ext4: avoid hang when mounting non-journal filesystems with orphan list
[linux/fpc-iii.git] / mm / hugetlb.c
blobaf20b77a624ac9fd043beed9310faeba8c8ae441
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
41 __initdata LIST_HEAD(huge_boot_pages);
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 static DEFINE_SPINLOCK(hugetlb_lock);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
60 spin_unlock(&spool->lock);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70 struct hugepage_subpool *spool;
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
81 return spool;
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
95 int ret = 0;
97 if (!spool)
98 return 0;
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
106 spin_unlock(&spool->lock);
108 return ret;
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
114 if (!spool)
115 return;
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126 return HUGETLBFS_SB(inode->i_sb)->spool;
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131 return subpool_inode(vma->vm_file->f_dentry->d_inode);
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
154 static long region_add(struct list_head *head, long f, long t)
156 struct file_region *rg, *nrg, *trg;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
190 static long region_chg(struct list_head *head, long f, long t)
192 struct file_region *rg, *nrg;
193 long chg = 0;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
212 return t - f;
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
234 chg -= rg->to - rg->from;
236 return chg;
239 static long region_truncate(struct list_head *head, long end)
241 struct file_region *rg, *trg;
242 long chg = 0;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
266 return chg;
269 static long region_count(struct list_head *head, long f, long t)
271 struct file_region *rg;
272 long chg = 0;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 int seg_from;
277 int seg_to;
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
287 chg += seg_to - seg_from;
290 return chg;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316 struct hstate *hstate;
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
321 hstate = hstate_vma(vma);
323 return 1UL << (hstate->order + PAGE_SHIFT);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336 return vma_kernel_pagesize(vma);
338 #endif
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370 return (unsigned long)vma->vm_private_data;
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
376 vma->vm_private_data = (void *)value;
379 struct resv_map {
380 struct kref refs;
381 struct list_head regions;
384 static struct resv_map *resv_map_alloc(void)
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
393 return resv_map;
396 static void resv_map_release(struct kref *ref)
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
411 return NULL;
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
435 return (get_vma_private_data(vma) & flag) != 0;
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440 struct vm_area_struct *vma)
442 if (vma->vm_flags & VM_NORESERVE)
443 return;
445 if (vma->vm_flags & VM_MAYSHARE) {
446 /* Shared mappings always use reserves */
447 h->resv_huge_pages--;
448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
450 * Only the process that called mmap() has reserves for
451 * private mappings.
453 h->resv_huge_pages--;
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
460 VM_BUG_ON(!is_vm_hugetlb_page(vma));
461 if (!(vma->vm_flags & VM_MAYSHARE))
462 vma->vm_private_data = (void *)0;
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
468 if (vma->vm_flags & VM_MAYSHARE)
469 return 1;
470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471 return 1;
472 return 0;
475 static void copy_gigantic_page(struct page *dst, struct page *src)
477 int i;
478 struct hstate *h = page_hstate(src);
479 struct page *dst_base = dst;
480 struct page *src_base = src;
482 for (i = 0; i < pages_per_huge_page(h); ) {
483 cond_resched();
484 copy_highpage(dst, src);
486 i++;
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
492 void copy_huge_page(struct page *dst, struct page *src)
494 int i;
495 struct hstate *h = page_hstate(src);
497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 copy_gigantic_page(dst, src);
499 return;
502 might_sleep();
503 for (i = 0; i < pages_per_huge_page(h); i++) {
504 cond_resched();
505 copy_highpage(dst + i, src + i);
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
511 int nid = page_to_nid(page);
512 list_add(&page->lru, &h->hugepage_freelists[nid]);
513 h->free_huge_pages++;
514 h->free_huge_pages_node[nid]++;
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
519 struct page *page;
521 if (list_empty(&h->hugepage_freelists[nid]))
522 return NULL;
523 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524 list_del(&page->lru);
525 set_page_refcounted(page);
526 h->free_huge_pages--;
527 h->free_huge_pages_node[nid]--;
528 return page;
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532 struct vm_area_struct *vma,
533 unsigned long address, int avoid_reserve)
535 struct page *page = NULL;
536 struct mempolicy *mpol;
537 nodemask_t *nodemask;
538 struct zonelist *zonelist;
539 struct zone *zone;
540 struct zoneref *z;
541 unsigned int cpuset_mems_cookie;
543 retry_cpuset:
544 cpuset_mems_cookie = get_mems_allowed();
545 zonelist = huge_zonelist(vma, address,
546 htlb_alloc_mask, &mpol, &nodemask);
548 * A child process with MAP_PRIVATE mappings created by their parent
549 * have no page reserves. This check ensures that reservations are
550 * not "stolen". The child may still get SIGKILLed
552 if (!vma_has_reserves(vma) &&
553 h->free_huge_pages - h->resv_huge_pages == 0)
554 goto err;
556 /* If reserves cannot be used, ensure enough pages are in the pool */
557 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558 goto err;
560 for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 MAX_NR_ZONES - 1, nodemask) {
562 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 page = dequeue_huge_page_node(h, zone_to_nid(zone));
564 if (page) {
565 if (!avoid_reserve)
566 decrement_hugepage_resv_vma(h, vma);
567 break;
572 mpol_cond_put(mpol);
573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574 goto retry_cpuset;
575 return page;
577 err:
578 mpol_cond_put(mpol);
579 return NULL;
582 static void update_and_free_page(struct hstate *h, struct page *page)
584 int i;
586 VM_BUG_ON(h->order >= MAX_ORDER);
588 h->nr_huge_pages--;
589 h->nr_huge_pages_node[page_to_nid(page)]--;
590 for (i = 0; i < pages_per_huge_page(h); i++) {
591 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592 1 << PG_referenced | 1 << PG_dirty |
593 1 << PG_active | 1 << PG_reserved |
594 1 << PG_private | 1 << PG_writeback);
596 set_compound_page_dtor(page, NULL);
597 set_page_refcounted(page);
598 arch_release_hugepage(page);
599 __free_pages(page, huge_page_order(h));
602 struct hstate *size_to_hstate(unsigned long size)
604 struct hstate *h;
606 for_each_hstate(h) {
607 if (huge_page_size(h) == size)
608 return h;
610 return NULL;
613 static void free_huge_page(struct page *page)
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
619 struct hstate *h = page_hstate(page);
620 int nid = page_to_nid(page);
621 struct hugepage_subpool *spool =
622 (struct hugepage_subpool *)page_private(page);
624 set_page_private(page, 0);
625 page->mapping = NULL;
626 BUG_ON(page_count(page));
627 BUG_ON(page_mapcount(page));
628 INIT_LIST_HEAD(&page->lru);
630 spin_lock(&hugetlb_lock);
631 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632 update_and_free_page(h, page);
633 h->surplus_huge_pages--;
634 h->surplus_huge_pages_node[nid]--;
635 } else {
636 enqueue_huge_page(h, page);
638 spin_unlock(&hugetlb_lock);
639 hugepage_subpool_put_pages(spool, 1);
642 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
644 set_compound_page_dtor(page, free_huge_page);
645 spin_lock(&hugetlb_lock);
646 h->nr_huge_pages++;
647 h->nr_huge_pages_node[nid]++;
648 spin_unlock(&hugetlb_lock);
649 put_page(page); /* free it into the hugepage allocator */
652 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
654 int i;
655 int nr_pages = 1 << order;
656 struct page *p = page + 1;
658 /* we rely on prep_new_huge_page to set the destructor */
659 set_compound_order(page, order);
660 __SetPageHead(page);
661 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
662 __SetPageTail(p);
663 set_page_count(p, 0);
664 p->first_page = page;
668 int PageHuge(struct page *page)
670 compound_page_dtor *dtor;
672 if (!PageCompound(page))
673 return 0;
675 page = compound_head(page);
676 dtor = get_compound_page_dtor(page);
678 return dtor == free_huge_page;
680 EXPORT_SYMBOL_GPL(PageHuge);
682 pgoff_t __basepage_index(struct page *page)
684 struct page *page_head = compound_head(page);
685 pgoff_t index = page_index(page_head);
686 unsigned long compound_idx;
688 if (!PageHuge(page_head))
689 return page_index(page);
691 if (compound_order(page_head) >= MAX_ORDER)
692 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
693 else
694 compound_idx = page - page_head;
696 return (index << compound_order(page_head)) + compound_idx;
699 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
701 struct page *page;
703 if (h->order >= MAX_ORDER)
704 return NULL;
706 page = alloc_pages_exact_node(nid,
707 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
708 __GFP_REPEAT|__GFP_NOWARN,
709 huge_page_order(h));
710 if (page) {
711 if (arch_prepare_hugepage(page)) {
712 __free_pages(page, huge_page_order(h));
713 return NULL;
715 prep_new_huge_page(h, page, nid);
718 return page;
722 * common helper functions for hstate_next_node_to_{alloc|free}.
723 * We may have allocated or freed a huge page based on a different
724 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
725 * be outside of *nodes_allowed. Ensure that we use an allowed
726 * node for alloc or free.
728 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
730 nid = next_node(nid, *nodes_allowed);
731 if (nid == MAX_NUMNODES)
732 nid = first_node(*nodes_allowed);
733 VM_BUG_ON(nid >= MAX_NUMNODES);
735 return nid;
738 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
740 if (!node_isset(nid, *nodes_allowed))
741 nid = next_node_allowed(nid, nodes_allowed);
742 return nid;
746 * returns the previously saved node ["this node"] from which to
747 * allocate a persistent huge page for the pool and advance the
748 * next node from which to allocate, handling wrap at end of node
749 * mask.
751 static int hstate_next_node_to_alloc(struct hstate *h,
752 nodemask_t *nodes_allowed)
754 int nid;
756 VM_BUG_ON(!nodes_allowed);
758 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
759 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
761 return nid;
764 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
766 struct page *page;
767 int start_nid;
768 int next_nid;
769 int ret = 0;
771 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
772 next_nid = start_nid;
774 do {
775 page = alloc_fresh_huge_page_node(h, next_nid);
776 if (page) {
777 ret = 1;
778 break;
780 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
781 } while (next_nid != start_nid);
783 if (ret)
784 count_vm_event(HTLB_BUDDY_PGALLOC);
785 else
786 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
788 return ret;
792 * helper for free_pool_huge_page() - return the previously saved
793 * node ["this node"] from which to free a huge page. Advance the
794 * next node id whether or not we find a free huge page to free so
795 * that the next attempt to free addresses the next node.
797 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
799 int nid;
801 VM_BUG_ON(!nodes_allowed);
803 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
804 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
806 return nid;
810 * Free huge page from pool from next node to free.
811 * Attempt to keep persistent huge pages more or less
812 * balanced over allowed nodes.
813 * Called with hugetlb_lock locked.
815 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
816 bool acct_surplus)
818 int start_nid;
819 int next_nid;
820 int ret = 0;
822 start_nid = hstate_next_node_to_free(h, nodes_allowed);
823 next_nid = start_nid;
825 do {
827 * If we're returning unused surplus pages, only examine
828 * nodes with surplus pages.
830 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
831 !list_empty(&h->hugepage_freelists[next_nid])) {
832 struct page *page =
833 list_entry(h->hugepage_freelists[next_nid].next,
834 struct page, lru);
835 list_del(&page->lru);
836 h->free_huge_pages--;
837 h->free_huge_pages_node[next_nid]--;
838 if (acct_surplus) {
839 h->surplus_huge_pages--;
840 h->surplus_huge_pages_node[next_nid]--;
842 update_and_free_page(h, page);
843 ret = 1;
844 break;
846 next_nid = hstate_next_node_to_free(h, nodes_allowed);
847 } while (next_nid != start_nid);
849 return ret;
852 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
854 struct page *page;
855 unsigned int r_nid;
857 if (h->order >= MAX_ORDER)
858 return NULL;
861 * Assume we will successfully allocate the surplus page to
862 * prevent racing processes from causing the surplus to exceed
863 * overcommit
865 * This however introduces a different race, where a process B
866 * tries to grow the static hugepage pool while alloc_pages() is
867 * called by process A. B will only examine the per-node
868 * counters in determining if surplus huge pages can be
869 * converted to normal huge pages in adjust_pool_surplus(). A
870 * won't be able to increment the per-node counter, until the
871 * lock is dropped by B, but B doesn't drop hugetlb_lock until
872 * no more huge pages can be converted from surplus to normal
873 * state (and doesn't try to convert again). Thus, we have a
874 * case where a surplus huge page exists, the pool is grown, and
875 * the surplus huge page still exists after, even though it
876 * should just have been converted to a normal huge page. This
877 * does not leak memory, though, as the hugepage will be freed
878 * once it is out of use. It also does not allow the counters to
879 * go out of whack in adjust_pool_surplus() as we don't modify
880 * the node values until we've gotten the hugepage and only the
881 * per-node value is checked there.
883 spin_lock(&hugetlb_lock);
884 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
885 spin_unlock(&hugetlb_lock);
886 return NULL;
887 } else {
888 h->nr_huge_pages++;
889 h->surplus_huge_pages++;
891 spin_unlock(&hugetlb_lock);
893 if (nid == NUMA_NO_NODE)
894 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
895 __GFP_REPEAT|__GFP_NOWARN,
896 huge_page_order(h));
897 else
898 page = alloc_pages_exact_node(nid,
899 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
900 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
902 if (page && arch_prepare_hugepage(page)) {
903 __free_pages(page, huge_page_order(h));
904 page = NULL;
907 spin_lock(&hugetlb_lock);
908 if (page) {
909 r_nid = page_to_nid(page);
910 set_compound_page_dtor(page, free_huge_page);
912 * We incremented the global counters already
914 h->nr_huge_pages_node[r_nid]++;
915 h->surplus_huge_pages_node[r_nid]++;
916 __count_vm_event(HTLB_BUDDY_PGALLOC);
917 } else {
918 h->nr_huge_pages--;
919 h->surplus_huge_pages--;
920 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
922 spin_unlock(&hugetlb_lock);
924 return page;
928 * This allocation function is useful in the context where vma is irrelevant.
929 * E.g. soft-offlining uses this function because it only cares physical
930 * address of error page.
932 struct page *alloc_huge_page_node(struct hstate *h, int nid)
934 struct page *page;
936 spin_lock(&hugetlb_lock);
937 page = dequeue_huge_page_node(h, nid);
938 spin_unlock(&hugetlb_lock);
940 if (!page)
941 page = alloc_buddy_huge_page(h, nid);
943 return page;
947 * Increase the hugetlb pool such that it can accommodate a reservation
948 * of size 'delta'.
950 static int gather_surplus_pages(struct hstate *h, int delta)
952 struct list_head surplus_list;
953 struct page *page, *tmp;
954 int ret, i;
955 int needed, allocated;
956 bool alloc_ok = true;
958 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
959 if (needed <= 0) {
960 h->resv_huge_pages += delta;
961 return 0;
964 allocated = 0;
965 INIT_LIST_HEAD(&surplus_list);
967 ret = -ENOMEM;
968 retry:
969 spin_unlock(&hugetlb_lock);
970 for (i = 0; i < needed; i++) {
971 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
972 if (!page) {
973 alloc_ok = false;
974 break;
976 list_add(&page->lru, &surplus_list);
978 allocated += i;
981 * After retaking hugetlb_lock, we need to recalculate 'needed'
982 * because either resv_huge_pages or free_huge_pages may have changed.
984 spin_lock(&hugetlb_lock);
985 needed = (h->resv_huge_pages + delta) -
986 (h->free_huge_pages + allocated);
987 if (needed > 0) {
988 if (alloc_ok)
989 goto retry;
991 * We were not able to allocate enough pages to
992 * satisfy the entire reservation so we free what
993 * we've allocated so far.
995 goto free;
998 * The surplus_list now contains _at_least_ the number of extra pages
999 * needed to accommodate the reservation. Add the appropriate number
1000 * of pages to the hugetlb pool and free the extras back to the buddy
1001 * allocator. Commit the entire reservation here to prevent another
1002 * process from stealing the pages as they are added to the pool but
1003 * before they are reserved.
1005 needed += allocated;
1006 h->resv_huge_pages += delta;
1007 ret = 0;
1009 /* Free the needed pages to the hugetlb pool */
1010 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1011 if ((--needed) < 0)
1012 break;
1013 list_del(&page->lru);
1015 * This page is now managed by the hugetlb allocator and has
1016 * no users -- drop the buddy allocator's reference.
1018 put_page_testzero(page);
1019 VM_BUG_ON(page_count(page));
1020 enqueue_huge_page(h, page);
1022 free:
1023 spin_unlock(&hugetlb_lock);
1025 /* Free unnecessary surplus pages to the buddy allocator */
1026 if (!list_empty(&surplus_list)) {
1027 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1028 list_del(&page->lru);
1029 put_page(page);
1032 spin_lock(&hugetlb_lock);
1034 return ret;
1038 * When releasing a hugetlb pool reservation, any surplus pages that were
1039 * allocated to satisfy the reservation must be explicitly freed if they were
1040 * never used.
1041 * Called with hugetlb_lock held.
1043 static void return_unused_surplus_pages(struct hstate *h,
1044 unsigned long unused_resv_pages)
1046 unsigned long nr_pages;
1048 /* Uncommit the reservation */
1049 h->resv_huge_pages -= unused_resv_pages;
1051 /* Cannot return gigantic pages currently */
1052 if (h->order >= MAX_ORDER)
1053 return;
1055 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1058 * We want to release as many surplus pages as possible, spread
1059 * evenly across all nodes with memory. Iterate across these nodes
1060 * until we can no longer free unreserved surplus pages. This occurs
1061 * when the nodes with surplus pages have no free pages.
1062 * free_pool_huge_page() will balance the the freed pages across the
1063 * on-line nodes with memory and will handle the hstate accounting.
1065 while (nr_pages--) {
1066 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1067 break;
1072 * Determine if the huge page at addr within the vma has an associated
1073 * reservation. Where it does not we will need to logically increase
1074 * reservation and actually increase subpool usage before an allocation
1075 * can occur. Where any new reservation would be required the
1076 * reservation change is prepared, but not committed. Once the page
1077 * has been allocated from the subpool and instantiated the change should
1078 * be committed via vma_commit_reservation. No action is required on
1079 * failure.
1081 static long vma_needs_reservation(struct hstate *h,
1082 struct vm_area_struct *vma, unsigned long addr)
1084 struct address_space *mapping = vma->vm_file->f_mapping;
1085 struct inode *inode = mapping->host;
1087 if (vma->vm_flags & VM_MAYSHARE) {
1088 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1089 return region_chg(&inode->i_mapping->private_list,
1090 idx, idx + 1);
1092 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1093 return 1;
1095 } else {
1096 long err;
1097 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1098 struct resv_map *reservations = vma_resv_map(vma);
1100 err = region_chg(&reservations->regions, idx, idx + 1);
1101 if (err < 0)
1102 return err;
1103 return 0;
1106 static void vma_commit_reservation(struct hstate *h,
1107 struct vm_area_struct *vma, unsigned long addr)
1109 struct address_space *mapping = vma->vm_file->f_mapping;
1110 struct inode *inode = mapping->host;
1112 if (vma->vm_flags & VM_MAYSHARE) {
1113 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1114 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1116 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1117 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1118 struct resv_map *reservations = vma_resv_map(vma);
1120 /* Mark this page used in the map. */
1121 region_add(&reservations->regions, idx, idx + 1);
1125 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1126 unsigned long addr, int avoid_reserve)
1128 struct hugepage_subpool *spool = subpool_vma(vma);
1129 struct hstate *h = hstate_vma(vma);
1130 struct page *page;
1131 long chg;
1134 * Processes that did not create the mapping will have no
1135 * reserves and will not have accounted against subpool
1136 * limit. Check that the subpool limit can be made before
1137 * satisfying the allocation MAP_NORESERVE mappings may also
1138 * need pages and subpool limit allocated allocated if no reserve
1139 * mapping overlaps.
1141 chg = vma_needs_reservation(h, vma, addr);
1142 if (chg < 0)
1143 return ERR_PTR(-VM_FAULT_OOM);
1144 if (chg)
1145 if (hugepage_subpool_get_pages(spool, chg))
1146 return ERR_PTR(-VM_FAULT_SIGBUS);
1148 spin_lock(&hugetlb_lock);
1149 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1150 spin_unlock(&hugetlb_lock);
1152 if (!page) {
1153 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1154 if (!page) {
1155 hugepage_subpool_put_pages(spool, chg);
1156 return ERR_PTR(-VM_FAULT_SIGBUS);
1160 set_page_private(page, (unsigned long)spool);
1162 vma_commit_reservation(h, vma, addr);
1164 return page;
1167 int __weak alloc_bootmem_huge_page(struct hstate *h)
1169 struct huge_bootmem_page *m;
1170 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1172 while (nr_nodes) {
1173 void *addr;
1175 addr = __alloc_bootmem_node_nopanic(
1176 NODE_DATA(hstate_next_node_to_alloc(h,
1177 &node_states[N_HIGH_MEMORY])),
1178 huge_page_size(h), huge_page_size(h), 0);
1180 if (addr) {
1182 * Use the beginning of the huge page to store the
1183 * huge_bootmem_page struct (until gather_bootmem
1184 * puts them into the mem_map).
1186 m = addr;
1187 goto found;
1189 nr_nodes--;
1191 return 0;
1193 found:
1194 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1195 /* Put them into a private list first because mem_map is not up yet */
1196 list_add(&m->list, &huge_boot_pages);
1197 m->hstate = h;
1198 return 1;
1201 static void prep_compound_huge_page(struct page *page, int order)
1203 if (unlikely(order > (MAX_ORDER - 1)))
1204 prep_compound_gigantic_page(page, order);
1205 else
1206 prep_compound_page(page, order);
1209 /* Put bootmem huge pages into the standard lists after mem_map is up */
1210 static void __init gather_bootmem_prealloc(void)
1212 struct huge_bootmem_page *m;
1214 list_for_each_entry(m, &huge_boot_pages, list) {
1215 struct hstate *h = m->hstate;
1216 struct page *page;
1218 #ifdef CONFIG_HIGHMEM
1219 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1220 free_bootmem_late((unsigned long)m,
1221 sizeof(struct huge_bootmem_page));
1222 #else
1223 page = virt_to_page(m);
1224 #endif
1225 __ClearPageReserved(page);
1226 WARN_ON(page_count(page) != 1);
1227 prep_compound_huge_page(page, h->order);
1228 prep_new_huge_page(h, page, page_to_nid(page));
1230 * If we had gigantic hugepages allocated at boot time, we need
1231 * to restore the 'stolen' pages to totalram_pages in order to
1232 * fix confusing memory reports from free(1) and another
1233 * side-effects, like CommitLimit going negative.
1235 if (h->order > (MAX_ORDER - 1))
1236 totalram_pages += 1 << h->order;
1240 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1242 unsigned long i;
1244 for (i = 0; i < h->max_huge_pages; ++i) {
1245 if (h->order >= MAX_ORDER) {
1246 if (!alloc_bootmem_huge_page(h))
1247 break;
1248 } else if (!alloc_fresh_huge_page(h,
1249 &node_states[N_HIGH_MEMORY]))
1250 break;
1252 h->max_huge_pages = i;
1255 static void __init hugetlb_init_hstates(void)
1257 struct hstate *h;
1259 for_each_hstate(h) {
1260 /* oversize hugepages were init'ed in early boot */
1261 if (h->order < MAX_ORDER)
1262 hugetlb_hstate_alloc_pages(h);
1266 static char * __init memfmt(char *buf, unsigned long n)
1268 if (n >= (1UL << 30))
1269 sprintf(buf, "%lu GB", n >> 30);
1270 else if (n >= (1UL << 20))
1271 sprintf(buf, "%lu MB", n >> 20);
1272 else
1273 sprintf(buf, "%lu KB", n >> 10);
1274 return buf;
1277 static void __init report_hugepages(void)
1279 struct hstate *h;
1281 for_each_hstate(h) {
1282 char buf[32];
1283 printk(KERN_INFO "HugeTLB registered %s page size, "
1284 "pre-allocated %ld pages\n",
1285 memfmt(buf, huge_page_size(h)),
1286 h->free_huge_pages);
1290 #ifdef CONFIG_HIGHMEM
1291 static void try_to_free_low(struct hstate *h, unsigned long count,
1292 nodemask_t *nodes_allowed)
1294 int i;
1296 if (h->order >= MAX_ORDER)
1297 return;
1299 for_each_node_mask(i, *nodes_allowed) {
1300 struct page *page, *next;
1301 struct list_head *freel = &h->hugepage_freelists[i];
1302 list_for_each_entry_safe(page, next, freel, lru) {
1303 if (count >= h->nr_huge_pages)
1304 return;
1305 if (PageHighMem(page))
1306 continue;
1307 list_del(&page->lru);
1308 update_and_free_page(h, page);
1309 h->free_huge_pages--;
1310 h->free_huge_pages_node[page_to_nid(page)]--;
1314 #else
1315 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1316 nodemask_t *nodes_allowed)
1319 #endif
1322 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1323 * balanced by operating on them in a round-robin fashion.
1324 * Returns 1 if an adjustment was made.
1326 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1327 int delta)
1329 int start_nid, next_nid;
1330 int ret = 0;
1332 VM_BUG_ON(delta != -1 && delta != 1);
1334 if (delta < 0)
1335 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1336 else
1337 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1338 next_nid = start_nid;
1340 do {
1341 int nid = next_nid;
1342 if (delta < 0) {
1344 * To shrink on this node, there must be a surplus page
1346 if (!h->surplus_huge_pages_node[nid]) {
1347 next_nid = hstate_next_node_to_alloc(h,
1348 nodes_allowed);
1349 continue;
1352 if (delta > 0) {
1354 * Surplus cannot exceed the total number of pages
1356 if (h->surplus_huge_pages_node[nid] >=
1357 h->nr_huge_pages_node[nid]) {
1358 next_nid = hstate_next_node_to_free(h,
1359 nodes_allowed);
1360 continue;
1364 h->surplus_huge_pages += delta;
1365 h->surplus_huge_pages_node[nid] += delta;
1366 ret = 1;
1367 break;
1368 } while (next_nid != start_nid);
1370 return ret;
1373 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1374 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1375 nodemask_t *nodes_allowed)
1377 unsigned long min_count, ret;
1379 if (h->order >= MAX_ORDER)
1380 return h->max_huge_pages;
1383 * Increase the pool size
1384 * First take pages out of surplus state. Then make up the
1385 * remaining difference by allocating fresh huge pages.
1387 * We might race with alloc_buddy_huge_page() here and be unable
1388 * to convert a surplus huge page to a normal huge page. That is
1389 * not critical, though, it just means the overall size of the
1390 * pool might be one hugepage larger than it needs to be, but
1391 * within all the constraints specified by the sysctls.
1393 spin_lock(&hugetlb_lock);
1394 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1395 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1396 break;
1399 while (count > persistent_huge_pages(h)) {
1401 * If this allocation races such that we no longer need the
1402 * page, free_huge_page will handle it by freeing the page
1403 * and reducing the surplus.
1405 spin_unlock(&hugetlb_lock);
1406 ret = alloc_fresh_huge_page(h, nodes_allowed);
1407 spin_lock(&hugetlb_lock);
1408 if (!ret)
1409 goto out;
1411 /* Bail for signals. Probably ctrl-c from user */
1412 if (signal_pending(current))
1413 goto out;
1417 * Decrease the pool size
1418 * First return free pages to the buddy allocator (being careful
1419 * to keep enough around to satisfy reservations). Then place
1420 * pages into surplus state as needed so the pool will shrink
1421 * to the desired size as pages become free.
1423 * By placing pages into the surplus state independent of the
1424 * overcommit value, we are allowing the surplus pool size to
1425 * exceed overcommit. There are few sane options here. Since
1426 * alloc_buddy_huge_page() is checking the global counter,
1427 * though, we'll note that we're not allowed to exceed surplus
1428 * and won't grow the pool anywhere else. Not until one of the
1429 * sysctls are changed, or the surplus pages go out of use.
1431 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1432 min_count = max(count, min_count);
1433 try_to_free_low(h, min_count, nodes_allowed);
1434 while (min_count < persistent_huge_pages(h)) {
1435 if (!free_pool_huge_page(h, nodes_allowed, 0))
1436 break;
1438 while (count < persistent_huge_pages(h)) {
1439 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1440 break;
1442 out:
1443 ret = persistent_huge_pages(h);
1444 spin_unlock(&hugetlb_lock);
1445 return ret;
1448 #define HSTATE_ATTR_RO(_name) \
1449 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1451 #define HSTATE_ATTR(_name) \
1452 static struct kobj_attribute _name##_attr = \
1453 __ATTR(_name, 0644, _name##_show, _name##_store)
1455 static struct kobject *hugepages_kobj;
1456 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1458 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1460 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1462 int i;
1464 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1465 if (hstate_kobjs[i] == kobj) {
1466 if (nidp)
1467 *nidp = NUMA_NO_NODE;
1468 return &hstates[i];
1471 return kobj_to_node_hstate(kobj, nidp);
1474 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1475 struct kobj_attribute *attr, char *buf)
1477 struct hstate *h;
1478 unsigned long nr_huge_pages;
1479 int nid;
1481 h = kobj_to_hstate(kobj, &nid);
1482 if (nid == NUMA_NO_NODE)
1483 nr_huge_pages = h->nr_huge_pages;
1484 else
1485 nr_huge_pages = h->nr_huge_pages_node[nid];
1487 return sprintf(buf, "%lu\n", nr_huge_pages);
1490 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1491 struct kobject *kobj, struct kobj_attribute *attr,
1492 const char *buf, size_t len)
1494 int err;
1495 int nid;
1496 unsigned long count;
1497 struct hstate *h;
1498 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1500 err = strict_strtoul(buf, 10, &count);
1501 if (err)
1502 goto out;
1504 h = kobj_to_hstate(kobj, &nid);
1505 if (h->order >= MAX_ORDER) {
1506 err = -EINVAL;
1507 goto out;
1510 if (nid == NUMA_NO_NODE) {
1512 * global hstate attribute
1514 if (!(obey_mempolicy &&
1515 init_nodemask_of_mempolicy(nodes_allowed))) {
1516 NODEMASK_FREE(nodes_allowed);
1517 nodes_allowed = &node_states[N_HIGH_MEMORY];
1519 } else if (nodes_allowed) {
1521 * per node hstate attribute: adjust count to global,
1522 * but restrict alloc/free to the specified node.
1524 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1525 init_nodemask_of_node(nodes_allowed, nid);
1526 } else
1527 nodes_allowed = &node_states[N_HIGH_MEMORY];
1529 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1531 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1532 NODEMASK_FREE(nodes_allowed);
1534 return len;
1535 out:
1536 NODEMASK_FREE(nodes_allowed);
1537 return err;
1540 static ssize_t nr_hugepages_show(struct kobject *kobj,
1541 struct kobj_attribute *attr, char *buf)
1543 return nr_hugepages_show_common(kobj, attr, buf);
1546 static ssize_t nr_hugepages_store(struct kobject *kobj,
1547 struct kobj_attribute *attr, const char *buf, size_t len)
1549 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1551 HSTATE_ATTR(nr_hugepages);
1553 #ifdef CONFIG_NUMA
1556 * hstate attribute for optionally mempolicy-based constraint on persistent
1557 * huge page alloc/free.
1559 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1560 struct kobj_attribute *attr, char *buf)
1562 return nr_hugepages_show_common(kobj, attr, buf);
1565 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1566 struct kobj_attribute *attr, const char *buf, size_t len)
1568 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1570 HSTATE_ATTR(nr_hugepages_mempolicy);
1571 #endif
1574 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1575 struct kobj_attribute *attr, char *buf)
1577 struct hstate *h = kobj_to_hstate(kobj, NULL);
1578 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1581 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1582 struct kobj_attribute *attr, const char *buf, size_t count)
1584 int err;
1585 unsigned long input;
1586 struct hstate *h = kobj_to_hstate(kobj, NULL);
1588 if (h->order >= MAX_ORDER)
1589 return -EINVAL;
1591 err = strict_strtoul(buf, 10, &input);
1592 if (err)
1593 return err;
1595 spin_lock(&hugetlb_lock);
1596 h->nr_overcommit_huge_pages = input;
1597 spin_unlock(&hugetlb_lock);
1599 return count;
1601 HSTATE_ATTR(nr_overcommit_hugepages);
1603 static ssize_t free_hugepages_show(struct kobject *kobj,
1604 struct kobj_attribute *attr, char *buf)
1606 struct hstate *h;
1607 unsigned long free_huge_pages;
1608 int nid;
1610 h = kobj_to_hstate(kobj, &nid);
1611 if (nid == NUMA_NO_NODE)
1612 free_huge_pages = h->free_huge_pages;
1613 else
1614 free_huge_pages = h->free_huge_pages_node[nid];
1616 return sprintf(buf, "%lu\n", free_huge_pages);
1618 HSTATE_ATTR_RO(free_hugepages);
1620 static ssize_t resv_hugepages_show(struct kobject *kobj,
1621 struct kobj_attribute *attr, char *buf)
1623 struct hstate *h = kobj_to_hstate(kobj, NULL);
1624 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1626 HSTATE_ATTR_RO(resv_hugepages);
1628 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1629 struct kobj_attribute *attr, char *buf)
1631 struct hstate *h;
1632 unsigned long surplus_huge_pages;
1633 int nid;
1635 h = kobj_to_hstate(kobj, &nid);
1636 if (nid == NUMA_NO_NODE)
1637 surplus_huge_pages = h->surplus_huge_pages;
1638 else
1639 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1641 return sprintf(buf, "%lu\n", surplus_huge_pages);
1643 HSTATE_ATTR_RO(surplus_hugepages);
1645 static struct attribute *hstate_attrs[] = {
1646 &nr_hugepages_attr.attr,
1647 &nr_overcommit_hugepages_attr.attr,
1648 &free_hugepages_attr.attr,
1649 &resv_hugepages_attr.attr,
1650 &surplus_hugepages_attr.attr,
1651 #ifdef CONFIG_NUMA
1652 &nr_hugepages_mempolicy_attr.attr,
1653 #endif
1654 NULL,
1657 static struct attribute_group hstate_attr_group = {
1658 .attrs = hstate_attrs,
1661 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1662 struct kobject **hstate_kobjs,
1663 struct attribute_group *hstate_attr_group)
1665 int retval;
1666 int hi = h - hstates;
1668 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1669 if (!hstate_kobjs[hi])
1670 return -ENOMEM;
1672 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1673 if (retval)
1674 kobject_put(hstate_kobjs[hi]);
1676 return retval;
1679 static void __init hugetlb_sysfs_init(void)
1681 struct hstate *h;
1682 int err;
1684 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1685 if (!hugepages_kobj)
1686 return;
1688 for_each_hstate(h) {
1689 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1690 hstate_kobjs, &hstate_attr_group);
1691 if (err)
1692 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1693 h->name);
1697 #ifdef CONFIG_NUMA
1700 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1701 * with node devices in node_devices[] using a parallel array. The array
1702 * index of a node device or _hstate == node id.
1703 * This is here to avoid any static dependency of the node device driver, in
1704 * the base kernel, on the hugetlb module.
1706 struct node_hstate {
1707 struct kobject *hugepages_kobj;
1708 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1710 struct node_hstate node_hstates[MAX_NUMNODES];
1713 * A subset of global hstate attributes for node devices
1715 static struct attribute *per_node_hstate_attrs[] = {
1716 &nr_hugepages_attr.attr,
1717 &free_hugepages_attr.attr,
1718 &surplus_hugepages_attr.attr,
1719 NULL,
1722 static struct attribute_group per_node_hstate_attr_group = {
1723 .attrs = per_node_hstate_attrs,
1727 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1728 * Returns node id via non-NULL nidp.
1730 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1732 int nid;
1734 for (nid = 0; nid < nr_node_ids; nid++) {
1735 struct node_hstate *nhs = &node_hstates[nid];
1736 int i;
1737 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1738 if (nhs->hstate_kobjs[i] == kobj) {
1739 if (nidp)
1740 *nidp = nid;
1741 return &hstates[i];
1745 BUG();
1746 return NULL;
1750 * Unregister hstate attributes from a single node device.
1751 * No-op if no hstate attributes attached.
1753 void hugetlb_unregister_node(struct node *node)
1755 struct hstate *h;
1756 struct node_hstate *nhs = &node_hstates[node->dev.id];
1758 if (!nhs->hugepages_kobj)
1759 return; /* no hstate attributes */
1761 for_each_hstate(h)
1762 if (nhs->hstate_kobjs[h - hstates]) {
1763 kobject_put(nhs->hstate_kobjs[h - hstates]);
1764 nhs->hstate_kobjs[h - hstates] = NULL;
1767 kobject_put(nhs->hugepages_kobj);
1768 nhs->hugepages_kobj = NULL;
1772 * hugetlb module exit: unregister hstate attributes from node devices
1773 * that have them.
1775 static void hugetlb_unregister_all_nodes(void)
1777 int nid;
1780 * disable node device registrations.
1782 register_hugetlbfs_with_node(NULL, NULL);
1785 * remove hstate attributes from any nodes that have them.
1787 for (nid = 0; nid < nr_node_ids; nid++)
1788 hugetlb_unregister_node(&node_devices[nid]);
1792 * Register hstate attributes for a single node device.
1793 * No-op if attributes already registered.
1795 void hugetlb_register_node(struct node *node)
1797 struct hstate *h;
1798 struct node_hstate *nhs = &node_hstates[node->dev.id];
1799 int err;
1801 if (nhs->hugepages_kobj)
1802 return; /* already allocated */
1804 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1805 &node->dev.kobj);
1806 if (!nhs->hugepages_kobj)
1807 return;
1809 for_each_hstate(h) {
1810 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1811 nhs->hstate_kobjs,
1812 &per_node_hstate_attr_group);
1813 if (err) {
1814 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1815 " for node %d\n",
1816 h->name, node->dev.id);
1817 hugetlb_unregister_node(node);
1818 break;
1824 * hugetlb init time: register hstate attributes for all registered node
1825 * devices of nodes that have memory. All on-line nodes should have
1826 * registered their associated device by this time.
1828 static void hugetlb_register_all_nodes(void)
1830 int nid;
1832 for_each_node_state(nid, N_HIGH_MEMORY) {
1833 struct node *node = &node_devices[nid];
1834 if (node->dev.id == nid)
1835 hugetlb_register_node(node);
1839 * Let the node device driver know we're here so it can
1840 * [un]register hstate attributes on node hotplug.
1842 register_hugetlbfs_with_node(hugetlb_register_node,
1843 hugetlb_unregister_node);
1845 #else /* !CONFIG_NUMA */
1847 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1849 BUG();
1850 if (nidp)
1851 *nidp = -1;
1852 return NULL;
1855 static void hugetlb_unregister_all_nodes(void) { }
1857 static void hugetlb_register_all_nodes(void) { }
1859 #endif
1861 static void __exit hugetlb_exit(void)
1863 struct hstate *h;
1865 hugetlb_unregister_all_nodes();
1867 for_each_hstate(h) {
1868 kobject_put(hstate_kobjs[h - hstates]);
1871 kobject_put(hugepages_kobj);
1873 module_exit(hugetlb_exit);
1875 static int __init hugetlb_init(void)
1877 /* Some platform decide whether they support huge pages at boot
1878 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1879 * there is no such support
1881 if (HPAGE_SHIFT == 0)
1882 return 0;
1884 if (!size_to_hstate(default_hstate_size)) {
1885 default_hstate_size = HPAGE_SIZE;
1886 if (!size_to_hstate(default_hstate_size))
1887 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1889 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1890 if (default_hstate_max_huge_pages)
1891 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1893 hugetlb_init_hstates();
1895 gather_bootmem_prealloc();
1897 report_hugepages();
1899 hugetlb_sysfs_init();
1901 hugetlb_register_all_nodes();
1903 return 0;
1905 module_init(hugetlb_init);
1907 /* Should be called on processing a hugepagesz=... option */
1908 void __init hugetlb_add_hstate(unsigned order)
1910 struct hstate *h;
1911 unsigned long i;
1913 if (size_to_hstate(PAGE_SIZE << order)) {
1914 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1915 return;
1917 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1918 BUG_ON(order == 0);
1919 h = &hstates[max_hstate++];
1920 h->order = order;
1921 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1922 h->nr_huge_pages = 0;
1923 h->free_huge_pages = 0;
1924 for (i = 0; i < MAX_NUMNODES; ++i)
1925 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1926 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1927 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1928 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1929 huge_page_size(h)/1024);
1931 parsed_hstate = h;
1934 static int __init hugetlb_nrpages_setup(char *s)
1936 unsigned long *mhp;
1937 static unsigned long *last_mhp;
1940 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1941 * so this hugepages= parameter goes to the "default hstate".
1943 if (!max_hstate)
1944 mhp = &default_hstate_max_huge_pages;
1945 else
1946 mhp = &parsed_hstate->max_huge_pages;
1948 if (mhp == last_mhp) {
1949 printk(KERN_WARNING "hugepages= specified twice without "
1950 "interleaving hugepagesz=, ignoring\n");
1951 return 1;
1954 if (sscanf(s, "%lu", mhp) <= 0)
1955 *mhp = 0;
1958 * Global state is always initialized later in hugetlb_init.
1959 * But we need to allocate >= MAX_ORDER hstates here early to still
1960 * use the bootmem allocator.
1962 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1963 hugetlb_hstate_alloc_pages(parsed_hstate);
1965 last_mhp = mhp;
1967 return 1;
1969 __setup("hugepages=", hugetlb_nrpages_setup);
1971 static int __init hugetlb_default_setup(char *s)
1973 default_hstate_size = memparse(s, &s);
1974 return 1;
1976 __setup("default_hugepagesz=", hugetlb_default_setup);
1978 static unsigned int cpuset_mems_nr(unsigned int *array)
1980 int node;
1981 unsigned int nr = 0;
1983 for_each_node_mask(node, cpuset_current_mems_allowed)
1984 nr += array[node];
1986 return nr;
1989 #ifdef CONFIG_SYSCTL
1990 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1991 struct ctl_table *table, int write,
1992 void __user *buffer, size_t *length, loff_t *ppos)
1994 struct hstate *h = &default_hstate;
1995 unsigned long tmp;
1996 int ret;
1998 tmp = h->max_huge_pages;
2000 if (write && h->order >= MAX_ORDER)
2001 return -EINVAL;
2003 table->data = &tmp;
2004 table->maxlen = sizeof(unsigned long);
2005 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2006 if (ret)
2007 goto out;
2009 if (write) {
2010 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2011 GFP_KERNEL | __GFP_NORETRY);
2012 if (!(obey_mempolicy &&
2013 init_nodemask_of_mempolicy(nodes_allowed))) {
2014 NODEMASK_FREE(nodes_allowed);
2015 nodes_allowed = &node_states[N_HIGH_MEMORY];
2017 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2019 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2020 NODEMASK_FREE(nodes_allowed);
2022 out:
2023 return ret;
2026 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2027 void __user *buffer, size_t *length, loff_t *ppos)
2030 return hugetlb_sysctl_handler_common(false, table, write,
2031 buffer, length, ppos);
2034 #ifdef CONFIG_NUMA
2035 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2036 void __user *buffer, size_t *length, loff_t *ppos)
2038 return hugetlb_sysctl_handler_common(true, table, write,
2039 buffer, length, ppos);
2041 #endif /* CONFIG_NUMA */
2043 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2044 void __user *buffer,
2045 size_t *length, loff_t *ppos)
2047 proc_dointvec(table, write, buffer, length, ppos);
2048 if (hugepages_treat_as_movable)
2049 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2050 else
2051 htlb_alloc_mask = GFP_HIGHUSER;
2052 return 0;
2055 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2056 void __user *buffer,
2057 size_t *length, loff_t *ppos)
2059 struct hstate *h = &default_hstate;
2060 unsigned long tmp;
2061 int ret;
2063 tmp = h->nr_overcommit_huge_pages;
2065 if (write && h->order >= MAX_ORDER)
2066 return -EINVAL;
2068 table->data = &tmp;
2069 table->maxlen = sizeof(unsigned long);
2070 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2071 if (ret)
2072 goto out;
2074 if (write) {
2075 spin_lock(&hugetlb_lock);
2076 h->nr_overcommit_huge_pages = tmp;
2077 spin_unlock(&hugetlb_lock);
2079 out:
2080 return ret;
2083 #endif /* CONFIG_SYSCTL */
2085 void hugetlb_report_meminfo(struct seq_file *m)
2087 struct hstate *h = &default_hstate;
2088 seq_printf(m,
2089 "HugePages_Total: %5lu\n"
2090 "HugePages_Free: %5lu\n"
2091 "HugePages_Rsvd: %5lu\n"
2092 "HugePages_Surp: %5lu\n"
2093 "Hugepagesize: %8lu kB\n",
2094 h->nr_huge_pages,
2095 h->free_huge_pages,
2096 h->resv_huge_pages,
2097 h->surplus_huge_pages,
2098 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2101 int hugetlb_report_node_meminfo(int nid, char *buf)
2103 struct hstate *h = &default_hstate;
2104 return sprintf(buf,
2105 "Node %d HugePages_Total: %5u\n"
2106 "Node %d HugePages_Free: %5u\n"
2107 "Node %d HugePages_Surp: %5u\n",
2108 nid, h->nr_huge_pages_node[nid],
2109 nid, h->free_huge_pages_node[nid],
2110 nid, h->surplus_huge_pages_node[nid]);
2113 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2114 unsigned long hugetlb_total_pages(void)
2116 struct hstate *h;
2117 unsigned long nr_total_pages = 0;
2119 for_each_hstate(h)
2120 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2121 return nr_total_pages;
2124 static int hugetlb_acct_memory(struct hstate *h, long delta)
2126 int ret = -ENOMEM;
2128 spin_lock(&hugetlb_lock);
2130 * When cpuset is configured, it breaks the strict hugetlb page
2131 * reservation as the accounting is done on a global variable. Such
2132 * reservation is completely rubbish in the presence of cpuset because
2133 * the reservation is not checked against page availability for the
2134 * current cpuset. Application can still potentially OOM'ed by kernel
2135 * with lack of free htlb page in cpuset that the task is in.
2136 * Attempt to enforce strict accounting with cpuset is almost
2137 * impossible (or too ugly) because cpuset is too fluid that
2138 * task or memory node can be dynamically moved between cpusets.
2140 * The change of semantics for shared hugetlb mapping with cpuset is
2141 * undesirable. However, in order to preserve some of the semantics,
2142 * we fall back to check against current free page availability as
2143 * a best attempt and hopefully to minimize the impact of changing
2144 * semantics that cpuset has.
2146 if (delta > 0) {
2147 if (gather_surplus_pages(h, delta) < 0)
2148 goto out;
2150 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2151 return_unused_surplus_pages(h, delta);
2152 goto out;
2156 ret = 0;
2157 if (delta < 0)
2158 return_unused_surplus_pages(h, (unsigned long) -delta);
2160 out:
2161 spin_unlock(&hugetlb_lock);
2162 return ret;
2165 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2167 struct resv_map *reservations = vma_resv_map(vma);
2170 * This new VMA should share its siblings reservation map if present.
2171 * The VMA will only ever have a valid reservation map pointer where
2172 * it is being copied for another still existing VMA. As that VMA
2173 * has a reference to the reservation map it cannot disappear until
2174 * after this open call completes. It is therefore safe to take a
2175 * new reference here without additional locking.
2177 if (reservations)
2178 kref_get(&reservations->refs);
2181 static void resv_map_put(struct vm_area_struct *vma)
2183 struct resv_map *reservations = vma_resv_map(vma);
2185 if (!reservations)
2186 return;
2187 kref_put(&reservations->refs, resv_map_release);
2190 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2192 struct hstate *h = hstate_vma(vma);
2193 struct resv_map *reservations = vma_resv_map(vma);
2194 struct hugepage_subpool *spool = subpool_vma(vma);
2195 unsigned long reserve;
2196 unsigned long start;
2197 unsigned long end;
2199 if (reservations) {
2200 start = vma_hugecache_offset(h, vma, vma->vm_start);
2201 end = vma_hugecache_offset(h, vma, vma->vm_end);
2203 reserve = (end - start) -
2204 region_count(&reservations->regions, start, end);
2206 resv_map_put(vma);
2208 if (reserve) {
2209 hugetlb_acct_memory(h, -reserve);
2210 hugepage_subpool_put_pages(spool, reserve);
2216 * We cannot handle pagefaults against hugetlb pages at all. They cause
2217 * handle_mm_fault() to try to instantiate regular-sized pages in the
2218 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2219 * this far.
2221 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2223 BUG();
2224 return 0;
2227 const struct vm_operations_struct hugetlb_vm_ops = {
2228 .fault = hugetlb_vm_op_fault,
2229 .open = hugetlb_vm_op_open,
2230 .close = hugetlb_vm_op_close,
2233 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2234 int writable)
2236 pte_t entry;
2238 if (writable) {
2239 entry =
2240 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2241 } else {
2242 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2244 entry = pte_mkyoung(entry);
2245 entry = pte_mkhuge(entry);
2247 return entry;
2250 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2251 unsigned long address, pte_t *ptep)
2253 pte_t entry;
2255 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2256 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2257 update_mmu_cache(vma, address, ptep);
2261 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2262 struct vm_area_struct *vma)
2264 pte_t *src_pte, *dst_pte, entry;
2265 struct page *ptepage;
2266 unsigned long addr;
2267 int cow;
2268 struct hstate *h = hstate_vma(vma);
2269 unsigned long sz = huge_page_size(h);
2271 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2273 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2274 src_pte = huge_pte_offset(src, addr);
2275 if (!src_pte)
2276 continue;
2277 dst_pte = huge_pte_alloc(dst, addr, sz);
2278 if (!dst_pte)
2279 goto nomem;
2281 /* If the pagetables are shared don't copy or take references */
2282 if (dst_pte == src_pte)
2283 continue;
2285 spin_lock(&dst->page_table_lock);
2286 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2287 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2288 if (cow)
2289 huge_ptep_set_wrprotect(src, addr, src_pte);
2290 entry = huge_ptep_get(src_pte);
2291 ptepage = pte_page(entry);
2292 get_page(ptepage);
2293 page_dup_rmap(ptepage);
2294 set_huge_pte_at(dst, addr, dst_pte, entry);
2296 spin_unlock(&src->page_table_lock);
2297 spin_unlock(&dst->page_table_lock);
2299 return 0;
2301 nomem:
2302 return -ENOMEM;
2305 static int is_hugetlb_entry_migration(pte_t pte)
2307 swp_entry_t swp;
2309 if (huge_pte_none(pte) || pte_present(pte))
2310 return 0;
2311 swp = pte_to_swp_entry(pte);
2312 if (non_swap_entry(swp) && is_migration_entry(swp))
2313 return 1;
2314 else
2315 return 0;
2318 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2320 swp_entry_t swp;
2322 if (huge_pte_none(pte) || pte_present(pte))
2323 return 0;
2324 swp = pte_to_swp_entry(pte);
2325 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2326 return 1;
2327 else
2328 return 0;
2331 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2332 unsigned long end, struct page *ref_page)
2334 struct mm_struct *mm = vma->vm_mm;
2335 unsigned long address;
2336 pte_t *ptep;
2337 pte_t pte;
2338 struct page *page;
2339 struct page *tmp;
2340 struct hstate *h = hstate_vma(vma);
2341 unsigned long sz = huge_page_size(h);
2344 * A page gathering list, protected by per file i_mmap_mutex. The
2345 * lock is used to avoid list corruption from multiple unmapping
2346 * of the same page since we are using page->lru.
2348 LIST_HEAD(page_list);
2350 WARN_ON(!is_vm_hugetlb_page(vma));
2351 BUG_ON(start & ~huge_page_mask(h));
2352 BUG_ON(end & ~huge_page_mask(h));
2354 mmu_notifier_invalidate_range_start(mm, start, end);
2355 spin_lock(&mm->page_table_lock);
2356 for (address = start; address < end; address += sz) {
2357 ptep = huge_pte_offset(mm, address);
2358 if (!ptep)
2359 continue;
2361 if (huge_pmd_unshare(mm, &address, ptep))
2362 continue;
2364 pte = huge_ptep_get(ptep);
2365 if (huge_pte_none(pte))
2366 continue;
2369 * HWPoisoned hugepage is already unmapped and dropped reference
2371 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2372 continue;
2374 page = pte_page(pte);
2376 * If a reference page is supplied, it is because a specific
2377 * page is being unmapped, not a range. Ensure the page we
2378 * are about to unmap is the actual page of interest.
2380 if (ref_page) {
2381 if (page != ref_page)
2382 continue;
2385 * Mark the VMA as having unmapped its page so that
2386 * future faults in this VMA will fail rather than
2387 * looking like data was lost
2389 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2392 pte = huge_ptep_get_and_clear(mm, address, ptep);
2393 if (pte_dirty(pte))
2394 set_page_dirty(page);
2395 list_add(&page->lru, &page_list);
2397 /* Bail out after unmapping reference page if supplied */
2398 if (ref_page)
2399 break;
2401 flush_tlb_range(vma, start, end);
2402 spin_unlock(&mm->page_table_lock);
2403 mmu_notifier_invalidate_range_end(mm, start, end);
2404 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2405 page_remove_rmap(page);
2406 list_del(&page->lru);
2407 put_page(page);
2411 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2412 unsigned long end, struct page *ref_page)
2414 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2415 __unmap_hugepage_range(vma, start, end, ref_page);
2417 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2418 * test will fail on a vma being torn down, and not grab a page table
2419 * on its way out. We're lucky that the flag has such an appropriate
2420 * name, and can in fact be safely cleared here. We could clear it
2421 * before the __unmap_hugepage_range above, but all that's necessary
2422 * is to clear it before releasing the i_mmap_mutex below.
2424 * This works because in the contexts this is called, the VMA is
2425 * going to be destroyed. It is not vunerable to madvise(DONTNEED)
2426 * because madvise is not supported on hugetlbfs. The same applies
2427 * for direct IO. unmap_hugepage_range() is only being called just
2428 * before free_pgtables() so clearing VM_MAYSHARE will not cause
2429 * surprises later.
2431 vma->vm_flags &= ~VM_MAYSHARE;
2432 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2436 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2437 * mappping it owns the reserve page for. The intention is to unmap the page
2438 * from other VMAs and let the children be SIGKILLed if they are faulting the
2439 * same region.
2441 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2442 struct page *page, unsigned long address)
2444 struct hstate *h = hstate_vma(vma);
2445 struct vm_area_struct *iter_vma;
2446 struct address_space *mapping;
2447 struct prio_tree_iter iter;
2448 pgoff_t pgoff;
2451 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2452 * from page cache lookup which is in HPAGE_SIZE units.
2454 address = address & huge_page_mask(h);
2455 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2456 vma->vm_pgoff;
2457 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2460 * Take the mapping lock for the duration of the table walk. As
2461 * this mapping should be shared between all the VMAs,
2462 * __unmap_hugepage_range() is called as the lock is already held
2464 mutex_lock(&mapping->i_mmap_mutex);
2465 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2466 /* Do not unmap the current VMA */
2467 if (iter_vma == vma)
2468 continue;
2471 * Unmap the page from other VMAs without their own reserves.
2472 * They get marked to be SIGKILLed if they fault in these
2473 * areas. This is because a future no-page fault on this VMA
2474 * could insert a zeroed page instead of the data existing
2475 * from the time of fork. This would look like data corruption
2477 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2478 __unmap_hugepage_range(iter_vma,
2479 address, address + huge_page_size(h),
2480 page);
2482 mutex_unlock(&mapping->i_mmap_mutex);
2484 return 1;
2488 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2489 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2490 * cannot race with other handlers or page migration.
2491 * Keep the pte_same checks anyway to make transition from the mutex easier.
2493 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2494 unsigned long address, pte_t *ptep, pte_t pte,
2495 struct page *pagecache_page)
2497 struct hstate *h = hstate_vma(vma);
2498 struct page *old_page, *new_page;
2499 int avoidcopy;
2500 int outside_reserve = 0;
2502 old_page = pte_page(pte);
2504 retry_avoidcopy:
2505 /* If no-one else is actually using this page, avoid the copy
2506 * and just make the page writable */
2507 avoidcopy = (page_mapcount(old_page) == 1);
2508 if (avoidcopy) {
2509 if (PageAnon(old_page))
2510 page_move_anon_rmap(old_page, vma, address);
2511 set_huge_ptep_writable(vma, address, ptep);
2512 return 0;
2516 * If the process that created a MAP_PRIVATE mapping is about to
2517 * perform a COW due to a shared page count, attempt to satisfy
2518 * the allocation without using the existing reserves. The pagecache
2519 * page is used to determine if the reserve at this address was
2520 * consumed or not. If reserves were used, a partial faulted mapping
2521 * at the time of fork() could consume its reserves on COW instead
2522 * of the full address range.
2524 if (!(vma->vm_flags & VM_MAYSHARE) &&
2525 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2526 old_page != pagecache_page)
2527 outside_reserve = 1;
2529 page_cache_get(old_page);
2531 /* Drop page_table_lock as buddy allocator may be called */
2532 spin_unlock(&mm->page_table_lock);
2533 new_page = alloc_huge_page(vma, address, outside_reserve);
2535 if (IS_ERR(new_page)) {
2536 page_cache_release(old_page);
2539 * If a process owning a MAP_PRIVATE mapping fails to COW,
2540 * it is due to references held by a child and an insufficient
2541 * huge page pool. To guarantee the original mappers
2542 * reliability, unmap the page from child processes. The child
2543 * may get SIGKILLed if it later faults.
2545 if (outside_reserve) {
2546 BUG_ON(huge_pte_none(pte));
2547 if (unmap_ref_private(mm, vma, old_page, address)) {
2548 BUG_ON(huge_pte_none(pte));
2549 spin_lock(&mm->page_table_lock);
2550 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2551 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2552 goto retry_avoidcopy;
2554 * race occurs while re-acquiring page_table_lock, and
2555 * our job is done.
2557 return 0;
2559 WARN_ON_ONCE(1);
2562 /* Caller expects lock to be held */
2563 spin_lock(&mm->page_table_lock);
2564 return -PTR_ERR(new_page);
2568 * When the original hugepage is shared one, it does not have
2569 * anon_vma prepared.
2571 if (unlikely(anon_vma_prepare(vma))) {
2572 page_cache_release(new_page);
2573 page_cache_release(old_page);
2574 /* Caller expects lock to be held */
2575 spin_lock(&mm->page_table_lock);
2576 return VM_FAULT_OOM;
2579 copy_user_huge_page(new_page, old_page, address, vma,
2580 pages_per_huge_page(h));
2581 __SetPageUptodate(new_page);
2584 * Retake the page_table_lock to check for racing updates
2585 * before the page tables are altered
2587 spin_lock(&mm->page_table_lock);
2588 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2589 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2590 /* Break COW */
2591 mmu_notifier_invalidate_range_start(mm,
2592 address & huge_page_mask(h),
2593 (address & huge_page_mask(h)) + huge_page_size(h));
2594 huge_ptep_clear_flush(vma, address, ptep);
2595 set_huge_pte_at(mm, address, ptep,
2596 make_huge_pte(vma, new_page, 1));
2597 page_remove_rmap(old_page);
2598 hugepage_add_new_anon_rmap(new_page, vma, address);
2599 /* Make the old page be freed below */
2600 new_page = old_page;
2601 mmu_notifier_invalidate_range_end(mm,
2602 address & huge_page_mask(h),
2603 (address & huge_page_mask(h)) + huge_page_size(h));
2605 page_cache_release(new_page);
2606 page_cache_release(old_page);
2607 return 0;
2610 /* Return the pagecache page at a given address within a VMA */
2611 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2612 struct vm_area_struct *vma, unsigned long address)
2614 struct address_space *mapping;
2615 pgoff_t idx;
2617 mapping = vma->vm_file->f_mapping;
2618 idx = vma_hugecache_offset(h, vma, address);
2620 return find_lock_page(mapping, idx);
2624 * Return whether there is a pagecache page to back given address within VMA.
2625 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2627 static bool hugetlbfs_pagecache_present(struct hstate *h,
2628 struct vm_area_struct *vma, unsigned long address)
2630 struct address_space *mapping;
2631 pgoff_t idx;
2632 struct page *page;
2634 mapping = vma->vm_file->f_mapping;
2635 idx = vma_hugecache_offset(h, vma, address);
2637 page = find_get_page(mapping, idx);
2638 if (page)
2639 put_page(page);
2640 return page != NULL;
2643 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2644 unsigned long address, pte_t *ptep, unsigned int flags)
2646 struct hstate *h = hstate_vma(vma);
2647 int ret = VM_FAULT_SIGBUS;
2648 int anon_rmap = 0;
2649 pgoff_t idx;
2650 unsigned long size;
2651 struct page *page;
2652 struct address_space *mapping;
2653 pte_t new_pte;
2656 * Currently, we are forced to kill the process in the event the
2657 * original mapper has unmapped pages from the child due to a failed
2658 * COW. Warn that such a situation has occurred as it may not be obvious
2660 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2661 printk(KERN_WARNING
2662 "PID %d killed due to inadequate hugepage pool\n",
2663 current->pid);
2664 return ret;
2667 mapping = vma->vm_file->f_mapping;
2668 idx = vma_hugecache_offset(h, vma, address);
2671 * Use page lock to guard against racing truncation
2672 * before we get page_table_lock.
2674 retry:
2675 page = find_lock_page(mapping, idx);
2676 if (!page) {
2677 size = i_size_read(mapping->host) >> huge_page_shift(h);
2678 if (idx >= size)
2679 goto out;
2680 page = alloc_huge_page(vma, address, 0);
2681 if (IS_ERR(page)) {
2682 ret = -PTR_ERR(page);
2683 goto out;
2685 clear_huge_page(page, address, pages_per_huge_page(h));
2686 __SetPageUptodate(page);
2688 if (vma->vm_flags & VM_MAYSHARE) {
2689 int err;
2690 struct inode *inode = mapping->host;
2692 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2693 if (err) {
2694 put_page(page);
2695 if (err == -EEXIST)
2696 goto retry;
2697 goto out;
2700 spin_lock(&inode->i_lock);
2701 inode->i_blocks += blocks_per_huge_page(h);
2702 spin_unlock(&inode->i_lock);
2703 } else {
2704 lock_page(page);
2705 if (unlikely(anon_vma_prepare(vma))) {
2706 ret = VM_FAULT_OOM;
2707 goto backout_unlocked;
2709 anon_rmap = 1;
2711 } else {
2713 * If memory error occurs between mmap() and fault, some process
2714 * don't have hwpoisoned swap entry for errored virtual address.
2715 * So we need to block hugepage fault by PG_hwpoison bit check.
2717 if (unlikely(PageHWPoison(page))) {
2718 ret = VM_FAULT_HWPOISON |
2719 VM_FAULT_SET_HINDEX(h - hstates);
2720 goto backout_unlocked;
2725 * If we are going to COW a private mapping later, we examine the
2726 * pending reservations for this page now. This will ensure that
2727 * any allocations necessary to record that reservation occur outside
2728 * the spinlock.
2730 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2731 if (vma_needs_reservation(h, vma, address) < 0) {
2732 ret = VM_FAULT_OOM;
2733 goto backout_unlocked;
2736 spin_lock(&mm->page_table_lock);
2737 size = i_size_read(mapping->host) >> huge_page_shift(h);
2738 if (idx >= size)
2739 goto backout;
2741 ret = 0;
2742 if (!huge_pte_none(huge_ptep_get(ptep)))
2743 goto backout;
2745 if (anon_rmap)
2746 hugepage_add_new_anon_rmap(page, vma, address);
2747 else
2748 page_dup_rmap(page);
2749 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2750 && (vma->vm_flags & VM_SHARED)));
2751 set_huge_pte_at(mm, address, ptep, new_pte);
2753 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2754 /* Optimization, do the COW without a second fault */
2755 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2758 spin_unlock(&mm->page_table_lock);
2759 unlock_page(page);
2760 out:
2761 return ret;
2763 backout:
2764 spin_unlock(&mm->page_table_lock);
2765 backout_unlocked:
2766 unlock_page(page);
2767 put_page(page);
2768 goto out;
2771 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2772 unsigned long address, unsigned int flags)
2774 pte_t *ptep;
2775 pte_t entry;
2776 int ret;
2777 struct page *page = NULL;
2778 struct page *pagecache_page = NULL;
2779 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2780 struct hstate *h = hstate_vma(vma);
2782 address &= huge_page_mask(h);
2784 ptep = huge_pte_offset(mm, address);
2785 if (ptep) {
2786 entry = huge_ptep_get(ptep);
2787 if (unlikely(is_hugetlb_entry_migration(entry))) {
2788 migration_entry_wait_huge(mm, ptep);
2789 return 0;
2790 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2791 return VM_FAULT_HWPOISON_LARGE |
2792 VM_FAULT_SET_HINDEX(h - hstates);
2795 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2796 if (!ptep)
2797 return VM_FAULT_OOM;
2800 * Serialize hugepage allocation and instantiation, so that we don't
2801 * get spurious allocation failures if two CPUs race to instantiate
2802 * the same page in the page cache.
2804 mutex_lock(&hugetlb_instantiation_mutex);
2805 entry = huge_ptep_get(ptep);
2806 if (huge_pte_none(entry)) {
2807 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2808 goto out_mutex;
2811 ret = 0;
2814 * If we are going to COW the mapping later, we examine the pending
2815 * reservations for this page now. This will ensure that any
2816 * allocations necessary to record that reservation occur outside the
2817 * spinlock. For private mappings, we also lookup the pagecache
2818 * page now as it is used to determine if a reservation has been
2819 * consumed.
2821 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2822 if (vma_needs_reservation(h, vma, address) < 0) {
2823 ret = VM_FAULT_OOM;
2824 goto out_mutex;
2827 if (!(vma->vm_flags & VM_MAYSHARE))
2828 pagecache_page = hugetlbfs_pagecache_page(h,
2829 vma, address);
2833 * hugetlb_cow() requires page locks of pte_page(entry) and
2834 * pagecache_page, so here we need take the former one
2835 * when page != pagecache_page or !pagecache_page.
2836 * Note that locking order is always pagecache_page -> page,
2837 * so no worry about deadlock.
2839 page = pte_page(entry);
2840 get_page(page);
2841 if (page != pagecache_page)
2842 lock_page(page);
2844 spin_lock(&mm->page_table_lock);
2845 /* Check for a racing update before calling hugetlb_cow */
2846 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2847 goto out_page_table_lock;
2850 if (flags & FAULT_FLAG_WRITE) {
2851 if (!pte_write(entry)) {
2852 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2853 pagecache_page);
2854 goto out_page_table_lock;
2856 entry = pte_mkdirty(entry);
2858 entry = pte_mkyoung(entry);
2859 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2860 flags & FAULT_FLAG_WRITE))
2861 update_mmu_cache(vma, address, ptep);
2863 out_page_table_lock:
2864 spin_unlock(&mm->page_table_lock);
2866 if (pagecache_page) {
2867 unlock_page(pagecache_page);
2868 put_page(pagecache_page);
2870 if (page != pagecache_page)
2871 unlock_page(page);
2872 put_page(page);
2874 out_mutex:
2875 mutex_unlock(&hugetlb_instantiation_mutex);
2877 return ret;
2880 /* Can be overriden by architectures */
2881 __attribute__((weak)) struct page *
2882 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2883 pud_t *pud, int write)
2885 BUG();
2886 return NULL;
2889 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2890 struct page **pages, struct vm_area_struct **vmas,
2891 unsigned long *position, int *length, int i,
2892 unsigned int flags)
2894 unsigned long pfn_offset;
2895 unsigned long vaddr = *position;
2896 int remainder = *length;
2897 struct hstate *h = hstate_vma(vma);
2899 spin_lock(&mm->page_table_lock);
2900 while (vaddr < vma->vm_end && remainder) {
2901 pte_t *pte;
2902 int absent;
2903 struct page *page;
2906 * Some archs (sparc64, sh*) have multiple pte_ts to
2907 * each hugepage. We have to make sure we get the
2908 * first, for the page indexing below to work.
2910 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2911 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2914 * When coredumping, it suits get_dump_page if we just return
2915 * an error where there's an empty slot with no huge pagecache
2916 * to back it. This way, we avoid allocating a hugepage, and
2917 * the sparse dumpfile avoids allocating disk blocks, but its
2918 * huge holes still show up with zeroes where they need to be.
2920 if (absent && (flags & FOLL_DUMP) &&
2921 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2922 remainder = 0;
2923 break;
2927 * We need call hugetlb_fault for both hugepages under migration
2928 * (in which case hugetlb_fault waits for the migration,) and
2929 * hwpoisoned hugepages (in which case we need to prevent the
2930 * caller from accessing to them.) In order to do this, we use
2931 * here is_swap_pte instead of is_hugetlb_entry_migration and
2932 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2933 * both cases, and because we can't follow correct pages
2934 * directly from any kind of swap entries.
2936 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2937 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2938 int ret;
2940 spin_unlock(&mm->page_table_lock);
2941 ret = hugetlb_fault(mm, vma, vaddr,
2942 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2943 spin_lock(&mm->page_table_lock);
2944 if (!(ret & VM_FAULT_ERROR))
2945 continue;
2947 remainder = 0;
2948 break;
2951 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2952 page = pte_page(huge_ptep_get(pte));
2953 same_page:
2954 if (pages) {
2955 pages[i] = mem_map_offset(page, pfn_offset);
2956 get_page(pages[i]);
2959 if (vmas)
2960 vmas[i] = vma;
2962 vaddr += PAGE_SIZE;
2963 ++pfn_offset;
2964 --remainder;
2965 ++i;
2966 if (vaddr < vma->vm_end && remainder &&
2967 pfn_offset < pages_per_huge_page(h)) {
2969 * We use pfn_offset to avoid touching the pageframes
2970 * of this compound page.
2972 goto same_page;
2975 spin_unlock(&mm->page_table_lock);
2976 *length = remainder;
2977 *position = vaddr;
2979 return i ? i : -EFAULT;
2982 void hugetlb_change_protection(struct vm_area_struct *vma,
2983 unsigned long address, unsigned long end, pgprot_t newprot)
2985 struct mm_struct *mm = vma->vm_mm;
2986 unsigned long start = address;
2987 pte_t *ptep;
2988 pte_t pte;
2989 struct hstate *h = hstate_vma(vma);
2991 BUG_ON(address >= end);
2992 flush_cache_range(vma, address, end);
2994 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2995 spin_lock(&mm->page_table_lock);
2996 for (; address < end; address += huge_page_size(h)) {
2997 ptep = huge_pte_offset(mm, address);
2998 if (!ptep)
2999 continue;
3000 if (huge_pmd_unshare(mm, &address, ptep))
3001 continue;
3002 if (!huge_pte_none(huge_ptep_get(ptep))) {
3003 pte = huge_ptep_get_and_clear(mm, address, ptep);
3004 pte = pte_mkhuge(pte_modify(pte, newprot));
3005 set_huge_pte_at(mm, address, ptep, pte);
3008 spin_unlock(&mm->page_table_lock);
3010 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3011 * may have cleared our pud entry and done put_page on the page table:
3012 * once we release i_mmap_mutex, another task can do the final put_page
3013 * and that page table be reused and filled with junk.
3015 flush_tlb_range(vma, start, end);
3016 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3019 int hugetlb_reserve_pages(struct inode *inode,
3020 long from, long to,
3021 struct vm_area_struct *vma,
3022 vm_flags_t vm_flags)
3024 long ret, chg;
3025 struct hstate *h = hstate_inode(inode);
3026 struct hugepage_subpool *spool = subpool_inode(inode);
3029 * Only apply hugepage reservation if asked. At fault time, an
3030 * attempt will be made for VM_NORESERVE to allocate a page
3031 * without using reserves
3033 if (vm_flags & VM_NORESERVE)
3034 return 0;
3037 * Shared mappings base their reservation on the number of pages that
3038 * are already allocated on behalf of the file. Private mappings need
3039 * to reserve the full area even if read-only as mprotect() may be
3040 * called to make the mapping read-write. Assume !vma is a shm mapping
3042 if (!vma || vma->vm_flags & VM_MAYSHARE)
3043 chg = region_chg(&inode->i_mapping->private_list, from, to);
3044 else {
3045 struct resv_map *resv_map = resv_map_alloc();
3046 if (!resv_map)
3047 return -ENOMEM;
3049 chg = to - from;
3051 set_vma_resv_map(vma, resv_map);
3052 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3055 if (chg < 0) {
3056 ret = chg;
3057 goto out_err;
3060 /* There must be enough pages in the subpool for the mapping */
3061 if (hugepage_subpool_get_pages(spool, chg)) {
3062 ret = -ENOSPC;
3063 goto out_err;
3067 * Check enough hugepages are available for the reservation.
3068 * Hand the pages back to the subpool if there are not
3070 ret = hugetlb_acct_memory(h, chg);
3071 if (ret < 0) {
3072 hugepage_subpool_put_pages(spool, chg);
3073 goto out_err;
3077 * Account for the reservations made. Shared mappings record regions
3078 * that have reservations as they are shared by multiple VMAs.
3079 * When the last VMA disappears, the region map says how much
3080 * the reservation was and the page cache tells how much of
3081 * the reservation was consumed. Private mappings are per-VMA and
3082 * only the consumed reservations are tracked. When the VMA
3083 * disappears, the original reservation is the VMA size and the
3084 * consumed reservations are stored in the map. Hence, nothing
3085 * else has to be done for private mappings here
3087 if (!vma || vma->vm_flags & VM_MAYSHARE)
3088 region_add(&inode->i_mapping->private_list, from, to);
3089 return 0;
3090 out_err:
3091 if (vma)
3092 resv_map_put(vma);
3093 return ret;
3096 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3098 struct hstate *h = hstate_inode(inode);
3099 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3100 struct hugepage_subpool *spool = subpool_inode(inode);
3102 spin_lock(&inode->i_lock);
3103 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3104 spin_unlock(&inode->i_lock);
3106 hugepage_subpool_put_pages(spool, (chg - freed));
3107 hugetlb_acct_memory(h, -(chg - freed));
3110 #ifdef CONFIG_MEMORY_FAILURE
3112 /* Should be called in hugetlb_lock */
3113 static int is_hugepage_on_freelist(struct page *hpage)
3115 struct page *page;
3116 struct page *tmp;
3117 struct hstate *h = page_hstate(hpage);
3118 int nid = page_to_nid(hpage);
3120 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3121 if (page == hpage)
3122 return 1;
3123 return 0;
3127 * This function is called from memory failure code.
3128 * Assume the caller holds page lock of the head page.
3130 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3132 struct hstate *h = page_hstate(hpage);
3133 int nid = page_to_nid(hpage);
3134 int ret = -EBUSY;
3136 spin_lock(&hugetlb_lock);
3137 if (is_hugepage_on_freelist(hpage)) {
3138 list_del(&hpage->lru);
3139 set_page_refcounted(hpage);
3140 h->free_huge_pages--;
3141 h->free_huge_pages_node[nid]--;
3142 ret = 0;
3144 spin_unlock(&hugetlb_lock);
3145 return ret;
3147 #endif