Revert "unicode: Don't special case ignorable code points"
[linux.git] / drivers / crypto / stm32 / stm32-hash.c
blob768b27de47378615652be8e1331104d0cd3c3bec
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of STM32 Crypto driver for Linux.
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
7 */
9 #include <crypto/engine.h>
10 #include <crypto/internal/hash.h>
11 #include <crypto/md5.h>
12 #include <crypto/scatterwalk.h>
13 #include <crypto/sha1.h>
14 #include <crypto/sha2.h>
15 #include <crypto/sha3.h>
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/interrupt.h>
21 #include <linux/iopoll.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/string.h>
30 #define HASH_CR 0x00
31 #define HASH_DIN 0x04
32 #define HASH_STR 0x08
33 #define HASH_UX500_HREG(x) (0x0c + ((x) * 0x04))
34 #define HASH_IMR 0x20
35 #define HASH_SR 0x24
36 #define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
37 #define HASH_HREG(x) (0x310 + ((x) * 0x04))
38 #define HASH_HWCFGR 0x3F0
39 #define HASH_VER 0x3F4
40 #define HASH_ID 0x3F8
42 /* Control Register */
43 #define HASH_CR_INIT BIT(2)
44 #define HASH_CR_DMAE BIT(3)
45 #define HASH_CR_DATATYPE_POS 4
46 #define HASH_CR_MODE BIT(6)
47 #define HASH_CR_ALGO_POS 7
48 #define HASH_CR_MDMAT BIT(13)
49 #define HASH_CR_DMAA BIT(14)
50 #define HASH_CR_LKEY BIT(16)
52 /* Interrupt */
53 #define HASH_DINIE BIT(0)
54 #define HASH_DCIE BIT(1)
56 /* Interrupt Mask */
57 #define HASH_MASK_CALC_COMPLETION BIT(0)
58 #define HASH_MASK_DATA_INPUT BIT(1)
60 /* Status Flags */
61 #define HASH_SR_DATA_INPUT_READY BIT(0)
62 #define HASH_SR_OUTPUT_READY BIT(1)
63 #define HASH_SR_DMA_ACTIVE BIT(2)
64 #define HASH_SR_BUSY BIT(3)
66 /* STR Register */
67 #define HASH_STR_NBLW_MASK GENMASK(4, 0)
68 #define HASH_STR_DCAL BIT(8)
70 /* HWCFGR Register */
71 #define HASH_HWCFG_DMA_MASK GENMASK(3, 0)
73 /* Context swap register */
74 #define HASH_CSR_NB_SHA256_HMAC 54
75 #define HASH_CSR_NB_SHA256 38
76 #define HASH_CSR_NB_SHA512_HMAC 103
77 #define HASH_CSR_NB_SHA512 91
78 #define HASH_CSR_NB_SHA3_HMAC 88
79 #define HASH_CSR_NB_SHA3 72
80 #define HASH_CSR_NB_MAX HASH_CSR_NB_SHA512_HMAC
82 #define HASH_FLAGS_INIT BIT(0)
83 #define HASH_FLAGS_OUTPUT_READY BIT(1)
84 #define HASH_FLAGS_CPU BIT(2)
85 #define HASH_FLAGS_DMA_ACTIVE BIT(3)
86 #define HASH_FLAGS_HMAC_INIT BIT(4)
87 #define HASH_FLAGS_HMAC_FINAL BIT(5)
88 #define HASH_FLAGS_HMAC_KEY BIT(6)
89 #define HASH_FLAGS_SHA3_MODE BIT(7)
90 #define HASH_FLAGS_FINAL BIT(15)
91 #define HASH_FLAGS_FINUP BIT(16)
92 #define HASH_FLAGS_ALGO_MASK GENMASK(20, 17)
93 #define HASH_FLAGS_ALGO_SHIFT 17
94 #define HASH_FLAGS_ERRORS BIT(21)
95 #define HASH_FLAGS_EMPTY BIT(22)
96 #define HASH_FLAGS_HMAC BIT(23)
97 #define HASH_FLAGS_SGS_COPIED BIT(24)
99 #define HASH_OP_UPDATE 1
100 #define HASH_OP_FINAL 2
102 #define HASH_BURST_LEVEL 4
104 enum stm32_hash_data_format {
105 HASH_DATA_32_BITS = 0x0,
106 HASH_DATA_16_BITS = 0x1,
107 HASH_DATA_8_BITS = 0x2,
108 HASH_DATA_1_BIT = 0x3
111 #define HASH_BUFLEN (SHA3_224_BLOCK_SIZE + 4)
112 #define HASH_MAX_KEY_SIZE (SHA512_BLOCK_SIZE * 8)
114 enum stm32_hash_algo {
115 HASH_SHA1 = 0,
116 HASH_MD5 = 1,
117 HASH_SHA224 = 2,
118 HASH_SHA256 = 3,
119 HASH_SHA3_224 = 4,
120 HASH_SHA3_256 = 5,
121 HASH_SHA3_384 = 6,
122 HASH_SHA3_512 = 7,
123 HASH_SHA384 = 12,
124 HASH_SHA512 = 15,
127 enum ux500_hash_algo {
128 HASH_SHA256_UX500 = 0,
129 HASH_SHA1_UX500 = 1,
132 #define HASH_AUTOSUSPEND_DELAY 50
134 struct stm32_hash_ctx {
135 struct stm32_hash_dev *hdev;
136 struct crypto_shash *xtfm;
137 unsigned long flags;
139 u8 key[HASH_MAX_KEY_SIZE];
140 int keylen;
143 struct stm32_hash_state {
144 u32 flags;
146 u16 bufcnt;
147 u16 blocklen;
149 u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
151 /* hash state */
152 u32 hw_context[3 + HASH_CSR_NB_MAX];
155 struct stm32_hash_request_ctx {
156 struct stm32_hash_dev *hdev;
157 unsigned long op;
159 u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
160 size_t digcnt;
162 struct scatterlist *sg;
163 struct scatterlist sgl[2]; /* scatterlist used to realize alignment */
164 unsigned int offset;
165 unsigned int total;
166 struct scatterlist sg_key;
168 dma_addr_t dma_addr;
169 size_t dma_ct;
170 int nents;
172 u8 data_type;
174 struct stm32_hash_state state;
177 struct stm32_hash_algs_info {
178 struct ahash_engine_alg *algs_list;
179 size_t size;
182 struct stm32_hash_pdata {
183 const int alg_shift;
184 const struct stm32_hash_algs_info *algs_info;
185 size_t algs_info_size;
186 bool has_sr;
187 bool has_mdmat;
188 bool context_secured;
189 bool broken_emptymsg;
190 bool ux500;
193 struct stm32_hash_dev {
194 struct list_head list;
195 struct device *dev;
196 struct clk *clk;
197 struct reset_control *rst;
198 void __iomem *io_base;
199 phys_addr_t phys_base;
200 u8 xmit_buf[HASH_BUFLEN] __aligned(sizeof(u32));
201 u32 dma_mode;
202 bool polled;
204 struct ahash_request *req;
205 struct crypto_engine *engine;
207 unsigned long flags;
209 struct dma_chan *dma_lch;
210 struct completion dma_completion;
212 const struct stm32_hash_pdata *pdata;
215 struct stm32_hash_drv {
216 struct list_head dev_list;
217 spinlock_t lock; /* List protection access */
220 static struct stm32_hash_drv stm32_hash = {
221 .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
222 .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
225 static void stm32_hash_dma_callback(void *param);
226 static int stm32_hash_prepare_request(struct ahash_request *req);
227 static void stm32_hash_unprepare_request(struct ahash_request *req);
229 static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
231 return readl_relaxed(hdev->io_base + offset);
234 static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
235 u32 offset, u32 value)
237 writel_relaxed(value, hdev->io_base + offset);
241 * stm32_hash_wait_busy - wait until hash processor is available. It return an
242 * error if the hash core is processing a block of data for more than 10 ms.
243 * @hdev: the stm32_hash_dev device.
245 static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
247 u32 status;
249 /* The Ux500 lacks the special status register, we poll the DCAL bit instead */
250 if (!hdev->pdata->has_sr)
251 return readl_relaxed_poll_timeout(hdev->io_base + HASH_STR, status,
252 !(status & HASH_STR_DCAL), 10, 10000);
254 return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
255 !(status & HASH_SR_BUSY), 10, 10000);
259 * stm32_hash_set_nblw - set the number of valid bytes in the last word.
260 * @hdev: the stm32_hash_dev device.
261 * @length: the length of the final word.
263 static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
265 u32 reg;
267 reg = stm32_hash_read(hdev, HASH_STR);
268 reg &= ~(HASH_STR_NBLW_MASK);
269 reg |= (8U * ((length) % 4U));
270 stm32_hash_write(hdev, HASH_STR, reg);
273 static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
275 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
276 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
277 u32 reg;
278 int keylen = ctx->keylen;
279 void *key = ctx->key;
281 if (keylen) {
282 stm32_hash_set_nblw(hdev, keylen);
284 while (keylen > 0) {
285 stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
286 keylen -= 4;
287 key += 4;
290 reg = stm32_hash_read(hdev, HASH_STR);
291 reg |= HASH_STR_DCAL;
292 stm32_hash_write(hdev, HASH_STR, reg);
294 return -EINPROGRESS;
297 return 0;
301 * stm32_hash_write_ctrl - Initialize the hash processor, only if
302 * HASH_FLAGS_INIT is set.
303 * @hdev: the stm32_hash_dev device
305 static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
307 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
308 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
309 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
310 struct stm32_hash_state *state = &rctx->state;
311 u32 alg = (state->flags & HASH_FLAGS_ALGO_MASK) >> HASH_FLAGS_ALGO_SHIFT;
313 u32 reg = HASH_CR_INIT;
315 if (!(hdev->flags & HASH_FLAGS_INIT)) {
316 if (hdev->pdata->ux500) {
317 reg |= ((alg & BIT(0)) << HASH_CR_ALGO_POS);
318 } else {
319 if (hdev->pdata->alg_shift == HASH_CR_ALGO_POS)
320 reg |= ((alg & BIT(1)) << 17) |
321 ((alg & BIT(0)) << HASH_CR_ALGO_POS);
322 else
323 reg |= alg << hdev->pdata->alg_shift;
326 reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
328 if (state->flags & HASH_FLAGS_HMAC) {
329 hdev->flags |= HASH_FLAGS_HMAC;
330 reg |= HASH_CR_MODE;
331 if (ctx->keylen > crypto_ahash_blocksize(tfm))
332 reg |= HASH_CR_LKEY;
335 if (!hdev->polled)
336 stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
338 stm32_hash_write(hdev, HASH_CR, reg);
340 hdev->flags |= HASH_FLAGS_INIT;
343 * After first block + 1 words are fill up,
344 * we only need to fill 1 block to start partial computation
346 rctx->state.blocklen -= sizeof(u32);
348 dev_dbg(hdev->dev, "Write Control %x\n", reg);
352 static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
354 struct stm32_hash_state *state = &rctx->state;
355 size_t count;
357 while ((state->bufcnt < state->blocklen) && rctx->total) {
358 count = min(rctx->sg->length - rctx->offset, rctx->total);
359 count = min_t(size_t, count, state->blocklen - state->bufcnt);
361 if (count <= 0) {
362 if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
363 rctx->sg = sg_next(rctx->sg);
364 continue;
365 } else {
366 break;
370 scatterwalk_map_and_copy(state->buffer + state->bufcnt,
371 rctx->sg, rctx->offset, count, 0);
373 state->bufcnt += count;
374 rctx->offset += count;
375 rctx->total -= count;
377 if (rctx->offset == rctx->sg->length) {
378 rctx->sg = sg_next(rctx->sg);
379 if (rctx->sg)
380 rctx->offset = 0;
381 else
382 rctx->total = 0;
387 static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
388 const u8 *buf, size_t length, int final)
390 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
391 struct stm32_hash_state *state = &rctx->state;
392 unsigned int count, len32;
393 const u32 *buffer = (const u32 *)buf;
394 u32 reg;
396 if (final) {
397 hdev->flags |= HASH_FLAGS_FINAL;
399 /* Do not process empty messages if hw is buggy. */
400 if (!(hdev->flags & HASH_FLAGS_INIT) && !length &&
401 hdev->pdata->broken_emptymsg) {
402 state->flags |= HASH_FLAGS_EMPTY;
403 return 0;
407 len32 = DIV_ROUND_UP(length, sizeof(u32));
409 dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
410 __func__, length, final, len32);
412 hdev->flags |= HASH_FLAGS_CPU;
414 stm32_hash_write_ctrl(hdev);
416 if (stm32_hash_wait_busy(hdev))
417 return -ETIMEDOUT;
419 if ((hdev->flags & HASH_FLAGS_HMAC) &&
420 (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
421 hdev->flags |= HASH_FLAGS_HMAC_KEY;
422 stm32_hash_write_key(hdev);
423 if (stm32_hash_wait_busy(hdev))
424 return -ETIMEDOUT;
427 for (count = 0; count < len32; count++)
428 stm32_hash_write(hdev, HASH_DIN, buffer[count]);
430 if (final) {
431 if (stm32_hash_wait_busy(hdev))
432 return -ETIMEDOUT;
434 stm32_hash_set_nblw(hdev, length);
435 reg = stm32_hash_read(hdev, HASH_STR);
436 reg |= HASH_STR_DCAL;
437 stm32_hash_write(hdev, HASH_STR, reg);
438 if (hdev->flags & HASH_FLAGS_HMAC) {
439 if (stm32_hash_wait_busy(hdev))
440 return -ETIMEDOUT;
441 stm32_hash_write_key(hdev);
443 return -EINPROGRESS;
446 return 0;
449 static int hash_swap_reg(struct stm32_hash_request_ctx *rctx)
451 struct stm32_hash_state *state = &rctx->state;
453 switch ((state->flags & HASH_FLAGS_ALGO_MASK) >>
454 HASH_FLAGS_ALGO_SHIFT) {
455 case HASH_MD5:
456 case HASH_SHA1:
457 case HASH_SHA224:
458 case HASH_SHA256:
459 if (state->flags & HASH_FLAGS_HMAC)
460 return HASH_CSR_NB_SHA256_HMAC;
461 else
462 return HASH_CSR_NB_SHA256;
463 break;
465 case HASH_SHA384:
466 case HASH_SHA512:
467 if (state->flags & HASH_FLAGS_HMAC)
468 return HASH_CSR_NB_SHA512_HMAC;
469 else
470 return HASH_CSR_NB_SHA512;
471 break;
473 case HASH_SHA3_224:
474 case HASH_SHA3_256:
475 case HASH_SHA3_384:
476 case HASH_SHA3_512:
477 if (state->flags & HASH_FLAGS_HMAC)
478 return HASH_CSR_NB_SHA3_HMAC;
479 else
480 return HASH_CSR_NB_SHA3;
481 break;
483 default:
484 return -EINVAL;
488 static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
490 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
491 struct stm32_hash_state *state = &rctx->state;
492 int bufcnt, err = 0, final;
494 dev_dbg(hdev->dev, "%s flags %x\n", __func__, state->flags);
496 final = state->flags & HASH_FLAGS_FINAL;
498 while ((rctx->total >= state->blocklen) ||
499 (state->bufcnt + rctx->total >= state->blocklen)) {
500 stm32_hash_append_sg(rctx);
501 bufcnt = state->bufcnt;
502 state->bufcnt = 0;
503 err = stm32_hash_xmit_cpu(hdev, state->buffer, bufcnt, 0);
504 if (err)
505 return err;
508 stm32_hash_append_sg(rctx);
510 if (final) {
511 bufcnt = state->bufcnt;
512 state->bufcnt = 0;
513 return stm32_hash_xmit_cpu(hdev, state->buffer, bufcnt, 1);
516 return err;
519 static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
520 struct scatterlist *sg, int length, int mdmat)
522 struct dma_async_tx_descriptor *in_desc;
523 dma_cookie_t cookie;
524 u32 reg;
525 int err;
527 dev_dbg(hdev->dev, "%s mdmat: %x length: %d\n", __func__, mdmat, length);
529 /* do not use dma if there is no data to send */
530 if (length <= 0)
531 return 0;
533 in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
534 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
535 DMA_CTRL_ACK);
536 if (!in_desc) {
537 dev_err(hdev->dev, "dmaengine_prep_slave error\n");
538 return -ENOMEM;
541 reinit_completion(&hdev->dma_completion);
542 in_desc->callback = stm32_hash_dma_callback;
543 in_desc->callback_param = hdev;
545 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
547 reg = stm32_hash_read(hdev, HASH_CR);
549 if (hdev->pdata->has_mdmat) {
550 if (mdmat)
551 reg |= HASH_CR_MDMAT;
552 else
553 reg &= ~HASH_CR_MDMAT;
555 reg |= HASH_CR_DMAE;
557 stm32_hash_write(hdev, HASH_CR, reg);
560 cookie = dmaengine_submit(in_desc);
561 err = dma_submit_error(cookie);
562 if (err)
563 return -ENOMEM;
565 dma_async_issue_pending(hdev->dma_lch);
567 if (!wait_for_completion_timeout(&hdev->dma_completion,
568 msecs_to_jiffies(100)))
569 err = -ETIMEDOUT;
571 if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
572 NULL, NULL) != DMA_COMPLETE)
573 err = -ETIMEDOUT;
575 if (err) {
576 dev_err(hdev->dev, "DMA Error %i\n", err);
577 dmaengine_terminate_all(hdev->dma_lch);
578 return err;
581 return -EINPROGRESS;
584 static void stm32_hash_dma_callback(void *param)
586 struct stm32_hash_dev *hdev = param;
588 complete(&hdev->dma_completion);
591 static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
593 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
594 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
595 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
596 int err;
598 if (ctx->keylen < rctx->state.blocklen || hdev->dma_mode > 0) {
599 err = stm32_hash_write_key(hdev);
600 if (stm32_hash_wait_busy(hdev))
601 return -ETIMEDOUT;
602 } else {
603 if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
604 sg_init_one(&rctx->sg_key, ctx->key,
605 ALIGN(ctx->keylen, sizeof(u32)));
607 rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
608 DMA_TO_DEVICE);
609 if (rctx->dma_ct == 0) {
610 dev_err(hdev->dev, "dma_map_sg error\n");
611 return -ENOMEM;
614 err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
616 dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
619 return err;
622 static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
624 struct dma_slave_config dma_conf;
625 struct dma_chan *chan;
626 int err;
628 memset(&dma_conf, 0, sizeof(dma_conf));
630 dma_conf.direction = DMA_MEM_TO_DEV;
631 dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
632 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
633 dma_conf.src_maxburst = HASH_BURST_LEVEL;
634 dma_conf.dst_maxburst = HASH_BURST_LEVEL;
635 dma_conf.device_fc = false;
637 chan = dma_request_chan(hdev->dev, "in");
638 if (IS_ERR(chan))
639 return PTR_ERR(chan);
641 hdev->dma_lch = chan;
643 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
644 if (err) {
645 dma_release_channel(hdev->dma_lch);
646 hdev->dma_lch = NULL;
647 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
648 return err;
651 init_completion(&hdev->dma_completion);
653 return 0;
656 static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
658 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
659 u32 *buffer = (void *)rctx->state.buffer;
660 struct scatterlist sg[1], *tsg;
661 int err = 0, reg, ncp = 0;
662 unsigned int i, len = 0, bufcnt = 0;
663 bool final = hdev->flags & HASH_FLAGS_FINAL;
664 bool is_last = false;
665 u32 last_word;
667 dev_dbg(hdev->dev, "%s total: %d bufcnt: %d final: %d\n",
668 __func__, rctx->total, rctx->state.bufcnt, final);
670 if (rctx->nents < 0)
671 return -EINVAL;
673 stm32_hash_write_ctrl(hdev);
675 if (hdev->flags & HASH_FLAGS_HMAC && (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
676 hdev->flags |= HASH_FLAGS_HMAC_KEY;
677 err = stm32_hash_hmac_dma_send(hdev);
678 if (err != -EINPROGRESS)
679 return err;
682 for_each_sg(rctx->sg, tsg, rctx->nents, i) {
683 sg[0] = *tsg;
684 len = sg->length;
686 if (sg_is_last(sg) || (bufcnt + sg[0].length) >= rctx->total) {
687 if (!final) {
688 /* Always manually put the last word of a non-final transfer. */
689 len -= sizeof(u32);
690 sg_pcopy_to_buffer(rctx->sg, rctx->nents, &last_word, 4, len);
691 sg->length -= sizeof(u32);
692 } else {
694 * In Multiple DMA mode, DMA must be aborted before the final
695 * transfer.
697 sg->length = rctx->total - bufcnt;
698 if (hdev->dma_mode > 0) {
699 len = (ALIGN(sg->length, 16) - 16);
701 ncp = sg_pcopy_to_buffer(rctx->sg, rctx->nents,
702 rctx->state.buffer,
703 sg->length - len,
704 rctx->total - sg->length + len);
706 if (!len)
707 break;
709 sg->length = len;
710 } else {
711 is_last = true;
712 if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
713 len = sg->length;
714 sg->length = ALIGN(sg->length,
715 sizeof(u32));
721 rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
722 DMA_TO_DEVICE);
723 if (rctx->dma_ct == 0) {
724 dev_err(hdev->dev, "dma_map_sg error\n");
725 return -ENOMEM;
728 err = stm32_hash_xmit_dma(hdev, sg, len, !is_last);
730 /* The last word of a non final transfer is sent manually. */
731 if (!final) {
732 stm32_hash_write(hdev, HASH_DIN, last_word);
733 len += sizeof(u32);
736 rctx->total -= len;
738 bufcnt += sg[0].length;
739 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
741 if (err == -ENOMEM || err == -ETIMEDOUT)
742 return err;
743 if (is_last)
744 break;
748 * When the second last block transfer of 4 words is performed by the DMA,
749 * the software must set the DMA Abort bit (DMAA) to 1 before completing the
750 * last transfer of 4 words or less.
752 if (final) {
753 if (hdev->dma_mode > 0) {
754 if (stm32_hash_wait_busy(hdev))
755 return -ETIMEDOUT;
756 reg = stm32_hash_read(hdev, HASH_CR);
757 reg &= ~HASH_CR_DMAE;
758 reg |= HASH_CR_DMAA;
759 stm32_hash_write(hdev, HASH_CR, reg);
761 if (ncp) {
762 memset(buffer + ncp, 0, 4 - DIV_ROUND_UP(ncp, sizeof(u32)));
763 writesl(hdev->io_base + HASH_DIN, buffer,
764 DIV_ROUND_UP(ncp, sizeof(u32)));
767 stm32_hash_set_nblw(hdev, ncp);
768 reg = stm32_hash_read(hdev, HASH_STR);
769 reg |= HASH_STR_DCAL;
770 stm32_hash_write(hdev, HASH_STR, reg);
771 err = -EINPROGRESS;
775 * The hash processor needs the key to be loaded a second time in order
776 * to process the HMAC.
778 if (hdev->flags & HASH_FLAGS_HMAC) {
779 if (stm32_hash_wait_busy(hdev))
780 return -ETIMEDOUT;
781 err = stm32_hash_hmac_dma_send(hdev);
784 return err;
787 if (err != -EINPROGRESS)
788 return err;
790 return 0;
793 static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
795 struct stm32_hash_dev *hdev = NULL, *tmp;
797 spin_lock_bh(&stm32_hash.lock);
798 if (!ctx->hdev) {
799 list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
800 hdev = tmp;
801 break;
803 ctx->hdev = hdev;
804 } else {
805 hdev = ctx->hdev;
808 spin_unlock_bh(&stm32_hash.lock);
810 return hdev;
813 static int stm32_hash_init(struct ahash_request *req)
815 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
816 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
817 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
818 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
819 struct stm32_hash_state *state = &rctx->state;
820 bool sha3_mode = ctx->flags & HASH_FLAGS_SHA3_MODE;
822 rctx->hdev = hdev;
823 state->flags = 0;
825 if (!(hdev->dma_lch && hdev->pdata->has_mdmat))
826 state->flags |= HASH_FLAGS_CPU;
828 if (sha3_mode)
829 state->flags |= HASH_FLAGS_SHA3_MODE;
831 rctx->digcnt = crypto_ahash_digestsize(tfm);
832 switch (rctx->digcnt) {
833 case MD5_DIGEST_SIZE:
834 state->flags |= HASH_MD5 << HASH_FLAGS_ALGO_SHIFT;
835 break;
836 case SHA1_DIGEST_SIZE:
837 if (hdev->pdata->ux500)
838 state->flags |= HASH_SHA1_UX500 << HASH_FLAGS_ALGO_SHIFT;
839 else
840 state->flags |= HASH_SHA1 << HASH_FLAGS_ALGO_SHIFT;
841 break;
842 case SHA224_DIGEST_SIZE:
843 if (sha3_mode)
844 state->flags |= HASH_SHA3_224 << HASH_FLAGS_ALGO_SHIFT;
845 else
846 state->flags |= HASH_SHA224 << HASH_FLAGS_ALGO_SHIFT;
847 break;
848 case SHA256_DIGEST_SIZE:
849 if (sha3_mode) {
850 state->flags |= HASH_SHA3_256 << HASH_FLAGS_ALGO_SHIFT;
851 } else {
852 if (hdev->pdata->ux500)
853 state->flags |= HASH_SHA256_UX500 << HASH_FLAGS_ALGO_SHIFT;
854 else
855 state->flags |= HASH_SHA256 << HASH_FLAGS_ALGO_SHIFT;
857 break;
858 case SHA384_DIGEST_SIZE:
859 if (sha3_mode)
860 state->flags |= HASH_SHA3_384 << HASH_FLAGS_ALGO_SHIFT;
861 else
862 state->flags |= HASH_SHA384 << HASH_FLAGS_ALGO_SHIFT;
863 break;
864 case SHA512_DIGEST_SIZE:
865 if (sha3_mode)
866 state->flags |= HASH_SHA3_512 << HASH_FLAGS_ALGO_SHIFT;
867 else
868 state->flags |= HASH_SHA512 << HASH_FLAGS_ALGO_SHIFT;
869 break;
870 default:
871 return -EINVAL;
874 rctx->state.bufcnt = 0;
875 rctx->state.blocklen = crypto_ahash_blocksize(tfm) + sizeof(u32);
876 if (rctx->state.blocklen > HASH_BUFLEN) {
877 dev_err(hdev->dev, "Error, block too large");
878 return -EINVAL;
880 rctx->nents = 0;
881 rctx->total = 0;
882 rctx->offset = 0;
883 rctx->data_type = HASH_DATA_8_BITS;
885 if (ctx->flags & HASH_FLAGS_HMAC)
886 state->flags |= HASH_FLAGS_HMAC;
888 dev_dbg(hdev->dev, "%s Flags %x\n", __func__, state->flags);
890 return 0;
893 static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
895 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
896 struct stm32_hash_state *state = &rctx->state;
898 dev_dbg(hdev->dev, "update_req: total: %u, digcnt: %zd, final: 0",
899 rctx->total, rctx->digcnt);
901 if (!(state->flags & HASH_FLAGS_CPU))
902 return stm32_hash_dma_send(hdev);
904 return stm32_hash_update_cpu(hdev);
907 static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
909 struct ahash_request *req = hdev->req;
910 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
911 struct stm32_hash_state *state = &rctx->state;
912 int buflen = state->bufcnt;
914 if (!(state->flags & HASH_FLAGS_CPU)) {
915 hdev->flags |= HASH_FLAGS_FINAL;
916 return stm32_hash_dma_send(hdev);
919 if (state->flags & HASH_FLAGS_FINUP)
920 return stm32_hash_update_req(hdev);
922 state->bufcnt = 0;
924 return stm32_hash_xmit_cpu(hdev, state->buffer, buflen, 1);
927 static void stm32_hash_emptymsg_fallback(struct ahash_request *req)
929 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
930 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(ahash);
931 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
932 struct stm32_hash_dev *hdev = rctx->hdev;
933 int ret;
935 dev_dbg(hdev->dev, "use fallback message size 0 key size %d\n",
936 ctx->keylen);
938 if (!ctx->xtfm) {
939 dev_err(hdev->dev, "no fallback engine\n");
940 return;
943 if (ctx->keylen) {
944 ret = crypto_shash_setkey(ctx->xtfm, ctx->key, ctx->keylen);
945 if (ret) {
946 dev_err(hdev->dev, "failed to set key ret=%d\n", ret);
947 return;
951 ret = crypto_shash_tfm_digest(ctx->xtfm, NULL, 0, rctx->digest);
952 if (ret)
953 dev_err(hdev->dev, "shash digest error\n");
956 static void stm32_hash_copy_hash(struct ahash_request *req)
958 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
959 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
960 struct stm32_hash_state *state = &rctx->state;
961 struct stm32_hash_dev *hdev = rctx->hdev;
962 __be32 *hash = (void *)rctx->digest;
963 unsigned int i, hashsize;
965 if (hdev->pdata->broken_emptymsg && (state->flags & HASH_FLAGS_EMPTY))
966 return stm32_hash_emptymsg_fallback(req);
968 hashsize = crypto_ahash_digestsize(tfm);
970 for (i = 0; i < hashsize / sizeof(u32); i++) {
971 if (hdev->pdata->ux500)
972 hash[i] = cpu_to_be32(stm32_hash_read(hdev,
973 HASH_UX500_HREG(i)));
974 else
975 hash[i] = cpu_to_be32(stm32_hash_read(hdev,
976 HASH_HREG(i)));
980 static int stm32_hash_finish(struct ahash_request *req)
982 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
983 u32 reg;
985 reg = stm32_hash_read(rctx->hdev, HASH_SR);
986 reg &= ~HASH_SR_OUTPUT_READY;
987 stm32_hash_write(rctx->hdev, HASH_SR, reg);
989 if (!req->result)
990 return -EINVAL;
992 memcpy(req->result, rctx->digest, rctx->digcnt);
994 return 0;
997 static void stm32_hash_finish_req(struct ahash_request *req, int err)
999 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1000 struct stm32_hash_state *state = &rctx->state;
1001 struct stm32_hash_dev *hdev = rctx->hdev;
1003 if (hdev->flags & HASH_FLAGS_DMA_ACTIVE)
1004 state->flags |= HASH_FLAGS_DMA_ACTIVE;
1005 else
1006 state->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1008 if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
1009 stm32_hash_copy_hash(req);
1010 err = stm32_hash_finish(req);
1013 /* Finalized request mist be unprepared here */
1014 stm32_hash_unprepare_request(req);
1016 crypto_finalize_hash_request(hdev->engine, req, err);
1019 static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
1020 struct ahash_request *req)
1022 return crypto_transfer_hash_request_to_engine(hdev->engine, req);
1025 static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
1027 struct ahash_request *req = container_of(areq, struct ahash_request,
1028 base);
1029 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
1030 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1031 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1032 struct stm32_hash_state *state = &rctx->state;
1033 int swap_reg;
1034 int err = 0;
1036 if (!hdev)
1037 return -ENODEV;
1039 dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
1040 rctx->op, req->nbytes);
1042 pm_runtime_get_sync(hdev->dev);
1044 err = stm32_hash_prepare_request(req);
1045 if (err)
1046 return err;
1048 hdev->req = req;
1049 hdev->flags = 0;
1050 swap_reg = hash_swap_reg(rctx);
1052 if (state->flags & HASH_FLAGS_INIT) {
1053 u32 *preg = rctx->state.hw_context;
1054 u32 reg;
1055 int i;
1057 if (!hdev->pdata->ux500)
1058 stm32_hash_write(hdev, HASH_IMR, *preg++);
1059 stm32_hash_write(hdev, HASH_STR, *preg++);
1060 stm32_hash_write(hdev, HASH_CR, *preg);
1061 reg = *preg++ | HASH_CR_INIT;
1062 stm32_hash_write(hdev, HASH_CR, reg);
1064 for (i = 0; i < swap_reg; i++)
1065 stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1067 hdev->flags |= HASH_FLAGS_INIT;
1069 if (state->flags & HASH_FLAGS_HMAC)
1070 hdev->flags |= HASH_FLAGS_HMAC |
1071 HASH_FLAGS_HMAC_KEY;
1073 if (state->flags & HASH_FLAGS_CPU)
1074 hdev->flags |= HASH_FLAGS_CPU;
1076 if (state->flags & HASH_FLAGS_DMA_ACTIVE)
1077 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
1080 if (rctx->op == HASH_OP_UPDATE)
1081 err = stm32_hash_update_req(hdev);
1082 else if (rctx->op == HASH_OP_FINAL)
1083 err = stm32_hash_final_req(hdev);
1085 /* If we have an IRQ, wait for that, else poll for completion */
1086 if (err == -EINPROGRESS && hdev->polled) {
1087 if (stm32_hash_wait_busy(hdev))
1088 err = -ETIMEDOUT;
1089 else {
1090 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1091 err = 0;
1095 if (err != -EINPROGRESS)
1096 /* done task will not finish it, so do it here */
1097 stm32_hash_finish_req(req, err);
1099 return 0;
1102 static int stm32_hash_copy_sgs(struct stm32_hash_request_ctx *rctx,
1103 struct scatterlist *sg, int bs,
1104 unsigned int new_len)
1106 struct stm32_hash_state *state = &rctx->state;
1107 int pages;
1108 void *buf;
1110 pages = get_order(new_len);
1112 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1113 if (!buf) {
1114 pr_err("Couldn't allocate pages for unaligned cases.\n");
1115 return -ENOMEM;
1118 if (state->bufcnt)
1119 memcpy(buf, rctx->hdev->xmit_buf, state->bufcnt);
1121 scatterwalk_map_and_copy(buf + state->bufcnt, sg, rctx->offset,
1122 min(new_len, rctx->total) - state->bufcnt, 0);
1123 sg_init_table(rctx->sgl, 1);
1124 sg_set_buf(rctx->sgl, buf, new_len);
1125 rctx->sg = rctx->sgl;
1126 state->flags |= HASH_FLAGS_SGS_COPIED;
1127 rctx->nents = 1;
1128 rctx->offset += new_len - state->bufcnt;
1129 state->bufcnt = 0;
1130 rctx->total = new_len;
1132 return 0;
1135 static int stm32_hash_align_sgs(struct scatterlist *sg,
1136 int nbytes, int bs, bool init, bool final,
1137 struct stm32_hash_request_ctx *rctx)
1139 struct stm32_hash_state *state = &rctx->state;
1140 struct stm32_hash_dev *hdev = rctx->hdev;
1141 struct scatterlist *sg_tmp = sg;
1142 int offset = rctx->offset;
1143 int new_len;
1144 int n = 0;
1145 int bufcnt = state->bufcnt;
1146 bool secure_ctx = hdev->pdata->context_secured;
1147 bool aligned = true;
1149 if (!sg || !sg->length || !nbytes) {
1150 if (bufcnt) {
1151 bufcnt = DIV_ROUND_UP(bufcnt, bs) * bs;
1152 sg_init_table(rctx->sgl, 1);
1153 sg_set_buf(rctx->sgl, rctx->hdev->xmit_buf, bufcnt);
1154 rctx->sg = rctx->sgl;
1155 rctx->nents = 1;
1158 return 0;
1161 new_len = nbytes;
1163 if (offset)
1164 aligned = false;
1166 if (final) {
1167 new_len = DIV_ROUND_UP(new_len, bs) * bs;
1168 } else {
1169 new_len = (new_len - 1) / bs * bs; // return n block - 1 block
1172 * Context save in some version of HASH IP can only be done when the
1173 * FIFO is ready to get a new block. This implies to send n block plus a
1174 * 32 bit word in the first DMA send.
1176 if (init && secure_ctx) {
1177 new_len += sizeof(u32);
1178 if (unlikely(new_len > nbytes))
1179 new_len -= bs;
1183 if (!new_len)
1184 return 0;
1186 if (nbytes != new_len)
1187 aligned = false;
1189 while (nbytes > 0 && sg_tmp) {
1190 n++;
1192 if (bufcnt) {
1193 if (!IS_ALIGNED(bufcnt, bs)) {
1194 aligned = false;
1195 break;
1197 nbytes -= bufcnt;
1198 bufcnt = 0;
1199 if (!nbytes)
1200 aligned = false;
1202 continue;
1205 if (offset < sg_tmp->length) {
1206 if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) {
1207 aligned = false;
1208 break;
1211 if (!IS_ALIGNED(sg_tmp->length - offset, bs)) {
1212 aligned = false;
1213 break;
1217 if (offset) {
1218 offset -= sg_tmp->length;
1219 if (offset < 0) {
1220 nbytes += offset;
1221 offset = 0;
1223 } else {
1224 nbytes -= sg_tmp->length;
1227 sg_tmp = sg_next(sg_tmp);
1229 if (nbytes < 0) {
1230 aligned = false;
1231 break;
1235 if (!aligned)
1236 return stm32_hash_copy_sgs(rctx, sg, bs, new_len);
1238 rctx->total = new_len;
1239 rctx->offset += new_len;
1240 rctx->nents = n;
1241 if (state->bufcnt) {
1242 sg_init_table(rctx->sgl, 2);
1243 sg_set_buf(rctx->sgl, rctx->hdev->xmit_buf, state->bufcnt);
1244 sg_chain(rctx->sgl, 2, sg);
1245 rctx->sg = rctx->sgl;
1246 } else {
1247 rctx->sg = sg;
1250 return 0;
1253 static int stm32_hash_prepare_request(struct ahash_request *req)
1255 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1256 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1257 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1258 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1259 struct stm32_hash_state *state = &rctx->state;
1260 unsigned int nbytes;
1261 int ret, hash_later, bs;
1262 bool update = rctx->op & HASH_OP_UPDATE;
1263 bool init = !(state->flags & HASH_FLAGS_INIT);
1264 bool finup = state->flags & HASH_FLAGS_FINUP;
1265 bool final = state->flags & HASH_FLAGS_FINAL;
1267 if (!hdev->dma_lch || state->flags & HASH_FLAGS_CPU)
1268 return 0;
1270 bs = crypto_ahash_blocksize(tfm);
1272 nbytes = state->bufcnt;
1275 * In case of update request nbytes must correspond to the content of the
1276 * buffer + the offset minus the content of the request already in the
1277 * buffer.
1279 if (update || finup)
1280 nbytes += req->nbytes - rctx->offset;
1282 dev_dbg(hdev->dev,
1283 "%s: nbytes=%d, bs=%d, total=%d, offset=%d, bufcnt=%d\n",
1284 __func__, nbytes, bs, rctx->total, rctx->offset, state->bufcnt);
1286 if (!nbytes)
1287 return 0;
1289 rctx->total = nbytes;
1291 if (update && req->nbytes && (!IS_ALIGNED(state->bufcnt, bs))) {
1292 int len = bs - state->bufcnt % bs;
1294 if (len > req->nbytes)
1295 len = req->nbytes;
1296 scatterwalk_map_and_copy(state->buffer + state->bufcnt, req->src,
1297 0, len, 0);
1298 state->bufcnt += len;
1299 rctx->offset = len;
1302 /* copy buffer in a temporary one that is used for sg alignment */
1303 if (state->bufcnt)
1304 memcpy(hdev->xmit_buf, state->buffer, state->bufcnt);
1306 ret = stm32_hash_align_sgs(req->src, nbytes, bs, init, final, rctx);
1307 if (ret)
1308 return ret;
1310 hash_later = nbytes - rctx->total;
1311 if (hash_later < 0)
1312 hash_later = 0;
1314 if (hash_later && hash_later <= state->blocklen) {
1315 scatterwalk_map_and_copy(state->buffer,
1316 req->src,
1317 req->nbytes - hash_later,
1318 hash_later, 0);
1320 state->bufcnt = hash_later;
1321 } else {
1322 state->bufcnt = 0;
1325 if (hash_later > state->blocklen) {
1326 /* FIXME: add support of this case */
1327 pr_err("Buffer contains more than one block.\n");
1328 return -ENOMEM;
1331 rctx->total = min(nbytes, rctx->total);
1333 return 0;
1336 static void stm32_hash_unprepare_request(struct ahash_request *req)
1338 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1339 struct stm32_hash_state *state = &rctx->state;
1340 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
1341 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1342 u32 *preg = state->hw_context;
1343 int swap_reg, i;
1345 if (hdev->dma_lch)
1346 dmaengine_terminate_sync(hdev->dma_lch);
1348 if (state->flags & HASH_FLAGS_SGS_COPIED)
1349 free_pages((unsigned long)sg_virt(rctx->sg), get_order(rctx->sg->length));
1351 rctx->sg = NULL;
1352 rctx->offset = 0;
1354 state->flags &= ~(HASH_FLAGS_SGS_COPIED);
1356 if (!(hdev->flags & HASH_FLAGS_INIT))
1357 goto pm_runtime;
1359 state->flags |= HASH_FLAGS_INIT;
1361 if (stm32_hash_wait_busy(hdev)) {
1362 dev_warn(hdev->dev, "Wait busy failed.");
1363 return;
1366 swap_reg = hash_swap_reg(rctx);
1368 if (!hdev->pdata->ux500)
1369 *preg++ = stm32_hash_read(hdev, HASH_IMR);
1370 *preg++ = stm32_hash_read(hdev, HASH_STR);
1371 *preg++ = stm32_hash_read(hdev, HASH_CR);
1372 for (i = 0; i < swap_reg; i++)
1373 *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
1375 pm_runtime:
1376 pm_runtime_mark_last_busy(hdev->dev);
1377 pm_runtime_put_autosuspend(hdev->dev);
1380 static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
1382 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1383 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1384 struct stm32_hash_dev *hdev = ctx->hdev;
1386 rctx->op = op;
1388 return stm32_hash_handle_queue(hdev, req);
1391 static int stm32_hash_update(struct ahash_request *req)
1393 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1394 struct stm32_hash_state *state = &rctx->state;
1396 if (!req->nbytes)
1397 return 0;
1400 if (state->flags & HASH_FLAGS_CPU) {
1401 rctx->total = req->nbytes;
1402 rctx->sg = req->src;
1403 rctx->offset = 0;
1405 if ((state->bufcnt + rctx->total < state->blocklen)) {
1406 stm32_hash_append_sg(rctx);
1407 return 0;
1409 } else { /* DMA mode */
1410 if (state->bufcnt + req->nbytes <= state->blocklen) {
1411 scatterwalk_map_and_copy(state->buffer + state->bufcnt, req->src,
1412 0, req->nbytes, 0);
1413 state->bufcnt += req->nbytes;
1414 return 0;
1418 return stm32_hash_enqueue(req, HASH_OP_UPDATE);
1421 static int stm32_hash_final(struct ahash_request *req)
1423 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1424 struct stm32_hash_state *state = &rctx->state;
1426 state->flags |= HASH_FLAGS_FINAL;
1428 return stm32_hash_enqueue(req, HASH_OP_FINAL);
1431 static int stm32_hash_finup(struct ahash_request *req)
1433 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1434 struct stm32_hash_state *state = &rctx->state;
1436 if (!req->nbytes)
1437 goto out;
1439 state->flags |= HASH_FLAGS_FINUP;
1441 if ((state->flags & HASH_FLAGS_CPU)) {
1442 rctx->total = req->nbytes;
1443 rctx->sg = req->src;
1444 rctx->offset = 0;
1447 out:
1448 return stm32_hash_final(req);
1451 static int stm32_hash_digest(struct ahash_request *req)
1453 return stm32_hash_init(req) ?: stm32_hash_finup(req);
1456 static int stm32_hash_export(struct ahash_request *req, void *out)
1458 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1460 memcpy(out, &rctx->state, sizeof(rctx->state));
1462 return 0;
1465 static int stm32_hash_import(struct ahash_request *req, const void *in)
1467 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1469 stm32_hash_init(req);
1470 memcpy(&rctx->state, in, sizeof(rctx->state));
1472 return 0;
1475 static int stm32_hash_setkey(struct crypto_ahash *tfm,
1476 const u8 *key, unsigned int keylen)
1478 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1480 if (keylen <= HASH_MAX_KEY_SIZE) {
1481 memcpy(ctx->key, key, keylen);
1482 ctx->keylen = keylen;
1483 } else {
1484 return -ENOMEM;
1487 return 0;
1490 static int stm32_hash_init_fallback(struct crypto_tfm *tfm)
1492 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1493 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1494 const char *name = crypto_tfm_alg_name(tfm);
1495 struct crypto_shash *xtfm;
1497 /* The fallback is only needed on Ux500 */
1498 if (!hdev->pdata->ux500)
1499 return 0;
1501 xtfm = crypto_alloc_shash(name, 0, CRYPTO_ALG_NEED_FALLBACK);
1502 if (IS_ERR(xtfm)) {
1503 dev_err(hdev->dev, "failed to allocate %s fallback\n",
1504 name);
1505 return PTR_ERR(xtfm);
1507 dev_info(hdev->dev, "allocated %s fallback\n", name);
1508 ctx->xtfm = xtfm;
1510 return 0;
1513 static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm, u32 algs_flags)
1515 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1517 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1518 sizeof(struct stm32_hash_request_ctx));
1520 ctx->keylen = 0;
1522 if (algs_flags)
1523 ctx->flags |= algs_flags;
1525 return stm32_hash_init_fallback(tfm);
1528 static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1530 return stm32_hash_cra_init_algs(tfm, 0);
1533 static int stm32_hash_cra_hmac_init(struct crypto_tfm *tfm)
1535 return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_HMAC);
1538 static int stm32_hash_cra_sha3_init(struct crypto_tfm *tfm)
1540 return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_SHA3_MODE);
1543 static int stm32_hash_cra_sha3_hmac_init(struct crypto_tfm *tfm)
1545 return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_SHA3_MODE |
1546 HASH_FLAGS_HMAC);
1549 static void stm32_hash_cra_exit(struct crypto_tfm *tfm)
1551 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1553 if (ctx->xtfm)
1554 crypto_free_shash(ctx->xtfm);
1557 static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1559 struct stm32_hash_dev *hdev = dev_id;
1561 if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1562 hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1563 goto finish;
1566 return IRQ_HANDLED;
1568 finish:
1569 /* Finish current request */
1570 stm32_hash_finish_req(hdev->req, 0);
1572 return IRQ_HANDLED;
1575 static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1577 struct stm32_hash_dev *hdev = dev_id;
1578 u32 reg;
1580 reg = stm32_hash_read(hdev, HASH_SR);
1581 if (reg & HASH_SR_OUTPUT_READY) {
1582 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1583 /* Disable IT*/
1584 stm32_hash_write(hdev, HASH_IMR, 0);
1585 return IRQ_WAKE_THREAD;
1588 return IRQ_NONE;
1591 static struct ahash_engine_alg algs_md5[] = {
1593 .base.init = stm32_hash_init,
1594 .base.update = stm32_hash_update,
1595 .base.final = stm32_hash_final,
1596 .base.finup = stm32_hash_finup,
1597 .base.digest = stm32_hash_digest,
1598 .base.export = stm32_hash_export,
1599 .base.import = stm32_hash_import,
1600 .base.halg = {
1601 .digestsize = MD5_DIGEST_SIZE,
1602 .statesize = sizeof(struct stm32_hash_state),
1603 .base = {
1604 .cra_name = "md5",
1605 .cra_driver_name = "stm32-md5",
1606 .cra_priority = 200,
1607 .cra_flags = CRYPTO_ALG_ASYNC |
1608 CRYPTO_ALG_KERN_DRIVER_ONLY,
1609 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1610 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1611 .cra_init = stm32_hash_cra_init,
1612 .cra_exit = stm32_hash_cra_exit,
1613 .cra_module = THIS_MODULE,
1616 .op = {
1617 .do_one_request = stm32_hash_one_request,
1621 .base.init = stm32_hash_init,
1622 .base.update = stm32_hash_update,
1623 .base.final = stm32_hash_final,
1624 .base.finup = stm32_hash_finup,
1625 .base.digest = stm32_hash_digest,
1626 .base.export = stm32_hash_export,
1627 .base.import = stm32_hash_import,
1628 .base.setkey = stm32_hash_setkey,
1629 .base.halg = {
1630 .digestsize = MD5_DIGEST_SIZE,
1631 .statesize = sizeof(struct stm32_hash_state),
1632 .base = {
1633 .cra_name = "hmac(md5)",
1634 .cra_driver_name = "stm32-hmac-md5",
1635 .cra_priority = 200,
1636 .cra_flags = CRYPTO_ALG_ASYNC |
1637 CRYPTO_ALG_KERN_DRIVER_ONLY,
1638 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1639 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1640 .cra_init = stm32_hash_cra_hmac_init,
1641 .cra_exit = stm32_hash_cra_exit,
1642 .cra_module = THIS_MODULE,
1645 .op = {
1646 .do_one_request = stm32_hash_one_request,
1651 static struct ahash_engine_alg algs_sha1[] = {
1653 .base.init = stm32_hash_init,
1654 .base.update = stm32_hash_update,
1655 .base.final = stm32_hash_final,
1656 .base.finup = stm32_hash_finup,
1657 .base.digest = stm32_hash_digest,
1658 .base.export = stm32_hash_export,
1659 .base.import = stm32_hash_import,
1660 .base.halg = {
1661 .digestsize = SHA1_DIGEST_SIZE,
1662 .statesize = sizeof(struct stm32_hash_state),
1663 .base = {
1664 .cra_name = "sha1",
1665 .cra_driver_name = "stm32-sha1",
1666 .cra_priority = 200,
1667 .cra_flags = CRYPTO_ALG_ASYNC |
1668 CRYPTO_ALG_KERN_DRIVER_ONLY,
1669 .cra_blocksize = SHA1_BLOCK_SIZE,
1670 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1671 .cra_init = stm32_hash_cra_init,
1672 .cra_exit = stm32_hash_cra_exit,
1673 .cra_module = THIS_MODULE,
1676 .op = {
1677 .do_one_request = stm32_hash_one_request,
1681 .base.init = stm32_hash_init,
1682 .base.update = stm32_hash_update,
1683 .base.final = stm32_hash_final,
1684 .base.finup = stm32_hash_finup,
1685 .base.digest = stm32_hash_digest,
1686 .base.export = stm32_hash_export,
1687 .base.import = stm32_hash_import,
1688 .base.setkey = stm32_hash_setkey,
1689 .base.halg = {
1690 .digestsize = SHA1_DIGEST_SIZE,
1691 .statesize = sizeof(struct stm32_hash_state),
1692 .base = {
1693 .cra_name = "hmac(sha1)",
1694 .cra_driver_name = "stm32-hmac-sha1",
1695 .cra_priority = 200,
1696 .cra_flags = CRYPTO_ALG_ASYNC |
1697 CRYPTO_ALG_KERN_DRIVER_ONLY,
1698 .cra_blocksize = SHA1_BLOCK_SIZE,
1699 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1700 .cra_init = stm32_hash_cra_hmac_init,
1701 .cra_exit = stm32_hash_cra_exit,
1702 .cra_module = THIS_MODULE,
1705 .op = {
1706 .do_one_request = stm32_hash_one_request,
1711 static struct ahash_engine_alg algs_sha224[] = {
1713 .base.init = stm32_hash_init,
1714 .base.update = stm32_hash_update,
1715 .base.final = stm32_hash_final,
1716 .base.finup = stm32_hash_finup,
1717 .base.digest = stm32_hash_digest,
1718 .base.export = stm32_hash_export,
1719 .base.import = stm32_hash_import,
1720 .base.halg = {
1721 .digestsize = SHA224_DIGEST_SIZE,
1722 .statesize = sizeof(struct stm32_hash_state),
1723 .base = {
1724 .cra_name = "sha224",
1725 .cra_driver_name = "stm32-sha224",
1726 .cra_priority = 200,
1727 .cra_flags = CRYPTO_ALG_ASYNC |
1728 CRYPTO_ALG_KERN_DRIVER_ONLY,
1729 .cra_blocksize = SHA224_BLOCK_SIZE,
1730 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1731 .cra_init = stm32_hash_cra_init,
1732 .cra_exit = stm32_hash_cra_exit,
1733 .cra_module = THIS_MODULE,
1736 .op = {
1737 .do_one_request = stm32_hash_one_request,
1741 .base.init = stm32_hash_init,
1742 .base.update = stm32_hash_update,
1743 .base.final = stm32_hash_final,
1744 .base.finup = stm32_hash_finup,
1745 .base.digest = stm32_hash_digest,
1746 .base.setkey = stm32_hash_setkey,
1747 .base.export = stm32_hash_export,
1748 .base.import = stm32_hash_import,
1749 .base.halg = {
1750 .digestsize = SHA224_DIGEST_SIZE,
1751 .statesize = sizeof(struct stm32_hash_state),
1752 .base = {
1753 .cra_name = "hmac(sha224)",
1754 .cra_driver_name = "stm32-hmac-sha224",
1755 .cra_priority = 200,
1756 .cra_flags = CRYPTO_ALG_ASYNC |
1757 CRYPTO_ALG_KERN_DRIVER_ONLY,
1758 .cra_blocksize = SHA224_BLOCK_SIZE,
1759 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1760 .cra_init = stm32_hash_cra_hmac_init,
1761 .cra_exit = stm32_hash_cra_exit,
1762 .cra_module = THIS_MODULE,
1765 .op = {
1766 .do_one_request = stm32_hash_one_request,
1771 static struct ahash_engine_alg algs_sha256[] = {
1773 .base.init = stm32_hash_init,
1774 .base.update = stm32_hash_update,
1775 .base.final = stm32_hash_final,
1776 .base.finup = stm32_hash_finup,
1777 .base.digest = stm32_hash_digest,
1778 .base.export = stm32_hash_export,
1779 .base.import = stm32_hash_import,
1780 .base.halg = {
1781 .digestsize = SHA256_DIGEST_SIZE,
1782 .statesize = sizeof(struct stm32_hash_state),
1783 .base = {
1784 .cra_name = "sha256",
1785 .cra_driver_name = "stm32-sha256",
1786 .cra_priority = 200,
1787 .cra_flags = CRYPTO_ALG_ASYNC |
1788 CRYPTO_ALG_KERN_DRIVER_ONLY,
1789 .cra_blocksize = SHA256_BLOCK_SIZE,
1790 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1791 .cra_init = stm32_hash_cra_init,
1792 .cra_exit = stm32_hash_cra_exit,
1793 .cra_module = THIS_MODULE,
1796 .op = {
1797 .do_one_request = stm32_hash_one_request,
1801 .base.init = stm32_hash_init,
1802 .base.update = stm32_hash_update,
1803 .base.final = stm32_hash_final,
1804 .base.finup = stm32_hash_finup,
1805 .base.digest = stm32_hash_digest,
1806 .base.export = stm32_hash_export,
1807 .base.import = stm32_hash_import,
1808 .base.setkey = stm32_hash_setkey,
1809 .base.halg = {
1810 .digestsize = SHA256_DIGEST_SIZE,
1811 .statesize = sizeof(struct stm32_hash_state),
1812 .base = {
1813 .cra_name = "hmac(sha256)",
1814 .cra_driver_name = "stm32-hmac-sha256",
1815 .cra_priority = 200,
1816 .cra_flags = CRYPTO_ALG_ASYNC |
1817 CRYPTO_ALG_KERN_DRIVER_ONLY,
1818 .cra_blocksize = SHA256_BLOCK_SIZE,
1819 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1820 .cra_init = stm32_hash_cra_hmac_init,
1821 .cra_exit = stm32_hash_cra_exit,
1822 .cra_module = THIS_MODULE,
1825 .op = {
1826 .do_one_request = stm32_hash_one_request,
1831 static struct ahash_engine_alg algs_sha384_sha512[] = {
1833 .base.init = stm32_hash_init,
1834 .base.update = stm32_hash_update,
1835 .base.final = stm32_hash_final,
1836 .base.finup = stm32_hash_finup,
1837 .base.digest = stm32_hash_digest,
1838 .base.export = stm32_hash_export,
1839 .base.import = stm32_hash_import,
1840 .base.halg = {
1841 .digestsize = SHA384_DIGEST_SIZE,
1842 .statesize = sizeof(struct stm32_hash_state),
1843 .base = {
1844 .cra_name = "sha384",
1845 .cra_driver_name = "stm32-sha384",
1846 .cra_priority = 200,
1847 .cra_flags = CRYPTO_ALG_ASYNC |
1848 CRYPTO_ALG_KERN_DRIVER_ONLY,
1849 .cra_blocksize = SHA384_BLOCK_SIZE,
1850 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1851 .cra_init = stm32_hash_cra_init,
1852 .cra_exit = stm32_hash_cra_exit,
1853 .cra_module = THIS_MODULE,
1856 .op = {
1857 .do_one_request = stm32_hash_one_request,
1861 .base.init = stm32_hash_init,
1862 .base.update = stm32_hash_update,
1863 .base.final = stm32_hash_final,
1864 .base.finup = stm32_hash_finup,
1865 .base.digest = stm32_hash_digest,
1866 .base.setkey = stm32_hash_setkey,
1867 .base.export = stm32_hash_export,
1868 .base.import = stm32_hash_import,
1869 .base.halg = {
1870 .digestsize = SHA384_DIGEST_SIZE,
1871 .statesize = sizeof(struct stm32_hash_state),
1872 .base = {
1873 .cra_name = "hmac(sha384)",
1874 .cra_driver_name = "stm32-hmac-sha384",
1875 .cra_priority = 200,
1876 .cra_flags = CRYPTO_ALG_ASYNC |
1877 CRYPTO_ALG_KERN_DRIVER_ONLY,
1878 .cra_blocksize = SHA384_BLOCK_SIZE,
1879 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1880 .cra_init = stm32_hash_cra_hmac_init,
1881 .cra_exit = stm32_hash_cra_exit,
1882 .cra_module = THIS_MODULE,
1885 .op = {
1886 .do_one_request = stm32_hash_one_request,
1890 .base.init = stm32_hash_init,
1891 .base.update = stm32_hash_update,
1892 .base.final = stm32_hash_final,
1893 .base.finup = stm32_hash_finup,
1894 .base.digest = stm32_hash_digest,
1895 .base.export = stm32_hash_export,
1896 .base.import = stm32_hash_import,
1897 .base.halg = {
1898 .digestsize = SHA512_DIGEST_SIZE,
1899 .statesize = sizeof(struct stm32_hash_state),
1900 .base = {
1901 .cra_name = "sha512",
1902 .cra_driver_name = "stm32-sha512",
1903 .cra_priority = 200,
1904 .cra_flags = CRYPTO_ALG_ASYNC |
1905 CRYPTO_ALG_KERN_DRIVER_ONLY,
1906 .cra_blocksize = SHA512_BLOCK_SIZE,
1907 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1908 .cra_init = stm32_hash_cra_init,
1909 .cra_exit = stm32_hash_cra_exit,
1910 .cra_module = THIS_MODULE,
1913 .op = {
1914 .do_one_request = stm32_hash_one_request,
1918 .base.init = stm32_hash_init,
1919 .base.update = stm32_hash_update,
1920 .base.final = stm32_hash_final,
1921 .base.finup = stm32_hash_finup,
1922 .base.digest = stm32_hash_digest,
1923 .base.export = stm32_hash_export,
1924 .base.import = stm32_hash_import,
1925 .base.setkey = stm32_hash_setkey,
1926 .base.halg = {
1927 .digestsize = SHA512_DIGEST_SIZE,
1928 .statesize = sizeof(struct stm32_hash_state),
1929 .base = {
1930 .cra_name = "hmac(sha512)",
1931 .cra_driver_name = "stm32-hmac-sha512",
1932 .cra_priority = 200,
1933 .cra_flags = CRYPTO_ALG_ASYNC |
1934 CRYPTO_ALG_KERN_DRIVER_ONLY,
1935 .cra_blocksize = SHA512_BLOCK_SIZE,
1936 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1937 .cra_init = stm32_hash_cra_hmac_init,
1938 .cra_exit = stm32_hash_cra_exit,
1939 .cra_module = THIS_MODULE,
1942 .op = {
1943 .do_one_request = stm32_hash_one_request,
1948 static struct ahash_engine_alg algs_sha3[] = {
1950 .base.init = stm32_hash_init,
1951 .base.update = stm32_hash_update,
1952 .base.final = stm32_hash_final,
1953 .base.finup = stm32_hash_finup,
1954 .base.digest = stm32_hash_digest,
1955 .base.export = stm32_hash_export,
1956 .base.import = stm32_hash_import,
1957 .base.halg = {
1958 .digestsize = SHA3_224_DIGEST_SIZE,
1959 .statesize = sizeof(struct stm32_hash_state),
1960 .base = {
1961 .cra_name = "sha3-224",
1962 .cra_driver_name = "stm32-sha3-224",
1963 .cra_priority = 200,
1964 .cra_flags = CRYPTO_ALG_ASYNC |
1965 CRYPTO_ALG_KERN_DRIVER_ONLY,
1966 .cra_blocksize = SHA3_224_BLOCK_SIZE,
1967 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1968 .cra_init = stm32_hash_cra_sha3_init,
1969 .cra_exit = stm32_hash_cra_exit,
1970 .cra_module = THIS_MODULE,
1973 .op = {
1974 .do_one_request = stm32_hash_one_request,
1978 .base.init = stm32_hash_init,
1979 .base.update = stm32_hash_update,
1980 .base.final = stm32_hash_final,
1981 .base.finup = stm32_hash_finup,
1982 .base.digest = stm32_hash_digest,
1983 .base.export = stm32_hash_export,
1984 .base.import = stm32_hash_import,
1985 .base.setkey = stm32_hash_setkey,
1986 .base.halg = {
1987 .digestsize = SHA3_224_DIGEST_SIZE,
1988 .statesize = sizeof(struct stm32_hash_state),
1989 .base = {
1990 .cra_name = "hmac(sha3-224)",
1991 .cra_driver_name = "stm32-hmac-sha3-224",
1992 .cra_priority = 200,
1993 .cra_flags = CRYPTO_ALG_ASYNC |
1994 CRYPTO_ALG_KERN_DRIVER_ONLY,
1995 .cra_blocksize = SHA3_224_BLOCK_SIZE,
1996 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1997 .cra_init = stm32_hash_cra_sha3_hmac_init,
1998 .cra_exit = stm32_hash_cra_exit,
1999 .cra_module = THIS_MODULE,
2002 .op = {
2003 .do_one_request = stm32_hash_one_request,
2007 .base.init = stm32_hash_init,
2008 .base.update = stm32_hash_update,
2009 .base.final = stm32_hash_final,
2010 .base.finup = stm32_hash_finup,
2011 .base.digest = stm32_hash_digest,
2012 .base.export = stm32_hash_export,
2013 .base.import = stm32_hash_import,
2014 .base.halg = {
2015 .digestsize = SHA3_256_DIGEST_SIZE,
2016 .statesize = sizeof(struct stm32_hash_state),
2017 .base = {
2018 .cra_name = "sha3-256",
2019 .cra_driver_name = "stm32-sha3-256",
2020 .cra_priority = 200,
2021 .cra_flags = CRYPTO_ALG_ASYNC |
2022 CRYPTO_ALG_KERN_DRIVER_ONLY,
2023 .cra_blocksize = SHA3_256_BLOCK_SIZE,
2024 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2025 .cra_init = stm32_hash_cra_sha3_init,
2026 .cra_exit = stm32_hash_cra_exit,
2027 .cra_module = THIS_MODULE,
2030 .op = {
2031 .do_one_request = stm32_hash_one_request,
2035 .base.init = stm32_hash_init,
2036 .base.update = stm32_hash_update,
2037 .base.final = stm32_hash_final,
2038 .base.finup = stm32_hash_finup,
2039 .base.digest = stm32_hash_digest,
2040 .base.export = stm32_hash_export,
2041 .base.import = stm32_hash_import,
2042 .base.setkey = stm32_hash_setkey,
2043 .base.halg = {
2044 .digestsize = SHA3_256_DIGEST_SIZE,
2045 .statesize = sizeof(struct stm32_hash_state),
2046 .base = {
2047 .cra_name = "hmac(sha3-256)",
2048 .cra_driver_name = "stm32-hmac-sha3-256",
2049 .cra_priority = 200,
2050 .cra_flags = CRYPTO_ALG_ASYNC |
2051 CRYPTO_ALG_KERN_DRIVER_ONLY,
2052 .cra_blocksize = SHA3_256_BLOCK_SIZE,
2053 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2054 .cra_init = stm32_hash_cra_sha3_hmac_init,
2055 .cra_exit = stm32_hash_cra_exit,
2056 .cra_module = THIS_MODULE,
2059 .op = {
2060 .do_one_request = stm32_hash_one_request,
2064 .base.init = stm32_hash_init,
2065 .base.update = stm32_hash_update,
2066 .base.final = stm32_hash_final,
2067 .base.finup = stm32_hash_finup,
2068 .base.digest = stm32_hash_digest,
2069 .base.export = stm32_hash_export,
2070 .base.import = stm32_hash_import,
2071 .base.halg = {
2072 .digestsize = SHA3_384_DIGEST_SIZE,
2073 .statesize = sizeof(struct stm32_hash_state),
2074 .base = {
2075 .cra_name = "sha3-384",
2076 .cra_driver_name = "stm32-sha3-384",
2077 .cra_priority = 200,
2078 .cra_flags = CRYPTO_ALG_ASYNC |
2079 CRYPTO_ALG_KERN_DRIVER_ONLY,
2080 .cra_blocksize = SHA3_384_BLOCK_SIZE,
2081 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2082 .cra_init = stm32_hash_cra_sha3_init,
2083 .cra_exit = stm32_hash_cra_exit,
2084 .cra_module = THIS_MODULE,
2087 .op = {
2088 .do_one_request = stm32_hash_one_request,
2092 .base.init = stm32_hash_init,
2093 .base.update = stm32_hash_update,
2094 .base.final = stm32_hash_final,
2095 .base.finup = stm32_hash_finup,
2096 .base.digest = stm32_hash_digest,
2097 .base.export = stm32_hash_export,
2098 .base.import = stm32_hash_import,
2099 .base.setkey = stm32_hash_setkey,
2100 .base.halg = {
2101 .digestsize = SHA3_384_DIGEST_SIZE,
2102 .statesize = sizeof(struct stm32_hash_state),
2103 .base = {
2104 .cra_name = "hmac(sha3-384)",
2105 .cra_driver_name = "stm32-hmac-sha3-384",
2106 .cra_priority = 200,
2107 .cra_flags = CRYPTO_ALG_ASYNC |
2108 CRYPTO_ALG_KERN_DRIVER_ONLY,
2109 .cra_blocksize = SHA3_384_BLOCK_SIZE,
2110 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2111 .cra_init = stm32_hash_cra_sha3_hmac_init,
2112 .cra_exit = stm32_hash_cra_exit,
2113 .cra_module = THIS_MODULE,
2116 .op = {
2117 .do_one_request = stm32_hash_one_request,
2121 .base.init = stm32_hash_init,
2122 .base.update = stm32_hash_update,
2123 .base.final = stm32_hash_final,
2124 .base.finup = stm32_hash_finup,
2125 .base.digest = stm32_hash_digest,
2126 .base.export = stm32_hash_export,
2127 .base.import = stm32_hash_import,
2128 .base.halg = {
2129 .digestsize = SHA3_512_DIGEST_SIZE,
2130 .statesize = sizeof(struct stm32_hash_state),
2131 .base = {
2132 .cra_name = "sha3-512",
2133 .cra_driver_name = "stm32-sha3-512",
2134 .cra_priority = 200,
2135 .cra_flags = CRYPTO_ALG_ASYNC |
2136 CRYPTO_ALG_KERN_DRIVER_ONLY,
2137 .cra_blocksize = SHA3_512_BLOCK_SIZE,
2138 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2139 .cra_init = stm32_hash_cra_sha3_init,
2140 .cra_exit = stm32_hash_cra_exit,
2141 .cra_module = THIS_MODULE,
2144 .op = {
2145 .do_one_request = stm32_hash_one_request,
2149 .base.init = stm32_hash_init,
2150 .base.update = stm32_hash_update,
2151 .base.final = stm32_hash_final,
2152 .base.finup = stm32_hash_finup,
2153 .base.digest = stm32_hash_digest,
2154 .base.export = stm32_hash_export,
2155 .base.import = stm32_hash_import,
2156 .base.setkey = stm32_hash_setkey,
2157 .base.halg = {
2158 .digestsize = SHA3_512_DIGEST_SIZE,
2159 .statesize = sizeof(struct stm32_hash_state),
2160 .base = {
2161 .cra_name = "hmac(sha3-512)",
2162 .cra_driver_name = "stm32-hmac-sha3-512",
2163 .cra_priority = 200,
2164 .cra_flags = CRYPTO_ALG_ASYNC |
2165 CRYPTO_ALG_KERN_DRIVER_ONLY,
2166 .cra_blocksize = SHA3_512_BLOCK_SIZE,
2167 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2168 .cra_init = stm32_hash_cra_sha3_hmac_init,
2169 .cra_exit = stm32_hash_cra_exit,
2170 .cra_module = THIS_MODULE,
2173 .op = {
2174 .do_one_request = stm32_hash_one_request,
2179 static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
2181 unsigned int i, j;
2182 int err;
2184 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
2185 for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
2186 err = crypto_engine_register_ahash(
2187 &hdev->pdata->algs_info[i].algs_list[j]);
2188 if (err)
2189 goto err_algs;
2193 return 0;
2194 err_algs:
2195 dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
2196 for (; i--; ) {
2197 for (; j--;)
2198 crypto_engine_unregister_ahash(
2199 &hdev->pdata->algs_info[i].algs_list[j]);
2202 return err;
2205 static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
2207 unsigned int i, j;
2209 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
2210 for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
2211 crypto_engine_unregister_ahash(
2212 &hdev->pdata->algs_info[i].algs_list[j]);
2215 return 0;
2218 static struct stm32_hash_algs_info stm32_hash_algs_info_ux500[] = {
2220 .algs_list = algs_sha1,
2221 .size = ARRAY_SIZE(algs_sha1),
2224 .algs_list = algs_sha256,
2225 .size = ARRAY_SIZE(algs_sha256),
2229 static const struct stm32_hash_pdata stm32_hash_pdata_ux500 = {
2230 .alg_shift = 7,
2231 .algs_info = stm32_hash_algs_info_ux500,
2232 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_ux500),
2233 .broken_emptymsg = true,
2234 .ux500 = true,
2237 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
2239 .algs_list = algs_md5,
2240 .size = ARRAY_SIZE(algs_md5),
2243 .algs_list = algs_sha1,
2244 .size = ARRAY_SIZE(algs_sha1),
2248 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
2249 .alg_shift = 7,
2250 .algs_info = stm32_hash_algs_info_stm32f4,
2251 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
2252 .has_sr = true,
2253 .has_mdmat = true,
2256 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
2258 .algs_list = algs_md5,
2259 .size = ARRAY_SIZE(algs_md5),
2262 .algs_list = algs_sha1,
2263 .size = ARRAY_SIZE(algs_sha1),
2266 .algs_list = algs_sha224,
2267 .size = ARRAY_SIZE(algs_sha224),
2270 .algs_list = algs_sha256,
2271 .size = ARRAY_SIZE(algs_sha256),
2275 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
2276 .alg_shift = 7,
2277 .algs_info = stm32_hash_algs_info_stm32f7,
2278 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
2279 .has_sr = true,
2280 .has_mdmat = true,
2283 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32mp13[] = {
2285 .algs_list = algs_sha1,
2286 .size = ARRAY_SIZE(algs_sha1),
2289 .algs_list = algs_sha224,
2290 .size = ARRAY_SIZE(algs_sha224),
2293 .algs_list = algs_sha256,
2294 .size = ARRAY_SIZE(algs_sha256),
2297 .algs_list = algs_sha384_sha512,
2298 .size = ARRAY_SIZE(algs_sha384_sha512),
2301 .algs_list = algs_sha3,
2302 .size = ARRAY_SIZE(algs_sha3),
2306 static const struct stm32_hash_pdata stm32_hash_pdata_stm32mp13 = {
2307 .alg_shift = 17,
2308 .algs_info = stm32_hash_algs_info_stm32mp13,
2309 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32mp13),
2310 .has_sr = true,
2311 .has_mdmat = true,
2312 .context_secured = true,
2315 static const struct of_device_id stm32_hash_of_match[] = {
2316 { .compatible = "stericsson,ux500-hash", .data = &stm32_hash_pdata_ux500 },
2317 { .compatible = "st,stm32f456-hash", .data = &stm32_hash_pdata_stm32f4 },
2318 { .compatible = "st,stm32f756-hash", .data = &stm32_hash_pdata_stm32f7 },
2319 { .compatible = "st,stm32mp13-hash", .data = &stm32_hash_pdata_stm32mp13 },
2323 MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
2325 static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
2326 struct device *dev)
2328 hdev->pdata = of_device_get_match_data(dev);
2329 if (!hdev->pdata) {
2330 dev_err(dev, "no compatible OF match\n");
2331 return -EINVAL;
2334 return 0;
2337 static int stm32_hash_probe(struct platform_device *pdev)
2339 struct stm32_hash_dev *hdev;
2340 struct device *dev = &pdev->dev;
2341 struct resource *res;
2342 int ret, irq;
2344 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
2345 if (!hdev)
2346 return -ENOMEM;
2348 hdev->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2349 if (IS_ERR(hdev->io_base))
2350 return PTR_ERR(hdev->io_base);
2352 hdev->phys_base = res->start;
2354 ret = stm32_hash_get_of_match(hdev, dev);
2355 if (ret)
2356 return ret;
2358 irq = platform_get_irq_optional(pdev, 0);
2359 if (irq < 0 && irq != -ENXIO)
2360 return irq;
2362 if (irq > 0) {
2363 ret = devm_request_threaded_irq(dev, irq,
2364 stm32_hash_irq_handler,
2365 stm32_hash_irq_thread,
2366 IRQF_ONESHOT,
2367 dev_name(dev), hdev);
2368 if (ret) {
2369 dev_err(dev, "Cannot grab IRQ\n");
2370 return ret;
2372 } else {
2373 dev_info(dev, "No IRQ, use polling mode\n");
2374 hdev->polled = true;
2377 hdev->clk = devm_clk_get(&pdev->dev, NULL);
2378 if (IS_ERR(hdev->clk))
2379 return dev_err_probe(dev, PTR_ERR(hdev->clk),
2380 "failed to get clock for hash\n");
2382 ret = clk_prepare_enable(hdev->clk);
2383 if (ret) {
2384 dev_err(dev, "failed to enable hash clock (%d)\n", ret);
2385 return ret;
2388 pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
2389 pm_runtime_use_autosuspend(dev);
2391 pm_runtime_get_noresume(dev);
2392 pm_runtime_set_active(dev);
2393 pm_runtime_enable(dev);
2395 hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
2396 if (IS_ERR(hdev->rst)) {
2397 if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) {
2398 ret = -EPROBE_DEFER;
2399 goto err_reset;
2401 } else {
2402 reset_control_assert(hdev->rst);
2403 udelay(2);
2404 reset_control_deassert(hdev->rst);
2407 hdev->dev = dev;
2409 platform_set_drvdata(pdev, hdev);
2411 ret = stm32_hash_dma_init(hdev);
2412 switch (ret) {
2413 case 0:
2414 break;
2415 case -ENOENT:
2416 case -ENODEV:
2417 dev_info(dev, "DMA mode not available\n");
2418 break;
2419 default:
2420 dev_err(dev, "DMA init error %d\n", ret);
2421 goto err_dma;
2424 spin_lock(&stm32_hash.lock);
2425 list_add_tail(&hdev->list, &stm32_hash.dev_list);
2426 spin_unlock(&stm32_hash.lock);
2428 /* Initialize crypto engine */
2429 hdev->engine = crypto_engine_alloc_init(dev, 1);
2430 if (!hdev->engine) {
2431 ret = -ENOMEM;
2432 goto err_engine;
2435 ret = crypto_engine_start(hdev->engine);
2436 if (ret)
2437 goto err_engine_start;
2439 if (hdev->pdata->ux500)
2440 /* FIXME: implement DMA mode for Ux500 */
2441 hdev->dma_mode = 0;
2442 else
2443 hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR) & HASH_HWCFG_DMA_MASK;
2445 /* Register algos */
2446 ret = stm32_hash_register_algs(hdev);
2447 if (ret)
2448 goto err_algs;
2450 dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
2451 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
2453 pm_runtime_put_sync(dev);
2455 return 0;
2457 err_algs:
2458 err_engine_start:
2459 crypto_engine_exit(hdev->engine);
2460 err_engine:
2461 spin_lock(&stm32_hash.lock);
2462 list_del(&hdev->list);
2463 spin_unlock(&stm32_hash.lock);
2464 err_dma:
2465 if (hdev->dma_lch)
2466 dma_release_channel(hdev->dma_lch);
2467 err_reset:
2468 pm_runtime_disable(dev);
2469 pm_runtime_put_noidle(dev);
2471 clk_disable_unprepare(hdev->clk);
2473 return ret;
2476 static void stm32_hash_remove(struct platform_device *pdev)
2478 struct stm32_hash_dev *hdev = platform_get_drvdata(pdev);
2479 int ret;
2481 ret = pm_runtime_get_sync(hdev->dev);
2483 stm32_hash_unregister_algs(hdev);
2485 crypto_engine_exit(hdev->engine);
2487 spin_lock(&stm32_hash.lock);
2488 list_del(&hdev->list);
2489 spin_unlock(&stm32_hash.lock);
2491 if (hdev->dma_lch)
2492 dma_release_channel(hdev->dma_lch);
2494 pm_runtime_disable(hdev->dev);
2495 pm_runtime_put_noidle(hdev->dev);
2497 if (ret >= 0)
2498 clk_disable_unprepare(hdev->clk);
2501 #ifdef CONFIG_PM
2502 static int stm32_hash_runtime_suspend(struct device *dev)
2504 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
2506 clk_disable_unprepare(hdev->clk);
2508 return 0;
2511 static int stm32_hash_runtime_resume(struct device *dev)
2513 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
2514 int ret;
2516 ret = clk_prepare_enable(hdev->clk);
2517 if (ret) {
2518 dev_err(hdev->dev, "Failed to prepare_enable clock\n");
2519 return ret;
2522 return 0;
2524 #endif
2526 static const struct dev_pm_ops stm32_hash_pm_ops = {
2527 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2528 pm_runtime_force_resume)
2529 SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
2530 stm32_hash_runtime_resume, NULL)
2533 static struct platform_driver stm32_hash_driver = {
2534 .probe = stm32_hash_probe,
2535 .remove = stm32_hash_remove,
2536 .driver = {
2537 .name = "stm32-hash",
2538 .pm = &stm32_hash_pm_ops,
2539 .of_match_table = stm32_hash_of_match,
2543 module_platform_driver(stm32_hash_driver);
2545 MODULE_DESCRIPTION("STM32 SHA1/SHA2/SHA3 & MD5 (HMAC) hw accelerator driver");
2546 MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
2547 MODULE_LICENSE("GPL v2");