
.digestsize
= SHA3_256_DIGEST_SIZE
,
3941 .cra_name
= "sha3-256",
3942 .cra_driver_name
= "sha3-256-iproc",
3943 .cra_blocksize
= SHA3_256_BLOCK_SIZE
,
3947 .alg
= CIPHER_ALG_NONE
,
3948 .mode
= CIPHER_MODE_NONE
,
3951 .alg
= HASH_ALG_SHA3_256
,
3952 .mode
= HASH_MODE_HASH
,
3956 .type
= CRYPTO_ALG_TYPE_AHASH
,
3958 .halg
.digestsize
= SHA3_256_DIGEST_SIZE
,
3960 .cra_name
= "hmac(sha3-256)",
3961 .cra_driver_name
= "hmac-sha3-256-iproc",
3962 .cra_blocksize
= SHA3_256_BLOCK_SIZE
,
3966 .alg
= CIPHER_ALG_NONE
,
3967 .mode
= CIPHER_MODE_NONE
,
3970 .alg
= HASH_ALG_SHA3_256
,
3971 .mode
= HASH_MODE_HMAC
,
3975 .type
= CRYPTO_ALG_TYPE_AHASH
,
3977 .halg
.digestsize
= SHA3_384_DIGEST_SIZE
,
3979 .cra_name
= "sha3-384",
3980 .cra_driver_name
= "sha3-384-iproc",
3981 .cra_blocksize
= SHA3_224_BLOCK_SIZE
,
3985 .alg
= CIPHER_ALG_NONE
,
3986 .mode
= CIPHER_MODE_NONE
,
3989 .alg
= HASH_ALG_SHA3_384
,
3990 .mode
= HASH_MODE_HASH
,
3994 .type
= CRYPTO_ALG_TYPE_AHASH
,
3996 .halg
.digestsize
= SHA3_384_DIGEST_SIZE
,
3998 .cra_name
= "hmac(sha3-384)",
3999 .cra_driver_name
= "hmac-sha3-384-iproc",
4000 .cra_blocksize
= SHA3_384_BLOCK_SIZE
,
4004 .alg
= CIPHER_ALG_NONE
,
4005 .mode
= CIPHER_MODE_NONE
,
4008 .alg
= HASH_ALG_SHA3_384
,
4009 .mode
= HASH_MODE_HMAC
,
4013 .type
= CRYPTO_ALG_TYPE_AHASH
,
4015 .halg
.digestsize
= SHA3_512_DIGEST_SIZE
,
4017 .cra_name
= "sha3-512",
4018 .cra_driver_name
= "sha3-512-iproc",
4019 .cra_blocksize
= SHA3_512_BLOCK_SIZE
,
4023 .alg
= CIPHER_ALG_NONE
,
4024 .mode
= CIPHER_MODE_NONE
,
4027 .alg
= HASH_ALG_SHA3_512
,
4028 .mode
= HASH_MODE_HASH
,
4032 .type
= CRYPTO_ALG_TYPE_AHASH
,
4034 .halg
.digestsize
= SHA3_512_DIGEST_SIZE
,
4036 .cra_name
= "hmac(sha3-512)",
4037 .cra_driver_name
= "hmac-sha3-512-iproc",
4038 .cra_blocksize
= SHA3_512_BLOCK_SIZE
,
4042 .alg
= CIPHER_ALG_NONE
,
4043 .mode
= CIPHER_MODE_NONE
,
4046 .alg
= HASH_ALG_SHA3_512
,
4047 .mode
= HASH_MODE_HMAC
,
4051 .type
= CRYPTO_ALG_TYPE_AHASH
,
4053 .halg
.digestsize
= AES_BLOCK_SIZE
,
4055 .cra_name
= "xcbc(aes)",
4056 .cra_driver_name
= "xcbc-aes-iproc",
4057 .cra_blocksize
= AES_BLOCK_SIZE
,
4061 .alg
= CIPHER_ALG_NONE
,
4062 .mode
= CIPHER_MODE_NONE
,
4065 .alg
= HASH_ALG_AES
,
4066 .mode
= HASH_MODE_XCBC
,
4070 .type
= CRYPTO_ALG_TYPE_AHASH
,
4072 .halg
.digestsize
= AES_BLOCK_SIZE
,
4074 .cra_name
= "cmac(aes)",
4075 .cra_driver_name
= "cmac-aes-iproc",
4076 .cra_blocksize
= AES_BLOCK_SIZE
,
4080 .alg
= CIPHER_ALG_NONE
,
4081 .mode
= CIPHER_MODE_NONE
,
4084 .alg
= HASH_ALG_AES
,
4085 .mode
= HASH_MODE_CMAC
,
4090 static int generic_cra_init(struct crypto_tfm
*tfm
,
4091 struct iproc_alg_s
*cipher_alg
)
4093 struct spu_hw
*spu
= &iproc_priv
.spu
;
4094 struct iproc_ctx_s
*ctx
= crypto_tfm_ctx(tfm
);
4095 unsigned int blocksize
= crypto_tfm_alg_blocksize(tfm
);
4097 flow_log("%s()\n", __func__
);
4099 ctx
->alg
= cipher_alg
;
4100 ctx
->cipher
= cipher_alg
->cipher_info
;
4101 ctx
->auth
= cipher_alg
->auth_info
;
4102 ctx
->auth_first
= cipher_alg
->auth_first
;
4103 ctx
->max_payload
= spu
->spu_ctx_max_payload(ctx
->cipher
.alg
,
4106 ctx
->fallback_cipher
= NULL
;
4109 ctx
->authkeylen
= 0;
4111 atomic_inc(&iproc_priv
.stream_count
);
4112 atomic_inc(&iproc_priv
.session_count
);
4117 static int skcipher_init_tfm(struct crypto_skcipher
*skcipher
)
4119 struct crypto_tfm
*tfm
= crypto_skcipher_tfm(skcipher
);
4120 struct skcipher_alg
*alg
= crypto_skcipher_alg(skcipher
);
4121 struct iproc_alg_s
*cipher_alg
;
4123 flow_log("%s()\n", __func__
);
4125 crypto_skcipher_set_reqsize(skcipher
, sizeof(struct iproc_reqctx_s
));
4127 cipher_alg
= container_of(alg
, struct iproc_alg_s
, alg
.skcipher
);
4128 return generic_cra_init(tfm
, cipher_alg
);
4131 static int ahash_cra_init(struct crypto_tfm
*tfm
)
4134 struct crypto_alg
*alg
= tfm
->__crt_alg
;
4135 struct iproc_alg_s
*cipher_alg
;
4137 cipher_alg
= container_of(__crypto_ahash_alg(alg
), struct iproc_alg_s
,
4140 err
= generic_cra_init(tfm
, cipher_alg
);
4141 flow_log("%s()\n", __func__
);
4144 * export state size has to be < 512 bytes. So don't include msg bufs
4147 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
4148 sizeof(struct iproc_reqctx_s
));
4153 static int aead_cra_init(struct crypto_aead
*aead
)
4155 unsigned int reqsize
= sizeof(struct iproc_reqctx_s
);
4156 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
4157 struct iproc_ctx_s
*ctx
= crypto_tfm_ctx(tfm
);
4158 struct crypto_alg
*alg
= tfm
->__crt_alg
;
4159 struct aead_alg
*aalg
= container_of(alg
, struct aead_alg
, base
);
4160 struct iproc_alg_s
*cipher_alg
= container_of(aalg
, struct iproc_alg_s
,
4163 int err
= generic_cra_init(tfm
, cipher_alg
);
4165 flow_log("%s()\n", __func__
);
4167 ctx
->is_esp
= false;
4169 ctx
->salt_offset
= 0;
4171 /* random first IV */
4172 get_random_bytes(ctx
->iv
, MAX_IV_SIZE
);
4173 flow_dump(" iv: ", ctx
->iv
, MAX_IV_SIZE
);
4178 if (!(alg
->cra_flags
& CRYPTO_ALG_NEED_FALLBACK
))
4181 flow_log("%s() creating fallback cipher\n", __func__
);
4183 ctx
->fallback_cipher
= crypto_alloc_aead(alg
->cra_name
, 0,
4185 CRYPTO_ALG_NEED_FALLBACK
);
4186 if (IS_ERR(ctx
->fallback_cipher
)) {
4187 pr_err("%s() Error: failed to allocate fallback for %s\n",
4188 __func__
, alg
->cra_name
);
4189 return PTR_ERR(ctx
->fallback_cipher
);
4192 reqsize
+= crypto_aead_reqsize(ctx
->fallback_cipher
);
4195 crypto_aead_set_reqsize(aead
, reqsize
);
4201 static void generic_cra_exit(struct crypto_tfm
*tfm
)
4203 atomic_dec(&iproc_priv
.session_count
);
4206 static void skcipher_exit_tfm(struct crypto_skcipher
*tfm
)
4208 generic_cra_exit(crypto_skcipher_tfm(tfm
));
4211 static void aead_cra_exit(struct crypto_aead
*aead
)
4213 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
4214 struct iproc_ctx_s
*ctx
= crypto_tfm_ctx(tfm
);
4216 generic_cra_exit(tfm
);
4218 if (ctx
->fallback_cipher
) {
4219 crypto_free_aead(ctx
->fallback_cipher
);
4220 ctx
->fallback_cipher
= NULL
;
4225 * spu_functions_register() - Specify hardware-specific SPU functions based on
4226 * SPU type read from device tree.
4227 * @dev: device structure
4228 * @spu_type: SPU hardware generation
4229 * @spu_subtype: SPU hardware version
4231 static void spu_functions_register(struct device
*dev
,
4232 enum spu_spu_type spu_type
,
4233 enum spu_spu_subtype spu_subtype
)
4235 struct spu_hw
*spu
= &iproc_priv
.spu
;
4237 if (spu_type
== SPU_TYPE_SPUM
) {
4238 dev_dbg(dev
, "Registering SPUM functions");
4239 spu
->spu_dump_msg_hdr
= spum_dump_msg_hdr
;
4240 spu
->spu_payload_length
= spum_payload_length
;
4241 spu
->spu_response_hdr_len
= spum_response_hdr_len
;
4242 spu
->spu_hash_pad_len
= spum_hash_pad_len
;
4243 spu
->spu_gcm_ccm_pad_len
= spum_gcm_ccm_pad_len
;
4244 spu
->spu_assoc_resp_len
= spum_assoc_resp_len
;
4245 spu
->spu_aead_ivlen
= spum_aead_ivlen
;
4246 spu
->spu_hash_type
= spum_hash_type
;
4247 spu
->spu_digest_size
= spum_digest_size
;
4248 spu
->spu_create_request
= spum_create_request
;
4249 spu
->spu_cipher_req_init
= spum_cipher_req_init
;
4250 spu
->spu_cipher_req_finish
= spum_cipher_req_finish
;
4251 spu
->spu_request_pad
= spum_request_pad
;
4252 spu
->spu_tx_status_len
= spum_tx_status_len
;
4253 spu
->spu_rx_status_len
= spum_rx_status_len
;
4254 spu
->spu_status_process
= spum_status_process
;
4255 spu
->spu_xts_tweak_in_payload
= spum_xts_tweak_in_payload
;
4256 spu
->spu_ccm_update_iv
= spum_ccm_update_iv
;
4257 spu
->spu_wordalign_padlen
= spum_wordalign_padlen
;
4258 if (spu_subtype
== SPU_SUBTYPE_SPUM_NS2
)
4259 spu
->spu_ctx_max_payload
= spum_ns2_ctx_max_payload
;
4261 spu
->spu_ctx_max_payload
= spum_nsp_ctx_max_payload
;
4263 dev_dbg(dev
, "Registering SPU2 functions");
4264 spu
->spu_dump_msg_hdr
= spu2_dump_msg_hdr
;
4265 spu
->spu_ctx_max_payload
= spu2_ctx_max_payload
;
4266 spu
->spu_payload_length
= spu2_payload_length
;
4267 spu
->spu_response_hdr_len
= spu2_response_hdr_len
;
4268 spu
->spu_hash_pad_len
= spu2_hash_pad_len
;
4269 spu
->spu_gcm_ccm_pad_len
= spu2_gcm_ccm_pad_len
;
4270 spu
->spu_assoc_resp_len
= spu2_assoc_resp_len
;
4271 spu
->spu_aead_ivlen
= spu2_aead_ivlen
;
4272 spu
->spu_hash_type
= spu2_hash_type
;
4273 spu
->spu_digest_size
= spu2_digest_size
;
4274 spu
->spu_create_request
= spu2_create_request
;
4275 spu
->spu_cipher_req_init
= spu2_cipher_req_init
;
4276 spu
->spu_cipher_req_finish
= spu2_cipher_req_finish
;
4277 spu
->spu_request_pad
= spu2_request_pad
;
4278 spu
->spu_tx_status_len
= spu2_tx_status_len
;
4279 spu
->spu_rx_status_len
= spu2_rx_status_len
;
4280 spu
->spu_status_process
= spu2_status_process
;
4281 spu
->spu_xts_tweak_in_payload
= spu2_xts_tweak_in_payload
;
4282 spu
->spu_ccm_update_iv
= spu2_ccm_update_iv
;
4283 spu
->spu_wordalign_padlen
= spu2_wordalign_padlen
;
4288 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4289 * channel for the SPU being probed.
4290 * @dev: SPU driver device structure
4292 * Return: 0 if successful
4295 static int spu_mb_init(struct device
*dev
)
4297 struct mbox_client
*mcl
= &iproc_priv
.mcl
;
4300 iproc_priv
.mbox
= devm_kcalloc(dev
, iproc_priv
.spu
.num_chan
,
4301 sizeof(struct mbox_chan
*), GFP_KERNEL
);
4302 if (!iproc_priv
.mbox
)
4306 mcl
->tx_block
= false;
4308 mcl
->knows_txdone
= true;
4309 mcl
->rx_callback
= spu_rx_callback
;
4310 mcl
->tx_done
= NULL
;
4312 for (i
= 0; i
< iproc_priv
.spu
.num_chan
; i
++) {
4313 iproc_priv
.mbox
[i
] = mbox_request_channel(mcl
, i
);
4314 if (IS_ERR(iproc_priv
.mbox
[i
])) {
4315 err
= PTR_ERR(iproc_priv
.mbox
[i
]);
4317 "Mbox channel %d request failed with err %d",
4319 iproc_priv
.mbox
[i
] = NULL
;
4326 for (i
= 0; i
< iproc_priv
.spu
.num_chan
; i
++) {
4327 if (iproc_priv
.mbox
[i
])
4328 mbox_free_channel(iproc_priv
.mbox
[i
]);
4334 static void spu_mb_release(struct platform_device
*pdev
)
4338 for (i
= 0; i
< iproc_priv
.spu
.num_chan
; i
++)
4339 mbox_free_channel(iproc_priv
.mbox
[i
]);
4342 static void spu_counters_init(void)
4347 atomic_set(&iproc_priv
.session_count
, 0);
4348 atomic_set(&iproc_priv
.stream_count
, 0);
4349 atomic_set(&iproc_priv
.next_chan
, (int)iproc_priv
.spu
.num_chan
);
4350 atomic64_set(&iproc_priv
.bytes_in
, 0);
4351 atomic64_set(&iproc_priv
.bytes_out
, 0);
4352 for (i
= 0; i
< SPU_OP_NUM
; i
++) {
4353 atomic_set(&iproc_priv
.op_counts
[i
], 0);
4354 atomic_set(&iproc_priv
.setkey_cnt
[i
], 0);
4356 for (i
= 0; i
< CIPHER_ALG_LAST
; i
++)
4357 for (j
= 0; j
< CIPHER_MODE_LAST
; j
++)
4358 atomic_set(&iproc_priv
.cipher_cnt
[i
][j
], 0);
4360 for (i
= 0; i
< HASH_ALG_LAST
; i
++) {
4361 atomic_set(&iproc_priv
.hash_cnt
[i
], 0);
4362 atomic_set(&iproc_priv
.hmac_cnt
[i
], 0);
4364 for (i
= 0; i
< AEAD_TYPE_LAST
; i
++)
4365 atomic_set(&iproc_priv
.aead_cnt
[i
], 0);
4367 atomic_set(&iproc_priv
.mb_no_spc
, 0);
4368 atomic_set(&iproc_priv
.mb_send_fail
, 0);
4369 atomic_set(&iproc_priv
.bad_icv
, 0);
4372 static int spu_register_skcipher(struct iproc_alg_s
*driver_alg
)
4374 struct skcipher_alg
*crypto
= &driver_alg
->alg
.skcipher
;
4377 crypto
->base
.cra_module
= THIS_MODULE
;
4378 crypto
->base
.cra_priority
= cipher_pri
;
4379 crypto
->base
.cra_alignmask
= 0;
4380 crypto
->base
.cra_ctxsize
= sizeof(struct iproc_ctx_s
);
4381 crypto
->base
.cra_flags
= CRYPTO_ALG_ASYNC
|
4382 CRYPTO_ALG_ALLOCATES_MEMORY
|
4383 CRYPTO_ALG_KERN_DRIVER_ONLY
;
4385 crypto
->init
= skcipher_init_tfm
;
4386 crypto
->exit
= skcipher_exit_tfm
;
4387 crypto
->setkey
= skcipher_setkey
;
4388 crypto
->encrypt
= skcipher_encrypt
;
4389 crypto
->decrypt
= skcipher_decrypt
;
4391 err
= crypto_register_skcipher(crypto
);
4392 /* Mark alg as having been registered, if successful */
4394 driver_alg
->registered
= true;
4395 pr_debug(" registered skcipher %s\n", crypto
->base
.cra_driver_name
);
4399 static int spu_register_ahash(struct iproc_alg_s
*driver_alg
)
4401 struct spu_hw
*spu
= &iproc_priv
.spu
;
4402 struct ahash_alg
*hash
= &driver_alg
->alg
.hash
;
4405 /* AES-XCBC is the only AES hash type currently supported on SPU-M */
4406 if ((driver_alg
->auth_info
.alg
== HASH_ALG_AES
) &&
4407 (driver_alg
->auth_info
.mode
!= HASH_MODE_XCBC
) &&
4408 (spu
->spu_type
== SPU_TYPE_SPUM
))
4411 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4412 if ((driver_alg
->auth_info
.alg
>= HASH_ALG_SHA3_224
) &&
4413 (spu
->spu_subtype
!= SPU_SUBTYPE_SPU2_V2
))
4416 hash
->halg
.base
.cra_module
= THIS_MODULE
;
4417 hash
->halg
.base
.cra_priority
= hash_pri
;
4418 hash
->halg
.base
.cra_alignmask
= 0;
4419 hash
->halg
.base
.cra_ctxsize
= sizeof(struct iproc_ctx_s
);
4420 hash
->halg
.base
.cra_init
= ahash_cra_init
;
4421 hash
->halg
.base
.cra_exit
= generic_cra_exit
;
4422 hash
->halg
.base
.cra_flags
= CRYPTO_ALG_ASYNC
|
4423 CRYPTO_ALG_ALLOCATES_MEMORY
;
4424 hash
->halg
.statesize
= sizeof(struct spu_hash_export_s
);
4426 if (driver_alg
->auth_info
.mode
!= HASH_MODE_HMAC
) {
4427 hash
->init
= ahash_init
;
4428 hash
->update
= ahash_update
;
4429 hash
->final
= ahash_final
;
4430 hash
->finup
= ahash_finup
;
4431 hash
->digest
= ahash_digest
;
4432 if ((driver_alg
->auth_info
.alg
== HASH_ALG_AES
) &&
4433 ((driver_alg
->auth_info
.mode
== HASH_MODE_XCBC
) ||
4434 (driver_alg
->auth_info
.mode
== HASH_MODE_CMAC
))) {
4435 hash
->setkey
= ahash_setkey
;
4438 hash
->setkey
= ahash_hmac_setkey
;
4439 hash
->init
= ahash_hmac_init
;
4440 hash
->update
= ahash_hmac_update
;
4441 hash
->final
= ahash_hmac_final
;
4442 hash
->finup
= ahash_hmac_finup
;
4443 hash
->digest
= ahash_hmac_digest
;
4445 hash
->export
= ahash_export
;
4446 hash
->import
= ahash_import
;
4448 err
= crypto_register_ahash(hash
);
4449 /* Mark alg as having been registered, if successful */
4451 driver_alg
->registered
= true;
4452 pr_debug(" registered ahash %s\n",
4453 hash
->halg
.base
.cra_driver_name
);
4457 static int spu_register_aead(struct iproc_alg_s
*driver_alg
)
4459 struct aead_alg
*aead
= &driver_alg
->alg
.aead
;
4462 aead
->base
.cra_module
= THIS_MODULE
;
4463 aead
->base
.cra_priority
= aead_pri
;
4464 aead
->base
.cra_alignmask
= 0;
4465 aead
->base
.cra_ctxsize
= sizeof(struct iproc_ctx_s
);
4467 aead
->base
.cra_flags
|= CRYPTO_ALG_ASYNC
| CRYPTO_ALG_ALLOCATES_MEMORY
;
4468 /* setkey set in alg initialization */
4469 aead
->setauthsize
= aead_setauthsize
;
4470 aead
->encrypt
= aead_encrypt
;
4471 aead
->decrypt
= aead_decrypt
;
4472 aead
->init
= aead_cra_init
;
4473 aead
->exit
= aead_cra_exit
;
4475 err
= crypto_register_aead(aead
);
4476 /* Mark alg as having been registered, if successful */
4478 driver_alg
->registered
= true;
4479 pr_debug(" registered aead %s\n", aead
->base
.cra_driver_name
);
4483 /* register crypto algorithms the device supports */
4484 static int spu_algs_register(struct device
*dev
)
4489 for (i
= 0; i
< ARRAY_SIZE(driver_algs
); i
++) {
4490 switch (driver_algs
[i
].type
) {
4491 case CRYPTO_ALG_TYPE_SKCIPHER
:
4492 err
= spu_register_skcipher(&driver_algs
[i
]);
4494 case CRYPTO_ALG_TYPE_AHASH
:
4495 err
= spu_register_ahash(&driver_algs
[i
]);
4497 case CRYPTO_ALG_TYPE_AEAD
:
4498 err
= spu_register_aead(&driver_algs
[i
]);
4502 "iproc-crypto: unknown alg type: %d",
4503 driver_algs
[i
].type
);
4508 dev_err(dev
, "alg registration failed with error %d\n",
4517 for (j
= 0; j
< i
; j
++) {
4518 /* Skip any algorithm not registered */
4519 if (!driver_algs
[j
].registered
)
4521 switch (driver_algs
[j
].type
) {
4522 case CRYPTO_ALG_TYPE_SKCIPHER
:
4523 crypto_unregister_skcipher(&driver_algs
[j
].alg
.skcipher
);
4524 driver_algs
[j
].registered
= false;
4526 case CRYPTO_ALG_TYPE_AHASH
:
4527 crypto_unregister_ahash(&driver_algs
[j
].alg
.hash
);
4528 driver_algs
[j
].registered
= false;
4530 case CRYPTO_ALG_TYPE_AEAD
:
4531 crypto_unregister_aead(&driver_algs
[j
].alg
.aead
);
4532 driver_algs
[j
].registered
= false;
4539 /* ==================== Kernel Platform API ==================== */
4541 static struct spu_type_subtype spum_ns2_types
= {
4542 SPU_TYPE_SPUM
, SPU_SUBTYPE_SPUM_NS2
4545 static struct spu_type_subtype spum_nsp_types
= {
4546 SPU_TYPE_SPUM
, SPU_SUBTYPE_SPUM_NSP
4549 static struct spu_type_subtype spu2_types
= {
4550 SPU_TYPE_SPU2
, SPU_SUBTYPE_SPU2_V1
4553 static struct spu_type_subtype spu2_v2_types
= {
4554 SPU_TYPE_SPU2
, SPU_SUBTYPE_SPU2_V2
4557 static const struct of_device_id bcm_spu_dt_ids
[] = {
4559 .compatible
= "brcm,spum-crypto",
4560 .data
= &spum_ns2_types
,
4563 .compatible
= "brcm,spum-nsp-crypto",
4564 .data
= &spum_nsp_types
,
4567 .compatible
= "brcm,spu2-crypto",
4568 .data
= &spu2_types
,
4571 .compatible
= "brcm,spu2-v2-crypto",
4572 .data
= &spu2_v2_types
,
4577 MODULE_DEVICE_TABLE(of
, bcm_spu_dt_ids
);
4579 static int spu_dt_read(struct platform_device
*pdev
)
4581 struct device
*dev
= &pdev
->dev
;
4582 struct spu_hw
*spu
= &iproc_priv
.spu
;
4583 struct resource
*spu_ctrl_regs
;
4584 const struct spu_type_subtype
*matched_spu_type
;
4585 struct device_node
*dn
= pdev
->dev
.of_node
;
4588 /* Count number of mailbox channels */
4589 spu
->num_chan
= of_count_phandle_with_args(dn
, "mboxes", "#mbox-cells");
4591 matched_spu_type
= of_device_get_match_data(dev
);
4592 if (!matched_spu_type
) {
4593 dev_err(dev
, "Failed to match device\n");
4597 spu
->spu_type
= matched_spu_type
->type
;
4598 spu
->spu_subtype
= matched_spu_type
->subtype
;
4600 for (i
= 0; (i
< MAX_SPUS
) && ((spu_ctrl_regs
=
4601 platform_get_resource(pdev
, IORESOURCE_MEM
, i
)) != NULL
); i
++) {
4603 spu
->reg_vbase
[i
] = devm_ioremap_resource(dev
, spu_ctrl_regs
);
4604 if (IS_ERR(spu
->reg_vbase
[i
])) {
4605 err
= PTR_ERR(spu
->reg_vbase
[i
]);
4606 dev_err(dev
, "Failed to map registers: %d\n",
4608 spu
->reg_vbase
[i
] = NULL
;
4613 dev_dbg(dev
, "Device has %d SPUs", spu
->num_spu
);
4618 static int bcm_spu_probe(struct platform_device
*pdev
)
4620 struct device
*dev
= &pdev
->dev
;
4621 struct spu_hw
*spu
= &iproc_priv
.spu
;
4624 iproc_priv
.pdev
= pdev
;
4625 platform_set_drvdata(iproc_priv
.pdev
,
4628 err
= spu_dt_read(pdev
);
4632 err
= spu_mb_init(dev
);
4636 if (spu
->spu_type
== SPU_TYPE_SPUM
)
4637 iproc_priv
.bcm_hdr_len
= 8;
4638 else if (spu
->spu_type
== SPU_TYPE_SPU2
)
4639 iproc_priv
.bcm_hdr_len
= 0;
4641 spu_functions_register(dev
, spu
->spu_type
, spu
->spu_subtype
);
4643 spu_counters_init();
4645 spu_setup_debugfs();
4647 err
= spu_algs_register(dev
);
4656 spu_mb_release(pdev
);
4657 dev_err(dev
, "%s failed with error %d.\n", __func__
, err
);
4662 static void bcm_spu_remove(struct platform_device
*pdev
)
4665 struct device
*dev
= &pdev
->dev
;
4668 for (i
= 0; i
< ARRAY_SIZE(driver_algs
); i
++) {
4670 * Not all algorithms were registered, depending on whether
4671 * hardware is SPU or SPU2. So here we make sure to skip
4672 * those algorithms that were not previously registered.
4674 if (!driver_algs
[i
].registered
)
4677 switch (driver_algs
[i
].type
) {
4678 case CRYPTO_ALG_TYPE_SKCIPHER
:
4679 crypto_unregister_skcipher(&driver_algs
[i
].alg
.skcipher
);
4680 dev_dbg(dev
, " unregistered cipher %s\n",
4681 driver_algs
[i
].alg
.skcipher
.base
.cra_driver_name
);
4682 driver_algs
[i
].registered
= false;
4684 case CRYPTO_ALG_TYPE_AHASH
:
4685 crypto_unregister_ahash(&driver_algs
[i
].alg
.hash
);
4686 cdn
= driver_algs
[i
].alg
.hash
.halg
.base
.cra_driver_name
;
4687 dev_dbg(dev
, " unregistered hash %s\n", cdn
);
4688 driver_algs
[i
].registered
= false;
4690 case CRYPTO_ALG_TYPE_AEAD
:
4691 crypto_unregister_aead(&driver_algs
[i
].alg
.aead
);
4692 dev_dbg(dev
, " unregistered aead %s\n",
4693 driver_algs
[i
].alg
.aead
.base
.cra_driver_name
);
4694 driver_algs
[i
].registered
= false;
4699 spu_mb_release(pdev
);
4702 /* ===== Kernel Module API ===== */
4704 static struct platform_driver bcm_spu_pdriver
= {
4706 .name
= "brcm-spu-crypto",
4707 .of_match_table
= of_match_ptr(bcm_spu_dt_ids
),
4709 .probe
= bcm_spu_probe
,
4710 .remove
= bcm_spu_remove
,
4712 module_platform_driver(bcm_spu_pdriver
);
4714 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4715 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4716 MODULE_LICENSE("GPL v2");