1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for Chrome OS EC Sensor hub FIFO.
5 * Copyright 2020 Google LLC
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/iio/iio.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/platform_data/cros_ec_commands.h>
14 #include <linux/platform_data/cros_ec_proto.h>
15 #include <linux/platform_data/cros_ec_sensorhub.h>
16 #include <linux/platform_device.h>
17 #include <linux/sort.h>
18 #include <linux/slab.h>
20 #define CREATE_TRACE_POINTS
21 #include "cros_ec_sensorhub_trace.h"
23 /* Precision of fixed point for the m values from the filter */
24 #define M_PRECISION BIT(23)
26 /* Only activate the filter once we have at least this many elements. */
27 #define TS_HISTORY_THRESHOLD 8
30 * If we don't have any history entries for this long, empty the filter to
31 * make sure there are no big discontinuities.
33 #define TS_HISTORY_BORED_US 500000
35 /* To measure by how much the filter is overshooting, if it happens. */
36 #define FUTURE_TS_ANALYTICS_COUNT_MAX 100
39 cros_sensorhub_send_sample(struct cros_ec_sensorhub
*sensorhub
,
40 struct cros_ec_sensors_ring_sample
*sample
)
42 cros_ec_sensorhub_push_data_cb_t cb
;
43 int id
= sample
->sensor_id
;
44 struct iio_dev
*indio_dev
;
46 if (id
>= sensorhub
->sensor_num
)
49 cb
= sensorhub
->push_data
[id
].push_data_cb
;
53 indio_dev
= sensorhub
->push_data
[id
].indio_dev
;
55 if (sample
->flag
& MOTIONSENSE_SENSOR_FLAG_FLUSH
)
58 return cb(indio_dev
, sample
->vector
, sample
->timestamp
);
62 * cros_ec_sensorhub_register_push_data() - register the callback to the hub.
64 * @sensorhub : Sensor Hub object
65 * @sensor_num : The sensor the caller is interested in.
66 * @indio_dev : The iio device to use when a sample arrives.
67 * @cb : The callback to call when a sample arrives.
69 * The callback cb will be used by cros_ec_sensorhub_ring to distribute events
72 * Return: 0 when callback is registered.
73 * EINVAL is the sensor number is invalid or the slot already used.
75 int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub
*sensorhub
,
77 struct iio_dev
*indio_dev
,
78 cros_ec_sensorhub_push_data_cb_t cb
)
80 if (sensor_num
>= sensorhub
->sensor_num
)
82 if (sensorhub
->push_data
[sensor_num
].indio_dev
)
85 sensorhub
->push_data
[sensor_num
].indio_dev
= indio_dev
;
86 sensorhub
->push_data
[sensor_num
].push_data_cb
= cb
;
90 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data
);
92 void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub
*sensorhub
,
95 sensorhub
->push_data
[sensor_num
].indio_dev
= NULL
;
96 sensorhub
->push_data
[sensor_num
].push_data_cb
= NULL
;
98 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data
);
101 * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation
103 * @sensorhub: Sensor Hub object
104 * @on: true when events are requested.
106 * To be called before sleeping or when no one is listening.
107 * Return: 0 on success, or an error when we can not communicate with the EC.
110 int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub
*sensorhub
,
115 mutex_lock(&sensorhub
->cmd_lock
);
116 if (sensorhub
->tight_timestamps
)
117 for (i
= 0; i
< sensorhub
->sensor_num
; i
++)
118 sensorhub
->batch_state
[i
].last_len
= 0;
120 sensorhub
->params
->cmd
= MOTIONSENSE_CMD_FIFO_INT_ENABLE
;
121 sensorhub
->params
->fifo_int_enable
.enable
= on
;
123 sensorhub
->msg
->outsize
= sizeof(struct ec_params_motion_sense
);
124 sensorhub
->msg
->insize
= sizeof(struct ec_response_motion_sense
);
126 ret
= cros_ec_cmd_xfer_status(sensorhub
->ec
->ec_dev
, sensorhub
->msg
);
127 mutex_unlock(&sensorhub
->cmd_lock
);
129 /* We expect to receive a payload of 4 bytes, ignore. */
136 static void cros_ec_sensor_ring_median_swap(s64
*a
, s64
*b
)
144 * cros_ec_sensor_ring_median: Gets median of an array of numbers
146 * It's implemented using the quickselect algorithm, which achieves an
147 * average time complexity of O(n) the middle element. In the worst case,
148 * the runtime of quickselect could regress to O(n^2). To mitigate this,
149 * algorithms like median-of-medians exist, which can guarantee O(n) even
150 * in the worst case. However, these algorithms come with a higher
151 * overhead and are more complex to implement, making quickselect a
152 * pragmatic choice for our use case.
154 * Warning: the input array gets modified!
156 static s64
cros_ec_sensor_ring_median(s64
*array
, size_t length
)
162 int mid
= lo
+ (hi
- lo
) / 2;
165 if (array
[lo
] > array
[mid
])
166 cros_ec_sensor_ring_median_swap(&array
[lo
], &array
[mid
]);
167 if (array
[lo
] > array
[hi
])
168 cros_ec_sensor_ring_median_swap(&array
[lo
], &array
[hi
]);
169 if (array
[mid
] < array
[hi
])
170 cros_ec_sensor_ring_median_swap(&array
[mid
], &array
[hi
]);
175 for (int j
= lo
; j
< hi
; j
++)
176 if (array
[j
] < pivot
)
177 cros_ec_sensor_ring_median_swap(&array
[++i
], &array
[j
]);
179 /* The pivot's index corresponds to i+1. */
180 cros_ec_sensor_ring_median_swap(&array
[i
+ 1], &array
[hi
]);
181 if (i
+ 1 == length
/ 2)
183 if (i
+ 1 > length
/ 2)
189 /* Should never reach here. */
194 * IRQ Timestamp Filtering
196 * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event
197 * we have to calculate it's timestamp in the AP timebase. There are 3 time
199 * a - EC timebase, sensor event
200 * b - EC timebase, IRQ
201 * c - AP timebase, IRQ
202 * a' - what we want: sensor even in AP timebase
204 * While a and b are recorded at accurate times (due to the EC real time
205 * nature); c is pretty untrustworthy, even though it's recorded the
206 * first thing in ec_irq_handler(). There is a very good chance we'll get
207 * added latency due to:
212 * Normally a' = c - b + a, but if we do that naive math any jitter in c
213 * will get coupled in a', which we don't want. We want a function
214 * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c.
216 * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis.
217 * The slope of the line won't be exactly 1, there will be some clock drift
218 * between the 2 chips for various reasons (mechanical stress, temperature,
219 * voltage). We need to extrapolate values for a future x, without trusting
220 * recent y values too much.
222 * We use a median filter for the slope, then another median filter for the
223 * y-intercept to calculate this function:
224 * dx[n] = x[n-1] - x[n]
225 * dy[n] = x[n-1] - x[n]
226 * m[n] = dy[n] / dx[n]
227 * median_m = median(m[n-k:n])
228 * error[i] = y[n-i] - median_m * x[n-i]
229 * median_error = median(error[:k])
230 * predicted_y = median_m * x + median_error
232 * Implementation differences from above:
233 * - Redefined y to be actually c - b, this gives us a lot more precision
234 * to do the math. (c-b)/b variations are more obvious than c/b variations.
235 * - Since we don't have floating point, any operations involving slope are
236 * done using fixed point math (*M_PRECISION)
237 * - Since x and y grow with time, we keep zeroing the graph (relative to
238 * the last sample), this way math involving *x[n-i] will not overflow
239 * - EC timestamps are kept in us, it improves the slope calculation precision
243 * cros_ec_sensor_ring_ts_filter_update() - Update filter history.
245 * @state: Filter information.
246 * @b: IRQ timestamp, EC timebase (us)
247 * @c: IRQ timestamp, AP timebase (ns)
249 * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter
253 cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state
259 s64 m
; /* stored as *M_PRECISION */
260 s64
*m_history_copy
= state
->temp_buf
;
261 s64
*error
= state
->temp_buf
;
264 /* we trust b the most, that'll be our independent variable */
266 /* y is the offset between AP and EC times, in ns */
269 dx
= (state
->x_history
[0] + state
->x_offset
) - x
;
271 return; /* we already have this irq in the history */
272 dy
= (state
->y_history
[0] + state
->y_offset
) - y
;
273 m
= div64_s64(dy
* M_PRECISION
, dx
);
275 /* Empty filter if we haven't seen any action in a while. */
276 if (-dx
> TS_HISTORY_BORED_US
)
277 state
->history_len
= 0;
279 /* Move everything over, also update offset to all absolute coords .*/
280 for (i
= state
->history_len
- 1; i
>= 1; i
--) {
281 state
->x_history
[i
] = state
->x_history
[i
- 1] + dx
;
282 state
->y_history
[i
] = state
->y_history
[i
- 1] + dy
;
284 state
->m_history
[i
] = state
->m_history
[i
- 1];
286 * Also use the same loop to copy m_history for future
289 m_history_copy
[i
] = state
->m_history
[i
- 1];
292 /* Store the x and y, but remember offset is actually last sample. */
295 state
->x_history
[0] = 0;
296 state
->y_history
[0] = 0;
298 state
->m_history
[0] = m
;
299 m_history_copy
[0] = m
;
301 if (state
->history_len
< CROS_EC_SENSORHUB_TS_HISTORY_SIZE
)
302 state
->history_len
++;
304 /* Precalculate things for the filter. */
305 if (state
->history_len
> TS_HISTORY_THRESHOLD
) {
307 cros_ec_sensor_ring_median(m_history_copy
,
308 state
->history_len
- 1);
311 * Calculate y-intercepts as if m_median is the slope and
312 * points in the history are on the line. median_error will
313 * still be in the offset coordinate system.
315 for (i
= 0; i
< state
->history_len
; i
++)
316 error
[i
] = state
->y_history
[i
] -
317 div_s64(state
->median_m
* state
->x_history
[i
],
319 state
->median_error
=
320 cros_ec_sensor_ring_median(error
, state
->history_len
);
323 state
->median_error
= 0;
325 trace_cros_ec_sensorhub_filter(state
, dx
, dy
);
329 * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP
332 * @state: filter information.
333 * @x: any ec timestamp (us):
335 * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase
336 * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ
337 * should have happened on the AP, with low jitter
339 * Note: The filter will only activate once state->history_len goes
340 * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a
343 * How to derive the formula, starting from:
344 * f(x) = median_m * x + median_error
345 * That's the calculated AP - EC offset (at the x point in time)
346 * Undo the coordinate system transform:
347 * f(x) = median_m * (x - x_offset) + median_error + y_offset
348 * Remember to undo the "y = c - b * 1000" modification:
349 * f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000
351 * Return: timestamp in AP timebase (ns)
354 cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state
*state
,
357 return div_s64(state
->median_m
* (x
- state
->x_offset
), M_PRECISION
)
358 + state
->median_error
+ state
->y_offset
+ x
* 1000;
362 * Since a and b were originally 32 bit values from the EC,
363 * they overflow relatively often, casting is not enough, so we need to
367 cros_ec_sensor_ring_fix_overflow(s64
*ts
,
368 const s64 overflow_period
,
369 struct cros_ec_sensors_ec_overflow_state
374 *ts
+= state
->offset
;
375 if (abs(state
->last
- *ts
) > (overflow_period
/ 2)) {
376 adjust
= state
->last
> *ts
? overflow_period
: -overflow_period
;
377 state
->offset
+= adjust
;
384 cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub
386 struct cros_ec_sensors_ring_sample
389 const u8 sensor_id
= sample
->sensor_id
;
391 /* If this event is earlier than one we saw before... */
392 if (sensorhub
->batch_state
[sensor_id
].newest_sensor_event
>
394 /* mark it for spreading. */
396 sensorhub
->batch_state
[sensor_id
].last_ts
;
398 sensorhub
->batch_state
[sensor_id
].newest_sensor_event
=
403 * cros_ec_sensor_ring_process_event() - Process one EC FIFO event
405 * @sensorhub: Sensor Hub object.
406 * @fifo_info: FIFO information from the EC (includes b point, EC timebase).
407 * @fifo_timestamp: EC IRQ, kernel timebase (aka c).
408 * @current_timestamp: calculated event timestamp, kernel timebase (aka a').
409 * @in: incoming FIFO event from EC (includes a point, EC timebase).
410 * @out: outgoing event to user space (includes a').
412 * Process one EC event, add it in the ring if necessary.
414 * Return: true if out event has been populated.
417 cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub
*sensorhub
,
418 const struct ec_response_motion_sense_fifo_info
420 const ktime_t fifo_timestamp
,
421 ktime_t
*current_timestamp
,
422 struct ec_response_motion_sensor_data
*in
,
423 struct cros_ec_sensors_ring_sample
*out
)
425 const s64 now
= cros_ec_get_time_ns();
426 int axis
, async_flags
;
428 /* Do not populate the filter based on asynchronous events. */
429 async_flags
= in
->flags
&
430 (MOTIONSENSE_SENSOR_FLAG_ODR
| MOTIONSENSE_SENSOR_FLAG_FLUSH
);
432 if (in
->flags
& MOTIONSENSE_SENSOR_FLAG_TIMESTAMP
&& !async_flags
) {
433 s64 a
= in
->timestamp
;
434 s64 b
= fifo_info
->timestamp
;
435 s64 c
= fifo_timestamp
;
437 cros_ec_sensor_ring_fix_overflow(&a
, 1LL << 32,
438 &sensorhub
->overflow_a
);
439 cros_ec_sensor_ring_fix_overflow(&b
, 1LL << 32,
440 &sensorhub
->overflow_b
);
442 if (sensorhub
->tight_timestamps
) {
443 cros_ec_sensor_ring_ts_filter_update(
444 &sensorhub
->filter
, b
, c
);
445 *current_timestamp
= cros_ec_sensor_ring_ts_filter(
446 &sensorhub
->filter
, a
);
451 * Disable filtering since we might add more jitter
452 * if b is in a random point in time.
454 new_timestamp
= c
- b
* 1000 + a
* 1000;
456 * The timestamp can be stale if we had to use the fifo
459 if (new_timestamp
- *current_timestamp
> 0)
460 *current_timestamp
= new_timestamp
;
462 trace_cros_ec_sensorhub_timestamp(in
->timestamp
,
463 fifo_info
->timestamp
,
469 if (in
->flags
& MOTIONSENSE_SENSOR_FLAG_ODR
) {
470 if (sensorhub
->tight_timestamps
) {
471 sensorhub
->batch_state
[in
->sensor_num
].last_len
= 0;
472 sensorhub
->batch_state
[in
->sensor_num
].penul_len
= 0;
475 * ODR change is only useful for the sensor_ring, it does not
476 * convey information to clients.
481 if (in
->flags
& MOTIONSENSE_SENSOR_FLAG_FLUSH
) {
482 out
->sensor_id
= in
->sensor_num
;
483 out
->timestamp
= *current_timestamp
;
484 out
->flag
= in
->flags
;
485 if (sensorhub
->tight_timestamps
)
486 sensorhub
->batch_state
[out
->sensor_id
].last_len
= 0;
488 * No other payload information provided with
494 if (in
->flags
& MOTIONSENSE_SENSOR_FLAG_TIMESTAMP
)
495 /* If we just have a timestamp, skip this entry. */
499 out
->sensor_id
= in
->sensor_num
;
500 trace_cros_ec_sensorhub_data(in
->sensor_num
,
501 fifo_info
->timestamp
,
506 if (*current_timestamp
- now
> 0) {
508 * This fix is needed to overcome the timestamp filter putting
509 * events in the future.
511 sensorhub
->future_timestamp_total_ns
+=
512 *current_timestamp
- now
;
513 if (++sensorhub
->future_timestamp_count
==
514 FUTURE_TS_ANALYTICS_COUNT_MAX
) {
515 s64 avg
= div_s64(sensorhub
->future_timestamp_total_ns
,
516 sensorhub
->future_timestamp_count
);
517 dev_warn_ratelimited(sensorhub
->dev
,
518 "100 timestamps in the future, %lldns shaved on average\n",
520 sensorhub
->future_timestamp_count
= 0;
521 sensorhub
->future_timestamp_total_ns
= 0;
523 out
->timestamp
= now
;
525 out
->timestamp
= *current_timestamp
;
528 out
->flag
= in
->flags
;
529 for (axis
= 0; axis
< 3; axis
++)
530 out
->vector
[axis
] = in
->data
[axis
];
532 if (sensorhub
->tight_timestamps
)
533 cros_ec_sensor_ring_check_for_past_timestamp(sensorhub
, out
);
538 * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to
541 * This is the new spreading code, assumes every sample's timestamp
542 * precedes the sample. Run if tight_timestamps == true.
544 * Sometimes the EC receives only one interrupt (hence timestamp) for
545 * a batch of samples. Only the first sample will have the correct
546 * timestamp. So we must interpolate the other samples.
547 * We use the previous batch timestamp and our current batch timestamp
548 * as a way to calculate period, then spread the samples evenly.
553 * 30ms point goes by, no interrupt, previous one is still asserted
554 * downloading s2 and s3
555 * s3 sample, 20ms (incorrect timestamp)
558 * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch
559 * has 2 samples in them, we adjust the timestamp of s3.
560 * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have
561 * been part of a bigger batch things would have gotten a little
564 * Note: we also assume another sensor sample doesn't break up a batch
565 * in 2 or more partitions. Example, there can't ever be a sync sensor
566 * in between S2 and S3. This simplifies the following code.
569 cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub
*sensorhub
,
570 unsigned long sensor_mask
,
571 struct cros_ec_sensors_ring_sample
*last_out
)
573 struct cros_ec_sensors_ring_sample
*batch_start
, *next_batch_start
;
576 for_each_set_bit(id
, &sensor_mask
, sensorhub
->sensor_num
) {
577 for (batch_start
= sensorhub
->ring
; batch_start
< last_out
;
578 batch_start
= next_batch_start
) {
580 * For each batch (where all samples have the same
583 int batch_len
, sample_idx
;
584 struct cros_ec_sensors_ring_sample
*batch_end
=
586 struct cros_ec_sensors_ring_sample
*s
;
587 s64 batch_timestamp
= batch_start
->timestamp
;
591 * Skip over batches that start with the sensor types
592 * we're not looking at right now.
594 if (batch_start
->sensor_id
!= id
) {
595 next_batch_start
= batch_start
+ 1;
600 * Do not start a batch
601 * from a flush, as it happens asynchronously to the
602 * regular flow of events.
604 if (batch_start
->flag
& MOTIONSENSE_SENSOR_FLAG_FLUSH
) {
605 cros_sensorhub_send_sample(sensorhub
,
607 next_batch_start
= batch_start
+ 1;
611 if (batch_start
->timestamp
<=
612 sensorhub
->batch_state
[id
].last_ts
) {
614 sensorhub
->batch_state
[id
].last_ts
;
615 batch_len
= sensorhub
->batch_state
[id
].last_len
;
617 sample_idx
= batch_len
;
619 sensorhub
->batch_state
[id
].last_ts
=
620 sensorhub
->batch_state
[id
].penul_ts
;
621 sensorhub
->batch_state
[id
].last_len
=
622 sensorhub
->batch_state
[id
].penul_len
;
625 * Push first sample in the batch to the,
626 * kfifo, it's guaranteed to be correct, the
627 * rest will follow later on.
631 cros_sensorhub_send_sample(sensorhub
,
636 /* Find all samples have the same timestamp. */
637 for (s
= batch_start
; s
< last_out
; s
++) {
638 if (s
->sensor_id
!= id
)
640 * Skip over other sensor types that
641 * are interleaved, don't count them.
644 if (s
->timestamp
!= batch_timestamp
)
645 /* we discovered the next batch */
647 if (s
->flag
& MOTIONSENSE_SENSOR_FLAG_FLUSH
)
648 /* break on flush packets */
655 goto done_with_this_batch
;
657 /* Can we calculate period? */
658 if (sensorhub
->batch_state
[id
].last_len
== 0) {
659 dev_warn(sensorhub
->dev
, "Sensor %d: lost %d samples when spreading\n",
661 goto done_with_this_batch
;
663 * Note: we're dropping the rest of the samples
664 * in this batch since we have no idea where
665 * they're supposed to go without a period
670 sample_period
= div_s64(batch_timestamp
-
671 sensorhub
->batch_state
[id
].last_ts
,
672 sensorhub
->batch_state
[id
].last_len
);
673 dev_dbg(sensorhub
->dev
,
674 "Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n",
676 sensorhub
->batch_state
[id
].last_ts
,
677 sensorhub
->batch_state
[id
].last_len
,
682 * Adjust timestamps of the samples then push them to
685 for (s
= batch_start
; s
<= batch_end
; s
++) {
686 if (s
->sensor_id
!= id
)
688 * Skip over other sensor types that
689 * are interleaved, don't change them.
693 s
->timestamp
= batch_timestamp
+
694 sample_period
* sample_idx
;
697 cros_sensorhub_send_sample(sensorhub
, s
);
700 done_with_this_batch
:
701 sensorhub
->batch_state
[id
].penul_ts
=
702 sensorhub
->batch_state
[id
].last_ts
;
703 sensorhub
->batch_state
[id
].penul_len
=
704 sensorhub
->batch_state
[id
].last_len
;
706 sensorhub
->batch_state
[id
].last_ts
=
708 sensorhub
->batch_state
[id
].last_len
= batch_len
;
710 next_batch_start
= batch_end
+ 1;
716 * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then
717 * add to ringbuffer (legacy).
719 * Note: This assumes we're running old firmware, where timestamp
720 * is inserted after its sample(s)e. There can be several samples between
721 * timestamps, so several samples can have the same timestamp.
725 * 1st sample --> TS1 | 1
732 * We spread time for the samples using period p = (current - TS1)/4.
733 * between TS1 and TS2: [TS1+p/4, TS1+2p/4, TS1+3p/4, current_timestamp].
737 cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub
*sensorhub
,
738 unsigned long sensor_mask
,
739 s64 current_timestamp
,
740 struct cros_ec_sensors_ring_sample
743 struct cros_ec_sensors_ring_sample
*out
;
746 for_each_set_bit(i
, &sensor_mask
, sensorhub
->sensor_num
) {
751 for (out
= sensorhub
->ring
; out
< last_out
; out
++) {
752 if (out
->sensor_id
!= i
)
755 /* Timestamp to start with */
756 timestamp
= out
->timestamp
;
761 for (; out
< last_out
; out
++) {
762 /* Find last sample. */
763 if (out
->sensor_id
!= i
)
770 /* Spread uniformly between the first and last samples. */
771 time_period
= div_s64(current_timestamp
- timestamp
, count
);
773 for (out
= sensorhub
->ring
; out
< last_out
; out
++) {
774 if (out
->sensor_id
!= i
)
776 timestamp
+= time_period
;
777 out
->timestamp
= timestamp
;
781 /* Push the event into the kfifo */
782 for (out
= sensorhub
->ring
; out
< last_out
; out
++)
783 cros_sensorhub_send_sample(sensorhub
, out
);
787 * cros_ec_sensorhub_ring_handler() - The trigger handler function
789 * @sensorhub: Sensor Hub object.
791 * Called by the notifier, process the EC sensor FIFO queue.
793 static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub
*sensorhub
)
795 struct ec_response_motion_sense_fifo_info
*fifo_info
=
796 sensorhub
->fifo_info
;
797 struct cros_ec_dev
*ec
= sensorhub
->ec
;
798 ktime_t fifo_timestamp
, current_timestamp
;
799 int i
, j
, number_data
, ret
;
800 unsigned long sensor_mask
= 0;
801 struct ec_response_motion_sensor_data
*in
;
802 struct cros_ec_sensors_ring_sample
*out
, *last_out
;
804 mutex_lock(&sensorhub
->cmd_lock
);
806 /* Get FIFO information if there are lost vectors. */
807 if (fifo_info
->total_lost
) {
808 int fifo_info_length
=
809 sizeof(struct ec_response_motion_sense_fifo_info
) +
810 sizeof(u16
) * sensorhub
->sensor_num
;
812 /* Need to retrieve the number of lost vectors per sensor */
813 sensorhub
->params
->cmd
= MOTIONSENSE_CMD_FIFO_INFO
;
814 sensorhub
->msg
->outsize
= 1;
815 sensorhub
->msg
->insize
= fifo_info_length
;
817 if (cros_ec_cmd_xfer_status(ec
->ec_dev
, sensorhub
->msg
) < 0)
820 memcpy(fifo_info
, &sensorhub
->resp
->fifo_info
,
824 * Update collection time, will not be as precise as the
827 fifo_timestamp
= cros_ec_get_time_ns();
829 fifo_timestamp
= sensorhub
->fifo_timestamp
[
830 CROS_EC_SENSOR_NEW_TS
];
833 if (fifo_info
->count
> sensorhub
->fifo_size
||
834 fifo_info
->size
!= sensorhub
->fifo_size
) {
835 dev_warn(sensorhub
->dev
,
836 "Mismatch EC data: count %d, size %d - expected %d\n",
837 fifo_info
->count
, fifo_info
->size
,
838 sensorhub
->fifo_size
);
842 /* Copy elements in the main fifo */
843 current_timestamp
= sensorhub
->fifo_timestamp
[CROS_EC_SENSOR_LAST_TS
];
844 out
= sensorhub
->ring
;
845 for (i
= 0; i
< fifo_info
->count
; i
+= number_data
) {
846 sensorhub
->params
->cmd
= MOTIONSENSE_CMD_FIFO_READ
;
847 sensorhub
->params
->fifo_read
.max_data_vector
=
848 fifo_info
->count
- i
;
849 sensorhub
->msg
->outsize
=
850 sizeof(struct ec_params_motion_sense
);
851 sensorhub
->msg
->insize
=
852 sizeof(sensorhub
->resp
->fifo_read
) +
853 sensorhub
->params
->fifo_read
.max_data_vector
*
854 sizeof(struct ec_response_motion_sensor_data
);
855 ret
= cros_ec_cmd_xfer_status(ec
->ec_dev
, sensorhub
->msg
);
857 dev_warn(sensorhub
->dev
, "Fifo error: %d\n", ret
);
860 number_data
= sensorhub
->resp
->fifo_read
.number_data
;
861 if (number_data
== 0) {
862 dev_dbg(sensorhub
->dev
, "Unexpected empty FIFO\n");
865 if (number_data
> fifo_info
->count
- i
) {
866 dev_warn(sensorhub
->dev
,
867 "Invalid EC data: too many entry received: %d, expected %d\n",
868 number_data
, fifo_info
->count
- i
);
871 if (out
+ number_data
>
872 sensorhub
->ring
+ fifo_info
->count
) {
873 dev_warn(sensorhub
->dev
,
874 "Too many samples: %d (%zd data) to %d entries for expected %d entries\n",
875 i
, out
- sensorhub
->ring
, i
+ number_data
,
880 for (in
= sensorhub
->resp
->fifo_read
.data
, j
= 0;
881 j
< number_data
; j
++, in
++) {
882 if (cros_ec_sensor_ring_process_event(
883 sensorhub
, fifo_info
,
887 sensor_mask
|= BIT(in
->sensor_num
);
892 mutex_unlock(&sensorhub
->cmd_lock
);
895 if (out
== sensorhub
->ring
)
896 /* Unexpected empty FIFO. */
897 goto ring_handler_end
;
900 * Check if current_timestamp is ahead of the last sample. Normally,
901 * the EC appends a timestamp after the last sample, but if the AP
902 * is slow to respond to the IRQ, the EC may have added new samples.
903 * Use the FIFO info timestamp as last timestamp then.
905 if (!sensorhub
->tight_timestamps
&&
906 (last_out
- 1)->timestamp
== current_timestamp
)
907 current_timestamp
= fifo_timestamp
;
909 /* Warn on lost samples. */
910 if (fifo_info
->total_lost
)
911 for (i
= 0; i
< sensorhub
->sensor_num
; i
++) {
912 if (fifo_info
->lost
[i
]) {
913 dev_warn_ratelimited(sensorhub
->dev
,
914 "Sensor %d: lost: %d out of %d\n",
915 i
, fifo_info
->lost
[i
],
916 fifo_info
->total_lost
);
917 if (sensorhub
->tight_timestamps
)
918 sensorhub
->batch_state
[i
].last_len
= 0;
923 * Spread samples in case of batching, then add them to the
926 if (sensorhub
->tight_timestamps
)
927 cros_ec_sensor_ring_spread_add(sensorhub
, sensor_mask
,
930 cros_ec_sensor_ring_spread_add_legacy(sensorhub
, sensor_mask
,
935 sensorhub
->fifo_timestamp
[CROS_EC_SENSOR_LAST_TS
] = current_timestamp
;
939 mutex_unlock(&sensorhub
->cmd_lock
);
942 static int cros_ec_sensorhub_event(struct notifier_block
*nb
,
943 unsigned long queued_during_suspend
,
946 struct cros_ec_sensorhub
*sensorhub
;
947 struct cros_ec_device
*ec_dev
;
949 sensorhub
= container_of(nb
, struct cros_ec_sensorhub
, notifier
);
950 ec_dev
= sensorhub
->ec
->ec_dev
;
952 if (ec_dev
->event_data
.event_type
!= EC_MKBP_EVENT_SENSOR_FIFO
)
955 if (ec_dev
->event_size
!= sizeof(ec_dev
->event_data
.data
.sensor_fifo
)) {
956 dev_warn(ec_dev
->dev
, "Invalid fifo info size\n");
960 if (queued_during_suspend
)
963 memcpy(sensorhub
->fifo_info
, &ec_dev
->event_data
.data
.sensor_fifo
.info
,
964 sizeof(*sensorhub
->fifo_info
));
965 sensorhub
->fifo_timestamp
[CROS_EC_SENSOR_NEW_TS
] =
966 ec_dev
->last_event_time
;
967 cros_ec_sensorhub_ring_handler(sensorhub
);
973 * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC
976 * @sensorhub : Sensor Hub object.
978 * Return: 0 on success.
980 int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub
*sensorhub
)
982 int fifo_info_length
=
983 sizeof(struct ec_response_motion_sense_fifo_info
) +
984 sizeof(u16
) * sensorhub
->sensor_num
;
986 /* Allocate the array for lost events. */
987 sensorhub
->fifo_info
= devm_kzalloc(sensorhub
->dev
, fifo_info_length
,
989 if (!sensorhub
->fifo_info
)
993 * Allocate the callback area based on the number of sensors.
994 * Add one for the sensor ring.
996 sensorhub
->push_data
= devm_kcalloc(sensorhub
->dev
,
997 sensorhub
->sensor_num
,
998 sizeof(*sensorhub
->push_data
),
1000 if (!sensorhub
->push_data
)
1003 sensorhub
->tight_timestamps
= cros_ec_check_features(
1005 EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS
);
1007 if (sensorhub
->tight_timestamps
) {
1008 sensorhub
->batch_state
= devm_kcalloc(sensorhub
->dev
,
1009 sensorhub
->sensor_num
,
1010 sizeof(*sensorhub
->batch_state
),
1012 if (!sensorhub
->batch_state
)
1020 * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC
1023 * @sensorhub : Sensor Hub object.
1025 * Return: 0 on success.
1027 int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub
*sensorhub
)
1029 struct cros_ec_dev
*ec
= sensorhub
->ec
;
1031 int fifo_info_length
=
1032 sizeof(struct ec_response_motion_sense_fifo_info
) +
1033 sizeof(u16
) * sensorhub
->sensor_num
;
1035 /* Retrieve FIFO information */
1036 sensorhub
->msg
->version
= 2;
1037 sensorhub
->params
->cmd
= MOTIONSENSE_CMD_FIFO_INFO
;
1038 sensorhub
->msg
->outsize
= 1;
1039 sensorhub
->msg
->insize
= fifo_info_length
;
1041 ret
= cros_ec_cmd_xfer_status(ec
->ec_dev
, sensorhub
->msg
);
1046 * Allocate the full fifo. We need to copy the whole FIFO to set
1047 * timestamps properly.
1049 sensorhub
->fifo_size
= sensorhub
->resp
->fifo_info
.size
;
1050 sensorhub
->ring
= devm_kcalloc(sensorhub
->dev
, sensorhub
->fifo_size
,
1051 sizeof(*sensorhub
->ring
), GFP_KERNEL
);
1052 if (!sensorhub
->ring
)
1055 sensorhub
->fifo_timestamp
[CROS_EC_SENSOR_LAST_TS
] =
1056 cros_ec_get_time_ns();
1058 /* Register the notifier that will act as a top half interrupt. */
1059 sensorhub
->notifier
.notifier_call
= cros_ec_sensorhub_event
;
1060 ret
= blocking_notifier_chain_register(&ec
->ec_dev
->event_notifier
,
1061 &sensorhub
->notifier
);
1065 /* Start collection samples. */
1066 return cros_ec_sensorhub_ring_fifo_enable(sensorhub
, true);
1069 void cros_ec_sensorhub_ring_remove(void *arg
)
1071 struct cros_ec_sensorhub
*sensorhub
= arg
;
1072 struct cros_ec_device
*ec_dev
= sensorhub
->ec
->ec_dev
;
1074 /* Disable the ring, prevent EC interrupt to the AP for nothing. */
1075 cros_ec_sensorhub_ring_fifo_enable(sensorhub
, false);
1076 blocking_notifier_chain_unregister(&ec_dev
->event_notifier
,
1077 &sensorhub
->notifier
);