2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
23 * DOC: Wireless regulatory infrastructure
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
64 * Grace period we give before making sure all current interfaces reside on
65 * channels allowed by the current regulatory domain.
67 #define REG_ENFORCE_GRACE_MS 60000
70 * enum reg_request_treatment - regulatory request treatment
72 * @REG_REQ_OK: continue processing the regulatory request
73 * @REG_REQ_IGNORE: ignore the regulatory request
74 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75 * be intersected with the current one.
76 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77 * regulatory settings, and no further processing is required.
79 enum reg_request_treatment
{
86 static struct regulatory_request core_request_world
= {
87 .initiator
= NL80211_REGDOM_SET_BY_CORE
,
92 .country_ie_env
= ENVIRON_ANY
,
96 * Receipt of information from last regulatory request,
97 * protected by RTNL (and can be accessed with RCU protection)
99 static struct regulatory_request __rcu
*last_request
=
100 (void __force __rcu
*)&core_request_world
;
102 /* To trigger userspace events */
103 static struct platform_device
*reg_pdev
;
106 * Central wireless core regulatory domains, we only need two,
107 * the current one and a world regulatory domain in case we have no
108 * information to give us an alpha2.
109 * (protected by RTNL, can be read under RCU)
111 const struct ieee80211_regdomain __rcu
*cfg80211_regdomain
;
114 * Number of devices that registered to the core
115 * that support cellular base station regulatory hints
116 * (protected by RTNL)
118 static int reg_num_devs_support_basehint
;
121 * State variable indicating if the platform on which the devices
122 * are attached is operating in an indoor environment. The state variable
123 * is relevant for all registered devices.
125 static bool reg_is_indoor
;
126 static spinlock_t reg_indoor_lock
;
128 /* Used to track the userspace process controlling the indoor setting */
129 static u32 reg_is_indoor_portid
;
131 static void restore_regulatory_settings(bool reset_user
);
133 static const struct ieee80211_regdomain
*get_cfg80211_regdom(void)
135 return rtnl_dereference(cfg80211_regdomain
);
138 const struct ieee80211_regdomain
*get_wiphy_regdom(struct wiphy
*wiphy
)
140 return rtnl_dereference(wiphy
->regd
);
143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region
)
145 switch (dfs_region
) {
146 case NL80211_DFS_UNSET
:
148 case NL80211_DFS_FCC
:
150 case NL80211_DFS_ETSI
:
158 enum nl80211_dfs_regions
reg_get_dfs_region(struct wiphy
*wiphy
)
160 const struct ieee80211_regdomain
*regd
= NULL
;
161 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
163 regd
= get_cfg80211_regdom();
167 wiphy_regd
= get_wiphy_regdom(wiphy
);
171 if (wiphy_regd
->dfs_region
== regd
->dfs_region
)
174 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
175 dev_name(&wiphy
->dev
),
176 reg_dfs_region_str(wiphy_regd
->dfs_region
),
177 reg_dfs_region_str(regd
->dfs_region
));
180 return regd
->dfs_region
;
183 static void rcu_free_regdom(const struct ieee80211_regdomain
*r
)
187 kfree_rcu((struct ieee80211_regdomain
*)r
, rcu_head
);
190 static struct regulatory_request
*get_last_request(void)
192 return rcu_dereference_rtnl(last_request
);
195 /* Used to queue up regulatory hints */
196 static LIST_HEAD(reg_requests_list
);
197 static spinlock_t reg_requests_lock
;
199 /* Used to queue up beacon hints for review */
200 static LIST_HEAD(reg_pending_beacons
);
201 static spinlock_t reg_pending_beacons_lock
;
203 /* Used to keep track of processed beacon hints */
204 static LIST_HEAD(reg_beacon_list
);
207 struct list_head list
;
208 struct ieee80211_channel chan
;
211 static void reg_check_chans_work(struct work_struct
*work
);
212 static DECLARE_DELAYED_WORK(reg_check_chans
, reg_check_chans_work
);
214 static void reg_todo(struct work_struct
*work
);
215 static DECLARE_WORK(reg_work
, reg_todo
);
217 /* We keep a static world regulatory domain in case of the absence of CRDA */
218 static const struct ieee80211_regdomain world_regdom
= {
222 /* IEEE 802.11b/g, channels 1..11 */
223 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
224 /* IEEE 802.11b/g, channels 12..13. */
225 REG_RULE(2467-10, 2472+10, 20, 6, 20,
226 NL80211_RRF_NO_IR
| NL80211_RRF_AUTO_BW
),
227 /* IEEE 802.11 channel 14 - Only JP enables
228 * this and for 802.11b only */
229 REG_RULE(2484-10, 2484+10, 20, 6, 20,
231 NL80211_RRF_NO_OFDM
),
232 /* IEEE 802.11a, channel 36..48 */
233 REG_RULE(5180-10, 5240+10, 80, 6, 20,
235 NL80211_RRF_AUTO_BW
),
237 /* IEEE 802.11a, channel 52..64 - DFS required */
238 REG_RULE(5260-10, 5320+10, 80, 6, 20,
240 NL80211_RRF_AUTO_BW
|
243 /* IEEE 802.11a, channel 100..144 - DFS required */
244 REG_RULE(5500-10, 5720+10, 160, 6, 20,
248 /* IEEE 802.11a, channel 149..165 */
249 REG_RULE(5745-10, 5825+10, 80, 6, 20,
252 /* IEEE 802.11ad (60GHz), channels 1..3 */
253 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257 /* protected by RTNL */
258 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
261 static char *ieee80211_regdom
= "00";
262 static char user_alpha2
[2];
264 module_param(ieee80211_regdom
, charp
, 0444);
265 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
267 static void reg_free_request(struct regulatory_request
*request
)
269 if (request
== &core_request_world
)
272 if (request
!= get_last_request())
276 static void reg_free_last_request(void)
278 struct regulatory_request
*lr
= get_last_request();
280 if (lr
!= &core_request_world
&& lr
)
281 kfree_rcu(lr
, rcu_head
);
284 static void reg_update_last_request(struct regulatory_request
*request
)
286 struct regulatory_request
*lr
;
288 lr
= get_last_request();
292 reg_free_last_request();
293 rcu_assign_pointer(last_request
, request
);
296 static void reset_regdomains(bool full_reset
,
297 const struct ieee80211_regdomain
*new_regdom
)
299 const struct ieee80211_regdomain
*r
;
303 r
= get_cfg80211_regdom();
305 /* avoid freeing static information or freeing something twice */
306 if (r
== cfg80211_world_regdom
)
308 if (cfg80211_world_regdom
== &world_regdom
)
309 cfg80211_world_regdom
= NULL
;
310 if (r
== &world_regdom
)
314 rcu_free_regdom(cfg80211_world_regdom
);
316 cfg80211_world_regdom
= &world_regdom
;
317 rcu_assign_pointer(cfg80211_regdomain
, new_regdom
);
322 reg_update_last_request(&core_request_world
);
326 * Dynamic world regulatory domain requested by the wireless
327 * core upon initialization
329 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
331 struct regulatory_request
*lr
;
333 lr
= get_last_request();
337 reset_regdomains(false, rd
);
339 cfg80211_world_regdom
= rd
;
342 bool is_world_regdom(const char *alpha2
)
346 return alpha2
[0] == '0' && alpha2
[1] == '0';
349 static bool is_alpha2_set(const char *alpha2
)
353 return alpha2
[0] && alpha2
[1];
356 static bool is_unknown_alpha2(const char *alpha2
)
361 * Special case where regulatory domain was built by driver
362 * but a specific alpha2 cannot be determined
364 return alpha2
[0] == '9' && alpha2
[1] == '9';
367 static bool is_intersected_alpha2(const char *alpha2
)
372 * Special case where regulatory domain is the
373 * result of an intersection between two regulatory domain
376 return alpha2
[0] == '9' && alpha2
[1] == '8';
379 static bool is_an_alpha2(const char *alpha2
)
383 return isalpha(alpha2
[0]) && isalpha(alpha2
[1]);
386 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
388 if (!alpha2_x
|| !alpha2_y
)
390 return alpha2_x
[0] == alpha2_y
[0] && alpha2_x
[1] == alpha2_y
[1];
393 static bool regdom_changes(const char *alpha2
)
395 const struct ieee80211_regdomain
*r
= get_cfg80211_regdom();
399 return !alpha2_equal(r
->alpha2
, alpha2
);
403 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
404 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
405 * has ever been issued.
407 static bool is_user_regdom_saved(void)
409 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
412 /* This would indicate a mistake on the design */
413 if (WARN(!is_world_regdom(user_alpha2
) && !is_an_alpha2(user_alpha2
),
414 "Unexpected user alpha2: %c%c\n",
415 user_alpha2
[0], user_alpha2
[1]))
421 static const struct ieee80211_regdomain
*
422 reg_copy_regd(const struct ieee80211_regdomain
*src_regd
)
424 struct ieee80211_regdomain
*regd
;
429 sizeof(struct ieee80211_regdomain
) +
430 src_regd
->n_reg_rules
* sizeof(struct ieee80211_reg_rule
);
432 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
434 return ERR_PTR(-ENOMEM
);
436 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
438 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
439 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
440 sizeof(struct ieee80211_reg_rule
));
445 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
446 struct reg_regdb_apply_request
{
447 struct list_head list
;
448 const struct ieee80211_regdomain
*regdom
;
451 static LIST_HEAD(reg_regdb_apply_list
);
452 static DEFINE_MUTEX(reg_regdb_apply_mutex
);
454 static void reg_regdb_apply(struct work_struct
*work
)
456 struct reg_regdb_apply_request
*request
;
460 mutex_lock(®_regdb_apply_mutex
);
461 while (!list_empty(®_regdb_apply_list
)) {
462 request
= list_first_entry(®_regdb_apply_list
,
463 struct reg_regdb_apply_request
,
465 list_del(&request
->list
);
467 set_regdom(request
->regdom
, REGD_SOURCE_INTERNAL_DB
);
470 mutex_unlock(®_regdb_apply_mutex
);
475 static DECLARE_WORK(reg_regdb_work
, reg_regdb_apply
);
477 static int reg_query_builtin(const char *alpha2
)
479 const struct ieee80211_regdomain
*regdom
= NULL
;
480 struct reg_regdb_apply_request
*request
;
483 for (i
= 0; i
< reg_regdb_size
; i
++) {
484 if (alpha2_equal(alpha2
, reg_regdb
[i
]->alpha2
)) {
485 regdom
= reg_regdb
[i
];
493 request
= kzalloc(sizeof(struct reg_regdb_apply_request
), GFP_KERNEL
);
497 request
->regdom
= reg_copy_regd(regdom
);
498 if (IS_ERR_OR_NULL(request
->regdom
)) {
503 mutex_lock(®_regdb_apply_mutex
);
504 list_add_tail(&request
->list
, ®_regdb_apply_list
);
505 mutex_unlock(®_regdb_apply_mutex
);
507 schedule_work(®_regdb_work
);
512 /* Feel free to add any other sanity checks here */
513 static void reg_regdb_size_check(void)
515 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
516 WARN_ONCE(!reg_regdb_size
, "db.txt is empty, you should update it...");
519 static inline void reg_regdb_size_check(void) {}
520 static inline int reg_query_builtin(const char *alpha2
)
524 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA */
528 #define REG_MAX_CRDA_TIMEOUTS 10
530 static u32 reg_crda_timeouts
;
532 static void crda_timeout_work(struct work_struct
*work
);
533 static DECLARE_DELAYED_WORK(crda_timeout
, crda_timeout_work
);
535 static void crda_timeout_work(struct work_struct
*work
)
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
540 restore_regulatory_settings(true);
544 static void cancel_crda_timeout(void)
546 cancel_delayed_work(&crda_timeout
);
549 static void cancel_crda_timeout_sync(void)
551 cancel_delayed_work_sync(&crda_timeout
);
554 static void reset_crda_timeouts(void)
556 reg_crda_timeouts
= 0;
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
563 static int call_crda(const char *alpha2
)
566 char *env
[] = { country
, NULL
};
569 snprintf(country
, sizeof(country
), "COUNTRY=%c%c",
570 alpha2
[0], alpha2
[1]);
572 if (reg_crda_timeouts
> REG_MAX_CRDA_TIMEOUTS
) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
577 if (!is_world_regdom((char *) alpha2
))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2
[0], alpha2
[1]);
581 pr_debug("Calling CRDA to update world regulatory domain\n");
583 ret
= kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, env
);
587 queue_delayed_work(system_power_efficient_wq
,
588 &crda_timeout
, msecs_to_jiffies(3142));
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2
)
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
601 static bool reg_query_database(struct regulatory_request
*request
)
603 /* query internal regulatory database (if it exists) */
604 if (reg_query_builtin(request
->alpha2
) == 0)
607 if (call_crda(request
->alpha2
) == 0)
613 bool reg_is_valid_request(const char *alpha2
)
615 struct regulatory_request
*lr
= get_last_request();
617 if (!lr
|| lr
->processed
)
620 return alpha2_equal(lr
->alpha2
, alpha2
);
623 static const struct ieee80211_regdomain
*reg_get_regdomain(struct wiphy
*wiphy
)
625 struct regulatory_request
*lr
= get_last_request();
628 * Follow the driver's regulatory domain, if present, unless a country
629 * IE has been processed or a user wants to help complaince further
631 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
632 lr
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
634 return get_wiphy_regdom(wiphy
);
636 return get_cfg80211_regdom();
640 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain
*rd
,
641 const struct ieee80211_reg_rule
*rule
)
643 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
644 const struct ieee80211_freq_range
*freq_range_tmp
;
645 const struct ieee80211_reg_rule
*tmp
;
646 u32 start_freq
, end_freq
, idx
, no
;
648 for (idx
= 0; idx
< rd
->n_reg_rules
; idx
++)
649 if (rule
== &rd
->reg_rules
[idx
])
652 if (idx
== rd
->n_reg_rules
)
659 tmp
= &rd
->reg_rules
[--no
];
660 freq_range_tmp
= &tmp
->freq_range
;
662 if (freq_range_tmp
->end_freq_khz
< freq_range
->start_freq_khz
)
665 freq_range
= freq_range_tmp
;
668 start_freq
= freq_range
->start_freq_khz
;
671 freq_range
= &rule
->freq_range
;
674 while (no
< rd
->n_reg_rules
- 1) {
675 tmp
= &rd
->reg_rules
[++no
];
676 freq_range_tmp
= &tmp
->freq_range
;
678 if (freq_range_tmp
->start_freq_khz
> freq_range
->end_freq_khz
)
681 freq_range
= freq_range_tmp
;
684 end_freq
= freq_range
->end_freq_khz
;
686 return end_freq
- start_freq
;
689 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain
*rd
,
690 const struct ieee80211_reg_rule
*rule
)
692 unsigned int bw
= reg_get_max_bandwidth_from_range(rd
, rule
);
694 if (rule
->flags
& NL80211_RRF_NO_160MHZ
)
695 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(80));
696 if (rule
->flags
& NL80211_RRF_NO_80MHZ
)
697 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(40));
700 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
703 if (rule
->flags
& NL80211_RRF_NO_HT40MINUS
&&
704 rule
->flags
& NL80211_RRF_NO_HT40PLUS
)
705 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(20));
710 /* Sanity check on a regulatory rule */
711 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
713 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
716 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
719 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
722 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
724 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
725 freq_range
->max_bandwidth_khz
> freq_diff
)
731 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
733 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
736 if (!rd
->n_reg_rules
)
739 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
742 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
743 reg_rule
= &rd
->reg_rules
[i
];
744 if (!is_valid_reg_rule(reg_rule
))
752 * freq_in_rule_band - tells us if a frequency is in a frequency band
753 * @freq_range: frequency rule we want to query
754 * @freq_khz: frequency we are inquiring about
756 * This lets us know if a specific frequency rule is or is not relevant to
757 * a specific frequency's band. Bands are device specific and artificial
758 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
759 * however it is safe for now to assume that a frequency rule should not be
760 * part of a frequency's band if the start freq or end freq are off by more
761 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
763 * This resolution can be lowered and should be considered as we add
764 * regulatory rule support for other "bands".
766 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
769 #define ONE_GHZ_IN_KHZ 1000000
771 * From 802.11ad: directional multi-gigabit (DMG):
772 * Pertaining to operation in a frequency band containing a channel
773 * with the Channel starting frequency above 45 GHz.
775 u32 limit
= freq_khz
> 45 * ONE_GHZ_IN_KHZ
?
776 10 * ONE_GHZ_IN_KHZ
: 2 * ONE_GHZ_IN_KHZ
;
777 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= limit
)
779 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= limit
)
782 #undef ONE_GHZ_IN_KHZ
786 * Later on we can perhaps use the more restrictive DFS
787 * region but we don't have information for that yet so
788 * for now simply disallow conflicts.
790 static enum nl80211_dfs_regions
791 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1
,
792 const enum nl80211_dfs_regions dfs_region2
)
794 if (dfs_region1
!= dfs_region2
)
795 return NL80211_DFS_UNSET
;
800 * Helper for regdom_intersect(), this does the real
801 * mathematical intersection fun
803 static int reg_rules_intersect(const struct ieee80211_regdomain
*rd1
,
804 const struct ieee80211_regdomain
*rd2
,
805 const struct ieee80211_reg_rule
*rule1
,
806 const struct ieee80211_reg_rule
*rule2
,
807 struct ieee80211_reg_rule
*intersected_rule
)
809 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
810 struct ieee80211_freq_range
*freq_range
;
811 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
812 struct ieee80211_power_rule
*power_rule
;
813 u32 freq_diff
, max_bandwidth1
, max_bandwidth2
;
815 freq_range1
= &rule1
->freq_range
;
816 freq_range2
= &rule2
->freq_range
;
817 freq_range
= &intersected_rule
->freq_range
;
819 power_rule1
= &rule1
->power_rule
;
820 power_rule2
= &rule2
->power_rule
;
821 power_rule
= &intersected_rule
->power_rule
;
823 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
824 freq_range2
->start_freq_khz
);
825 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
826 freq_range2
->end_freq_khz
);
828 max_bandwidth1
= freq_range1
->max_bandwidth_khz
;
829 max_bandwidth2
= freq_range2
->max_bandwidth_khz
;
831 if (rule1
->flags
& NL80211_RRF_AUTO_BW
)
832 max_bandwidth1
= reg_get_max_bandwidth(rd1
, rule1
);
833 if (rule2
->flags
& NL80211_RRF_AUTO_BW
)
834 max_bandwidth2
= reg_get_max_bandwidth(rd2
, rule2
);
836 freq_range
->max_bandwidth_khz
= min(max_bandwidth1
, max_bandwidth2
);
838 intersected_rule
->flags
= rule1
->flags
| rule2
->flags
;
841 * In case NL80211_RRF_AUTO_BW requested for both rules
842 * set AUTO_BW in intersected rule also. Next we will
843 * calculate BW correctly in handle_channel function.
844 * In other case remove AUTO_BW flag while we calculate
845 * maximum bandwidth correctly and auto calculation is
848 if ((rule1
->flags
& NL80211_RRF_AUTO_BW
) &&
849 (rule2
->flags
& NL80211_RRF_AUTO_BW
))
850 intersected_rule
->flags
|= NL80211_RRF_AUTO_BW
;
852 intersected_rule
->flags
&= ~NL80211_RRF_AUTO_BW
;
854 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
855 if (freq_range
->max_bandwidth_khz
> freq_diff
)
856 freq_range
->max_bandwidth_khz
= freq_diff
;
858 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
859 power_rule2
->max_eirp
);
860 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
861 power_rule2
->max_antenna_gain
);
863 intersected_rule
->dfs_cac_ms
= max(rule1
->dfs_cac_ms
,
866 if (!is_valid_reg_rule(intersected_rule
))
872 /* check whether old rule contains new rule */
873 static bool rule_contains(struct ieee80211_reg_rule
*r1
,
874 struct ieee80211_reg_rule
*r2
)
876 /* for simplicity, currently consider only same flags */
877 if (r1
->flags
!= r2
->flags
)
880 /* verify r1 is more restrictive */
881 if ((r1
->power_rule
.max_antenna_gain
>
882 r2
->power_rule
.max_antenna_gain
) ||
883 r1
->power_rule
.max_eirp
> r2
->power_rule
.max_eirp
)
886 /* make sure r2's range is contained within r1 */
887 if (r1
->freq_range
.start_freq_khz
> r2
->freq_range
.start_freq_khz
||
888 r1
->freq_range
.end_freq_khz
< r2
->freq_range
.end_freq_khz
)
891 /* and finally verify that r1.max_bw >= r2.max_bw */
892 if (r1
->freq_range
.max_bandwidth_khz
<
893 r2
->freq_range
.max_bandwidth_khz
)
899 /* add or extend current rules. do nothing if rule is already contained */
900 static void add_rule(struct ieee80211_reg_rule
*rule
,
901 struct ieee80211_reg_rule
*reg_rules
, u32
*n_rules
)
903 struct ieee80211_reg_rule
*tmp_rule
;
906 for (i
= 0; i
< *n_rules
; i
++) {
907 tmp_rule
= ®_rules
[i
];
908 /* rule is already contained - do nothing */
909 if (rule_contains(tmp_rule
, rule
))
912 /* extend rule if possible */
913 if (rule_contains(rule
, tmp_rule
)) {
914 memcpy(tmp_rule
, rule
, sizeof(*rule
));
919 memcpy(®_rules
[*n_rules
], rule
, sizeof(*rule
));
924 * regdom_intersect - do the intersection between two regulatory domains
925 * @rd1: first regulatory domain
926 * @rd2: second regulatory domain
928 * Use this function to get the intersection between two regulatory domains.
929 * Once completed we will mark the alpha2 for the rd as intersected, "98",
930 * as no one single alpha2 can represent this regulatory domain.
932 * Returns a pointer to the regulatory domain structure which will hold the
933 * resulting intersection of rules between rd1 and rd2. We will
934 * kzalloc() this structure for you.
936 static struct ieee80211_regdomain
*
937 regdom_intersect(const struct ieee80211_regdomain
*rd1
,
938 const struct ieee80211_regdomain
*rd2
)
942 unsigned int num_rules
= 0;
943 const struct ieee80211_reg_rule
*rule1
, *rule2
;
944 struct ieee80211_reg_rule intersected_rule
;
945 struct ieee80211_regdomain
*rd
;
951 * First we get a count of the rules we'll need, then we actually
952 * build them. This is to so we can malloc() and free() a
953 * regdomain once. The reason we use reg_rules_intersect() here
954 * is it will return -EINVAL if the rule computed makes no sense.
955 * All rules that do check out OK are valid.
958 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
959 rule1
= &rd1
->reg_rules
[x
];
960 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
961 rule2
= &rd2
->reg_rules
[y
];
962 if (!reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
971 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
972 num_rules
* sizeof(struct ieee80211_reg_rule
);
974 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
978 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
979 rule1
= &rd1
->reg_rules
[x
];
980 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
981 rule2
= &rd2
->reg_rules
[y
];
982 r
= reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
985 * No need to memset here the intersected rule here as
986 * we're not using the stack anymore
991 add_rule(&intersected_rule
, rd
->reg_rules
,
998 rd
->dfs_region
= reg_intersect_dfs_region(rd1
->dfs_region
,
1005 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1006 * want to just have the channel structure use these
1008 static u32
map_regdom_flags(u32 rd_flags
)
1010 u32 channel_flags
= 0;
1011 if (rd_flags
& NL80211_RRF_NO_IR_ALL
)
1012 channel_flags
|= IEEE80211_CHAN_NO_IR
;
1013 if (rd_flags
& NL80211_RRF_DFS
)
1014 channel_flags
|= IEEE80211_CHAN_RADAR
;
1015 if (rd_flags
& NL80211_RRF_NO_OFDM
)
1016 channel_flags
|= IEEE80211_CHAN_NO_OFDM
;
1017 if (rd_flags
& NL80211_RRF_NO_OUTDOOR
)
1018 channel_flags
|= IEEE80211_CHAN_INDOOR_ONLY
;
1019 if (rd_flags
& NL80211_RRF_IR_CONCURRENT
)
1020 channel_flags
|= IEEE80211_CHAN_IR_CONCURRENT
;
1021 if (rd_flags
& NL80211_RRF_NO_HT40MINUS
)
1022 channel_flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1023 if (rd_flags
& NL80211_RRF_NO_HT40PLUS
)
1024 channel_flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1025 if (rd_flags
& NL80211_RRF_NO_80MHZ
)
1026 channel_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1027 if (rd_flags
& NL80211_RRF_NO_160MHZ
)
1028 channel_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1029 return channel_flags
;
1032 static const struct ieee80211_reg_rule
*
1033 freq_reg_info_regd(u32 center_freq
,
1034 const struct ieee80211_regdomain
*regd
, u32 bw
)
1037 bool band_rule_found
= false;
1038 bool bw_fits
= false;
1041 return ERR_PTR(-EINVAL
);
1043 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
1044 const struct ieee80211_reg_rule
*rr
;
1045 const struct ieee80211_freq_range
*fr
= NULL
;
1047 rr
= ®d
->reg_rules
[i
];
1048 fr
= &rr
->freq_range
;
1051 * We only need to know if one frequency rule was
1052 * was in center_freq's band, that's enough, so lets
1053 * not overwrite it once found
1055 if (!band_rule_found
)
1056 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
1058 bw_fits
= cfg80211_does_bw_fit_range(fr
, center_freq
, bw
);
1060 if (band_rule_found
&& bw_fits
)
1064 if (!band_rule_found
)
1065 return ERR_PTR(-ERANGE
);
1067 return ERR_PTR(-EINVAL
);
1070 static const struct ieee80211_reg_rule
*
1071 __freq_reg_info(struct wiphy
*wiphy
, u32 center_freq
, u32 min_bw
)
1073 const struct ieee80211_regdomain
*regd
= reg_get_regdomain(wiphy
);
1074 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1077 for (bw
= MHZ_TO_KHZ(20); bw
>= min_bw
; bw
= bw
/ 2) {
1078 reg_rule
= freq_reg_info_regd(center_freq
, regd
, bw
);
1079 if (!IS_ERR(reg_rule
))
1086 const struct ieee80211_reg_rule
*freq_reg_info(struct wiphy
*wiphy
,
1089 return __freq_reg_info(wiphy
, center_freq
, MHZ_TO_KHZ(20));
1091 EXPORT_SYMBOL(freq_reg_info
);
1093 const char *reg_initiator_name(enum nl80211_reg_initiator initiator
)
1095 switch (initiator
) {
1096 case NL80211_REGDOM_SET_BY_CORE
:
1098 case NL80211_REGDOM_SET_BY_USER
:
1100 case NL80211_REGDOM_SET_BY_DRIVER
:
1102 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1103 return "country IE";
1109 EXPORT_SYMBOL(reg_initiator_name
);
1111 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain
*regd
,
1112 const struct ieee80211_reg_rule
*reg_rule
,
1113 const struct ieee80211_channel
*chan
)
1115 const struct ieee80211_freq_range
*freq_range
= NULL
;
1116 u32 max_bandwidth_khz
, bw_flags
= 0;
1118 freq_range
= ®_rule
->freq_range
;
1120 max_bandwidth_khz
= freq_range
->max_bandwidth_khz
;
1121 /* Check if auto calculation requested */
1122 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
1123 max_bandwidth_khz
= reg_get_max_bandwidth(regd
, reg_rule
);
1125 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1126 if (!cfg80211_does_bw_fit_range(freq_range
,
1127 MHZ_TO_KHZ(chan
->center_freq
),
1129 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1130 if (!cfg80211_does_bw_fit_range(freq_range
,
1131 MHZ_TO_KHZ(chan
->center_freq
),
1133 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1135 if (max_bandwidth_khz
< MHZ_TO_KHZ(10))
1136 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1137 if (max_bandwidth_khz
< MHZ_TO_KHZ(20))
1138 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1139 if (max_bandwidth_khz
< MHZ_TO_KHZ(40))
1140 bw_flags
|= IEEE80211_CHAN_NO_HT40
;
1141 if (max_bandwidth_khz
< MHZ_TO_KHZ(80))
1142 bw_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1143 if (max_bandwidth_khz
< MHZ_TO_KHZ(160))
1144 bw_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1149 * Note that right now we assume the desired channel bandwidth
1150 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1151 * per channel, the primary and the extension channel).
1153 static void handle_channel(struct wiphy
*wiphy
,
1154 enum nl80211_reg_initiator initiator
,
1155 struct ieee80211_channel
*chan
)
1157 u32 flags
, bw_flags
= 0;
1158 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1159 const struct ieee80211_power_rule
*power_rule
= NULL
;
1160 struct wiphy
*request_wiphy
= NULL
;
1161 struct regulatory_request
*lr
= get_last_request();
1162 const struct ieee80211_regdomain
*regd
;
1164 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
1166 flags
= chan
->orig_flags
;
1168 reg_rule
= freq_reg_info(wiphy
, MHZ_TO_KHZ(chan
->center_freq
));
1169 if (IS_ERR(reg_rule
)) {
1171 * We will disable all channels that do not match our
1172 * received regulatory rule unless the hint is coming
1173 * from a Country IE and the Country IE had no information
1174 * about a band. The IEEE 802.11 spec allows for an AP
1175 * to send only a subset of the regulatory rules allowed,
1176 * so an AP in the US that only supports 2.4 GHz may only send
1177 * a country IE with information for the 2.4 GHz band
1178 * while 5 GHz is still supported.
1180 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1181 PTR_ERR(reg_rule
) == -ERANGE
)
1184 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1185 request_wiphy
&& request_wiphy
== wiphy
&&
1186 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1187 pr_debug("Disabling freq %d MHz for good\n",
1189 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
1190 chan
->flags
= chan
->orig_flags
;
1192 pr_debug("Disabling freq %d MHz\n",
1194 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
1199 regd
= reg_get_regdomain(wiphy
);
1201 power_rule
= ®_rule
->power_rule
;
1202 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
1204 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1205 request_wiphy
&& request_wiphy
== wiphy
&&
1206 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1208 * This guarantees the driver's requested regulatory domain
1209 * will always be used as a base for further regulatory
1212 chan
->flags
= chan
->orig_flags
=
1213 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1214 chan
->max_antenna_gain
= chan
->orig_mag
=
1215 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1216 chan
->max_reg_power
= chan
->max_power
= chan
->orig_mpwr
=
1217 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1219 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1220 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1221 if (reg_rule
->dfs_cac_ms
)
1222 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1228 chan
->dfs_state
= NL80211_DFS_USABLE
;
1229 chan
->dfs_state_entered
= jiffies
;
1231 chan
->beacon_found
= false;
1232 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
1233 chan
->max_antenna_gain
=
1234 min_t(int, chan
->orig_mag
,
1235 MBI_TO_DBI(power_rule
->max_antenna_gain
));
1236 chan
->max_reg_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1238 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1239 if (reg_rule
->dfs_cac_ms
)
1240 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1242 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1245 if (chan
->orig_mpwr
) {
1247 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1248 * will always follow the passed country IE power settings.
1250 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1251 wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_FOLLOW_POWER
)
1252 chan
->max_power
= chan
->max_reg_power
;
1254 chan
->max_power
= min(chan
->orig_mpwr
,
1255 chan
->max_reg_power
);
1257 chan
->max_power
= chan
->max_reg_power
;
1260 static void handle_band(struct wiphy
*wiphy
,
1261 enum nl80211_reg_initiator initiator
,
1262 struct ieee80211_supported_band
*sband
)
1269 for (i
= 0; i
< sband
->n_channels
; i
++)
1270 handle_channel(wiphy
, initiator
, &sband
->channels
[i
]);
1273 static bool reg_request_cell_base(struct regulatory_request
*request
)
1275 if (request
->initiator
!= NL80211_REGDOM_SET_BY_USER
)
1277 return request
->user_reg_hint_type
== NL80211_USER_REG_HINT_CELL_BASE
;
1280 bool reg_last_request_cell_base(void)
1282 return reg_request_cell_base(get_last_request());
1285 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1286 /* Core specific check */
1287 static enum reg_request_treatment
1288 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1290 struct regulatory_request
*lr
= get_last_request();
1292 if (!reg_num_devs_support_basehint
)
1293 return REG_REQ_IGNORE
;
1295 if (reg_request_cell_base(lr
) &&
1296 !regdom_changes(pending_request
->alpha2
))
1297 return REG_REQ_ALREADY_SET
;
1302 /* Device specific check */
1303 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1305 return !(wiphy
->features
& NL80211_FEATURE_CELL_BASE_REG_HINTS
);
1308 static enum reg_request_treatment
1309 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1311 return REG_REQ_IGNORE
;
1314 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1320 static bool wiphy_strict_alpha2_regd(struct wiphy
*wiphy
)
1322 if (wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
&&
1323 !(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
))
1328 static bool ignore_reg_update(struct wiphy
*wiphy
,
1329 enum nl80211_reg_initiator initiator
)
1331 struct regulatory_request
*lr
= get_last_request();
1333 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
1337 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1338 reg_initiator_name(initiator
));
1342 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1343 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
) {
1344 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1345 reg_initiator_name(initiator
));
1350 * wiphy->regd will be set once the device has its own
1351 * desired regulatory domain set
1353 if (wiphy_strict_alpha2_regd(wiphy
) && !wiphy
->regd
&&
1354 initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1355 !is_world_regdom(lr
->alpha2
)) {
1356 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1357 reg_initiator_name(initiator
));
1361 if (reg_request_cell_base(lr
))
1362 return reg_dev_ignore_cell_hint(wiphy
);
1367 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1369 const struct ieee80211_regdomain
*cr
= get_cfg80211_regdom();
1370 const struct ieee80211_regdomain
*wr
= get_wiphy_regdom(wiphy
);
1371 struct regulatory_request
*lr
= get_last_request();
1373 if (is_world_regdom(cr
->alpha2
) || (wr
&& is_world_regdom(wr
->alpha2
)))
1376 if (lr
&& lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1377 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
1383 static void handle_reg_beacon(struct wiphy
*wiphy
, unsigned int chan_idx
,
1384 struct reg_beacon
*reg_beacon
)
1386 struct ieee80211_supported_band
*sband
;
1387 struct ieee80211_channel
*chan
;
1388 bool channel_changed
= false;
1389 struct ieee80211_channel chan_before
;
1391 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1392 chan
= &sband
->channels
[chan_idx
];
1394 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
1397 if (chan
->beacon_found
)
1400 chan
->beacon_found
= true;
1402 if (!reg_is_world_roaming(wiphy
))
1405 if (wiphy
->regulatory_flags
& REGULATORY_DISABLE_BEACON_HINTS
)
1408 chan_before
.center_freq
= chan
->center_freq
;
1409 chan_before
.flags
= chan
->flags
;
1411 if (chan
->flags
& IEEE80211_CHAN_NO_IR
) {
1412 chan
->flags
&= ~IEEE80211_CHAN_NO_IR
;
1413 channel_changed
= true;
1416 if (channel_changed
)
1417 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
1421 * Called when a scan on a wiphy finds a beacon on
1424 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
1425 struct reg_beacon
*reg_beacon
)
1428 struct ieee80211_supported_band
*sband
;
1430 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1433 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1435 for (i
= 0; i
< sband
->n_channels
; i
++)
1436 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1440 * Called upon reg changes or a new wiphy is added
1442 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
1445 struct ieee80211_supported_band
*sband
;
1446 struct reg_beacon
*reg_beacon
;
1448 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
1449 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1451 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1452 for (i
= 0; i
< sband
->n_channels
; i
++)
1453 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1457 /* Reap the advantages of previously found beacons */
1458 static void reg_process_beacons(struct wiphy
*wiphy
)
1461 * Means we are just firing up cfg80211, so no beacons would
1462 * have been processed yet.
1466 wiphy_update_beacon_reg(wiphy
);
1469 static bool is_ht40_allowed(struct ieee80211_channel
*chan
)
1473 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
1475 /* This would happen when regulatory rules disallow HT40 completely */
1476 if ((chan
->flags
& IEEE80211_CHAN_NO_HT40
) == IEEE80211_CHAN_NO_HT40
)
1481 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
1482 struct ieee80211_channel
*channel
)
1484 struct ieee80211_supported_band
*sband
= wiphy
->bands
[channel
->band
];
1485 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
1488 if (!is_ht40_allowed(channel
)) {
1489 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
1494 * We need to ensure the extension channels exist to
1495 * be able to use HT40- or HT40+, this finds them (or not)
1497 for (i
= 0; i
< sband
->n_channels
; i
++) {
1498 struct ieee80211_channel
*c
= &sband
->channels
[i
];
1500 if (c
->center_freq
== (channel
->center_freq
- 20))
1502 if (c
->center_freq
== (channel
->center_freq
+ 20))
1507 * Please note that this assumes target bandwidth is 20 MHz,
1508 * if that ever changes we also need to change the below logic
1509 * to include that as well.
1511 if (!is_ht40_allowed(channel_before
))
1512 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1514 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
1516 if (!is_ht40_allowed(channel_after
))
1517 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1519 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
1522 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
1523 struct ieee80211_supported_band
*sband
)
1530 for (i
= 0; i
< sband
->n_channels
; i
++)
1531 reg_process_ht_flags_channel(wiphy
, &sband
->channels
[i
]);
1534 static void reg_process_ht_flags(struct wiphy
*wiphy
)
1536 enum nl80211_band band
;
1541 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
1542 reg_process_ht_flags_band(wiphy
, wiphy
->bands
[band
]);
1545 static void reg_call_notifier(struct wiphy
*wiphy
,
1546 struct regulatory_request
*request
)
1548 if (wiphy
->reg_notifier
)
1549 wiphy
->reg_notifier(wiphy
, request
);
1552 static bool reg_wdev_chan_valid(struct wiphy
*wiphy
, struct wireless_dev
*wdev
)
1554 struct cfg80211_chan_def chandef
;
1555 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
1556 enum nl80211_iftype iftype
;
1559 iftype
= wdev
->iftype
;
1561 /* make sure the interface is active */
1562 if (!wdev
->netdev
|| !netif_running(wdev
->netdev
))
1563 goto wdev_inactive_unlock
;
1566 case NL80211_IFTYPE_AP
:
1567 case NL80211_IFTYPE_P2P_GO
:
1568 if (!wdev
->beacon_interval
)
1569 goto wdev_inactive_unlock
;
1570 chandef
= wdev
->chandef
;
1572 case NL80211_IFTYPE_ADHOC
:
1573 if (!wdev
->ssid_len
)
1574 goto wdev_inactive_unlock
;
1575 chandef
= wdev
->chandef
;
1577 case NL80211_IFTYPE_STATION
:
1578 case NL80211_IFTYPE_P2P_CLIENT
:
1579 if (!wdev
->current_bss
||
1580 !wdev
->current_bss
->pub
.channel
)
1581 goto wdev_inactive_unlock
;
1583 if (!rdev
->ops
->get_channel
||
1584 rdev_get_channel(rdev
, wdev
, &chandef
))
1585 cfg80211_chandef_create(&chandef
,
1586 wdev
->current_bss
->pub
.channel
,
1587 NL80211_CHAN_NO_HT
);
1589 case NL80211_IFTYPE_MONITOR
:
1590 case NL80211_IFTYPE_AP_VLAN
:
1591 case NL80211_IFTYPE_P2P_DEVICE
:
1592 /* no enforcement required */
1595 /* others not implemented for now */
1603 case NL80211_IFTYPE_AP
:
1604 case NL80211_IFTYPE_P2P_GO
:
1605 case NL80211_IFTYPE_ADHOC
:
1606 return cfg80211_reg_can_beacon_relax(wiphy
, &chandef
, iftype
);
1607 case NL80211_IFTYPE_STATION
:
1608 case NL80211_IFTYPE_P2P_CLIENT
:
1609 return cfg80211_chandef_usable(wiphy
, &chandef
,
1610 IEEE80211_CHAN_DISABLED
);
1617 wdev_inactive_unlock
:
1622 static void reg_leave_invalid_chans(struct wiphy
*wiphy
)
1624 struct wireless_dev
*wdev
;
1625 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
1629 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
)
1630 if (!reg_wdev_chan_valid(wiphy
, wdev
))
1631 cfg80211_leave(rdev
, wdev
);
1634 static void reg_check_chans_work(struct work_struct
*work
)
1636 struct cfg80211_registered_device
*rdev
;
1638 pr_debug("Verifying active interfaces after reg change\n");
1641 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
1642 if (!(rdev
->wiphy
.regulatory_flags
&
1643 REGULATORY_IGNORE_STALE_KICKOFF
))
1644 reg_leave_invalid_chans(&rdev
->wiphy
);
1649 static void reg_check_channels(void)
1652 * Give usermode a chance to do something nicer (move to another
1653 * channel, orderly disconnection), before forcing a disconnection.
1655 mod_delayed_work(system_power_efficient_wq
,
1657 msecs_to_jiffies(REG_ENFORCE_GRACE_MS
));
1660 static void wiphy_update_regulatory(struct wiphy
*wiphy
,
1661 enum nl80211_reg_initiator initiator
)
1663 enum nl80211_band band
;
1664 struct regulatory_request
*lr
= get_last_request();
1666 if (ignore_reg_update(wiphy
, initiator
)) {
1668 * Regulatory updates set by CORE are ignored for custom
1669 * regulatory cards. Let us notify the changes to the driver,
1670 * as some drivers used this to restore its orig_* reg domain.
1672 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1673 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
1674 reg_call_notifier(wiphy
, lr
);
1678 lr
->dfs_region
= get_cfg80211_regdom()->dfs_region
;
1680 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
1681 handle_band(wiphy
, initiator
, wiphy
->bands
[band
]);
1683 reg_process_beacons(wiphy
);
1684 reg_process_ht_flags(wiphy
);
1685 reg_call_notifier(wiphy
, lr
);
1688 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
1690 struct cfg80211_registered_device
*rdev
;
1691 struct wiphy
*wiphy
;
1695 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
1696 wiphy
= &rdev
->wiphy
;
1697 wiphy_update_regulatory(wiphy
, initiator
);
1700 reg_check_channels();
1703 static void handle_channel_custom(struct wiphy
*wiphy
,
1704 struct ieee80211_channel
*chan
,
1705 const struct ieee80211_regdomain
*regd
)
1708 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1709 const struct ieee80211_power_rule
*power_rule
= NULL
;
1712 for (bw
= MHZ_TO_KHZ(20); bw
>= MHZ_TO_KHZ(5); bw
= bw
/ 2) {
1713 reg_rule
= freq_reg_info_regd(MHZ_TO_KHZ(chan
->center_freq
),
1715 if (!IS_ERR(reg_rule
))
1719 if (IS_ERR(reg_rule
)) {
1720 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1722 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
) {
1723 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
1725 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
1726 chan
->flags
= chan
->orig_flags
;
1731 power_rule
= ®_rule
->power_rule
;
1732 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
1734 chan
->dfs_state_entered
= jiffies
;
1735 chan
->dfs_state
= NL80211_DFS_USABLE
;
1737 chan
->beacon_found
= false;
1739 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
1740 chan
->flags
= chan
->orig_flags
| bw_flags
|
1741 map_regdom_flags(reg_rule
->flags
);
1743 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1745 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1746 chan
->max_reg_power
= chan
->max_power
=
1747 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1749 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1750 if (reg_rule
->dfs_cac_ms
)
1751 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1753 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1756 chan
->max_power
= chan
->max_reg_power
;
1759 static void handle_band_custom(struct wiphy
*wiphy
,
1760 struct ieee80211_supported_band
*sband
,
1761 const struct ieee80211_regdomain
*regd
)
1768 for (i
= 0; i
< sband
->n_channels
; i
++)
1769 handle_channel_custom(wiphy
, &sband
->channels
[i
], regd
);
1772 /* Used by drivers prior to wiphy registration */
1773 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
1774 const struct ieee80211_regdomain
*regd
)
1776 enum nl80211_band band
;
1777 unsigned int bands_set
= 0;
1779 WARN(!(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
),
1780 "wiphy should have REGULATORY_CUSTOM_REG\n");
1781 wiphy
->regulatory_flags
|= REGULATORY_CUSTOM_REG
;
1783 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
1784 if (!wiphy
->bands
[band
])
1786 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
1791 * no point in calling this if it won't have any effect
1792 * on your device's supported bands.
1794 WARN_ON(!bands_set
);
1796 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
1798 static void reg_set_request_processed(void)
1800 bool need_more_processing
= false;
1801 struct regulatory_request
*lr
= get_last_request();
1803 lr
->processed
= true;
1805 spin_lock(®_requests_lock
);
1806 if (!list_empty(®_requests_list
))
1807 need_more_processing
= true;
1808 spin_unlock(®_requests_lock
);
1810 cancel_crda_timeout();
1812 if (need_more_processing
)
1813 schedule_work(®_work
);
1817 * reg_process_hint_core - process core regulatory requests
1818 * @pending_request: a pending core regulatory request
1820 * The wireless subsystem can use this function to process
1821 * a regulatory request issued by the regulatory core.
1823 static enum reg_request_treatment
1824 reg_process_hint_core(struct regulatory_request
*core_request
)
1826 if (reg_query_database(core_request
)) {
1827 core_request
->intersect
= false;
1828 core_request
->processed
= false;
1829 reg_update_last_request(core_request
);
1833 return REG_REQ_IGNORE
;
1836 static enum reg_request_treatment
1837 __reg_process_hint_user(struct regulatory_request
*user_request
)
1839 struct regulatory_request
*lr
= get_last_request();
1841 if (reg_request_cell_base(user_request
))
1842 return reg_ignore_cell_hint(user_request
);
1844 if (reg_request_cell_base(lr
))
1845 return REG_REQ_IGNORE
;
1847 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
1848 return REG_REQ_INTERSECT
;
1850 * If the user knows better the user should set the regdom
1851 * to their country before the IE is picked up
1853 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
1855 return REG_REQ_IGNORE
;
1857 * Process user requests only after previous user/driver/core
1858 * requests have been processed
1860 if ((lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
1861 lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
1862 lr
->initiator
== NL80211_REGDOM_SET_BY_USER
) &&
1863 regdom_changes(lr
->alpha2
))
1864 return REG_REQ_IGNORE
;
1866 if (!regdom_changes(user_request
->alpha2
))
1867 return REG_REQ_ALREADY_SET
;
1873 * reg_process_hint_user - process user regulatory requests
1874 * @user_request: a pending user regulatory request
1876 * The wireless subsystem can use this function to process
1877 * a regulatory request initiated by userspace.
1879 static enum reg_request_treatment
1880 reg_process_hint_user(struct regulatory_request
*user_request
)
1882 enum reg_request_treatment treatment
;
1884 treatment
= __reg_process_hint_user(user_request
);
1885 if (treatment
== REG_REQ_IGNORE
||
1886 treatment
== REG_REQ_ALREADY_SET
)
1887 return REG_REQ_IGNORE
;
1889 user_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
1890 user_request
->processed
= false;
1892 if (reg_query_database(user_request
)) {
1893 reg_update_last_request(user_request
);
1894 user_alpha2
[0] = user_request
->alpha2
[0];
1895 user_alpha2
[1] = user_request
->alpha2
[1];
1899 return REG_REQ_IGNORE
;
1902 static enum reg_request_treatment
1903 __reg_process_hint_driver(struct regulatory_request
*driver_request
)
1905 struct regulatory_request
*lr
= get_last_request();
1907 if (lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
1908 if (regdom_changes(driver_request
->alpha2
))
1910 return REG_REQ_ALREADY_SET
;
1914 * This would happen if you unplug and plug your card
1915 * back in or if you add a new device for which the previously
1916 * loaded card also agrees on the regulatory domain.
1918 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1919 !regdom_changes(driver_request
->alpha2
))
1920 return REG_REQ_ALREADY_SET
;
1922 return REG_REQ_INTERSECT
;
1926 * reg_process_hint_driver - process driver regulatory requests
1927 * @driver_request: a pending driver regulatory request
1929 * The wireless subsystem can use this function to process
1930 * a regulatory request issued by an 802.11 driver.
1932 * Returns one of the different reg request treatment values.
1934 static enum reg_request_treatment
1935 reg_process_hint_driver(struct wiphy
*wiphy
,
1936 struct regulatory_request
*driver_request
)
1938 const struct ieee80211_regdomain
*regd
, *tmp
;
1939 enum reg_request_treatment treatment
;
1941 treatment
= __reg_process_hint_driver(driver_request
);
1943 switch (treatment
) {
1946 case REG_REQ_IGNORE
:
1947 return REG_REQ_IGNORE
;
1948 case REG_REQ_INTERSECT
:
1949 case REG_REQ_ALREADY_SET
:
1950 regd
= reg_copy_regd(get_cfg80211_regdom());
1952 return REG_REQ_IGNORE
;
1954 tmp
= get_wiphy_regdom(wiphy
);
1955 rcu_assign_pointer(wiphy
->regd
, regd
);
1956 rcu_free_regdom(tmp
);
1960 driver_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
1961 driver_request
->processed
= false;
1964 * Since CRDA will not be called in this case as we already
1965 * have applied the requested regulatory domain before we just
1966 * inform userspace we have processed the request
1968 if (treatment
== REG_REQ_ALREADY_SET
) {
1969 nl80211_send_reg_change_event(driver_request
);
1970 reg_update_last_request(driver_request
);
1971 reg_set_request_processed();
1972 return REG_REQ_ALREADY_SET
;
1975 if (reg_query_database(driver_request
)) {
1976 reg_update_last_request(driver_request
);
1980 return REG_REQ_IGNORE
;
1983 static enum reg_request_treatment
1984 __reg_process_hint_country_ie(struct wiphy
*wiphy
,
1985 struct regulatory_request
*country_ie_request
)
1987 struct wiphy
*last_wiphy
= NULL
;
1988 struct regulatory_request
*lr
= get_last_request();
1990 if (reg_request_cell_base(lr
)) {
1991 /* Trust a Cell base station over the AP's country IE */
1992 if (regdom_changes(country_ie_request
->alpha2
))
1993 return REG_REQ_IGNORE
;
1994 return REG_REQ_ALREADY_SET
;
1996 if (wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_IGNORE
)
1997 return REG_REQ_IGNORE
;
2000 if (unlikely(!is_an_alpha2(country_ie_request
->alpha2
)))
2003 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2006 last_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
2008 if (last_wiphy
!= wiphy
) {
2010 * Two cards with two APs claiming different
2011 * Country IE alpha2s. We could
2012 * intersect them, but that seems unlikely
2013 * to be correct. Reject second one for now.
2015 if (regdom_changes(country_ie_request
->alpha2
))
2016 return REG_REQ_IGNORE
;
2017 return REG_REQ_ALREADY_SET
;
2020 if (regdom_changes(country_ie_request
->alpha2
))
2022 return REG_REQ_ALREADY_SET
;
2026 * reg_process_hint_country_ie - process regulatory requests from country IEs
2027 * @country_ie_request: a regulatory request from a country IE
2029 * The wireless subsystem can use this function to process
2030 * a regulatory request issued by a country Information Element.
2032 * Returns one of the different reg request treatment values.
2034 static enum reg_request_treatment
2035 reg_process_hint_country_ie(struct wiphy
*wiphy
,
2036 struct regulatory_request
*country_ie_request
)
2038 enum reg_request_treatment treatment
;
2040 treatment
= __reg_process_hint_country_ie(wiphy
, country_ie_request
);
2042 switch (treatment
) {
2045 case REG_REQ_IGNORE
:
2046 return REG_REQ_IGNORE
;
2047 case REG_REQ_ALREADY_SET
:
2048 reg_free_request(country_ie_request
);
2049 return REG_REQ_ALREADY_SET
;
2050 case REG_REQ_INTERSECT
:
2052 * This doesn't happen yet, not sure we
2053 * ever want to support it for this case.
2055 WARN_ONCE(1, "Unexpected intersection for country IEs");
2056 return REG_REQ_IGNORE
;
2059 country_ie_request
->intersect
= false;
2060 country_ie_request
->processed
= false;
2062 if (reg_query_database(country_ie_request
)) {
2063 reg_update_last_request(country_ie_request
);
2067 return REG_REQ_IGNORE
;
2070 bool reg_dfs_domain_same(struct wiphy
*wiphy1
, struct wiphy
*wiphy2
)
2072 const struct ieee80211_regdomain
*wiphy1_regd
= NULL
;
2073 const struct ieee80211_regdomain
*wiphy2_regd
= NULL
;
2074 const struct ieee80211_regdomain
*cfg80211_regd
= NULL
;
2075 bool dfs_domain_same
;
2079 cfg80211_regd
= rcu_dereference(cfg80211_regdomain
);
2080 wiphy1_regd
= rcu_dereference(wiphy1
->regd
);
2082 wiphy1_regd
= cfg80211_regd
;
2084 wiphy2_regd
= rcu_dereference(wiphy2
->regd
);
2086 wiphy2_regd
= cfg80211_regd
;
2088 dfs_domain_same
= wiphy1_regd
->dfs_region
== wiphy2_regd
->dfs_region
;
2092 return dfs_domain_same
;
2095 static void reg_copy_dfs_chan_state(struct ieee80211_channel
*dst_chan
,
2096 struct ieee80211_channel
*src_chan
)
2098 if (!(dst_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
2099 !(src_chan
->flags
& IEEE80211_CHAN_RADAR
))
2102 if (dst_chan
->flags
& IEEE80211_CHAN_DISABLED
||
2103 src_chan
->flags
& IEEE80211_CHAN_DISABLED
)
2106 if (src_chan
->center_freq
== dst_chan
->center_freq
&&
2107 dst_chan
->dfs_state
== NL80211_DFS_USABLE
) {
2108 dst_chan
->dfs_state
= src_chan
->dfs_state
;
2109 dst_chan
->dfs_state_entered
= src_chan
->dfs_state_entered
;
2113 static void wiphy_share_dfs_chan_state(struct wiphy
*dst_wiphy
,
2114 struct wiphy
*src_wiphy
)
2116 struct ieee80211_supported_band
*src_sband
, *dst_sband
;
2117 struct ieee80211_channel
*src_chan
, *dst_chan
;
2120 if (!reg_dfs_domain_same(dst_wiphy
, src_wiphy
))
2123 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
2124 dst_sband
= dst_wiphy
->bands
[band
];
2125 src_sband
= src_wiphy
->bands
[band
];
2126 if (!dst_sband
|| !src_sband
)
2129 for (i
= 0; i
< dst_sband
->n_channels
; i
++) {
2130 dst_chan
= &dst_sband
->channels
[i
];
2131 for (j
= 0; j
< src_sband
->n_channels
; j
++) {
2132 src_chan
= &src_sband
->channels
[j
];
2133 reg_copy_dfs_chan_state(dst_chan
, src_chan
);
2139 static void wiphy_all_share_dfs_chan_state(struct wiphy
*wiphy
)
2141 struct cfg80211_registered_device
*rdev
;
2145 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2146 if (wiphy
== &rdev
->wiphy
)
2148 wiphy_share_dfs_chan_state(wiphy
, &rdev
->wiphy
);
2152 /* This processes *all* regulatory hints */
2153 static void reg_process_hint(struct regulatory_request
*reg_request
)
2155 struct wiphy
*wiphy
= NULL
;
2156 enum reg_request_treatment treatment
;
2158 if (reg_request
->wiphy_idx
!= WIPHY_IDX_INVALID
)
2159 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
2161 switch (reg_request
->initiator
) {
2162 case NL80211_REGDOM_SET_BY_CORE
:
2163 treatment
= reg_process_hint_core(reg_request
);
2165 case NL80211_REGDOM_SET_BY_USER
:
2166 treatment
= reg_process_hint_user(reg_request
);
2168 case NL80211_REGDOM_SET_BY_DRIVER
:
2171 treatment
= reg_process_hint_driver(wiphy
, reg_request
);
2173 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
2176 treatment
= reg_process_hint_country_ie(wiphy
, reg_request
);
2179 WARN(1, "invalid initiator %d\n", reg_request
->initiator
);
2183 if (treatment
== REG_REQ_IGNORE
)
2186 WARN(treatment
!= REG_REQ_OK
&& treatment
!= REG_REQ_ALREADY_SET
,
2187 "unexpected treatment value %d\n", treatment
);
2189 /* This is required so that the orig_* parameters are saved.
2190 * NOTE: treatment must be set for any case that reaches here!
2192 if (treatment
== REG_REQ_ALREADY_SET
&& wiphy
&&
2193 wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
2194 wiphy_update_regulatory(wiphy
, reg_request
->initiator
);
2195 wiphy_all_share_dfs_chan_state(wiphy
);
2196 reg_check_channels();
2202 reg_free_request(reg_request
);
2205 static bool reg_only_self_managed_wiphys(void)
2207 struct cfg80211_registered_device
*rdev
;
2208 struct wiphy
*wiphy
;
2209 bool self_managed_found
= false;
2213 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2214 wiphy
= &rdev
->wiphy
;
2215 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2216 self_managed_found
= true;
2221 /* make sure at least one self-managed wiphy exists */
2222 return self_managed_found
;
2226 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2227 * Regulatory hints come on a first come first serve basis and we
2228 * must process each one atomically.
2230 static void reg_process_pending_hints(void)
2232 struct regulatory_request
*reg_request
, *lr
;
2234 lr
= get_last_request();
2236 /* When last_request->processed becomes true this will be rescheduled */
2237 if (lr
&& !lr
->processed
) {
2238 reg_process_hint(lr
);
2242 spin_lock(®_requests_lock
);
2244 if (list_empty(®_requests_list
)) {
2245 spin_unlock(®_requests_lock
);
2249 reg_request
= list_first_entry(®_requests_list
,
2250 struct regulatory_request
,
2252 list_del_init(®_request
->list
);
2254 spin_unlock(®_requests_lock
);
2256 if (reg_only_self_managed_wiphys()) {
2257 reg_free_request(reg_request
);
2261 reg_process_hint(reg_request
);
2263 lr
= get_last_request();
2265 spin_lock(®_requests_lock
);
2266 if (!list_empty(®_requests_list
) && lr
&& lr
->processed
)
2267 schedule_work(®_work
);
2268 spin_unlock(®_requests_lock
);
2271 /* Processes beacon hints -- this has nothing to do with country IEs */
2272 static void reg_process_pending_beacon_hints(void)
2274 struct cfg80211_registered_device
*rdev
;
2275 struct reg_beacon
*pending_beacon
, *tmp
;
2277 /* This goes through the _pending_ beacon list */
2278 spin_lock_bh(®_pending_beacons_lock
);
2280 list_for_each_entry_safe(pending_beacon
, tmp
,
2281 ®_pending_beacons
, list
) {
2282 list_del_init(&pending_beacon
->list
);
2284 /* Applies the beacon hint to current wiphys */
2285 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
2286 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
2288 /* Remembers the beacon hint for new wiphys or reg changes */
2289 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
2292 spin_unlock_bh(®_pending_beacons_lock
);
2295 static void reg_process_self_managed_hints(void)
2297 struct cfg80211_registered_device
*rdev
;
2298 struct wiphy
*wiphy
;
2299 const struct ieee80211_regdomain
*tmp
;
2300 const struct ieee80211_regdomain
*regd
;
2301 enum nl80211_band band
;
2302 struct regulatory_request request
= {};
2304 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2305 wiphy
= &rdev
->wiphy
;
2307 spin_lock(®_requests_lock
);
2308 regd
= rdev
->requested_regd
;
2309 rdev
->requested_regd
= NULL
;
2310 spin_unlock(®_requests_lock
);
2315 tmp
= get_wiphy_regdom(wiphy
);
2316 rcu_assign_pointer(wiphy
->regd
, regd
);
2317 rcu_free_regdom(tmp
);
2319 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2320 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
2322 reg_process_ht_flags(wiphy
);
2324 request
.wiphy_idx
= get_wiphy_idx(wiphy
);
2325 request
.alpha2
[0] = regd
->alpha2
[0];
2326 request
.alpha2
[1] = regd
->alpha2
[1];
2327 request
.initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
2329 nl80211_send_wiphy_reg_change_event(&request
);
2332 reg_check_channels();
2335 static void reg_todo(struct work_struct
*work
)
2338 reg_process_pending_hints();
2339 reg_process_pending_beacon_hints();
2340 reg_process_self_managed_hints();
2344 static void queue_regulatory_request(struct regulatory_request
*request
)
2346 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
2347 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
2349 spin_lock(®_requests_lock
);
2350 list_add_tail(&request
->list
, ®_requests_list
);
2351 spin_unlock(®_requests_lock
);
2353 schedule_work(®_work
);
2357 * Core regulatory hint -- happens during cfg80211_init()
2358 * and when we restore regulatory settings.
2360 static int regulatory_hint_core(const char *alpha2
)
2362 struct regulatory_request
*request
;
2364 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2368 request
->alpha2
[0] = alpha2
[0];
2369 request
->alpha2
[1] = alpha2
[1];
2370 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
2372 queue_regulatory_request(request
);
2378 int regulatory_hint_user(const char *alpha2
,
2379 enum nl80211_user_reg_hint_type user_reg_hint_type
)
2381 struct regulatory_request
*request
;
2383 if (WARN_ON(!alpha2
))
2386 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2390 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
2391 request
->alpha2
[0] = alpha2
[0];
2392 request
->alpha2
[1] = alpha2
[1];
2393 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
2394 request
->user_reg_hint_type
= user_reg_hint_type
;
2396 /* Allow calling CRDA again */
2397 reset_crda_timeouts();
2399 queue_regulatory_request(request
);
2404 int regulatory_hint_indoor(bool is_indoor
, u32 portid
)
2406 spin_lock(®_indoor_lock
);
2408 /* It is possible that more than one user space process is trying to
2409 * configure the indoor setting. To handle such cases, clear the indoor
2410 * setting in case that some process does not think that the device
2411 * is operating in an indoor environment. In addition, if a user space
2412 * process indicates that it is controlling the indoor setting, save its
2413 * portid, i.e., make it the owner.
2415 reg_is_indoor
= is_indoor
;
2416 if (reg_is_indoor
) {
2417 if (!reg_is_indoor_portid
)
2418 reg_is_indoor_portid
= portid
;
2420 reg_is_indoor_portid
= 0;
2423 spin_unlock(®_indoor_lock
);
2426 reg_check_channels();
2431 void regulatory_netlink_notify(u32 portid
)
2433 spin_lock(®_indoor_lock
);
2435 if (reg_is_indoor_portid
!= portid
) {
2436 spin_unlock(®_indoor_lock
);
2440 reg_is_indoor
= false;
2441 reg_is_indoor_portid
= 0;
2443 spin_unlock(®_indoor_lock
);
2445 reg_check_channels();
2449 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
2451 struct regulatory_request
*request
;
2453 if (WARN_ON(!alpha2
|| !wiphy
))
2456 wiphy
->regulatory_flags
&= ~REGULATORY_CUSTOM_REG
;
2458 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2462 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
2464 request
->alpha2
[0] = alpha2
[0];
2465 request
->alpha2
[1] = alpha2
[1];
2466 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
2468 /* Allow calling CRDA again */
2469 reset_crda_timeouts();
2471 queue_regulatory_request(request
);
2475 EXPORT_SYMBOL(regulatory_hint
);
2477 void regulatory_hint_country_ie(struct wiphy
*wiphy
, enum nl80211_band band
,
2478 const u8
*country_ie
, u8 country_ie_len
)
2481 enum environment_cap env
= ENVIRON_ANY
;
2482 struct regulatory_request
*request
= NULL
, *lr
;
2484 /* IE len must be evenly divisible by 2 */
2485 if (country_ie_len
& 0x01)
2488 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
2491 request
= kzalloc(sizeof(*request
), GFP_KERNEL
);
2495 alpha2
[0] = country_ie
[0];
2496 alpha2
[1] = country_ie
[1];
2498 if (country_ie
[2] == 'I')
2499 env
= ENVIRON_INDOOR
;
2500 else if (country_ie
[2] == 'O')
2501 env
= ENVIRON_OUTDOOR
;
2504 lr
= get_last_request();
2510 * We will run this only upon a successful connection on cfg80211.
2511 * We leave conflict resolution to the workqueue, where can hold
2514 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
2515 lr
->wiphy_idx
!= WIPHY_IDX_INVALID
)
2518 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
2519 request
->alpha2
[0] = alpha2
[0];
2520 request
->alpha2
[1] = alpha2
[1];
2521 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
2522 request
->country_ie_env
= env
;
2524 /* Allow calling CRDA again */
2525 reset_crda_timeouts();
2527 queue_regulatory_request(request
);
2534 static void restore_alpha2(char *alpha2
, bool reset_user
)
2536 /* indicates there is no alpha2 to consider for restoration */
2540 /* The user setting has precedence over the module parameter */
2541 if (is_user_regdom_saved()) {
2542 /* Unless we're asked to ignore it and reset it */
2544 pr_debug("Restoring regulatory settings including user preference\n");
2545 user_alpha2
[0] = '9';
2546 user_alpha2
[1] = '7';
2549 * If we're ignoring user settings, we still need to
2550 * check the module parameter to ensure we put things
2551 * back as they were for a full restore.
2553 if (!is_world_regdom(ieee80211_regdom
)) {
2554 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2555 ieee80211_regdom
[0], ieee80211_regdom
[1]);
2556 alpha2
[0] = ieee80211_regdom
[0];
2557 alpha2
[1] = ieee80211_regdom
[1];
2560 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2561 user_alpha2
[0], user_alpha2
[1]);
2562 alpha2
[0] = user_alpha2
[0];
2563 alpha2
[1] = user_alpha2
[1];
2565 } else if (!is_world_regdom(ieee80211_regdom
)) {
2566 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2567 ieee80211_regdom
[0], ieee80211_regdom
[1]);
2568 alpha2
[0] = ieee80211_regdom
[0];
2569 alpha2
[1] = ieee80211_regdom
[1];
2571 pr_debug("Restoring regulatory settings\n");
2574 static void restore_custom_reg_settings(struct wiphy
*wiphy
)
2576 struct ieee80211_supported_band
*sband
;
2577 enum nl80211_band band
;
2578 struct ieee80211_channel
*chan
;
2581 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
2582 sband
= wiphy
->bands
[band
];
2585 for (i
= 0; i
< sband
->n_channels
; i
++) {
2586 chan
= &sband
->channels
[i
];
2587 chan
->flags
= chan
->orig_flags
;
2588 chan
->max_antenna_gain
= chan
->orig_mag
;
2589 chan
->max_power
= chan
->orig_mpwr
;
2590 chan
->beacon_found
= false;
2596 * Restoring regulatory settings involves ingoring any
2597 * possibly stale country IE information and user regulatory
2598 * settings if so desired, this includes any beacon hints
2599 * learned as we could have traveled outside to another country
2600 * after disconnection. To restore regulatory settings we do
2601 * exactly what we did at bootup:
2603 * - send a core regulatory hint
2604 * - send a user regulatory hint if applicable
2606 * Device drivers that send a regulatory hint for a specific country
2607 * keep their own regulatory domain on wiphy->regd so that does does
2608 * not need to be remembered.
2610 static void restore_regulatory_settings(bool reset_user
)
2613 char world_alpha2
[2];
2614 struct reg_beacon
*reg_beacon
, *btmp
;
2615 LIST_HEAD(tmp_reg_req_list
);
2616 struct cfg80211_registered_device
*rdev
;
2621 * Clear the indoor setting in case that it is not controlled by user
2622 * space, as otherwise there is no guarantee that the device is still
2623 * operating in an indoor environment.
2625 spin_lock(®_indoor_lock
);
2626 if (reg_is_indoor
&& !reg_is_indoor_portid
) {
2627 reg_is_indoor
= false;
2628 reg_check_channels();
2630 spin_unlock(®_indoor_lock
);
2632 reset_regdomains(true, &world_regdom
);
2633 restore_alpha2(alpha2
, reset_user
);
2636 * If there's any pending requests we simply
2637 * stash them to a temporary pending queue and
2638 * add then after we've restored regulatory
2641 spin_lock(®_requests_lock
);
2642 list_splice_tail_init(®_requests_list
, &tmp_reg_req_list
);
2643 spin_unlock(®_requests_lock
);
2645 /* Clear beacon hints */
2646 spin_lock_bh(®_pending_beacons_lock
);
2647 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
2648 list_del(®_beacon
->list
);
2651 spin_unlock_bh(®_pending_beacons_lock
);
2653 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
2654 list_del(®_beacon
->list
);
2658 /* First restore to the basic regulatory settings */
2659 world_alpha2
[0] = cfg80211_world_regdom
->alpha2
[0];
2660 world_alpha2
[1] = cfg80211_world_regdom
->alpha2
[1];
2662 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2663 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2665 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_CUSTOM_REG
)
2666 restore_custom_reg_settings(&rdev
->wiphy
);
2669 regulatory_hint_core(world_alpha2
);
2672 * This restores the ieee80211_regdom module parameter
2673 * preference or the last user requested regulatory
2674 * settings, user regulatory settings takes precedence.
2676 if (is_an_alpha2(alpha2
))
2677 regulatory_hint_user(alpha2
, NL80211_USER_REG_HINT_USER
);
2679 spin_lock(®_requests_lock
);
2680 list_splice_tail_init(&tmp_reg_req_list
, ®_requests_list
);
2681 spin_unlock(®_requests_lock
);
2683 pr_debug("Kicking the queue\n");
2685 schedule_work(®_work
);
2688 void regulatory_hint_disconnect(void)
2690 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2691 restore_regulatory_settings(false);
2694 static bool freq_is_chan_12_13_14(u16 freq
)
2696 if (freq
== ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ
) ||
2697 freq
== ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ
) ||
2698 freq
== ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ
))
2703 static bool pending_reg_beacon(struct ieee80211_channel
*beacon_chan
)
2705 struct reg_beacon
*pending_beacon
;
2707 list_for_each_entry(pending_beacon
, ®_pending_beacons
, list
)
2708 if (beacon_chan
->center_freq
==
2709 pending_beacon
->chan
.center_freq
)
2714 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
2715 struct ieee80211_channel
*beacon_chan
,
2718 struct reg_beacon
*reg_beacon
;
2721 if (beacon_chan
->beacon_found
||
2722 beacon_chan
->flags
& IEEE80211_CHAN_RADAR
||
2723 (beacon_chan
->band
== NL80211_BAND_2GHZ
&&
2724 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))
2727 spin_lock_bh(®_pending_beacons_lock
);
2728 processing
= pending_reg_beacon(beacon_chan
);
2729 spin_unlock_bh(®_pending_beacons_lock
);
2734 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
2738 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2739 beacon_chan
->center_freq
,
2740 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
2743 memcpy(®_beacon
->chan
, beacon_chan
,
2744 sizeof(struct ieee80211_channel
));
2747 * Since we can be called from BH or and non-BH context
2748 * we must use spin_lock_bh()
2750 spin_lock_bh(®_pending_beacons_lock
);
2751 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
2752 spin_unlock_bh(®_pending_beacons_lock
);
2754 schedule_work(®_work
);
2759 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
2762 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
2763 const struct ieee80211_freq_range
*freq_range
= NULL
;
2764 const struct ieee80211_power_rule
*power_rule
= NULL
;
2765 char bw
[32], cac_time
[32];
2767 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2769 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
2770 reg_rule
= &rd
->reg_rules
[i
];
2771 freq_range
= ®_rule
->freq_range
;
2772 power_rule
= ®_rule
->power_rule
;
2774 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
2775 snprintf(bw
, sizeof(bw
), "%d KHz, %d KHz AUTO",
2776 freq_range
->max_bandwidth_khz
,
2777 reg_get_max_bandwidth(rd
, reg_rule
));
2779 snprintf(bw
, sizeof(bw
), "%d KHz",
2780 freq_range
->max_bandwidth_khz
);
2782 if (reg_rule
->flags
& NL80211_RRF_DFS
)
2783 scnprintf(cac_time
, sizeof(cac_time
), "%u s",
2784 reg_rule
->dfs_cac_ms
/1000);
2786 scnprintf(cac_time
, sizeof(cac_time
), "N/A");
2790 * There may not be documentation for max antenna gain
2791 * in certain regions
2793 if (power_rule
->max_antenna_gain
)
2794 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2795 freq_range
->start_freq_khz
,
2796 freq_range
->end_freq_khz
,
2798 power_rule
->max_antenna_gain
,
2799 power_rule
->max_eirp
,
2802 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2803 freq_range
->start_freq_khz
,
2804 freq_range
->end_freq_khz
,
2806 power_rule
->max_eirp
,
2811 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region
)
2813 switch (dfs_region
) {
2814 case NL80211_DFS_UNSET
:
2815 case NL80211_DFS_FCC
:
2816 case NL80211_DFS_ETSI
:
2817 case NL80211_DFS_JP
:
2820 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region
);
2825 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
2827 struct regulatory_request
*lr
= get_last_request();
2829 if (is_intersected_alpha2(rd
->alpha2
)) {
2830 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2831 struct cfg80211_registered_device
*rdev
;
2832 rdev
= cfg80211_rdev_by_wiphy_idx(lr
->wiphy_idx
);
2834 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2835 rdev
->country_ie_alpha2
[0],
2836 rdev
->country_ie_alpha2
[1]);
2838 pr_debug("Current regulatory domain intersected:\n");
2840 pr_debug("Current regulatory domain intersected:\n");
2841 } else if (is_world_regdom(rd
->alpha2
)) {
2842 pr_debug("World regulatory domain updated:\n");
2844 if (is_unknown_alpha2(rd
->alpha2
))
2845 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2847 if (reg_request_cell_base(lr
))
2848 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2849 rd
->alpha2
[0], rd
->alpha2
[1]);
2851 pr_debug("Regulatory domain changed to country: %c%c\n",
2852 rd
->alpha2
[0], rd
->alpha2
[1]);
2856 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd
->dfs_region
));
2860 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
2862 pr_debug("Regulatory domain: %c%c\n", rd
->alpha2
[0], rd
->alpha2
[1]);
2866 static int reg_set_rd_core(const struct ieee80211_regdomain
*rd
)
2868 if (!is_world_regdom(rd
->alpha2
))
2870 update_world_regdomain(rd
);
2874 static int reg_set_rd_user(const struct ieee80211_regdomain
*rd
,
2875 struct regulatory_request
*user_request
)
2877 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
2879 if (!regdom_changes(rd
->alpha2
))
2882 if (!is_valid_rd(rd
)) {
2883 pr_err("Invalid regulatory domain detected: %c%c\n",
2884 rd
->alpha2
[0], rd
->alpha2
[1]);
2885 print_regdomain_info(rd
);
2889 if (!user_request
->intersect
) {
2890 reset_regdomains(false, rd
);
2894 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
2895 if (!intersected_rd
)
2900 reset_regdomains(false, intersected_rd
);
2905 static int reg_set_rd_driver(const struct ieee80211_regdomain
*rd
,
2906 struct regulatory_request
*driver_request
)
2908 const struct ieee80211_regdomain
*regd
;
2909 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
2910 const struct ieee80211_regdomain
*tmp
;
2911 struct wiphy
*request_wiphy
;
2913 if (is_world_regdom(rd
->alpha2
))
2916 if (!regdom_changes(rd
->alpha2
))
2919 if (!is_valid_rd(rd
)) {
2920 pr_err("Invalid regulatory domain detected: %c%c\n",
2921 rd
->alpha2
[0], rd
->alpha2
[1]);
2922 print_regdomain_info(rd
);
2926 request_wiphy
= wiphy_idx_to_wiphy(driver_request
->wiphy_idx
);
2930 if (!driver_request
->intersect
) {
2931 if (request_wiphy
->regd
)
2934 regd
= reg_copy_regd(rd
);
2936 return PTR_ERR(regd
);
2938 rcu_assign_pointer(request_wiphy
->regd
, regd
);
2939 reset_regdomains(false, rd
);
2943 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
2944 if (!intersected_rd
)
2948 * We can trash what CRDA provided now.
2949 * However if a driver requested this specific regulatory
2950 * domain we keep it for its private use
2952 tmp
= get_wiphy_regdom(request_wiphy
);
2953 rcu_assign_pointer(request_wiphy
->regd
, rd
);
2954 rcu_free_regdom(tmp
);
2958 reset_regdomains(false, intersected_rd
);
2963 static int reg_set_rd_country_ie(const struct ieee80211_regdomain
*rd
,
2964 struct regulatory_request
*country_ie_request
)
2966 struct wiphy
*request_wiphy
;
2968 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
2969 !is_unknown_alpha2(rd
->alpha2
))
2973 * Lets only bother proceeding on the same alpha2 if the current
2974 * rd is non static (it means CRDA was present and was used last)
2975 * and the pending request came in from a country IE
2978 if (!is_valid_rd(rd
)) {
2979 pr_err("Invalid regulatory domain detected: %c%c\n",
2980 rd
->alpha2
[0], rd
->alpha2
[1]);
2981 print_regdomain_info(rd
);
2985 request_wiphy
= wiphy_idx_to_wiphy(country_ie_request
->wiphy_idx
);
2989 if (country_ie_request
->intersect
)
2992 reset_regdomains(false, rd
);
2997 * Use this call to set the current regulatory domain. Conflicts with
2998 * multiple drivers can be ironed out later. Caller must've already
2999 * kmalloc'd the rd structure.
3001 int set_regdom(const struct ieee80211_regdomain
*rd
,
3002 enum ieee80211_regd_source regd_src
)
3004 struct regulatory_request
*lr
;
3005 bool user_reset
= false;
3008 if (!reg_is_valid_request(rd
->alpha2
)) {
3013 if (regd_src
== REGD_SOURCE_CRDA
)
3014 reset_crda_timeouts();
3016 lr
= get_last_request();
3018 /* Note that this doesn't update the wiphys, this is done below */
3019 switch (lr
->initiator
) {
3020 case NL80211_REGDOM_SET_BY_CORE
:
3021 r
= reg_set_rd_core(rd
);
3023 case NL80211_REGDOM_SET_BY_USER
:
3024 r
= reg_set_rd_user(rd
, lr
);
3027 case NL80211_REGDOM_SET_BY_DRIVER
:
3028 r
= reg_set_rd_driver(rd
, lr
);
3030 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
3031 r
= reg_set_rd_country_ie(rd
, lr
);
3034 WARN(1, "invalid initiator %d\n", lr
->initiator
);
3042 reg_set_request_processed();
3045 /* Back to world regulatory in case of errors */
3046 restore_regulatory_settings(user_reset
);
3053 /* This would make this whole thing pointless */
3054 if (WARN_ON(!lr
->intersect
&& rd
!= get_cfg80211_regdom()))
3057 /* update all wiphys now with the new established regulatory domain */
3058 update_all_wiphy_regulatory(lr
->initiator
);
3060 print_regdomain(get_cfg80211_regdom());
3062 nl80211_send_reg_change_event(lr
);
3064 reg_set_request_processed();
3069 static int __regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3070 struct ieee80211_regdomain
*rd
)
3072 const struct ieee80211_regdomain
*regd
;
3073 const struct ieee80211_regdomain
*prev_regd
;
3074 struct cfg80211_registered_device
*rdev
;
3076 if (WARN_ON(!wiphy
|| !rd
))
3079 if (WARN(!(wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
),
3080 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3083 if (WARN(!is_valid_rd(rd
), "Invalid regulatory domain detected\n")) {
3084 print_regdomain_info(rd
);
3088 regd
= reg_copy_regd(rd
);
3090 return PTR_ERR(regd
);
3092 rdev
= wiphy_to_rdev(wiphy
);
3094 spin_lock(®_requests_lock
);
3095 prev_regd
= rdev
->requested_regd
;
3096 rdev
->requested_regd
= regd
;
3097 spin_unlock(®_requests_lock
);
3103 int regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3104 struct ieee80211_regdomain
*rd
)
3106 int ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3111 schedule_work(®_work
);
3114 EXPORT_SYMBOL(regulatory_set_wiphy_regd
);
3116 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy
*wiphy
,
3117 struct ieee80211_regdomain
*rd
)
3123 ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3127 /* process the request immediately */
3128 reg_process_self_managed_hints();
3131 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl
);
3133 void wiphy_regulatory_register(struct wiphy
*wiphy
)
3135 struct regulatory_request
*lr
;
3137 /* self-managed devices ignore external hints */
3138 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
3139 wiphy
->regulatory_flags
|= REGULATORY_DISABLE_BEACON_HINTS
|
3140 REGULATORY_COUNTRY_IE_IGNORE
;
3142 if (!reg_dev_ignore_cell_hint(wiphy
))
3143 reg_num_devs_support_basehint
++;
3145 lr
= get_last_request();
3146 wiphy_update_regulatory(wiphy
, lr
->initiator
);
3147 wiphy_all_share_dfs_chan_state(wiphy
);
3150 void wiphy_regulatory_deregister(struct wiphy
*wiphy
)
3152 struct wiphy
*request_wiphy
= NULL
;
3153 struct regulatory_request
*lr
;
3155 lr
= get_last_request();
3157 if (!reg_dev_ignore_cell_hint(wiphy
))
3158 reg_num_devs_support_basehint
--;
3160 rcu_free_regdom(get_wiphy_regdom(wiphy
));
3161 RCU_INIT_POINTER(wiphy
->regd
, NULL
);
3164 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
3166 if (!request_wiphy
|| request_wiphy
!= wiphy
)
3169 lr
->wiphy_idx
= WIPHY_IDX_INVALID
;
3170 lr
->country_ie_env
= ENVIRON_ANY
;
3174 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3175 * UNII band definitions
3177 int cfg80211_get_unii(int freq
)
3180 if (freq
>= 5150 && freq
<= 5250)
3184 if (freq
> 5250 && freq
<= 5350)
3188 if (freq
> 5350 && freq
<= 5470)
3192 if (freq
> 5470 && freq
<= 5725)
3196 if (freq
> 5725 && freq
<= 5825)
3202 bool regulatory_indoor_allowed(void)
3204 return reg_is_indoor
;
3207 bool regulatory_pre_cac_allowed(struct wiphy
*wiphy
)
3209 const struct ieee80211_regdomain
*regd
= NULL
;
3210 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
3211 bool pre_cac_allowed
= false;
3215 regd
= rcu_dereference(cfg80211_regdomain
);
3216 wiphy_regd
= rcu_dereference(wiphy
->regd
);
3218 if (regd
->dfs_region
== NL80211_DFS_ETSI
)
3219 pre_cac_allowed
= true;
3223 return pre_cac_allowed
;
3226 if (regd
->dfs_region
== wiphy_regd
->dfs_region
&&
3227 wiphy_regd
->dfs_region
== NL80211_DFS_ETSI
)
3228 pre_cac_allowed
= true;
3232 return pre_cac_allowed
;
3235 void regulatory_propagate_dfs_state(struct wiphy
*wiphy
,
3236 struct cfg80211_chan_def
*chandef
,
3237 enum nl80211_dfs_state dfs_state
,
3238 enum nl80211_radar_event event
)
3240 struct cfg80211_registered_device
*rdev
;
3244 if (WARN_ON(!cfg80211_chandef_valid(chandef
)))
3247 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3248 if (wiphy
== &rdev
->wiphy
)
3251 if (!reg_dfs_domain_same(wiphy
, &rdev
->wiphy
))
3254 if (!ieee80211_get_channel(&rdev
->wiphy
,
3255 chandef
->chan
->center_freq
))
3258 cfg80211_set_dfs_state(&rdev
->wiphy
, chandef
, dfs_state
);
3260 if (event
== NL80211_RADAR_DETECTED
||
3261 event
== NL80211_RADAR_CAC_FINISHED
)
3262 cfg80211_sched_dfs_chan_update(rdev
);
3264 nl80211_radar_notify(rdev
, chandef
, event
, NULL
, GFP_KERNEL
);
3268 int __init
regulatory_init(void)
3272 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
3273 if (IS_ERR(reg_pdev
))
3274 return PTR_ERR(reg_pdev
);
3276 spin_lock_init(®_requests_lock
);
3277 spin_lock_init(®_pending_beacons_lock
);
3278 spin_lock_init(®_indoor_lock
);
3280 reg_regdb_size_check();
3282 rcu_assign_pointer(cfg80211_regdomain
, cfg80211_world_regdom
);
3284 user_alpha2
[0] = '9';
3285 user_alpha2
[1] = '7';
3287 /* We always try to get an update for the static regdomain */
3288 err
= regulatory_hint_core(cfg80211_world_regdom
->alpha2
);
3290 if (err
== -ENOMEM
) {
3291 platform_device_unregister(reg_pdev
);
3295 * N.B. kobject_uevent_env() can fail mainly for when we're out
3296 * memory which is handled and propagated appropriately above
3297 * but it can also fail during a netlink_broadcast() or during
3298 * early boot for call_usermodehelper(). For now treat these
3299 * errors as non-fatal.
3301 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3305 * Finally, if the user set the module parameter treat it
3308 if (!is_world_regdom(ieee80211_regdom
))
3309 regulatory_hint_user(ieee80211_regdom
,
3310 NL80211_USER_REG_HINT_USER
);
3315 void regulatory_exit(void)
3317 struct regulatory_request
*reg_request
, *tmp
;
3318 struct reg_beacon
*reg_beacon
, *btmp
;
3320 cancel_work_sync(®_work
);
3321 cancel_crda_timeout_sync();
3322 cancel_delayed_work_sync(®_check_chans
);
3324 /* Lock to suppress warnings */
3326 reset_regdomains(true, NULL
);
3329 dev_set_uevent_suppress(®_pdev
->dev
, true);
3331 platform_device_unregister(reg_pdev
);
3333 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
3334 list_del(®_beacon
->list
);
3338 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
3339 list_del(®_beacon
->list
);
3343 list_for_each_entry_safe(reg_request
, tmp
, ®_requests_list
, list
) {
3344 list_del(®_request
->list
);