2 #include <linux/sched.h>
3 #include <linux/mutex.h>
4 #include <linux/spinlock.h>
5 #include <linux/stop_machine.h>
9 extern __read_mostly
int scheduler_running
;
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
16 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
25 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
30 * Helpers for converting nanosecond timing to jiffy resolution
32 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
34 #define NICE_0_LOAD SCHED_LOAD_SCALE
35 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
38 * These are the 'tuning knobs' of the scheduler:
42 * single value that denotes runtime == period, ie unlimited time.
44 #define RUNTIME_INF ((u64)~0ULL)
46 static inline int rt_policy(int policy
)
48 if (policy
== SCHED_FIFO
|| policy
== SCHED_RR
)
53 static inline int task_has_rt_policy(struct task_struct
*p
)
55 return rt_policy(p
->policy
);
59 * This is the priority-queue data structure of the RT scheduling class:
61 struct rt_prio_array
{
62 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
63 struct list_head queue
[MAX_RT_PRIO
];
67 /* nests inside the rq lock: */
68 raw_spinlock_t rt_runtime_lock
;
71 struct hrtimer rt_period_timer
;
74 extern struct mutex sched_domains_mutex
;
76 #ifdef CONFIG_CGROUP_SCHED
78 #include <linux/cgroup.h>
83 extern struct list_head task_groups
;
85 struct cfs_bandwidth
{
86 #ifdef CONFIG_CFS_BANDWIDTH
93 int idle
, timer_active
;
94 struct hrtimer period_timer
, slack_timer
;
95 struct list_head throttled_cfs_rq
;
98 int nr_periods
, nr_throttled
;
103 /* task group related information */
105 struct cgroup_subsys_state css
;
107 #ifdef CONFIG_FAIR_GROUP_SCHED
108 /* schedulable entities of this group on each cpu */
109 struct sched_entity
**se
;
110 /* runqueue "owned" by this group on each cpu */
111 struct cfs_rq
**cfs_rq
;
112 unsigned long shares
;
114 atomic_t load_weight
;
117 #ifdef CONFIG_RT_GROUP_SCHED
118 struct sched_rt_entity
**rt_se
;
119 struct rt_rq
**rt_rq
;
121 struct rt_bandwidth rt_bandwidth
;
125 struct list_head list
;
127 struct task_group
*parent
;
128 struct list_head siblings
;
129 struct list_head children
;
131 #ifdef CONFIG_SCHED_AUTOGROUP
132 struct autogroup
*autogroup
;
135 struct cfs_bandwidth cfs_bandwidth
;
138 #ifdef CONFIG_FAIR_GROUP_SCHED
139 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
142 * A weight of 0 or 1 can cause arithmetics problems.
143 * A weight of a cfs_rq is the sum of weights of which entities
144 * are queued on this cfs_rq, so a weight of a entity should not be
145 * too large, so as the shares value of a task group.
146 * (The default weight is 1024 - so there's no practical
147 * limitation from this.)
149 #define MIN_SHARES (1UL << 1)
150 #define MAX_SHARES (1UL << 18)
153 /* Default task group.
154 * Every task in system belong to this group at bootup.
156 extern struct task_group root_task_group
;
158 typedef int (*tg_visitor
)(struct task_group
*, void *);
160 extern int walk_tg_tree_from(struct task_group
*from
,
161 tg_visitor down
, tg_visitor up
, void *data
);
164 * Iterate the full tree, calling @down when first entering a node and @up when
165 * leaving it for the final time.
167 * Caller must hold rcu_lock or sufficient equivalent.
169 static inline int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
171 return walk_tg_tree_from(&root_task_group
, down
, up
, data
);
174 extern int tg_nop(struct task_group
*tg
, void *data
);
176 extern void free_fair_sched_group(struct task_group
*tg
);
177 extern int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
);
178 extern void unregister_fair_sched_group(struct task_group
*tg
, int cpu
);
179 extern void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
180 struct sched_entity
*se
, int cpu
,
181 struct sched_entity
*parent
);
182 extern void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
183 extern int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
);
185 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
);
186 extern void __start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
187 extern void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
);
189 extern void free_rt_sched_group(struct task_group
*tg
);
190 extern int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
);
191 extern void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
192 struct sched_rt_entity
*rt_se
, int cpu
,
193 struct sched_rt_entity
*parent
);
195 #else /* CONFIG_CGROUP_SCHED */
197 struct cfs_bandwidth
{ };
199 #endif /* CONFIG_CGROUP_SCHED */
201 /* CFS-related fields in a runqueue */
203 struct load_weight load
;
204 unsigned int nr_running
, h_nr_running
;
209 u64 min_vruntime_copy
;
212 struct rb_root tasks_timeline
;
213 struct rb_node
*rb_leftmost
;
216 * 'curr' points to currently running entity on this cfs_rq.
217 * It is set to NULL otherwise (i.e when none are currently running).
219 struct sched_entity
*curr
, *next
, *last
, *skip
;
221 #ifdef CONFIG_SCHED_DEBUG
222 unsigned int nr_spread_over
;
225 #ifdef CONFIG_FAIR_GROUP_SCHED
226 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
229 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
230 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
231 * (like users, containers etc.)
233 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
234 * list is used during load balance.
237 struct list_head leaf_cfs_rq_list
;
238 struct task_group
*tg
; /* group that "owns" this runqueue */
242 * h_load = weight * f(tg)
244 * Where f(tg) is the recursive weight fraction assigned to
247 unsigned long h_load
;
250 * Maintaining per-cpu shares distribution for group scheduling
252 * load_stamp is the last time we updated the load average
253 * load_last is the last time we updated the load average and saw load
254 * load_unacc_exec_time is currently unaccounted execution time
258 u64 load_stamp
, load_last
, load_unacc_exec_time
;
260 unsigned long load_contribution
;
261 #endif /* CONFIG_SMP */
262 #ifdef CONFIG_CFS_BANDWIDTH
265 s64 runtime_remaining
;
267 u64 throttled_timestamp
;
268 int throttled
, throttle_count
;
269 struct list_head throttled_list
;
270 #endif /* CONFIG_CFS_BANDWIDTH */
271 #endif /* CONFIG_FAIR_GROUP_SCHED */
274 static inline int rt_bandwidth_enabled(void)
276 return sysctl_sched_rt_runtime
>= 0;
279 /* Real-Time classes' related field in a runqueue: */
281 struct rt_prio_array active
;
282 unsigned int rt_nr_running
;
283 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
285 int curr
; /* highest queued rt task prio */
287 int next
; /* next highest */
292 unsigned long rt_nr_migratory
;
293 unsigned long rt_nr_total
;
295 struct plist_head pushable_tasks
;
300 /* Nests inside the rq lock: */
301 raw_spinlock_t rt_runtime_lock
;
303 #ifdef CONFIG_RT_GROUP_SCHED
304 unsigned long rt_nr_boosted
;
307 struct list_head leaf_rt_rq_list
;
308 struct task_group
*tg
;
315 * We add the notion of a root-domain which will be used to define per-domain
316 * variables. Each exclusive cpuset essentially defines an island domain by
317 * fully partitioning the member cpus from any other cpuset. Whenever a new
318 * exclusive cpuset is created, we also create and attach a new root-domain
327 cpumask_var_t online
;
330 * The "RT overload" flag: it gets set if a CPU has more than
331 * one runnable RT task.
333 cpumask_var_t rto_mask
;
334 struct cpupri cpupri
;
337 extern struct root_domain def_root_domain
;
339 #endif /* CONFIG_SMP */
342 * This is the main, per-CPU runqueue data structure.
344 * Locking rule: those places that want to lock multiple runqueues
345 * (such as the load balancing or the thread migration code), lock
346 * acquire operations must be ordered by ascending &runqueue.
353 * nr_running and cpu_load should be in the same cacheline because
354 * remote CPUs use both these fields when doing load calculation.
356 unsigned int nr_running
;
357 #define CPU_LOAD_IDX_MAX 5
358 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
359 unsigned long last_load_update_tick
;
362 unsigned long nohz_flags
;
364 int skip_clock_update
;
366 /* capture load from *all* tasks on this cpu: */
367 struct load_weight load
;
368 unsigned long nr_load_updates
;
374 #ifdef CONFIG_FAIR_GROUP_SCHED
375 /* list of leaf cfs_rq on this cpu: */
376 struct list_head leaf_cfs_rq_list
;
378 unsigned long h_load_throttle
;
379 #endif /* CONFIG_SMP */
380 #endif /* CONFIG_FAIR_GROUP_SCHED */
382 #ifdef CONFIG_RT_GROUP_SCHED
383 struct list_head leaf_rt_rq_list
;
387 * This is part of a global counter where only the total sum
388 * over all CPUs matters. A task can increase this counter on
389 * one CPU and if it got migrated afterwards it may decrease
390 * it on another CPU. Always updated under the runqueue lock:
392 unsigned long nr_uninterruptible
;
394 struct task_struct
*curr
, *idle
, *stop
;
395 unsigned long next_balance
;
396 struct mm_struct
*prev_mm
;
404 struct root_domain
*rd
;
405 struct sched_domain
*sd
;
407 unsigned long cpu_power
;
409 unsigned char idle_balance
;
410 /* For active balancing */
414 struct cpu_stop_work active_balance_work
;
415 /* cpu of this runqueue: */
419 struct list_head cfs_tasks
;
427 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
430 #ifdef CONFIG_PARAVIRT
433 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
434 u64 prev_steal_time_rq
;
437 /* calc_load related fields */
438 unsigned long calc_load_update
;
439 long calc_load_active
;
441 #ifdef CONFIG_SCHED_HRTICK
443 int hrtick_csd_pending
;
444 struct call_single_data hrtick_csd
;
446 struct hrtimer hrtick_timer
;
449 #ifdef CONFIG_SCHEDSTATS
451 struct sched_info rq_sched_info
;
452 unsigned long long rq_cpu_time
;
453 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
455 /* sys_sched_yield() stats */
456 unsigned int yld_count
;
458 /* schedule() stats */
459 unsigned int sched_count
;
460 unsigned int sched_goidle
;
462 /* try_to_wake_up() stats */
463 unsigned int ttwu_count
;
464 unsigned int ttwu_local
;
468 struct llist_head wake_list
;
472 static inline int cpu_of(struct rq
*rq
)
481 DECLARE_PER_CPU(struct rq
, runqueues
);
483 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
484 #define this_rq() (&__get_cpu_var(runqueues))
485 #define task_rq(p) cpu_rq(task_cpu(p))
486 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
487 #define raw_rq() (&__raw_get_cpu_var(runqueues))
491 #define rcu_dereference_check_sched_domain(p) \
492 rcu_dereference_check((p), \
493 lockdep_is_held(&sched_domains_mutex))
496 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
497 * See detach_destroy_domains: synchronize_sched for details.
499 * The domain tree of any CPU may only be accessed from within
500 * preempt-disabled sections.
502 #define for_each_domain(cpu, __sd) \
503 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
504 __sd; __sd = __sd->parent)
506 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
509 * highest_flag_domain - Return highest sched_domain containing flag.
510 * @cpu: The cpu whose highest level of sched domain is to
512 * @flag: The flag to check for the highest sched_domain
515 * Returns the highest sched_domain of a cpu which contains the given flag.
517 static inline struct sched_domain
*highest_flag_domain(int cpu
, int flag
)
519 struct sched_domain
*sd
, *hsd
= NULL
;
521 for_each_domain(cpu
, sd
) {
522 if (!(sd
->flags
& flag
))
530 DECLARE_PER_CPU(struct sched_domain
*, sd_llc
);
531 DECLARE_PER_CPU(int, sd_llc_id
);
533 extern int group_balance_cpu(struct sched_group
*sg
);
535 #endif /* CONFIG_SMP */
538 #include "auto_group.h"
540 #ifdef CONFIG_CGROUP_SCHED
543 * Return the group to which this tasks belongs.
545 * We cannot use task_subsys_state() and friends because the cgroup
546 * subsystem changes that value before the cgroup_subsys::attach() method
547 * is called, therefore we cannot pin it and might observe the wrong value.
549 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
550 * core changes this before calling sched_move_task().
552 * Instead we use a 'copy' which is updated from sched_move_task() while
553 * holding both task_struct::pi_lock and rq::lock.
555 static inline struct task_group
*task_group(struct task_struct
*p
)
557 return p
->sched_task_group
;
560 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
561 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
563 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
564 struct task_group
*tg
= task_group(p
);
567 #ifdef CONFIG_FAIR_GROUP_SCHED
568 p
->se
.cfs_rq
= tg
->cfs_rq
[cpu
];
569 p
->se
.parent
= tg
->se
[cpu
];
572 #ifdef CONFIG_RT_GROUP_SCHED
573 p
->rt
.rt_rq
= tg
->rt_rq
[cpu
];
574 p
->rt
.parent
= tg
->rt_se
[cpu
];
578 #else /* CONFIG_CGROUP_SCHED */
580 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
581 static inline struct task_group
*task_group(struct task_struct
*p
)
586 #endif /* CONFIG_CGROUP_SCHED */
588 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
593 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
594 * successfuly executed on another CPU. We must ensure that updates of
595 * per-task data have been completed by this moment.
598 task_thread_info(p
)->cpu
= cpu
;
603 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
605 #ifdef CONFIG_SCHED_DEBUG
606 # include <linux/static_key.h>
607 # define const_debug __read_mostly
609 # define const_debug const
612 extern const_debug
unsigned int sysctl_sched_features
;
614 #define SCHED_FEAT(name, enabled) \
615 __SCHED_FEAT_##name ,
618 #include "features.h"
624 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
625 static __always_inline
bool static_branch__true(struct static_key
*key
)
627 return static_key_true(key
); /* Not out of line branch. */
630 static __always_inline
bool static_branch__false(struct static_key
*key
)
632 return static_key_false(key
); /* Out of line branch. */
635 #define SCHED_FEAT(name, enabled) \
636 static __always_inline bool static_branch_##name(struct static_key *key) \
638 return static_branch__##enabled(key); \
641 #include "features.h"
645 extern struct static_key sched_feat_keys
[__SCHED_FEAT_NR
];
646 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
647 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
648 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
649 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
651 static inline u64
global_rt_period(void)
653 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
656 static inline u64
global_rt_runtime(void)
658 if (sysctl_sched_rt_runtime
< 0)
661 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
666 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
668 return rq
->curr
== p
;
671 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
676 return task_current(rq
, p
);
681 #ifndef prepare_arch_switch
682 # define prepare_arch_switch(next) do { } while (0)
684 #ifndef finish_arch_switch
685 # define finish_arch_switch(prev) do { } while (0)
687 #ifndef finish_arch_post_lock_switch
688 # define finish_arch_post_lock_switch() do { } while (0)
691 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
692 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
696 * We can optimise this out completely for !SMP, because the
697 * SMP rebalancing from interrupt is the only thing that cares
704 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
708 * After ->on_cpu is cleared, the task can be moved to a different CPU.
709 * We must ensure this doesn't happen until the switch is completely
715 #ifdef CONFIG_DEBUG_SPINLOCK
716 /* this is a valid case when another task releases the spinlock */
717 rq
->lock
.owner
= current
;
720 * If we are tracking spinlock dependencies then we have to
721 * fix up the runqueue lock - which gets 'carried over' from
724 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
726 raw_spin_unlock_irq(&rq
->lock
);
729 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
730 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
734 * We can optimise this out completely for !SMP, because the
735 * SMP rebalancing from interrupt is the only thing that cares
740 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
741 raw_spin_unlock_irq(&rq
->lock
);
743 raw_spin_unlock(&rq
->lock
);
747 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
751 * After ->on_cpu is cleared, the task can be moved to a different CPU.
752 * We must ensure this doesn't happen until the switch is completely
758 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
762 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
765 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
771 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
777 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
784 * To aid in avoiding the subversion of "niceness" due to uneven distribution
785 * of tasks with abnormal "nice" values across CPUs the contribution that
786 * each task makes to its run queue's load is weighted according to its
787 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
788 * scaled version of the new time slice allocation that they receive on time
792 #define WEIGHT_IDLEPRIO 3
793 #define WMULT_IDLEPRIO 1431655765
796 * Nice levels are multiplicative, with a gentle 10% change for every
797 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
798 * nice 1, it will get ~10% less CPU time than another CPU-bound task
799 * that remained on nice 0.
801 * The "10% effect" is relative and cumulative: from _any_ nice level,
802 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
803 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
804 * If a task goes up by ~10% and another task goes down by ~10% then
805 * the relative distance between them is ~25%.)
807 static const int prio_to_weight
[40] = {
808 /* -20 */ 88761, 71755, 56483, 46273, 36291,
809 /* -15 */ 29154, 23254, 18705, 14949, 11916,
810 /* -10 */ 9548, 7620, 6100, 4904, 3906,
811 /* -5 */ 3121, 2501, 1991, 1586, 1277,
812 /* 0 */ 1024, 820, 655, 526, 423,
813 /* 5 */ 335, 272, 215, 172, 137,
814 /* 10 */ 110, 87, 70, 56, 45,
815 /* 15 */ 36, 29, 23, 18, 15,
819 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
821 * In cases where the weight does not change often, we can use the
822 * precalculated inverse to speed up arithmetics by turning divisions
823 * into multiplications:
825 static const u32 prio_to_wmult
[40] = {
826 /* -20 */ 48388, 59856, 76040, 92818, 118348,
827 /* -15 */ 147320, 184698, 229616, 287308, 360437,
828 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
829 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
830 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
831 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
832 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
833 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
836 /* Time spent by the tasks of the cpu accounting group executing in ... */
837 enum cpuacct_stat_index
{
838 CPUACCT_STAT_USER
, /* ... user mode */
839 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
845 #define sched_class_highest (&stop_sched_class)
846 #define for_each_class(class) \
847 for (class = sched_class_highest; class; class = class->next)
849 extern const struct sched_class stop_sched_class
;
850 extern const struct sched_class rt_sched_class
;
851 extern const struct sched_class fair_sched_class
;
852 extern const struct sched_class idle_sched_class
;
857 extern void trigger_load_balance(struct rq
*rq
, int cpu
);
858 extern void idle_balance(int this_cpu
, struct rq
*this_rq
);
860 #else /* CONFIG_SMP */
862 static inline void idle_balance(int cpu
, struct rq
*rq
)
868 extern void sysrq_sched_debug_show(void);
869 extern void sched_init_granularity(void);
870 extern void update_max_interval(void);
871 extern void update_group_power(struct sched_domain
*sd
, int cpu
);
872 extern int update_runtime(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
);
873 extern void init_sched_rt_class(void);
874 extern void init_sched_fair_class(void);
876 extern void resched_task(struct task_struct
*p
);
877 extern void resched_cpu(int cpu
);
879 extern struct rt_bandwidth def_rt_bandwidth
;
880 extern void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
);
882 extern void update_idle_cpu_load(struct rq
*this_rq
);
884 #ifdef CONFIG_CGROUP_CPUACCT
885 #include <linux/cgroup.h>
886 /* track cpu usage of a group of tasks and its child groups */
888 struct cgroup_subsys_state css
;
889 /* cpuusage holds pointer to a u64-type object on every cpu */
890 u64 __percpu
*cpuusage
;
891 struct kernel_cpustat __percpu
*cpustat
;
894 /* return cpu accounting group corresponding to this container */
895 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
897 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
898 struct cpuacct
, css
);
901 /* return cpu accounting group to which this task belongs */
902 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
904 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
905 struct cpuacct
, css
);
908 static inline struct cpuacct
*parent_ca(struct cpuacct
*ca
)
910 if (!ca
|| !ca
->css
.cgroup
->parent
)
912 return cgroup_ca(ca
->css
.cgroup
->parent
);
915 extern void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
917 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
920 static inline void inc_nr_running(struct rq
*rq
)
925 static inline void dec_nr_running(struct rq
*rq
)
930 extern void update_rq_clock(struct rq
*rq
);
932 extern void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
933 extern void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
935 extern void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
937 extern const_debug
unsigned int sysctl_sched_time_avg
;
938 extern const_debug
unsigned int sysctl_sched_nr_migrate
;
939 extern const_debug
unsigned int sysctl_sched_migration_cost
;
941 static inline u64
sched_avg_period(void)
943 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
946 #ifdef CONFIG_SCHED_HRTICK
950 * - enabled by features
951 * - hrtimer is actually high res
953 static inline int hrtick_enabled(struct rq
*rq
)
955 if (!sched_feat(HRTICK
))
957 if (!cpu_active(cpu_of(rq
)))
959 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
962 void hrtick_start(struct rq
*rq
, u64 delay
);
966 static inline int hrtick_enabled(struct rq
*rq
)
971 #endif /* CONFIG_SCHED_HRTICK */
974 extern void sched_avg_update(struct rq
*rq
);
975 static inline void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
977 rq
->rt_avg
+= rt_delta
;
978 sched_avg_update(rq
);
981 static inline void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
) { }
982 static inline void sched_avg_update(struct rq
*rq
) { }
985 extern void start_bandwidth_timer(struct hrtimer
*period_timer
, ktime_t period
);
988 #ifdef CONFIG_PREEMPT
990 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
993 * fair double_lock_balance: Safely acquires both rq->locks in a fair
994 * way at the expense of forcing extra atomic operations in all
995 * invocations. This assures that the double_lock is acquired using the
996 * same underlying policy as the spinlock_t on this architecture, which
997 * reduces latency compared to the unfair variant below. However, it
998 * also adds more overhead and therefore may reduce throughput.
1000 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1001 __releases(this_rq
->lock
)
1002 __acquires(busiest
->lock
)
1003 __acquires(this_rq
->lock
)
1005 raw_spin_unlock(&this_rq
->lock
);
1006 double_rq_lock(this_rq
, busiest
);
1013 * Unfair double_lock_balance: Optimizes throughput at the expense of
1014 * latency by eliminating extra atomic operations when the locks are
1015 * already in proper order on entry. This favors lower cpu-ids and will
1016 * grant the double lock to lower cpus over higher ids under contention,
1017 * regardless of entry order into the function.
1019 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1020 __releases(this_rq
->lock
)
1021 __acquires(busiest
->lock
)
1022 __acquires(this_rq
->lock
)
1026 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1027 if (busiest
< this_rq
) {
1028 raw_spin_unlock(&this_rq
->lock
);
1029 raw_spin_lock(&busiest
->lock
);
1030 raw_spin_lock_nested(&this_rq
->lock
,
1031 SINGLE_DEPTH_NESTING
);
1034 raw_spin_lock_nested(&busiest
->lock
,
1035 SINGLE_DEPTH_NESTING
);
1040 #endif /* CONFIG_PREEMPT */
1043 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1045 static inline int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1047 if (unlikely(!irqs_disabled())) {
1048 /* printk() doesn't work good under rq->lock */
1049 raw_spin_unlock(&this_rq
->lock
);
1053 return _double_lock_balance(this_rq
, busiest
);
1056 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1057 __releases(busiest
->lock
)
1059 raw_spin_unlock(&busiest
->lock
);
1060 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1064 * double_rq_lock - safely lock two runqueues
1066 * Note this does not disable interrupts like task_rq_lock,
1067 * you need to do so manually before calling.
1069 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1070 __acquires(rq1
->lock
)
1071 __acquires(rq2
->lock
)
1073 BUG_ON(!irqs_disabled());
1075 raw_spin_lock(&rq1
->lock
);
1076 __acquire(rq2
->lock
); /* Fake it out ;) */
1079 raw_spin_lock(&rq1
->lock
);
1080 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1082 raw_spin_lock(&rq2
->lock
);
1083 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1089 * double_rq_unlock - safely unlock two runqueues
1091 * Note this does not restore interrupts like task_rq_unlock,
1092 * you need to do so manually after calling.
1094 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1095 __releases(rq1
->lock
)
1096 __releases(rq2
->lock
)
1098 raw_spin_unlock(&rq1
->lock
);
1100 raw_spin_unlock(&rq2
->lock
);
1102 __release(rq2
->lock
);
1105 #else /* CONFIG_SMP */
1108 * double_rq_lock - safely lock two runqueues
1110 * Note this does not disable interrupts like task_rq_lock,
1111 * you need to do so manually before calling.
1113 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1114 __acquires(rq1
->lock
)
1115 __acquires(rq2
->lock
)
1117 BUG_ON(!irqs_disabled());
1119 raw_spin_lock(&rq1
->lock
);
1120 __acquire(rq2
->lock
); /* Fake it out ;) */
1124 * double_rq_unlock - safely unlock two runqueues
1126 * Note this does not restore interrupts like task_rq_unlock,
1127 * you need to do so manually after calling.
1129 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1130 __releases(rq1
->lock
)
1131 __releases(rq2
->lock
)
1134 raw_spin_unlock(&rq1
->lock
);
1135 __release(rq2
->lock
);
1140 extern struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
);
1141 extern struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
);
1142 extern void print_cfs_stats(struct seq_file
*m
, int cpu
);
1143 extern void print_rt_stats(struct seq_file
*m
, int cpu
);
1145 extern void init_cfs_rq(struct cfs_rq
*cfs_rq
);
1146 extern void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
);
1148 extern void account_cfs_bandwidth_used(int enabled
, int was_enabled
);
1151 enum rq_nohz_flag_bits
{
1157 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)