1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
62 #include <net/tcp_memcontrol.h>
65 #include <asm/uaccess.h>
67 #include <trace/events/vmscan.h>
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
70 EXPORT_SYMBOL(memory_cgrp_subsys
);
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup
*root_mem_cgroup __read_mostly
;
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly
;
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata
= 1;
83 static int really_do_swap_account __initdata
;
87 #define do_swap_account 0
91 static const char * const mem_cgroup_stat_names
[] = {
100 enum mem_cgroup_events_index
{
101 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS
,
108 static const char * const mem_cgroup_events_names
[] = {
115 static const char * const mem_cgroup_lru_names
[] = {
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
129 enum mem_cgroup_events_target
{
130 MEM_CGROUP_TARGET_THRESH
,
131 MEM_CGROUP_TARGET_SOFTLIMIT
,
132 MEM_CGROUP_TARGET_NUMAINFO
,
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
139 struct mem_cgroup_stat_cpu
{
140 long count
[MEM_CGROUP_STAT_NSTATS
];
141 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
142 unsigned long nr_page_events
;
143 unsigned long targets
[MEM_CGROUP_NTARGETS
];
146 struct mem_cgroup_reclaim_iter
{
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
151 struct mem_cgroup
*last_visited
;
154 /* scan generation, increased every round-trip */
155 unsigned int generation
;
159 * per-zone information in memory controller.
161 struct mem_cgroup_per_zone
{
162 struct lruvec lruvec
;
163 unsigned long lru_size
[NR_LRU_LISTS
];
165 struct mem_cgroup_reclaim_iter reclaim_iter
[DEF_PRIORITY
+ 1];
167 struct rb_node tree_node
; /* RB tree node */
168 unsigned long long usage_in_excess
;/* Set to the value by which */
169 /* the soft limit is exceeded*/
171 struct mem_cgroup
*memcg
; /* Back pointer, we cannot */
172 /* use container_of */
175 struct mem_cgroup_per_node
{
176 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
184 struct mem_cgroup_tree_per_zone
{
185 struct rb_root rb_root
;
189 struct mem_cgroup_tree_per_node
{
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
193 struct mem_cgroup_tree
{
194 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
199 struct mem_cgroup_threshold
{
200 struct eventfd_ctx
*eventfd
;
205 struct mem_cgroup_threshold_ary
{
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold
;
208 /* Size of entries[] */
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries
[0];
214 struct mem_cgroup_thresholds
{
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary
*primary
;
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
222 struct mem_cgroup_threshold_ary
*spare
;
226 struct mem_cgroup_eventfd_list
{
227 struct list_head list
;
228 struct eventfd_ctx
*eventfd
;
232 * cgroup_event represents events which userspace want to receive.
234 struct mem_cgroup_event
{
236 * memcg which the event belongs to.
238 struct mem_cgroup
*memcg
;
240 * eventfd to signal userspace about the event.
242 struct eventfd_ctx
*eventfd
;
244 * Each of these stored in a list by the cgroup.
246 struct list_head list
;
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
252 int (*register_event
)(struct mem_cgroup
*memcg
,
253 struct eventfd_ctx
*eventfd
, const char *args
);
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
259 void (*unregister_event
)(struct mem_cgroup
*memcg
,
260 struct eventfd_ctx
*eventfd
);
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
266 wait_queue_head_t
*wqh
;
268 struct work_struct remove
;
271 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
272 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
286 struct cgroup_subsys_state css
;
288 * the counter to account for memory usage
290 struct res_counter res
;
292 /* vmpressure notifications */
293 struct vmpressure vmpressure
;
296 * the counter to account for mem+swap usage.
298 struct res_counter memsw
;
301 * the counter to account for kernel memory usage.
303 struct res_counter kmem
;
305 * Should the accounting and control be hierarchical, per subtree?
308 unsigned long kmem_account_flags
; /* See KMEM_ACCOUNTED_*, below */
312 atomic_t oom_wakeups
;
315 /* OOM-Killer disable */
316 int oom_kill_disable
;
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum
;
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock
;
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds
;
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds
;
330 /* For oom notifier event fd */
331 struct list_head oom_notify
;
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
337 unsigned long move_charge_at_immigrate
;
339 * set > 0 if pages under this cgroup are moving to other cgroup.
341 atomic_t moving_account
;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock
;
347 struct mem_cgroup_stat_cpu __percpu
*stat
;
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
352 struct mem_cgroup_stat_cpu nocpu_base
;
353 spinlock_t pcp_counter_lock
;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem
;
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
362 struct list_head memcg_slab_caches
;
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
367 int last_scanned_node
;
369 nodemask_t scan_nodes
;
370 atomic_t numainfo_events
;
371 atomic_t numainfo_updating
;
374 /* List of events which userspace want to receive */
375 struct list_head event_list
;
376 spinlock_t event_list_lock
;
378 struct mem_cgroup_per_node
*nodeinfo
[0];
379 /* WARNING: nodeinfo must be the last member here */
382 /* internal only representation about the status of kmem accounting. */
384 KMEM_ACCOUNTED_ACTIVE
, /* accounted by this cgroup itself */
385 KMEM_ACCOUNTED_DEAD
, /* dead memcg with pending kmem charges */
388 #ifdef CONFIG_MEMCG_KMEM
389 static inline void memcg_kmem_set_active(struct mem_cgroup
*memcg
)
391 set_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
394 static bool memcg_kmem_is_active(struct mem_cgroup
*memcg
)
396 return test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
399 static void memcg_kmem_mark_dead(struct mem_cgroup
*memcg
)
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
))
407 set_bit(KMEM_ACCOUNTED_DEAD
, &memcg
->kmem_account_flags
);
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup
*memcg
)
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD
,
413 &memcg
->kmem_account_flags
);
417 /* Stuffs for move charges at task migration. */
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
423 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
424 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct
{
430 spinlock_t lock
; /* for from, to */
431 struct mem_cgroup
*from
;
432 struct mem_cgroup
*to
;
433 unsigned long immigrate_flags
;
434 unsigned long precharge
;
435 unsigned long moved_charge
;
436 unsigned long moved_swap
;
437 struct task_struct
*moving_task
; /* a task moving charges */
438 wait_queue_head_t waitq
; /* a waitq for other context */
440 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
441 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
444 static bool move_anon(void)
446 return test_bit(MOVE_CHARGE_TYPE_ANON
, &mc
.immigrate_flags
);
449 static bool move_file(void)
451 return test_bit(MOVE_CHARGE_TYPE_FILE
, &mc
.immigrate_flags
);
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
458 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
459 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
462 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
463 MEM_CGROUP_CHARGE_TYPE_ANON
,
464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
465 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
469 /* for encoding cft->private value on file */
477 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val) ((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL (0)
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
496 static DEFINE_MUTEX(memcg_create_mutex
);
498 struct mem_cgroup
*mem_cgroup_from_css(struct cgroup_subsys_state
*s
)
500 return s
? container_of(s
, struct mem_cgroup
, css
) : NULL
;
503 /* Some nice accessors for the vmpressure. */
504 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
507 memcg
= root_mem_cgroup
;
508 return &memcg
->vmpressure
;
511 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
513 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
516 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
518 return (memcg
== root_mem_cgroup
);
522 * We restrict the id in the range of [1, 65535], so it can fit into
525 #define MEM_CGROUP_ID_MAX USHRT_MAX
527 static inline unsigned short mem_cgroup_id(struct mem_cgroup
*memcg
)
529 return memcg
->css
.id
;
532 static inline struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
534 struct cgroup_subsys_state
*css
;
536 css
= css_from_id(id
, &memory_cgrp_subsys
);
537 return mem_cgroup_from_css(css
);
540 /* Writing them here to avoid exposing memcg's inner layout */
541 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
543 void sock_update_memcg(struct sock
*sk
)
545 if (mem_cgroup_sockets_enabled
) {
546 struct mem_cgroup
*memcg
;
547 struct cg_proto
*cg_proto
;
549 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
551 /* Socket cloning can throw us here with sk_cgrp already
552 * filled. It won't however, necessarily happen from
553 * process context. So the test for root memcg given
554 * the current task's memcg won't help us in this case.
556 * Respecting the original socket's memcg is a better
557 * decision in this case.
560 BUG_ON(mem_cgroup_is_root(sk
->sk_cgrp
->memcg
));
561 css_get(&sk
->sk_cgrp
->memcg
->css
);
566 memcg
= mem_cgroup_from_task(current
);
567 cg_proto
= sk
->sk_prot
->proto_cgroup(memcg
);
568 if (!mem_cgroup_is_root(memcg
) &&
569 memcg_proto_active(cg_proto
) &&
570 css_tryget_online(&memcg
->css
)) {
571 sk
->sk_cgrp
= cg_proto
;
576 EXPORT_SYMBOL(sock_update_memcg
);
578 void sock_release_memcg(struct sock
*sk
)
580 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
581 struct mem_cgroup
*memcg
;
582 WARN_ON(!sk
->sk_cgrp
->memcg
);
583 memcg
= sk
->sk_cgrp
->memcg
;
584 css_put(&sk
->sk_cgrp
->memcg
->css
);
588 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
590 if (!memcg
|| mem_cgroup_is_root(memcg
))
593 return &memcg
->tcp_mem
;
595 EXPORT_SYMBOL(tcp_proto_cgroup
);
597 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
599 if (!memcg_proto_activated(&memcg
->tcp_mem
))
601 static_key_slow_dec(&memcg_socket_limit_enabled
);
604 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
609 #ifdef CONFIG_MEMCG_KMEM
611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
612 * The main reason for not using cgroup id for this:
613 * this works better in sparse environments, where we have a lot of memcgs,
614 * but only a few kmem-limited. Or also, if we have, for instance, 200
615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
616 * 200 entry array for that.
618 * The current size of the caches array is stored in
619 * memcg_limited_groups_array_size. It will double each time we have to
622 static DEFINE_IDA(kmem_limited_groups
);
623 int memcg_limited_groups_array_size
;
626 * MIN_SIZE is different than 1, because we would like to avoid going through
627 * the alloc/free process all the time. In a small machine, 4 kmem-limited
628 * cgroups is a reasonable guess. In the future, it could be a parameter or
629 * tunable, but that is strictly not necessary.
631 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
632 * this constant directly from cgroup, but it is understandable that this is
633 * better kept as an internal representation in cgroup.c. In any case, the
634 * cgrp_id space is not getting any smaller, and we don't have to necessarily
635 * increase ours as well if it increases.
637 #define MEMCG_CACHES_MIN_SIZE 4
638 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
641 * A lot of the calls to the cache allocation functions are expected to be
642 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
643 * conditional to this static branch, we'll have to allow modules that does
644 * kmem_cache_alloc and the such to see this symbol as well
646 struct static_key memcg_kmem_enabled_key
;
647 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
649 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
651 if (memcg_kmem_is_active(memcg
)) {
652 static_key_slow_dec(&memcg_kmem_enabled_key
);
653 ida_simple_remove(&kmem_limited_groups
, memcg
->kmemcg_id
);
656 * This check can't live in kmem destruction function,
657 * since the charges will outlive the cgroup
659 WARN_ON(res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0);
662 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
665 #endif /* CONFIG_MEMCG_KMEM */
667 static void disarm_static_keys(struct mem_cgroup
*memcg
)
669 disarm_sock_keys(memcg
);
670 disarm_kmem_keys(memcg
);
673 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
675 static struct mem_cgroup_per_zone
*
676 mem_cgroup_zone_zoneinfo(struct mem_cgroup
*memcg
, struct zone
*zone
)
678 int nid
= zone_to_nid(zone
);
679 int zid
= zone_idx(zone
);
681 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
684 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
689 static struct mem_cgroup_per_zone
*
690 mem_cgroup_page_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
692 int nid
= page_to_nid(page
);
693 int zid
= page_zonenum(page
);
695 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
698 static struct mem_cgroup_tree_per_zone
*
699 soft_limit_tree_node_zone(int nid
, int zid
)
701 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
704 static struct mem_cgroup_tree_per_zone
*
705 soft_limit_tree_from_page(struct page
*page
)
707 int nid
= page_to_nid(page
);
708 int zid
= page_zonenum(page
);
710 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
713 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone
*mz
,
714 struct mem_cgroup_tree_per_zone
*mctz
,
715 unsigned long long new_usage_in_excess
)
717 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
718 struct rb_node
*parent
= NULL
;
719 struct mem_cgroup_per_zone
*mz_node
;
724 mz
->usage_in_excess
= new_usage_in_excess
;
725 if (!mz
->usage_in_excess
)
729 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
731 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
734 * We can't avoid mem cgroups that are over their soft
735 * limit by the same amount
737 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
740 rb_link_node(&mz
->tree_node
, parent
, p
);
741 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
745 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
746 struct mem_cgroup_tree_per_zone
*mctz
)
750 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
754 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
755 struct mem_cgroup_tree_per_zone
*mctz
)
759 spin_lock_irqsave(&mctz
->lock
, flags
);
760 __mem_cgroup_remove_exceeded(mz
, mctz
);
761 spin_unlock_irqrestore(&mctz
->lock
, flags
);
765 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
767 unsigned long long excess
;
768 struct mem_cgroup_per_zone
*mz
;
769 struct mem_cgroup_tree_per_zone
*mctz
;
771 mctz
= soft_limit_tree_from_page(page
);
773 * Necessary to update all ancestors when hierarchy is used.
774 * because their event counter is not touched.
776 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
777 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
778 excess
= res_counter_soft_limit_excess(&memcg
->res
);
780 * We have to update the tree if mz is on RB-tree or
781 * mem is over its softlimit.
783 if (excess
|| mz
->on_tree
) {
786 spin_lock_irqsave(&mctz
->lock
, flags
);
787 /* if on-tree, remove it */
789 __mem_cgroup_remove_exceeded(mz
, mctz
);
791 * Insert again. mz->usage_in_excess will be updated.
792 * If excess is 0, no tree ops.
794 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
795 spin_unlock_irqrestore(&mctz
->lock
, flags
);
800 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
802 struct mem_cgroup_tree_per_zone
*mctz
;
803 struct mem_cgroup_per_zone
*mz
;
807 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
808 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
809 mctz
= soft_limit_tree_node_zone(nid
, zid
);
810 mem_cgroup_remove_exceeded(mz
, mctz
);
815 static struct mem_cgroup_per_zone
*
816 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
818 struct rb_node
*rightmost
= NULL
;
819 struct mem_cgroup_per_zone
*mz
;
823 rightmost
= rb_last(&mctz
->rb_root
);
825 goto done
; /* Nothing to reclaim from */
827 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
829 * Remove the node now but someone else can add it back,
830 * we will to add it back at the end of reclaim to its correct
831 * position in the tree.
833 __mem_cgroup_remove_exceeded(mz
, mctz
);
834 if (!res_counter_soft_limit_excess(&mz
->memcg
->res
) ||
835 !css_tryget_online(&mz
->memcg
->css
))
841 static struct mem_cgroup_per_zone
*
842 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
844 struct mem_cgroup_per_zone
*mz
;
846 spin_lock_irq(&mctz
->lock
);
847 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
848 spin_unlock_irq(&mctz
->lock
);
853 * Implementation Note: reading percpu statistics for memcg.
855 * Both of vmstat[] and percpu_counter has threshold and do periodic
856 * synchronization to implement "quick" read. There are trade-off between
857 * reading cost and precision of value. Then, we may have a chance to implement
858 * a periodic synchronizion of counter in memcg's counter.
860 * But this _read() function is used for user interface now. The user accounts
861 * memory usage by memory cgroup and he _always_ requires exact value because
862 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
863 * have to visit all online cpus and make sum. So, for now, unnecessary
864 * synchronization is not implemented. (just implemented for cpu hotplug)
866 * If there are kernel internal actions which can make use of some not-exact
867 * value, and reading all cpu value can be performance bottleneck in some
868 * common workload, threashold and synchonization as vmstat[] should be
871 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
872 enum mem_cgroup_stat_index idx
)
878 for_each_online_cpu(cpu
)
879 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
880 #ifdef CONFIG_HOTPLUG_CPU
881 spin_lock(&memcg
->pcp_counter_lock
);
882 val
+= memcg
->nocpu_base
.count
[idx
];
883 spin_unlock(&memcg
->pcp_counter_lock
);
889 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
890 enum mem_cgroup_events_index idx
)
892 unsigned long val
= 0;
896 for_each_online_cpu(cpu
)
897 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
898 #ifdef CONFIG_HOTPLUG_CPU
899 spin_lock(&memcg
->pcp_counter_lock
);
900 val
+= memcg
->nocpu_base
.events
[idx
];
901 spin_unlock(&memcg
->pcp_counter_lock
);
907 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
912 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
913 * counted as CACHE even if it's on ANON LRU.
916 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
919 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
922 if (PageTransHuge(page
))
923 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
926 /* pagein of a big page is an event. So, ignore page size */
928 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
930 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
931 nr_pages
= -nr_pages
; /* for event */
934 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
937 unsigned long mem_cgroup_get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
939 struct mem_cgroup_per_zone
*mz
;
941 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
942 return mz
->lru_size
[lru
];
945 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
947 unsigned int lru_mask
)
949 unsigned long nr
= 0;
952 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
954 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
955 struct mem_cgroup_per_zone
*mz
;
959 if (!(BIT(lru
) & lru_mask
))
961 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
962 nr
+= mz
->lru_size
[lru
];
968 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
969 unsigned int lru_mask
)
971 unsigned long nr
= 0;
974 for_each_node_state(nid
, N_MEMORY
)
975 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
979 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
980 enum mem_cgroup_events_target target
)
982 unsigned long val
, next
;
984 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
985 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
986 /* from time_after() in jiffies.h */
987 if ((long)next
- (long)val
< 0) {
989 case MEM_CGROUP_TARGET_THRESH
:
990 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
992 case MEM_CGROUP_TARGET_SOFTLIMIT
:
993 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
995 case MEM_CGROUP_TARGET_NUMAINFO
:
996 next
= val
+ NUMAINFO_EVENTS_TARGET
;
1001 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
1008 * Check events in order.
1011 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
1013 /* threshold event is triggered in finer grain than soft limit */
1014 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
1015 MEM_CGROUP_TARGET_THRESH
))) {
1017 bool do_numainfo __maybe_unused
;
1019 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
1020 MEM_CGROUP_TARGET_SOFTLIMIT
);
1021 #if MAX_NUMNODES > 1
1022 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
1023 MEM_CGROUP_TARGET_NUMAINFO
);
1025 mem_cgroup_threshold(memcg
);
1026 if (unlikely(do_softlimit
))
1027 mem_cgroup_update_tree(memcg
, page
);
1028 #if MAX_NUMNODES > 1
1029 if (unlikely(do_numainfo
))
1030 atomic_inc(&memcg
->numainfo_events
);
1035 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
1038 * mm_update_next_owner() may clear mm->owner to NULL
1039 * if it races with swapoff, page migration, etc.
1040 * So this can be called with p == NULL.
1045 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
1048 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
1050 struct mem_cgroup
*memcg
= NULL
;
1055 * Page cache insertions can happen withou an
1056 * actual mm context, e.g. during disk probing
1057 * on boot, loopback IO, acct() writes etc.
1060 memcg
= root_mem_cgroup
;
1062 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1063 if (unlikely(!memcg
))
1064 memcg
= root_mem_cgroup
;
1066 } while (!css_tryget_online(&memcg
->css
));
1072 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1073 * ref. count) or NULL if the whole root's subtree has been visited.
1075 * helper function to be used by mem_cgroup_iter
1077 static struct mem_cgroup
*__mem_cgroup_iter_next(struct mem_cgroup
*root
,
1078 struct mem_cgroup
*last_visited
)
1080 struct cgroup_subsys_state
*prev_css
, *next_css
;
1082 prev_css
= last_visited
? &last_visited
->css
: NULL
;
1084 next_css
= css_next_descendant_pre(prev_css
, &root
->css
);
1087 * Even if we found a group we have to make sure it is
1088 * alive. css && !memcg means that the groups should be
1089 * skipped and we should continue the tree walk.
1090 * last_visited css is safe to use because it is
1091 * protected by css_get and the tree walk is rcu safe.
1093 * We do not take a reference on the root of the tree walk
1094 * because we might race with the root removal when it would
1095 * be the only node in the iterated hierarchy and mem_cgroup_iter
1096 * would end up in an endless loop because it expects that at
1097 * least one valid node will be returned. Root cannot disappear
1098 * because caller of the iterator should hold it already so
1099 * skipping css reference should be safe.
1102 if ((next_css
== &root
->css
) ||
1103 ((next_css
->flags
& CSS_ONLINE
) &&
1104 css_tryget_online(next_css
)))
1105 return mem_cgroup_from_css(next_css
);
1107 prev_css
= next_css
;
1114 static void mem_cgroup_iter_invalidate(struct mem_cgroup
*root
)
1117 * When a group in the hierarchy below root is destroyed, the
1118 * hierarchy iterator can no longer be trusted since it might
1119 * have pointed to the destroyed group. Invalidate it.
1121 atomic_inc(&root
->dead_count
);
1124 static struct mem_cgroup
*
1125 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter
*iter
,
1126 struct mem_cgroup
*root
,
1129 struct mem_cgroup
*position
= NULL
;
1131 * A cgroup destruction happens in two stages: offlining and
1132 * release. They are separated by a RCU grace period.
1134 * If the iterator is valid, we may still race with an
1135 * offlining. The RCU lock ensures the object won't be
1136 * released, tryget will fail if we lost the race.
1138 *sequence
= atomic_read(&root
->dead_count
);
1139 if (iter
->last_dead_count
== *sequence
) {
1141 position
= iter
->last_visited
;
1144 * We cannot take a reference to root because we might race
1145 * with root removal and returning NULL would end up in
1146 * an endless loop on the iterator user level when root
1147 * would be returned all the time.
1149 if (position
&& position
!= root
&&
1150 !css_tryget_online(&position
->css
))
1156 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter
*iter
,
1157 struct mem_cgroup
*last_visited
,
1158 struct mem_cgroup
*new_position
,
1159 struct mem_cgroup
*root
,
1162 /* root reference counting symmetric to mem_cgroup_iter_load */
1163 if (last_visited
&& last_visited
!= root
)
1164 css_put(&last_visited
->css
);
1166 * We store the sequence count from the time @last_visited was
1167 * loaded successfully instead of rereading it here so that we
1168 * don't lose destruction events in between. We could have
1169 * raced with the destruction of @new_position after all.
1171 iter
->last_visited
= new_position
;
1173 iter
->last_dead_count
= sequence
;
1177 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1178 * @root: hierarchy root
1179 * @prev: previously returned memcg, NULL on first invocation
1180 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1182 * Returns references to children of the hierarchy below @root, or
1183 * @root itself, or %NULL after a full round-trip.
1185 * Caller must pass the return value in @prev on subsequent
1186 * invocations for reference counting, or use mem_cgroup_iter_break()
1187 * to cancel a hierarchy walk before the round-trip is complete.
1189 * Reclaimers can specify a zone and a priority level in @reclaim to
1190 * divide up the memcgs in the hierarchy among all concurrent
1191 * reclaimers operating on the same zone and priority.
1193 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
1194 struct mem_cgroup
*prev
,
1195 struct mem_cgroup_reclaim_cookie
*reclaim
)
1197 struct mem_cgroup
*memcg
= NULL
;
1198 struct mem_cgroup
*last_visited
= NULL
;
1200 if (mem_cgroup_disabled())
1204 root
= root_mem_cgroup
;
1206 if (prev
&& !reclaim
)
1207 last_visited
= prev
;
1209 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
1217 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
1218 int uninitialized_var(seq
);
1221 struct mem_cgroup_per_zone
*mz
;
1223 mz
= mem_cgroup_zone_zoneinfo(root
, reclaim
->zone
);
1224 iter
= &mz
->reclaim_iter
[reclaim
->priority
];
1225 if (prev
&& reclaim
->generation
!= iter
->generation
) {
1226 iter
->last_visited
= NULL
;
1230 last_visited
= mem_cgroup_iter_load(iter
, root
, &seq
);
1233 memcg
= __mem_cgroup_iter_next(root
, last_visited
);
1236 mem_cgroup_iter_update(iter
, last_visited
, memcg
, root
,
1241 else if (!prev
&& memcg
)
1242 reclaim
->generation
= iter
->generation
;
1251 if (prev
&& prev
!= root
)
1252 css_put(&prev
->css
);
1258 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259 * @root: hierarchy root
1260 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1262 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
1263 struct mem_cgroup
*prev
)
1266 root
= root_mem_cgroup
;
1267 if (prev
&& prev
!= root
)
1268 css_put(&prev
->css
);
1272 * Iteration constructs for visiting all cgroups (under a tree). If
1273 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1274 * be used for reference counting.
1276 #define for_each_mem_cgroup_tree(iter, root) \
1277 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1279 iter = mem_cgroup_iter(root, iter, NULL))
1281 #define for_each_mem_cgroup(iter) \
1282 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1284 iter = mem_cgroup_iter(NULL, iter, NULL))
1286 void __mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
1288 struct mem_cgroup
*memcg
;
1291 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1292 if (unlikely(!memcg
))
1297 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
]);
1300 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
1308 EXPORT_SYMBOL(__mem_cgroup_count_vm_event
);
1311 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1312 * @zone: zone of the wanted lruvec
1313 * @memcg: memcg of the wanted lruvec
1315 * Returns the lru list vector holding pages for the given @zone and
1316 * @mem. This can be the global zone lruvec, if the memory controller
1319 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
1320 struct mem_cgroup
*memcg
)
1322 struct mem_cgroup_per_zone
*mz
;
1323 struct lruvec
*lruvec
;
1325 if (mem_cgroup_disabled()) {
1326 lruvec
= &zone
->lruvec
;
1330 mz
= mem_cgroup_zone_zoneinfo(memcg
, zone
);
1331 lruvec
= &mz
->lruvec
;
1334 * Since a node can be onlined after the mem_cgroup was created,
1335 * we have to be prepared to initialize lruvec->zone here;
1336 * and if offlined then reonlined, we need to reinitialize it.
1338 if (unlikely(lruvec
->zone
!= zone
))
1339 lruvec
->zone
= zone
;
1344 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1346 * @zone: zone of the page
1348 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
1350 struct mem_cgroup_per_zone
*mz
;
1351 struct mem_cgroup
*memcg
;
1352 struct page_cgroup
*pc
;
1353 struct lruvec
*lruvec
;
1355 if (mem_cgroup_disabled()) {
1356 lruvec
= &zone
->lruvec
;
1360 pc
= lookup_page_cgroup(page
);
1361 memcg
= pc
->mem_cgroup
;
1364 * Surreptitiously switch any uncharged offlist page to root:
1365 * an uncharged page off lru does nothing to secure
1366 * its former mem_cgroup from sudden removal.
1368 * Our caller holds lru_lock, and PageCgroupUsed is updated
1369 * under page_cgroup lock: between them, they make all uses
1370 * of pc->mem_cgroup safe.
1372 if (!PageLRU(page
) && !PageCgroupUsed(pc
) && memcg
!= root_mem_cgroup
)
1373 pc
->mem_cgroup
= memcg
= root_mem_cgroup
;
1375 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
1376 lruvec
= &mz
->lruvec
;
1379 * Since a node can be onlined after the mem_cgroup was created,
1380 * we have to be prepared to initialize lruvec->zone here;
1381 * and if offlined then reonlined, we need to reinitialize it.
1383 if (unlikely(lruvec
->zone
!= zone
))
1384 lruvec
->zone
= zone
;
1389 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1390 * @lruvec: mem_cgroup per zone lru vector
1391 * @lru: index of lru list the page is sitting on
1392 * @nr_pages: positive when adding or negative when removing
1394 * This function must be called when a page is added to or removed from an
1397 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1400 struct mem_cgroup_per_zone
*mz
;
1401 unsigned long *lru_size
;
1403 if (mem_cgroup_disabled())
1406 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1407 lru_size
= mz
->lru_size
+ lru
;
1408 *lru_size
+= nr_pages
;
1409 VM_BUG_ON((long)(*lru_size
) < 0);
1413 * Checks whether given mem is same or in the root_mem_cgroup's
1416 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1417 struct mem_cgroup
*memcg
)
1419 if (root_memcg
== memcg
)
1421 if (!root_memcg
->use_hierarchy
|| !memcg
)
1423 return cgroup_is_descendant(memcg
->css
.cgroup
, root_memcg
->css
.cgroup
);
1426 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1427 struct mem_cgroup
*memcg
)
1432 ret
= __mem_cgroup_same_or_subtree(root_memcg
, memcg
);
1437 bool task_in_mem_cgroup(struct task_struct
*task
,
1438 const struct mem_cgroup
*memcg
)
1440 struct mem_cgroup
*curr
= NULL
;
1441 struct task_struct
*p
;
1444 p
= find_lock_task_mm(task
);
1446 curr
= get_mem_cgroup_from_mm(p
->mm
);
1450 * All threads may have already detached their mm's, but the oom
1451 * killer still needs to detect if they have already been oom
1452 * killed to prevent needlessly killing additional tasks.
1455 curr
= mem_cgroup_from_task(task
);
1457 css_get(&curr
->css
);
1461 * We should check use_hierarchy of "memcg" not "curr". Because checking
1462 * use_hierarchy of "curr" here make this function true if hierarchy is
1463 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1464 * hierarchy(even if use_hierarchy is disabled in "memcg").
1466 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1467 css_put(&curr
->css
);
1471 int mem_cgroup_inactive_anon_is_low(struct lruvec
*lruvec
)
1473 unsigned long inactive_ratio
;
1474 unsigned long inactive
;
1475 unsigned long active
;
1478 inactive
= mem_cgroup_get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
1479 active
= mem_cgroup_get_lru_size(lruvec
, LRU_ACTIVE_ANON
);
1481 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1483 inactive_ratio
= int_sqrt(10 * gb
);
1487 return inactive
* inactive_ratio
< active
;
1490 #define mem_cgroup_from_res_counter(counter, member) \
1491 container_of(counter, struct mem_cgroup, member)
1494 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1495 * @memcg: the memory cgroup
1497 * Returns the maximum amount of memory @mem can be charged with, in
1500 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1502 unsigned long long margin
;
1504 margin
= res_counter_margin(&memcg
->res
);
1505 if (do_swap_account
)
1506 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1507 return margin
>> PAGE_SHIFT
;
1510 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1513 if (mem_cgroup_disabled() || !memcg
->css
.parent
)
1514 return vm_swappiness
;
1516 return memcg
->swappiness
;
1520 * memcg->moving_account is used for checking possibility that some thread is
1521 * calling move_account(). When a thread on CPU-A starts moving pages under
1522 * a memcg, other threads should check memcg->moving_account under
1523 * rcu_read_lock(), like this:
1527 * memcg->moving_account+1 if (memcg->mocing_account)
1529 * synchronize_rcu() update something.
1534 /* for quick checking without looking up memcg */
1535 atomic_t memcg_moving __read_mostly
;
1537 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1539 atomic_inc(&memcg_moving
);
1540 atomic_inc(&memcg
->moving_account
);
1544 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1547 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1548 * We check NULL in callee rather than caller.
1551 atomic_dec(&memcg_moving
);
1552 atomic_dec(&memcg
->moving_account
);
1557 * A routine for checking "mem" is under move_account() or not.
1559 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1560 * moving cgroups. This is for waiting at high-memory pressure
1563 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1565 struct mem_cgroup
*from
;
1566 struct mem_cgroup
*to
;
1569 * Unlike task_move routines, we access mc.to, mc.from not under
1570 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1572 spin_lock(&mc
.lock
);
1578 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1579 || mem_cgroup_same_or_subtree(memcg
, to
);
1581 spin_unlock(&mc
.lock
);
1585 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1587 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1588 if (mem_cgroup_under_move(memcg
)) {
1590 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1591 /* moving charge context might have finished. */
1594 finish_wait(&mc
.waitq
, &wait
);
1602 * Take this lock when
1603 * - a code tries to modify page's memcg while it's USED.
1604 * - a code tries to modify page state accounting in a memcg.
1606 static void move_lock_mem_cgroup(struct mem_cgroup
*memcg
,
1607 unsigned long *flags
)
1609 spin_lock_irqsave(&memcg
->move_lock
, *flags
);
1612 static void move_unlock_mem_cgroup(struct mem_cgroup
*memcg
,
1613 unsigned long *flags
)
1615 spin_unlock_irqrestore(&memcg
->move_lock
, *flags
);
1618 #define K(x) ((x) << (PAGE_SHIFT-10))
1620 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1621 * @memcg: The memory cgroup that went over limit
1622 * @p: Task that is going to be killed
1624 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1627 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1629 /* oom_info_lock ensures that parallel ooms do not interleave */
1630 static DEFINE_MUTEX(oom_info_lock
);
1631 struct mem_cgroup
*iter
;
1637 mutex_lock(&oom_info_lock
);
1640 pr_info("Task in ");
1641 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1642 pr_info(" killed as a result of limit of ");
1643 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1648 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1649 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1650 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1651 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1652 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1653 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1654 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1655 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1656 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1657 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) >> 10,
1658 res_counter_read_u64(&memcg
->kmem
, RES_LIMIT
) >> 10,
1659 res_counter_read_u64(&memcg
->kmem
, RES_FAILCNT
));
1661 for_each_mem_cgroup_tree(iter
, memcg
) {
1662 pr_info("Memory cgroup stats for ");
1663 pr_cont_cgroup_path(iter
->css
.cgroup
);
1666 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1667 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1669 pr_cont(" %s:%ldKB", mem_cgroup_stat_names
[i
],
1670 K(mem_cgroup_read_stat(iter
, i
)));
1673 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1674 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1675 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1679 mutex_unlock(&oom_info_lock
);
1683 * This function returns the number of memcg under hierarchy tree. Returns
1684 * 1(self count) if no children.
1686 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1689 struct mem_cgroup
*iter
;
1691 for_each_mem_cgroup_tree(iter
, memcg
)
1697 * Return the memory (and swap, if configured) limit for a memcg.
1699 static u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1703 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1706 * Do not consider swap space if we cannot swap due to swappiness
1708 if (mem_cgroup_swappiness(memcg
)) {
1711 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1712 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1715 * If memsw is finite and limits the amount of swap space
1716 * available to this memcg, return that limit.
1718 limit
= min(limit
, memsw
);
1724 static void mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1727 struct mem_cgroup
*iter
;
1728 unsigned long chosen_points
= 0;
1729 unsigned long totalpages
;
1730 unsigned int points
= 0;
1731 struct task_struct
*chosen
= NULL
;
1734 * If current has a pending SIGKILL or is exiting, then automatically
1735 * select it. The goal is to allow it to allocate so that it may
1736 * quickly exit and free its memory.
1738 if (fatal_signal_pending(current
) || current
->flags
& PF_EXITING
) {
1739 set_thread_flag(TIF_MEMDIE
);
1743 check_panic_on_oom(CONSTRAINT_MEMCG
, gfp_mask
, order
, NULL
);
1744 totalpages
= mem_cgroup_get_limit(memcg
) >> PAGE_SHIFT
? : 1;
1745 for_each_mem_cgroup_tree(iter
, memcg
) {
1746 struct css_task_iter it
;
1747 struct task_struct
*task
;
1749 css_task_iter_start(&iter
->css
, &it
);
1750 while ((task
= css_task_iter_next(&it
))) {
1751 switch (oom_scan_process_thread(task
, totalpages
, NULL
,
1753 case OOM_SCAN_SELECT
:
1755 put_task_struct(chosen
);
1757 chosen_points
= ULONG_MAX
;
1758 get_task_struct(chosen
);
1760 case OOM_SCAN_CONTINUE
:
1762 case OOM_SCAN_ABORT
:
1763 css_task_iter_end(&it
);
1764 mem_cgroup_iter_break(memcg
, iter
);
1766 put_task_struct(chosen
);
1771 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1772 if (!points
|| points
< chosen_points
)
1774 /* Prefer thread group leaders for display purposes */
1775 if (points
== chosen_points
&&
1776 thread_group_leader(chosen
))
1780 put_task_struct(chosen
);
1782 chosen_points
= points
;
1783 get_task_struct(chosen
);
1785 css_task_iter_end(&it
);
1790 points
= chosen_points
* 1000 / totalpages
;
1791 oom_kill_process(chosen
, gfp_mask
, order
, points
, totalpages
, memcg
,
1792 NULL
, "Memory cgroup out of memory");
1795 static unsigned long mem_cgroup_reclaim(struct mem_cgroup
*memcg
,
1797 unsigned long flags
)
1799 unsigned long total
= 0;
1800 bool noswap
= false;
1803 if (flags
& MEM_CGROUP_RECLAIM_NOSWAP
)
1805 if (!(flags
& MEM_CGROUP_RECLAIM_SHRINK
) && memcg
->memsw_is_minimum
)
1808 for (loop
= 0; loop
< MEM_CGROUP_MAX_RECLAIM_LOOPS
; loop
++) {
1810 drain_all_stock_async(memcg
);
1811 total
+= try_to_free_mem_cgroup_pages(memcg
, gfp_mask
, noswap
);
1813 * Allow limit shrinkers, which are triggered directly
1814 * by userspace, to catch signals and stop reclaim
1815 * after minimal progress, regardless of the margin.
1817 if (total
&& (flags
& MEM_CGROUP_RECLAIM_SHRINK
))
1819 if (mem_cgroup_margin(memcg
))
1822 * If nothing was reclaimed after two attempts, there
1823 * may be no reclaimable pages in this hierarchy.
1832 * test_mem_cgroup_node_reclaimable
1833 * @memcg: the target memcg
1834 * @nid: the node ID to be checked.
1835 * @noswap : specify true here if the user wants flle only information.
1837 * This function returns whether the specified memcg contains any
1838 * reclaimable pages on a node. Returns true if there are any reclaimable
1839 * pages in the node.
1841 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1842 int nid
, bool noswap
)
1844 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1846 if (noswap
|| !total_swap_pages
)
1848 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1853 #if MAX_NUMNODES > 1
1856 * Always updating the nodemask is not very good - even if we have an empty
1857 * list or the wrong list here, we can start from some node and traverse all
1858 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1861 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1865 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1866 * pagein/pageout changes since the last update.
1868 if (!atomic_read(&memcg
->numainfo_events
))
1870 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1873 /* make a nodemask where this memcg uses memory from */
1874 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1876 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1878 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1879 node_clear(nid
, memcg
->scan_nodes
);
1882 atomic_set(&memcg
->numainfo_events
, 0);
1883 atomic_set(&memcg
->numainfo_updating
, 0);
1887 * Selecting a node where we start reclaim from. Because what we need is just
1888 * reducing usage counter, start from anywhere is O,K. Considering
1889 * memory reclaim from current node, there are pros. and cons.
1891 * Freeing memory from current node means freeing memory from a node which
1892 * we'll use or we've used. So, it may make LRU bad. And if several threads
1893 * hit limits, it will see a contention on a node. But freeing from remote
1894 * node means more costs for memory reclaim because of memory latency.
1896 * Now, we use round-robin. Better algorithm is welcomed.
1898 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1902 mem_cgroup_may_update_nodemask(memcg
);
1903 node
= memcg
->last_scanned_node
;
1905 node
= next_node(node
, memcg
->scan_nodes
);
1906 if (node
== MAX_NUMNODES
)
1907 node
= first_node(memcg
->scan_nodes
);
1909 * We call this when we hit limit, not when pages are added to LRU.
1910 * No LRU may hold pages because all pages are UNEVICTABLE or
1911 * memcg is too small and all pages are not on LRU. In that case,
1912 * we use curret node.
1914 if (unlikely(node
== MAX_NUMNODES
))
1915 node
= numa_node_id();
1917 memcg
->last_scanned_node
= node
;
1922 * Check all nodes whether it contains reclaimable pages or not.
1923 * For quick scan, we make use of scan_nodes. This will allow us to skip
1924 * unused nodes. But scan_nodes is lazily updated and may not cotain
1925 * enough new information. We need to do double check.
1927 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1932 * quick check...making use of scan_node.
1933 * We can skip unused nodes.
1935 if (!nodes_empty(memcg
->scan_nodes
)) {
1936 for (nid
= first_node(memcg
->scan_nodes
);
1938 nid
= next_node(nid
, memcg
->scan_nodes
)) {
1940 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1945 * Check rest of nodes.
1947 for_each_node_state(nid
, N_MEMORY
) {
1948 if (node_isset(nid
, memcg
->scan_nodes
))
1950 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1957 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1962 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1964 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
1968 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1971 unsigned long *total_scanned
)
1973 struct mem_cgroup
*victim
= NULL
;
1976 unsigned long excess
;
1977 unsigned long nr_scanned
;
1978 struct mem_cgroup_reclaim_cookie reclaim
= {
1983 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
1986 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1991 * If we have not been able to reclaim
1992 * anything, it might because there are
1993 * no reclaimable pages under this hierarchy
1998 * We want to do more targeted reclaim.
1999 * excess >> 2 is not to excessive so as to
2000 * reclaim too much, nor too less that we keep
2001 * coming back to reclaim from this cgroup
2003 if (total
>= (excess
>> 2) ||
2004 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
2009 if (!mem_cgroup_reclaimable(victim
, false))
2011 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
2013 *total_scanned
+= nr_scanned
;
2014 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
2017 mem_cgroup_iter_break(root_memcg
, victim
);
2021 #ifdef CONFIG_LOCKDEP
2022 static struct lockdep_map memcg_oom_lock_dep_map
= {
2023 .name
= "memcg_oom_lock",
2027 static DEFINE_SPINLOCK(memcg_oom_lock
);
2030 * Check OOM-Killer is already running under our hierarchy.
2031 * If someone is running, return false.
2033 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
2035 struct mem_cgroup
*iter
, *failed
= NULL
;
2037 spin_lock(&memcg_oom_lock
);
2039 for_each_mem_cgroup_tree(iter
, memcg
) {
2040 if (iter
->oom_lock
) {
2042 * this subtree of our hierarchy is already locked
2043 * so we cannot give a lock.
2046 mem_cgroup_iter_break(memcg
, iter
);
2049 iter
->oom_lock
= true;
2054 * OK, we failed to lock the whole subtree so we have
2055 * to clean up what we set up to the failing subtree
2057 for_each_mem_cgroup_tree(iter
, memcg
) {
2058 if (iter
== failed
) {
2059 mem_cgroup_iter_break(memcg
, iter
);
2062 iter
->oom_lock
= false;
2065 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
2067 spin_unlock(&memcg_oom_lock
);
2072 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
2074 struct mem_cgroup
*iter
;
2076 spin_lock(&memcg_oom_lock
);
2077 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
2078 for_each_mem_cgroup_tree(iter
, memcg
)
2079 iter
->oom_lock
= false;
2080 spin_unlock(&memcg_oom_lock
);
2083 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
2085 struct mem_cgroup
*iter
;
2087 for_each_mem_cgroup_tree(iter
, memcg
)
2088 atomic_inc(&iter
->under_oom
);
2091 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
2093 struct mem_cgroup
*iter
;
2096 * When a new child is created while the hierarchy is under oom,
2097 * mem_cgroup_oom_lock() may not be called. We have to use
2098 * atomic_add_unless() here.
2100 for_each_mem_cgroup_tree(iter
, memcg
)
2101 atomic_add_unless(&iter
->under_oom
, -1, 0);
2104 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
2106 struct oom_wait_info
{
2107 struct mem_cgroup
*memcg
;
2111 static int memcg_oom_wake_function(wait_queue_t
*wait
,
2112 unsigned mode
, int sync
, void *arg
)
2114 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
2115 struct mem_cgroup
*oom_wait_memcg
;
2116 struct oom_wait_info
*oom_wait_info
;
2118 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
2119 oom_wait_memcg
= oom_wait_info
->memcg
;
2122 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2123 * Then we can use css_is_ancestor without taking care of RCU.
2125 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
2126 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
2128 return autoremove_wake_function(wait
, mode
, sync
, arg
);
2131 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
2133 atomic_inc(&memcg
->oom_wakeups
);
2134 /* for filtering, pass "memcg" as argument. */
2135 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
2138 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
2140 if (memcg
&& atomic_read(&memcg
->under_oom
))
2141 memcg_wakeup_oom(memcg
);
2144 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
2146 if (!current
->memcg_oom
.may_oom
)
2149 * We are in the middle of the charge context here, so we
2150 * don't want to block when potentially sitting on a callstack
2151 * that holds all kinds of filesystem and mm locks.
2153 * Also, the caller may handle a failed allocation gracefully
2154 * (like optional page cache readahead) and so an OOM killer
2155 * invocation might not even be necessary.
2157 * That's why we don't do anything here except remember the
2158 * OOM context and then deal with it at the end of the page
2159 * fault when the stack is unwound, the locks are released,
2160 * and when we know whether the fault was overall successful.
2162 css_get(&memcg
->css
);
2163 current
->memcg_oom
.memcg
= memcg
;
2164 current
->memcg_oom
.gfp_mask
= mask
;
2165 current
->memcg_oom
.order
= order
;
2169 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2170 * @handle: actually kill/wait or just clean up the OOM state
2172 * This has to be called at the end of a page fault if the memcg OOM
2173 * handler was enabled.
2175 * Memcg supports userspace OOM handling where failed allocations must
2176 * sleep on a waitqueue until the userspace task resolves the
2177 * situation. Sleeping directly in the charge context with all kinds
2178 * of locks held is not a good idea, instead we remember an OOM state
2179 * in the task and mem_cgroup_oom_synchronize() has to be called at
2180 * the end of the page fault to complete the OOM handling.
2182 * Returns %true if an ongoing memcg OOM situation was detected and
2183 * completed, %false otherwise.
2185 bool mem_cgroup_oom_synchronize(bool handle
)
2187 struct mem_cgroup
*memcg
= current
->memcg_oom
.memcg
;
2188 struct oom_wait_info owait
;
2191 /* OOM is global, do not handle */
2198 owait
.memcg
= memcg
;
2199 owait
.wait
.flags
= 0;
2200 owait
.wait
.func
= memcg_oom_wake_function
;
2201 owait
.wait
.private = current
;
2202 INIT_LIST_HEAD(&owait
.wait
.task_list
);
2204 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
2205 mem_cgroup_mark_under_oom(memcg
);
2207 locked
= mem_cgroup_oom_trylock(memcg
);
2210 mem_cgroup_oom_notify(memcg
);
2212 if (locked
&& !memcg
->oom_kill_disable
) {
2213 mem_cgroup_unmark_under_oom(memcg
);
2214 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2215 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom
.gfp_mask
,
2216 current
->memcg_oom
.order
);
2219 mem_cgroup_unmark_under_oom(memcg
);
2220 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2224 mem_cgroup_oom_unlock(memcg
);
2226 * There is no guarantee that an OOM-lock contender
2227 * sees the wakeups triggered by the OOM kill
2228 * uncharges. Wake any sleepers explicitely.
2230 memcg_oom_recover(memcg
);
2233 current
->memcg_oom
.memcg
= NULL
;
2234 css_put(&memcg
->css
);
2239 * Used to update mapped file or writeback or other statistics.
2241 * Notes: Race condition
2243 * Charging occurs during page instantiation, while the page is
2244 * unmapped and locked in page migration, or while the page table is
2245 * locked in THP migration. No race is possible.
2247 * Uncharge happens to pages with zero references, no race possible.
2249 * Charge moving between groups is protected by checking mm->moving
2250 * account and taking the move_lock in the slowpath.
2253 void __mem_cgroup_begin_update_page_stat(struct page
*page
,
2254 bool *locked
, unsigned long *flags
)
2256 struct mem_cgroup
*memcg
;
2257 struct page_cgroup
*pc
;
2259 pc
= lookup_page_cgroup(page
);
2261 memcg
= pc
->mem_cgroup
;
2262 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2265 * If this memory cgroup is not under account moving, we don't
2266 * need to take move_lock_mem_cgroup(). Because we already hold
2267 * rcu_read_lock(), any calls to move_account will be delayed until
2268 * rcu_read_unlock().
2270 VM_BUG_ON(!rcu_read_lock_held());
2271 if (atomic_read(&memcg
->moving_account
) <= 0)
2274 move_lock_mem_cgroup(memcg
, flags
);
2275 if (memcg
!= pc
->mem_cgroup
|| !PageCgroupUsed(pc
)) {
2276 move_unlock_mem_cgroup(memcg
, flags
);
2282 void __mem_cgroup_end_update_page_stat(struct page
*page
, unsigned long *flags
)
2284 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2287 * It's guaranteed that pc->mem_cgroup never changes while
2288 * lock is held because a routine modifies pc->mem_cgroup
2289 * should take move_lock_mem_cgroup().
2291 move_unlock_mem_cgroup(pc
->mem_cgroup
, flags
);
2294 void mem_cgroup_update_page_stat(struct page
*page
,
2295 enum mem_cgroup_stat_index idx
, int val
)
2297 struct mem_cgroup
*memcg
;
2298 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2299 unsigned long uninitialized_var(flags
);
2301 if (mem_cgroup_disabled())
2304 VM_BUG_ON(!rcu_read_lock_held());
2305 memcg
= pc
->mem_cgroup
;
2306 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2309 this_cpu_add(memcg
->stat
->count
[idx
], val
);
2313 * size of first charge trial. "32" comes from vmscan.c's magic value.
2314 * TODO: maybe necessary to use big numbers in big irons.
2316 #define CHARGE_BATCH 32U
2317 struct memcg_stock_pcp
{
2318 struct mem_cgroup
*cached
; /* this never be root cgroup */
2319 unsigned int nr_pages
;
2320 struct work_struct work
;
2321 unsigned long flags
;
2322 #define FLUSHING_CACHED_CHARGE 0
2324 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2325 static DEFINE_MUTEX(percpu_charge_mutex
);
2328 * consume_stock: Try to consume stocked charge on this cpu.
2329 * @memcg: memcg to consume from.
2330 * @nr_pages: how many pages to charge.
2332 * The charges will only happen if @memcg matches the current cpu's memcg
2333 * stock, and at least @nr_pages are available in that stock. Failure to
2334 * service an allocation will refill the stock.
2336 * returns true if successful, false otherwise.
2338 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2340 struct memcg_stock_pcp
*stock
;
2343 if (nr_pages
> CHARGE_BATCH
)
2346 stock
= &get_cpu_var(memcg_stock
);
2347 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
)
2348 stock
->nr_pages
-= nr_pages
;
2349 else /* need to call res_counter_charge */
2351 put_cpu_var(memcg_stock
);
2356 * Returns stocks cached in percpu to res_counter and reset cached information.
2358 static void drain_stock(struct memcg_stock_pcp
*stock
)
2360 struct mem_cgroup
*old
= stock
->cached
;
2362 if (stock
->nr_pages
) {
2363 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2365 res_counter_uncharge(&old
->res
, bytes
);
2366 if (do_swap_account
)
2367 res_counter_uncharge(&old
->memsw
, bytes
);
2368 stock
->nr_pages
= 0;
2370 stock
->cached
= NULL
;
2374 * This must be called under preempt disabled or must be called by
2375 * a thread which is pinned to local cpu.
2377 static void drain_local_stock(struct work_struct
*dummy
)
2379 struct memcg_stock_pcp
*stock
= this_cpu_ptr(&memcg_stock
);
2381 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2384 static void __init
memcg_stock_init(void)
2388 for_each_possible_cpu(cpu
) {
2389 struct memcg_stock_pcp
*stock
=
2390 &per_cpu(memcg_stock
, cpu
);
2391 INIT_WORK(&stock
->work
, drain_local_stock
);
2396 * Cache charges(val) which is from res_counter, to local per_cpu area.
2397 * This will be consumed by consume_stock() function, later.
2399 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2401 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2403 if (stock
->cached
!= memcg
) { /* reset if necessary */
2405 stock
->cached
= memcg
;
2407 stock
->nr_pages
+= nr_pages
;
2408 put_cpu_var(memcg_stock
);
2412 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2413 * of the hierarchy under it. sync flag says whether we should block
2414 * until the work is done.
2416 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
2420 /* Notify other cpus that system-wide "drain" is running */
2423 for_each_online_cpu(cpu
) {
2424 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2425 struct mem_cgroup
*memcg
;
2427 memcg
= stock
->cached
;
2428 if (!memcg
|| !stock
->nr_pages
)
2430 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2432 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2434 drain_local_stock(&stock
->work
);
2436 schedule_work_on(cpu
, &stock
->work
);
2444 for_each_online_cpu(cpu
) {
2445 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2446 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2447 flush_work(&stock
->work
);
2454 * Tries to drain stocked charges in other cpus. This function is asynchronous
2455 * and just put a work per cpu for draining localy on each cpu. Caller can
2456 * expects some charges will be back to res_counter later but cannot wait for
2459 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2462 * If someone calls draining, avoid adding more kworker runs.
2464 if (!mutex_trylock(&percpu_charge_mutex
))
2466 drain_all_stock(root_memcg
, false);
2467 mutex_unlock(&percpu_charge_mutex
);
2470 /* This is a synchronous drain interface. */
2471 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2473 /* called when force_empty is called */
2474 mutex_lock(&percpu_charge_mutex
);
2475 drain_all_stock(root_memcg
, true);
2476 mutex_unlock(&percpu_charge_mutex
);
2480 * This function drains percpu counter value from DEAD cpu and
2481 * move it to local cpu. Note that this function can be preempted.
2483 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2487 spin_lock(&memcg
->pcp_counter_lock
);
2488 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
2489 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2491 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2492 memcg
->nocpu_base
.count
[i
] += x
;
2494 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2495 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2497 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2498 memcg
->nocpu_base
.events
[i
] += x
;
2500 spin_unlock(&memcg
->pcp_counter_lock
);
2503 static int memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2504 unsigned long action
,
2507 int cpu
= (unsigned long)hcpu
;
2508 struct memcg_stock_pcp
*stock
;
2509 struct mem_cgroup
*iter
;
2511 if (action
== CPU_ONLINE
)
2514 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
2517 for_each_mem_cgroup(iter
)
2518 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2520 stock
= &per_cpu(memcg_stock
, cpu
);
2525 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2526 unsigned int nr_pages
)
2528 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2529 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2530 struct mem_cgroup
*mem_over_limit
;
2531 struct res_counter
*fail_res
;
2532 unsigned long nr_reclaimed
;
2533 unsigned long flags
= 0;
2534 unsigned long long size
;
2537 if (mem_cgroup_is_root(memcg
))
2540 if (consume_stock(memcg
, nr_pages
))
2543 size
= batch
* PAGE_SIZE
;
2544 if (!res_counter_charge(&memcg
->res
, size
, &fail_res
)) {
2545 if (!do_swap_account
)
2547 if (!res_counter_charge(&memcg
->memsw
, size
, &fail_res
))
2549 res_counter_uncharge(&memcg
->res
, size
);
2550 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2551 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2553 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2555 if (batch
> nr_pages
) {
2561 * Unlike in global OOM situations, memcg is not in a physical
2562 * memory shortage. Allow dying and OOM-killed tasks to
2563 * bypass the last charges so that they can exit quickly and
2564 * free their memory.
2566 if (unlikely(test_thread_flag(TIF_MEMDIE
) ||
2567 fatal_signal_pending(current
) ||
2568 current
->flags
& PF_EXITING
))
2571 if (unlikely(task_in_memcg_oom(current
)))
2574 if (!(gfp_mask
& __GFP_WAIT
))
2577 nr_reclaimed
= mem_cgroup_reclaim(mem_over_limit
, gfp_mask
, flags
);
2579 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2582 if (gfp_mask
& __GFP_NORETRY
)
2585 * Even though the limit is exceeded at this point, reclaim
2586 * may have been able to free some pages. Retry the charge
2587 * before killing the task.
2589 * Only for regular pages, though: huge pages are rather
2590 * unlikely to succeed so close to the limit, and we fall back
2591 * to regular pages anyway in case of failure.
2593 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
2596 * At task move, charge accounts can be doubly counted. So, it's
2597 * better to wait until the end of task_move if something is going on.
2599 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2605 if (gfp_mask
& __GFP_NOFAIL
)
2608 if (fatal_signal_pending(current
))
2611 mem_cgroup_oom(mem_over_limit
, gfp_mask
, get_order(nr_pages
));
2613 if (!(gfp_mask
& __GFP_NOFAIL
))
2619 if (batch
> nr_pages
)
2620 refill_stock(memcg
, batch
- nr_pages
);
2625 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2627 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2629 if (mem_cgroup_is_root(memcg
))
2632 res_counter_uncharge(&memcg
->res
, bytes
);
2633 if (do_swap_account
)
2634 res_counter_uncharge(&memcg
->memsw
, bytes
);
2638 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2639 * This is useful when moving usage to parent cgroup.
2641 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup
*memcg
,
2642 unsigned int nr_pages
)
2644 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2646 if (mem_cgroup_is_root(memcg
))
2649 res_counter_uncharge_until(&memcg
->res
, memcg
->res
.parent
, bytes
);
2650 if (do_swap_account
)
2651 res_counter_uncharge_until(&memcg
->memsw
,
2652 memcg
->memsw
.parent
, bytes
);
2656 * A helper function to get mem_cgroup from ID. must be called under
2657 * rcu_read_lock(). The caller is responsible for calling
2658 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2659 * refcnt from swap can be called against removed memcg.)
2661 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2663 /* ID 0 is unused ID */
2666 return mem_cgroup_from_id(id
);
2670 * try_get_mem_cgroup_from_page - look up page's memcg association
2673 * Look up, get a css reference, and return the memcg that owns @page.
2675 * The page must be locked to prevent racing with swap-in and page
2676 * cache charges. If coming from an unlocked page table, the caller
2677 * must ensure the page is on the LRU or this can race with charging.
2679 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2681 struct mem_cgroup
*memcg
= NULL
;
2682 struct page_cgroup
*pc
;
2686 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2688 pc
= lookup_page_cgroup(page
);
2689 if (PageCgroupUsed(pc
)) {
2690 memcg
= pc
->mem_cgroup
;
2691 if (memcg
&& !css_tryget_online(&memcg
->css
))
2693 } else if (PageSwapCache(page
)) {
2694 ent
.val
= page_private(page
);
2695 id
= lookup_swap_cgroup_id(ent
);
2697 memcg
= mem_cgroup_lookup(id
);
2698 if (memcg
&& !css_tryget_online(&memcg
->css
))
2705 static void lock_page_lru(struct page
*page
, int *isolated
)
2707 struct zone
*zone
= page_zone(page
);
2709 spin_lock_irq(&zone
->lru_lock
);
2710 if (PageLRU(page
)) {
2711 struct lruvec
*lruvec
;
2713 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2715 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2721 static void unlock_page_lru(struct page
*page
, int isolated
)
2723 struct zone
*zone
= page_zone(page
);
2726 struct lruvec
*lruvec
;
2728 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2729 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2731 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2733 spin_unlock_irq(&zone
->lru_lock
);
2736 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2739 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2742 VM_BUG_ON_PAGE(PageCgroupUsed(pc
), page
);
2744 * we don't need page_cgroup_lock about tail pages, becase they are not
2745 * accessed by any other context at this point.
2749 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2750 * may already be on some other mem_cgroup's LRU. Take care of it.
2753 lock_page_lru(page
, &isolated
);
2756 * Nobody should be changing or seriously looking at
2757 * pc->mem_cgroup and pc->flags at this point:
2759 * - the page is uncharged
2761 * - the page is off-LRU
2763 * - an anonymous fault has exclusive page access, except for
2764 * a locked page table
2766 * - a page cache insertion, a swapin fault, or a migration
2767 * have the page locked
2769 pc
->mem_cgroup
= memcg
;
2770 pc
->flags
= PCG_USED
| PCG_MEM
| (do_swap_account
? PCG_MEMSW
: 0);
2773 unlock_page_lru(page
, isolated
);
2776 static DEFINE_MUTEX(set_limit_mutex
);
2778 #ifdef CONFIG_MEMCG_KMEM
2780 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2781 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2783 static DEFINE_MUTEX(memcg_slab_mutex
);
2785 static DEFINE_MUTEX(activate_kmem_mutex
);
2787 static inline bool memcg_can_account_kmem(struct mem_cgroup
*memcg
)
2789 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg
) &&
2790 memcg_kmem_is_active(memcg
);
2794 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2795 * in the memcg_cache_params struct.
2797 static struct kmem_cache
*memcg_params_to_cache(struct memcg_cache_params
*p
)
2799 struct kmem_cache
*cachep
;
2801 VM_BUG_ON(p
->is_root_cache
);
2802 cachep
= p
->root_cache
;
2803 return cache_from_memcg_idx(cachep
, memcg_cache_id(p
->memcg
));
2806 #ifdef CONFIG_SLABINFO
2807 static int mem_cgroup_slabinfo_read(struct seq_file
*m
, void *v
)
2809 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
2810 struct memcg_cache_params
*params
;
2812 if (!memcg_can_account_kmem(memcg
))
2815 print_slabinfo_header(m
);
2817 mutex_lock(&memcg_slab_mutex
);
2818 list_for_each_entry(params
, &memcg
->memcg_slab_caches
, list
)
2819 cache_show(memcg_params_to_cache(params
), m
);
2820 mutex_unlock(&memcg_slab_mutex
);
2826 static int memcg_charge_kmem(struct mem_cgroup
*memcg
, gfp_t gfp
, u64 size
)
2828 struct res_counter
*fail_res
;
2831 ret
= res_counter_charge(&memcg
->kmem
, size
, &fail_res
);
2835 ret
= try_charge(memcg
, gfp
, size
>> PAGE_SHIFT
);
2836 if (ret
== -EINTR
) {
2838 * try_charge() chose to bypass to root due to OOM kill or
2839 * fatal signal. Since our only options are to either fail
2840 * the allocation or charge it to this cgroup, do it as a
2841 * temporary condition. But we can't fail. From a kmem/slab
2842 * perspective, the cache has already been selected, by
2843 * mem_cgroup_kmem_get_cache(), so it is too late to change
2846 * This condition will only trigger if the task entered
2847 * memcg_charge_kmem in a sane state, but was OOM-killed
2848 * during try_charge() above. Tasks that were already dying
2849 * when the allocation triggers should have been already
2850 * directed to the root cgroup in memcontrol.h
2852 res_counter_charge_nofail(&memcg
->res
, size
, &fail_res
);
2853 if (do_swap_account
)
2854 res_counter_charge_nofail(&memcg
->memsw
, size
,
2858 res_counter_uncharge(&memcg
->kmem
, size
);
2863 static void memcg_uncharge_kmem(struct mem_cgroup
*memcg
, u64 size
)
2865 res_counter_uncharge(&memcg
->res
, size
);
2866 if (do_swap_account
)
2867 res_counter_uncharge(&memcg
->memsw
, size
);
2870 if (res_counter_uncharge(&memcg
->kmem
, size
))
2874 * Releases a reference taken in kmem_cgroup_css_offline in case
2875 * this last uncharge is racing with the offlining code or it is
2876 * outliving the memcg existence.
2878 * The memory barrier imposed by test&clear is paired with the
2879 * explicit one in memcg_kmem_mark_dead().
2881 if (memcg_kmem_test_and_clear_dead(memcg
))
2882 css_put(&memcg
->css
);
2886 * helper for acessing a memcg's index. It will be used as an index in the
2887 * child cache array in kmem_cache, and also to derive its name. This function
2888 * will return -1 when this is not a kmem-limited memcg.
2890 int memcg_cache_id(struct mem_cgroup
*memcg
)
2892 return memcg
? memcg
->kmemcg_id
: -1;
2895 static size_t memcg_caches_array_size(int num_groups
)
2898 if (num_groups
<= 0)
2901 size
= 2 * num_groups
;
2902 if (size
< MEMCG_CACHES_MIN_SIZE
)
2903 size
= MEMCG_CACHES_MIN_SIZE
;
2904 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2905 size
= MEMCG_CACHES_MAX_SIZE
;
2911 * We should update the current array size iff all caches updates succeed. This
2912 * can only be done from the slab side. The slab mutex needs to be held when
2915 void memcg_update_array_size(int num
)
2917 if (num
> memcg_limited_groups_array_size
)
2918 memcg_limited_groups_array_size
= memcg_caches_array_size(num
);
2921 int memcg_update_cache_size(struct kmem_cache
*s
, int num_groups
)
2923 struct memcg_cache_params
*cur_params
= s
->memcg_params
;
2925 VM_BUG_ON(!is_root_cache(s
));
2927 if (num_groups
> memcg_limited_groups_array_size
) {
2929 struct memcg_cache_params
*new_params
;
2930 ssize_t size
= memcg_caches_array_size(num_groups
);
2932 size
*= sizeof(void *);
2933 size
+= offsetof(struct memcg_cache_params
, memcg_caches
);
2935 new_params
= kzalloc(size
, GFP_KERNEL
);
2939 new_params
->is_root_cache
= true;
2942 * There is the chance it will be bigger than
2943 * memcg_limited_groups_array_size, if we failed an allocation
2944 * in a cache, in which case all caches updated before it, will
2945 * have a bigger array.
2947 * But if that is the case, the data after
2948 * memcg_limited_groups_array_size is certainly unused
2950 for (i
= 0; i
< memcg_limited_groups_array_size
; i
++) {
2951 if (!cur_params
->memcg_caches
[i
])
2953 new_params
->memcg_caches
[i
] =
2954 cur_params
->memcg_caches
[i
];
2958 * Ideally, we would wait until all caches succeed, and only
2959 * then free the old one. But this is not worth the extra
2960 * pointer per-cache we'd have to have for this.
2962 * It is not a big deal if some caches are left with a size
2963 * bigger than the others. And all updates will reset this
2966 rcu_assign_pointer(s
->memcg_params
, new_params
);
2968 kfree_rcu(cur_params
, rcu_head
);
2973 int memcg_alloc_cache_params(struct mem_cgroup
*memcg
, struct kmem_cache
*s
,
2974 struct kmem_cache
*root_cache
)
2978 if (!memcg_kmem_enabled())
2982 size
= offsetof(struct memcg_cache_params
, memcg_caches
);
2983 size
+= memcg_limited_groups_array_size
* sizeof(void *);
2985 size
= sizeof(struct memcg_cache_params
);
2987 s
->memcg_params
= kzalloc(size
, GFP_KERNEL
);
2988 if (!s
->memcg_params
)
2992 s
->memcg_params
->memcg
= memcg
;
2993 s
->memcg_params
->root_cache
= root_cache
;
2994 css_get(&memcg
->css
);
2996 s
->memcg_params
->is_root_cache
= true;
3001 void memcg_free_cache_params(struct kmem_cache
*s
)
3003 if (!s
->memcg_params
)
3005 if (!s
->memcg_params
->is_root_cache
)
3006 css_put(&s
->memcg_params
->memcg
->css
);
3007 kfree(s
->memcg_params
);
3010 static void memcg_register_cache(struct mem_cgroup
*memcg
,
3011 struct kmem_cache
*root_cache
)
3013 static char memcg_name_buf
[NAME_MAX
+ 1]; /* protected by
3015 struct kmem_cache
*cachep
;
3018 lockdep_assert_held(&memcg_slab_mutex
);
3020 id
= memcg_cache_id(memcg
);
3023 * Since per-memcg caches are created asynchronously on first
3024 * allocation (see memcg_kmem_get_cache()), several threads can try to
3025 * create the same cache, but only one of them may succeed.
3027 if (cache_from_memcg_idx(root_cache
, id
))
3030 cgroup_name(memcg
->css
.cgroup
, memcg_name_buf
, NAME_MAX
+ 1);
3031 cachep
= memcg_create_kmem_cache(memcg
, root_cache
, memcg_name_buf
);
3033 * If we could not create a memcg cache, do not complain, because
3034 * that's not critical at all as we can always proceed with the root
3040 list_add(&cachep
->memcg_params
->list
, &memcg
->memcg_slab_caches
);
3043 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3044 * barrier here to ensure nobody will see the kmem_cache partially
3049 BUG_ON(root_cache
->memcg_params
->memcg_caches
[id
]);
3050 root_cache
->memcg_params
->memcg_caches
[id
] = cachep
;
3053 static void memcg_unregister_cache(struct kmem_cache
*cachep
)
3055 struct kmem_cache
*root_cache
;
3056 struct mem_cgroup
*memcg
;
3059 lockdep_assert_held(&memcg_slab_mutex
);
3061 BUG_ON(is_root_cache(cachep
));
3063 root_cache
= cachep
->memcg_params
->root_cache
;
3064 memcg
= cachep
->memcg_params
->memcg
;
3065 id
= memcg_cache_id(memcg
);
3067 BUG_ON(root_cache
->memcg_params
->memcg_caches
[id
] != cachep
);
3068 root_cache
->memcg_params
->memcg_caches
[id
] = NULL
;
3070 list_del(&cachep
->memcg_params
->list
);
3072 kmem_cache_destroy(cachep
);
3076 * During the creation a new cache, we need to disable our accounting mechanism
3077 * altogether. This is true even if we are not creating, but rather just
3078 * enqueing new caches to be created.
3080 * This is because that process will trigger allocations; some visible, like
3081 * explicit kmallocs to auxiliary data structures, name strings and internal
3082 * cache structures; some well concealed, like INIT_WORK() that can allocate
3083 * objects during debug.
3085 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3086 * to it. This may not be a bounded recursion: since the first cache creation
3087 * failed to complete (waiting on the allocation), we'll just try to create the
3088 * cache again, failing at the same point.
3090 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3091 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3092 * inside the following two functions.
3094 static inline void memcg_stop_kmem_account(void)
3096 VM_BUG_ON(!current
->mm
);
3097 current
->memcg_kmem_skip_account
++;
3100 static inline void memcg_resume_kmem_account(void)
3102 VM_BUG_ON(!current
->mm
);
3103 current
->memcg_kmem_skip_account
--;
3106 int __memcg_cleanup_cache_params(struct kmem_cache
*s
)
3108 struct kmem_cache
*c
;
3111 mutex_lock(&memcg_slab_mutex
);
3112 for_each_memcg_cache_index(i
) {
3113 c
= cache_from_memcg_idx(s
, i
);
3117 memcg_unregister_cache(c
);
3119 if (cache_from_memcg_idx(s
, i
))
3122 mutex_unlock(&memcg_slab_mutex
);
3126 static void memcg_unregister_all_caches(struct mem_cgroup
*memcg
)
3128 struct kmem_cache
*cachep
;
3129 struct memcg_cache_params
*params
, *tmp
;
3131 if (!memcg_kmem_is_active(memcg
))
3134 mutex_lock(&memcg_slab_mutex
);
3135 list_for_each_entry_safe(params
, tmp
, &memcg
->memcg_slab_caches
, list
) {
3136 cachep
= memcg_params_to_cache(params
);
3137 kmem_cache_shrink(cachep
);
3138 if (atomic_read(&cachep
->memcg_params
->nr_pages
) == 0)
3139 memcg_unregister_cache(cachep
);
3141 mutex_unlock(&memcg_slab_mutex
);
3144 struct memcg_register_cache_work
{
3145 struct mem_cgroup
*memcg
;
3146 struct kmem_cache
*cachep
;
3147 struct work_struct work
;
3150 static void memcg_register_cache_func(struct work_struct
*w
)
3152 struct memcg_register_cache_work
*cw
=
3153 container_of(w
, struct memcg_register_cache_work
, work
);
3154 struct mem_cgroup
*memcg
= cw
->memcg
;
3155 struct kmem_cache
*cachep
= cw
->cachep
;
3157 mutex_lock(&memcg_slab_mutex
);
3158 memcg_register_cache(memcg
, cachep
);
3159 mutex_unlock(&memcg_slab_mutex
);
3161 css_put(&memcg
->css
);
3166 * Enqueue the creation of a per-memcg kmem_cache.
3168 static void __memcg_schedule_register_cache(struct mem_cgroup
*memcg
,
3169 struct kmem_cache
*cachep
)
3171 struct memcg_register_cache_work
*cw
;
3173 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
);
3175 css_put(&memcg
->css
);
3180 cw
->cachep
= cachep
;
3182 INIT_WORK(&cw
->work
, memcg_register_cache_func
);
3183 schedule_work(&cw
->work
);
3186 static void memcg_schedule_register_cache(struct mem_cgroup
*memcg
,
3187 struct kmem_cache
*cachep
)
3190 * We need to stop accounting when we kmalloc, because if the
3191 * corresponding kmalloc cache is not yet created, the first allocation
3192 * in __memcg_schedule_register_cache will recurse.
3194 * However, it is better to enclose the whole function. Depending on
3195 * the debugging options enabled, INIT_WORK(), for instance, can
3196 * trigger an allocation. This too, will make us recurse. Because at
3197 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3198 * the safest choice is to do it like this, wrapping the whole function.
3200 memcg_stop_kmem_account();
3201 __memcg_schedule_register_cache(memcg
, cachep
);
3202 memcg_resume_kmem_account();
3205 int __memcg_charge_slab(struct kmem_cache
*cachep
, gfp_t gfp
, int order
)
3209 res
= memcg_charge_kmem(cachep
->memcg_params
->memcg
, gfp
,
3210 PAGE_SIZE
<< order
);
3212 atomic_add(1 << order
, &cachep
->memcg_params
->nr_pages
);
3216 void __memcg_uncharge_slab(struct kmem_cache
*cachep
, int order
)
3218 memcg_uncharge_kmem(cachep
->memcg_params
->memcg
, PAGE_SIZE
<< order
);
3219 atomic_sub(1 << order
, &cachep
->memcg_params
->nr_pages
);
3223 * Return the kmem_cache we're supposed to use for a slab allocation.
3224 * We try to use the current memcg's version of the cache.
3226 * If the cache does not exist yet, if we are the first user of it,
3227 * we either create it immediately, if possible, or create it asynchronously
3229 * In the latter case, we will let the current allocation go through with
3230 * the original cache.
3232 * Can't be called in interrupt context or from kernel threads.
3233 * This function needs to be called with rcu_read_lock() held.
3235 struct kmem_cache
*__memcg_kmem_get_cache(struct kmem_cache
*cachep
,
3238 struct mem_cgroup
*memcg
;
3239 struct kmem_cache
*memcg_cachep
;
3241 VM_BUG_ON(!cachep
->memcg_params
);
3242 VM_BUG_ON(!cachep
->memcg_params
->is_root_cache
);
3244 if (!current
->mm
|| current
->memcg_kmem_skip_account
)
3248 memcg
= mem_cgroup_from_task(rcu_dereference(current
->mm
->owner
));
3250 if (!memcg_can_account_kmem(memcg
))
3253 memcg_cachep
= cache_from_memcg_idx(cachep
, memcg_cache_id(memcg
));
3254 if (likely(memcg_cachep
)) {
3255 cachep
= memcg_cachep
;
3259 /* The corresponding put will be done in the workqueue. */
3260 if (!css_tryget_online(&memcg
->css
))
3265 * If we are in a safe context (can wait, and not in interrupt
3266 * context), we could be be predictable and return right away.
3267 * This would guarantee that the allocation being performed
3268 * already belongs in the new cache.
3270 * However, there are some clashes that can arrive from locking.
3271 * For instance, because we acquire the slab_mutex while doing
3272 * memcg_create_kmem_cache, this means no further allocation
3273 * could happen with the slab_mutex held. So it's better to
3276 memcg_schedule_register_cache(memcg
, cachep
);
3284 * We need to verify if the allocation against current->mm->owner's memcg is
3285 * possible for the given order. But the page is not allocated yet, so we'll
3286 * need a further commit step to do the final arrangements.
3288 * It is possible for the task to switch cgroups in this mean time, so at
3289 * commit time, we can't rely on task conversion any longer. We'll then use
3290 * the handle argument to return to the caller which cgroup we should commit
3291 * against. We could also return the memcg directly and avoid the pointer
3292 * passing, but a boolean return value gives better semantics considering
3293 * the compiled-out case as well.
3295 * Returning true means the allocation is possible.
3298 __memcg_kmem_newpage_charge(gfp_t gfp
, struct mem_cgroup
**_memcg
, int order
)
3300 struct mem_cgroup
*memcg
;
3306 * Disabling accounting is only relevant for some specific memcg
3307 * internal allocations. Therefore we would initially not have such
3308 * check here, since direct calls to the page allocator that are
3309 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3310 * outside memcg core. We are mostly concerned with cache allocations,
3311 * and by having this test at memcg_kmem_get_cache, we are already able
3312 * to relay the allocation to the root cache and bypass the memcg cache
3315 * There is one exception, though: the SLUB allocator does not create
3316 * large order caches, but rather service large kmallocs directly from
3317 * the page allocator. Therefore, the following sequence when backed by
3318 * the SLUB allocator:
3320 * memcg_stop_kmem_account();
3321 * kmalloc(<large_number>)
3322 * memcg_resume_kmem_account();
3324 * would effectively ignore the fact that we should skip accounting,
3325 * since it will drive us directly to this function without passing
3326 * through the cache selector memcg_kmem_get_cache. Such large
3327 * allocations are extremely rare but can happen, for instance, for the
3328 * cache arrays. We bring this test here.
3330 if (!current
->mm
|| current
->memcg_kmem_skip_account
)
3333 memcg
= get_mem_cgroup_from_mm(current
->mm
);
3335 if (!memcg_can_account_kmem(memcg
)) {
3336 css_put(&memcg
->css
);
3340 ret
= memcg_charge_kmem(memcg
, gfp
, PAGE_SIZE
<< order
);
3344 css_put(&memcg
->css
);
3348 void __memcg_kmem_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
3351 struct page_cgroup
*pc
;
3353 VM_BUG_ON(mem_cgroup_is_root(memcg
));
3355 /* The page allocation failed. Revert */
3357 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3361 * The page is freshly allocated and not visible to any
3362 * outside callers yet. Set up pc non-atomically.
3364 pc
= lookup_page_cgroup(page
);
3365 pc
->mem_cgroup
= memcg
;
3366 pc
->flags
= PCG_USED
;
3369 void __memcg_kmem_uncharge_pages(struct page
*page
, int order
)
3371 struct mem_cgroup
*memcg
= NULL
;
3372 struct page_cgroup
*pc
;
3375 pc
= lookup_page_cgroup(page
);
3376 if (!PageCgroupUsed(pc
))
3379 memcg
= pc
->mem_cgroup
;
3383 * We trust that only if there is a memcg associated with the page, it
3384 * is a valid allocation
3389 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
3390 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3393 static inline void memcg_unregister_all_caches(struct mem_cgroup
*memcg
)
3396 #endif /* CONFIG_MEMCG_KMEM */
3398 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3401 * Because tail pages are not marked as "used", set it. We're under
3402 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3403 * charge/uncharge will be never happen and move_account() is done under
3404 * compound_lock(), so we don't have to take care of races.
3406 void mem_cgroup_split_huge_fixup(struct page
*head
)
3408 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
3409 struct page_cgroup
*pc
;
3410 struct mem_cgroup
*memcg
;
3413 if (mem_cgroup_disabled())
3416 memcg
= head_pc
->mem_cgroup
;
3417 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
3419 pc
->mem_cgroup
= memcg
;
3420 pc
->flags
= head_pc
->flags
;
3422 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
3425 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3428 * mem_cgroup_move_account - move account of the page
3430 * @nr_pages: number of regular pages (>1 for huge pages)
3431 * @pc: page_cgroup of the page.
3432 * @from: mem_cgroup which the page is moved from.
3433 * @to: mem_cgroup which the page is moved to. @from != @to.
3435 * The caller must confirm following.
3436 * - page is not on LRU (isolate_page() is useful.)
3437 * - compound_lock is held when nr_pages > 1
3439 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3442 static int mem_cgroup_move_account(struct page
*page
,
3443 unsigned int nr_pages
,
3444 struct page_cgroup
*pc
,
3445 struct mem_cgroup
*from
,
3446 struct mem_cgroup
*to
)
3448 unsigned long flags
;
3451 VM_BUG_ON(from
== to
);
3452 VM_BUG_ON_PAGE(PageLRU(page
), page
);
3454 * The page is isolated from LRU. So, collapse function
3455 * will not handle this page. But page splitting can happen.
3456 * Do this check under compound_page_lock(). The caller should
3460 if (nr_pages
> 1 && !PageTransHuge(page
))
3464 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3465 * of its source page while we change it: page migration takes
3466 * both pages off the LRU, but page cache replacement doesn't.
3468 if (!trylock_page(page
))
3472 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
3475 move_lock_mem_cgroup(from
, &flags
);
3477 if (!PageAnon(page
) && page_mapped(page
)) {
3478 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
3480 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
3484 if (PageWriteback(page
)) {
3485 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
3487 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
3492 * It is safe to change pc->mem_cgroup here because the page
3493 * is referenced, charged, and isolated - we can't race with
3494 * uncharging, charging, migration, or LRU putback.
3497 /* caller should have done css_get */
3498 pc
->mem_cgroup
= to
;
3499 move_unlock_mem_cgroup(from
, &flags
);
3502 local_irq_disable();
3503 mem_cgroup_charge_statistics(to
, page
, nr_pages
);
3504 memcg_check_events(to
, page
);
3505 mem_cgroup_charge_statistics(from
, page
, -nr_pages
);
3506 memcg_check_events(from
, page
);
3515 * mem_cgroup_move_parent - moves page to the parent group
3516 * @page: the page to move
3517 * @pc: page_cgroup of the page
3518 * @child: page's cgroup
3520 * move charges to its parent or the root cgroup if the group has no
3521 * parent (aka use_hierarchy==0).
3522 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3523 * mem_cgroup_move_account fails) the failure is always temporary and
3524 * it signals a race with a page removal/uncharge or migration. In the
3525 * first case the page is on the way out and it will vanish from the LRU
3526 * on the next attempt and the call should be retried later.
3527 * Isolation from the LRU fails only if page has been isolated from
3528 * the LRU since we looked at it and that usually means either global
3529 * reclaim or migration going on. The page will either get back to the
3531 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3532 * (!PageCgroupUsed) or moved to a different group. The page will
3533 * disappear in the next attempt.
3535 static int mem_cgroup_move_parent(struct page
*page
,
3536 struct page_cgroup
*pc
,
3537 struct mem_cgroup
*child
)
3539 struct mem_cgroup
*parent
;
3540 unsigned int nr_pages
;
3541 unsigned long uninitialized_var(flags
);
3544 VM_BUG_ON(mem_cgroup_is_root(child
));
3547 if (!get_page_unless_zero(page
))
3549 if (isolate_lru_page(page
))
3552 nr_pages
= hpage_nr_pages(page
);
3554 parent
= parent_mem_cgroup(child
);
3556 * If no parent, move charges to root cgroup.
3559 parent
= root_mem_cgroup
;
3562 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
3563 flags
= compound_lock_irqsave(page
);
3566 ret
= mem_cgroup_move_account(page
, nr_pages
,
3569 __mem_cgroup_cancel_local_charge(child
, nr_pages
);
3572 compound_unlock_irqrestore(page
, flags
);
3573 putback_lru_page(page
);
3580 #ifdef CONFIG_MEMCG_SWAP
3581 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
3584 int val
= (charge
) ? 1 : -1;
3585 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
3589 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3590 * @entry: swap entry to be moved
3591 * @from: mem_cgroup which the entry is moved from
3592 * @to: mem_cgroup which the entry is moved to
3594 * It succeeds only when the swap_cgroup's record for this entry is the same
3595 * as the mem_cgroup's id of @from.
3597 * Returns 0 on success, -EINVAL on failure.
3599 * The caller must have charged to @to, IOW, called res_counter_charge() about
3600 * both res and memsw, and called css_get().
3602 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
3603 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
3605 unsigned short old_id
, new_id
;
3607 old_id
= mem_cgroup_id(from
);
3608 new_id
= mem_cgroup_id(to
);
3610 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
3611 mem_cgroup_swap_statistics(from
, false);
3612 mem_cgroup_swap_statistics(to
, true);
3614 * This function is only called from task migration context now.
3615 * It postpones res_counter and refcount handling till the end
3616 * of task migration(mem_cgroup_clear_mc()) for performance
3617 * improvement. But we cannot postpone css_get(to) because if
3618 * the process that has been moved to @to does swap-in, the
3619 * refcount of @to might be decreased to 0.
3621 * We are in attach() phase, so the cgroup is guaranteed to be
3622 * alive, so we can just call css_get().
3630 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
3631 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
3637 #ifdef CONFIG_DEBUG_VM
3638 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
3640 struct page_cgroup
*pc
;
3642 pc
= lookup_page_cgroup(page
);
3644 * Can be NULL while feeding pages into the page allocator for
3645 * the first time, i.e. during boot or memory hotplug;
3646 * or when mem_cgroup_disabled().
3648 if (likely(pc
) && PageCgroupUsed(pc
))
3653 bool mem_cgroup_bad_page_check(struct page
*page
)
3655 if (mem_cgroup_disabled())
3658 return lookup_page_cgroup_used(page
) != NULL
;
3661 void mem_cgroup_print_bad_page(struct page
*page
)
3663 struct page_cgroup
*pc
;
3665 pc
= lookup_page_cgroup_used(page
);
3667 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3668 pc
, pc
->flags
, pc
->mem_cgroup
);
3673 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3674 unsigned long long val
)
3677 u64 memswlimit
, memlimit
;
3679 int children
= mem_cgroup_count_children(memcg
);
3680 u64 curusage
, oldusage
;
3684 * For keeping hierarchical_reclaim simple, how long we should retry
3685 * is depends on callers. We set our retry-count to be function
3686 * of # of children which we should visit in this loop.
3688 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3690 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3693 while (retry_count
) {
3694 if (signal_pending(current
)) {
3699 * Rather than hide all in some function, I do this in
3700 * open coded manner. You see what this really does.
3701 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3703 mutex_lock(&set_limit_mutex
);
3704 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3705 if (memswlimit
< val
) {
3707 mutex_unlock(&set_limit_mutex
);
3711 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3715 ret
= res_counter_set_limit(&memcg
->res
, val
);
3717 if (memswlimit
== val
)
3718 memcg
->memsw_is_minimum
= true;
3720 memcg
->memsw_is_minimum
= false;
3722 mutex_unlock(&set_limit_mutex
);
3727 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
3728 MEM_CGROUP_RECLAIM_SHRINK
);
3729 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3730 /* Usage is reduced ? */
3731 if (curusage
>= oldusage
)
3734 oldusage
= curusage
;
3736 if (!ret
&& enlarge
)
3737 memcg_oom_recover(memcg
);
3742 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3743 unsigned long long val
)
3746 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3747 int children
= mem_cgroup_count_children(memcg
);
3751 /* see mem_cgroup_resize_res_limit */
3752 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3753 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3754 while (retry_count
) {
3755 if (signal_pending(current
)) {
3760 * Rather than hide all in some function, I do this in
3761 * open coded manner. You see what this really does.
3762 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3764 mutex_lock(&set_limit_mutex
);
3765 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3766 if (memlimit
> val
) {
3768 mutex_unlock(&set_limit_mutex
);
3771 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3772 if (memswlimit
< val
)
3774 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3776 if (memlimit
== val
)
3777 memcg
->memsw_is_minimum
= true;
3779 memcg
->memsw_is_minimum
= false;
3781 mutex_unlock(&set_limit_mutex
);
3786 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
3787 MEM_CGROUP_RECLAIM_NOSWAP
|
3788 MEM_CGROUP_RECLAIM_SHRINK
);
3789 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3790 /* Usage is reduced ? */
3791 if (curusage
>= oldusage
)
3794 oldusage
= curusage
;
3796 if (!ret
&& enlarge
)
3797 memcg_oom_recover(memcg
);
3801 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3803 unsigned long *total_scanned
)
3805 unsigned long nr_reclaimed
= 0;
3806 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3807 unsigned long reclaimed
;
3809 struct mem_cgroup_tree_per_zone
*mctz
;
3810 unsigned long long excess
;
3811 unsigned long nr_scanned
;
3816 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3818 * This loop can run a while, specially if mem_cgroup's continuously
3819 * keep exceeding their soft limit and putting the system under
3826 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3831 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
3832 gfp_mask
, &nr_scanned
);
3833 nr_reclaimed
+= reclaimed
;
3834 *total_scanned
+= nr_scanned
;
3835 spin_lock_irq(&mctz
->lock
);
3838 * If we failed to reclaim anything from this memory cgroup
3839 * it is time to move on to the next cgroup
3845 * Loop until we find yet another one.
3847 * By the time we get the soft_limit lock
3848 * again, someone might have aded the
3849 * group back on the RB tree. Iterate to
3850 * make sure we get a different mem.
3851 * mem_cgroup_largest_soft_limit_node returns
3852 * NULL if no other cgroup is present on
3856 __mem_cgroup_largest_soft_limit_node(mctz
);
3858 css_put(&next_mz
->memcg
->css
);
3859 else /* next_mz == NULL or other memcg */
3863 __mem_cgroup_remove_exceeded(mz
, mctz
);
3864 excess
= res_counter_soft_limit_excess(&mz
->memcg
->res
);
3866 * One school of thought says that we should not add
3867 * back the node to the tree if reclaim returns 0.
3868 * But our reclaim could return 0, simply because due
3869 * to priority we are exposing a smaller subset of
3870 * memory to reclaim from. Consider this as a longer
3873 /* If excess == 0, no tree ops */
3874 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
3875 spin_unlock_irq(&mctz
->lock
);
3876 css_put(&mz
->memcg
->css
);
3879 * Could not reclaim anything and there are no more
3880 * mem cgroups to try or we seem to be looping without
3881 * reclaiming anything.
3883 if (!nr_reclaimed
&&
3885 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3887 } while (!nr_reclaimed
);
3889 css_put(&next_mz
->memcg
->css
);
3890 return nr_reclaimed
;
3894 * mem_cgroup_force_empty_list - clears LRU of a group
3895 * @memcg: group to clear
3898 * @lru: lru to to clear
3900 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3901 * reclaim the pages page themselves - pages are moved to the parent (or root)
3904 static void mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
3905 int node
, int zid
, enum lru_list lru
)
3907 struct lruvec
*lruvec
;
3908 unsigned long flags
;
3909 struct list_head
*list
;
3913 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3914 lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
3915 list
= &lruvec
->lists
[lru
];
3919 struct page_cgroup
*pc
;
3922 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3923 if (list_empty(list
)) {
3924 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3927 page
= list_entry(list
->prev
, struct page
, lru
);
3929 list_move(&page
->lru
, list
);
3931 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3934 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3936 pc
= lookup_page_cgroup(page
);
3938 if (mem_cgroup_move_parent(page
, pc
, memcg
)) {
3939 /* found lock contention or "pc" is obsolete. */
3944 } while (!list_empty(list
));
3948 * make mem_cgroup's charge to be 0 if there is no task by moving
3949 * all the charges and pages to the parent.
3950 * This enables deleting this mem_cgroup.
3952 * Caller is responsible for holding css reference on the memcg.
3954 static void mem_cgroup_reparent_charges(struct mem_cgroup
*memcg
)
3960 /* This is for making all *used* pages to be on LRU. */
3961 lru_add_drain_all();
3962 drain_all_stock_sync(memcg
);
3963 mem_cgroup_start_move(memcg
);
3964 for_each_node_state(node
, N_MEMORY
) {
3965 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3968 mem_cgroup_force_empty_list(memcg
,
3973 mem_cgroup_end_move(memcg
);
3974 memcg_oom_recover(memcg
);
3978 * Kernel memory may not necessarily be trackable to a specific
3979 * process. So they are not migrated, and therefore we can't
3980 * expect their value to drop to 0 here.
3981 * Having res filled up with kmem only is enough.
3983 * This is a safety check because mem_cgroup_force_empty_list
3984 * could have raced with mem_cgroup_replace_page_cache callers
3985 * so the lru seemed empty but the page could have been added
3986 * right after the check. RES_USAGE should be safe as we always
3987 * charge before adding to the LRU.
3989 usage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
) -
3990 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
);
3991 } while (usage
> 0);
3995 * Test whether @memcg has children, dead or alive. Note that this
3996 * function doesn't care whether @memcg has use_hierarchy enabled and
3997 * returns %true if there are child csses according to the cgroup
3998 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
4000 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
4005 * The lock does not prevent addition or deletion of children, but
4006 * it prevents a new child from being initialized based on this
4007 * parent in css_online(), so it's enough to decide whether
4008 * hierarchically inherited attributes can still be changed or not.
4010 lockdep_assert_held(&memcg_create_mutex
);
4013 ret
= css_next_child(NULL
, &memcg
->css
);
4019 * Reclaims as many pages from the given memcg as possible and moves
4020 * the rest to the parent.
4022 * Caller is responsible for holding css reference for memcg.
4024 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
4026 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
4028 /* we call try-to-free pages for make this cgroup empty */
4029 lru_add_drain_all();
4030 /* try to free all pages in this cgroup */
4031 while (nr_retries
&& res_counter_read_u64(&memcg
->res
, RES_USAGE
) > 0) {
4034 if (signal_pending(current
))
4037 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
,
4041 /* maybe some writeback is necessary */
4042 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
4050 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
4051 char *buf
, size_t nbytes
,
4054 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
4056 if (mem_cgroup_is_root(memcg
))
4058 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
4061 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
4064 return mem_cgroup_from_css(css
)->use_hierarchy
;
4067 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
4068 struct cftype
*cft
, u64 val
)
4071 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4072 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
4074 mutex_lock(&memcg_create_mutex
);
4076 if (memcg
->use_hierarchy
== val
)
4080 * If parent's use_hierarchy is set, we can't make any modifications
4081 * in the child subtrees. If it is unset, then the change can
4082 * occur, provided the current cgroup has no children.
4084 * For the root cgroup, parent_mem is NULL, we allow value to be
4085 * set if there are no children.
4087 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
4088 (val
== 1 || val
== 0)) {
4089 if (!memcg_has_children(memcg
))
4090 memcg
->use_hierarchy
= val
;
4097 mutex_unlock(&memcg_create_mutex
);
4102 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
4103 enum mem_cgroup_stat_index idx
)
4105 struct mem_cgroup
*iter
;
4108 /* Per-cpu values can be negative, use a signed accumulator */
4109 for_each_mem_cgroup_tree(iter
, memcg
)
4110 val
+= mem_cgroup_read_stat(iter
, idx
);
4112 if (val
< 0) /* race ? */
4117 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
4121 if (!mem_cgroup_is_root(memcg
)) {
4123 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4125 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4129 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4130 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4132 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
4133 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
4136 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAP
);
4138 return val
<< PAGE_SHIFT
;
4142 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
4145 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4146 enum res_type type
= MEMFILE_TYPE(cft
->private);
4147 int name
= MEMFILE_ATTR(cft
->private);
4151 if (name
== RES_USAGE
)
4152 return mem_cgroup_usage(memcg
, false);
4153 return res_counter_read_u64(&memcg
->res
, name
);
4155 if (name
== RES_USAGE
)
4156 return mem_cgroup_usage(memcg
, true);
4157 return res_counter_read_u64(&memcg
->memsw
, name
);
4159 return res_counter_read_u64(&memcg
->kmem
, name
);
4166 #ifdef CONFIG_MEMCG_KMEM
4167 /* should be called with activate_kmem_mutex held */
4168 static int __memcg_activate_kmem(struct mem_cgroup
*memcg
,
4169 unsigned long long limit
)
4174 if (memcg_kmem_is_active(memcg
))
4178 * We are going to allocate memory for data shared by all memory
4179 * cgroups so let's stop accounting here.
4181 memcg_stop_kmem_account();
4184 * For simplicity, we won't allow this to be disabled. It also can't
4185 * be changed if the cgroup has children already, or if tasks had
4188 * If tasks join before we set the limit, a person looking at
4189 * kmem.usage_in_bytes will have no way to determine when it took
4190 * place, which makes the value quite meaningless.
4192 * After it first became limited, changes in the value of the limit are
4193 * of course permitted.
4195 mutex_lock(&memcg_create_mutex
);
4196 if (cgroup_has_tasks(memcg
->css
.cgroup
) ||
4197 (memcg
->use_hierarchy
&& memcg_has_children(memcg
)))
4199 mutex_unlock(&memcg_create_mutex
);
4203 memcg_id
= ida_simple_get(&kmem_limited_groups
,
4204 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
4211 * Make sure we have enough space for this cgroup in each root cache's
4214 mutex_lock(&memcg_slab_mutex
);
4215 err
= memcg_update_all_caches(memcg_id
+ 1);
4216 mutex_unlock(&memcg_slab_mutex
);
4220 memcg
->kmemcg_id
= memcg_id
;
4221 INIT_LIST_HEAD(&memcg
->memcg_slab_caches
);
4224 * We couldn't have accounted to this cgroup, because it hasn't got the
4225 * active bit set yet, so this should succeed.
4227 err
= res_counter_set_limit(&memcg
->kmem
, limit
);
4230 static_key_slow_inc(&memcg_kmem_enabled_key
);
4232 * Setting the active bit after enabling static branching will
4233 * guarantee no one starts accounting before all call sites are
4236 memcg_kmem_set_active(memcg
);
4238 memcg_resume_kmem_account();
4242 ida_simple_remove(&kmem_limited_groups
, memcg_id
);
4246 static int memcg_activate_kmem(struct mem_cgroup
*memcg
,
4247 unsigned long long limit
)
4251 mutex_lock(&activate_kmem_mutex
);
4252 ret
= __memcg_activate_kmem(memcg
, limit
);
4253 mutex_unlock(&activate_kmem_mutex
);
4257 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
4258 unsigned long long val
)
4262 if (!memcg_kmem_is_active(memcg
))
4263 ret
= memcg_activate_kmem(memcg
, val
);
4265 ret
= res_counter_set_limit(&memcg
->kmem
, val
);
4269 static int memcg_propagate_kmem(struct mem_cgroup
*memcg
)
4272 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
4277 mutex_lock(&activate_kmem_mutex
);
4279 * If the parent cgroup is not kmem-active now, it cannot be activated
4280 * after this point, because it has at least one child already.
4282 if (memcg_kmem_is_active(parent
))
4283 ret
= __memcg_activate_kmem(memcg
, RES_COUNTER_MAX
);
4284 mutex_unlock(&activate_kmem_mutex
);
4288 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
4289 unsigned long long val
)
4293 #endif /* CONFIG_MEMCG_KMEM */
4296 * The user of this function is...
4299 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
4300 char *buf
, size_t nbytes
, loff_t off
)
4302 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
4305 unsigned long long val
;
4308 buf
= strstrip(buf
);
4309 type
= MEMFILE_TYPE(of_cft(of
)->private);
4310 name
= MEMFILE_ATTR(of_cft(of
)->private);
4314 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
4318 /* This function does all necessary parse...reuse it */
4319 ret
= res_counter_memparse_write_strategy(buf
, &val
);
4323 ret
= mem_cgroup_resize_limit(memcg
, val
);
4324 else if (type
== _MEMSWAP
)
4325 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
4326 else if (type
== _KMEM
)
4327 ret
= memcg_update_kmem_limit(memcg
, val
);
4331 case RES_SOFT_LIMIT
:
4332 ret
= res_counter_memparse_write_strategy(buf
, &val
);
4336 * For memsw, soft limits are hard to implement in terms
4337 * of semantics, for now, we support soft limits for
4338 * control without swap
4341 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
4346 ret
= -EINVAL
; /* should be BUG() ? */
4349 return ret
?: nbytes
;
4352 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
4353 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
4355 unsigned long long min_limit
, min_memsw_limit
, tmp
;
4357 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4358 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4359 if (!memcg
->use_hierarchy
)
4362 while (memcg
->css
.parent
) {
4363 memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
4364 if (!memcg
->use_hierarchy
)
4366 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4367 min_limit
= min(min_limit
, tmp
);
4368 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4369 min_memsw_limit
= min(min_memsw_limit
, tmp
);
4372 *mem_limit
= min_limit
;
4373 *memsw_limit
= min_memsw_limit
;
4376 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
4377 size_t nbytes
, loff_t off
)
4379 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
4383 type
= MEMFILE_TYPE(of_cft(of
)->private);
4384 name
= MEMFILE_ATTR(of_cft(of
)->private);
4389 res_counter_reset_max(&memcg
->res
);
4390 else if (type
== _MEMSWAP
)
4391 res_counter_reset_max(&memcg
->memsw
);
4392 else if (type
== _KMEM
)
4393 res_counter_reset_max(&memcg
->kmem
);
4399 res_counter_reset_failcnt(&memcg
->res
);
4400 else if (type
== _MEMSWAP
)
4401 res_counter_reset_failcnt(&memcg
->memsw
);
4402 else if (type
== _KMEM
)
4403 res_counter_reset_failcnt(&memcg
->kmem
);
4412 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
4415 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
4419 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
4420 struct cftype
*cft
, u64 val
)
4422 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4424 if (val
>= (1 << NR_MOVE_TYPE
))
4428 * No kind of locking is needed in here, because ->can_attach() will
4429 * check this value once in the beginning of the process, and then carry
4430 * on with stale data. This means that changes to this value will only
4431 * affect task migrations starting after the change.
4433 memcg
->move_charge_at_immigrate
= val
;
4437 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
4438 struct cftype
*cft
, u64 val
)
4445 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
4449 unsigned int lru_mask
;
4452 static const struct numa_stat stats
[] = {
4453 { "total", LRU_ALL
},
4454 { "file", LRU_ALL_FILE
},
4455 { "anon", LRU_ALL_ANON
},
4456 { "unevictable", BIT(LRU_UNEVICTABLE
) },
4458 const struct numa_stat
*stat
;
4461 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
4463 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
4464 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
4465 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
4466 for_each_node_state(nid
, N_MEMORY
) {
4467 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
4469 seq_printf(m
, " N%d=%lu", nid
, nr
);
4474 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
4475 struct mem_cgroup
*iter
;
4478 for_each_mem_cgroup_tree(iter
, memcg
)
4479 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
4480 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
4481 for_each_node_state(nid
, N_MEMORY
) {
4483 for_each_mem_cgroup_tree(iter
, memcg
)
4484 nr
+= mem_cgroup_node_nr_lru_pages(
4485 iter
, nid
, stat
->lru_mask
);
4486 seq_printf(m
, " N%d=%lu", nid
, nr
);
4493 #endif /* CONFIG_NUMA */
4495 static inline void mem_cgroup_lru_names_not_uptodate(void)
4497 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
4500 static int memcg_stat_show(struct seq_file
*m
, void *v
)
4502 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
4503 struct mem_cgroup
*mi
;
4506 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
4507 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
4509 seq_printf(m
, "%s %ld\n", mem_cgroup_stat_names
[i
],
4510 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
4513 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
4514 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
4515 mem_cgroup_read_events(memcg
, i
));
4517 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
4518 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
4519 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
4521 /* Hierarchical information */
4523 unsigned long long limit
, memsw_limit
;
4524 memcg_get_hierarchical_limit(memcg
, &limit
, &memsw_limit
);
4525 seq_printf(m
, "hierarchical_memory_limit %llu\n", limit
);
4526 if (do_swap_account
)
4527 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
4531 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
4534 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
4536 for_each_mem_cgroup_tree(mi
, memcg
)
4537 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
4538 seq_printf(m
, "total_%s %lld\n", mem_cgroup_stat_names
[i
], val
);
4541 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
4542 unsigned long long val
= 0;
4544 for_each_mem_cgroup_tree(mi
, memcg
)
4545 val
+= mem_cgroup_read_events(mi
, i
);
4546 seq_printf(m
, "total_%s %llu\n",
4547 mem_cgroup_events_names
[i
], val
);
4550 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
4551 unsigned long long val
= 0;
4553 for_each_mem_cgroup_tree(mi
, memcg
)
4554 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
4555 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
4558 #ifdef CONFIG_DEBUG_VM
4561 struct mem_cgroup_per_zone
*mz
;
4562 struct zone_reclaim_stat
*rstat
;
4563 unsigned long recent_rotated
[2] = {0, 0};
4564 unsigned long recent_scanned
[2] = {0, 0};
4566 for_each_online_node(nid
)
4567 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4568 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
4569 rstat
= &mz
->lruvec
.reclaim_stat
;
4571 recent_rotated
[0] += rstat
->recent_rotated
[0];
4572 recent_rotated
[1] += rstat
->recent_rotated
[1];
4573 recent_scanned
[0] += rstat
->recent_scanned
[0];
4574 recent_scanned
[1] += rstat
->recent_scanned
[1];
4576 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
4577 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
4578 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
4579 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
4586 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
4589 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4591 return mem_cgroup_swappiness(memcg
);
4594 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
4595 struct cftype
*cft
, u64 val
)
4597 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4603 memcg
->swappiness
= val
;
4605 vm_swappiness
= val
;
4610 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
4612 struct mem_cgroup_threshold_ary
*t
;
4618 t
= rcu_dereference(memcg
->thresholds
.primary
);
4620 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
4625 usage
= mem_cgroup_usage(memcg
, swap
);
4628 * current_threshold points to threshold just below or equal to usage.
4629 * If it's not true, a threshold was crossed after last
4630 * call of __mem_cgroup_threshold().
4632 i
= t
->current_threshold
;
4635 * Iterate backward over array of thresholds starting from
4636 * current_threshold and check if a threshold is crossed.
4637 * If none of thresholds below usage is crossed, we read
4638 * only one element of the array here.
4640 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
4641 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4643 /* i = current_threshold + 1 */
4647 * Iterate forward over array of thresholds starting from
4648 * current_threshold+1 and check if a threshold is crossed.
4649 * If none of thresholds above usage is crossed, we read
4650 * only one element of the array here.
4652 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
4653 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4655 /* Update current_threshold */
4656 t
->current_threshold
= i
- 1;
4661 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
4664 __mem_cgroup_threshold(memcg
, false);
4665 if (do_swap_account
)
4666 __mem_cgroup_threshold(memcg
, true);
4668 memcg
= parent_mem_cgroup(memcg
);
4672 static int compare_thresholds(const void *a
, const void *b
)
4674 const struct mem_cgroup_threshold
*_a
= a
;
4675 const struct mem_cgroup_threshold
*_b
= b
;
4677 if (_a
->threshold
> _b
->threshold
)
4680 if (_a
->threshold
< _b
->threshold
)
4686 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
4688 struct mem_cgroup_eventfd_list
*ev
;
4690 spin_lock(&memcg_oom_lock
);
4692 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
4693 eventfd_signal(ev
->eventfd
, 1);
4695 spin_unlock(&memcg_oom_lock
);
4699 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
4701 struct mem_cgroup
*iter
;
4703 for_each_mem_cgroup_tree(iter
, memcg
)
4704 mem_cgroup_oom_notify_cb(iter
);
4707 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
4708 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
4710 struct mem_cgroup_thresholds
*thresholds
;
4711 struct mem_cgroup_threshold_ary
*new;
4712 u64 threshold
, usage
;
4715 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
4719 mutex_lock(&memcg
->thresholds_lock
);
4722 thresholds
= &memcg
->thresholds
;
4723 usage
= mem_cgroup_usage(memcg
, false);
4724 } else if (type
== _MEMSWAP
) {
4725 thresholds
= &memcg
->memsw_thresholds
;
4726 usage
= mem_cgroup_usage(memcg
, true);
4730 /* Check if a threshold crossed before adding a new one */
4731 if (thresholds
->primary
)
4732 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4734 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
4736 /* Allocate memory for new array of thresholds */
4737 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
4745 /* Copy thresholds (if any) to new array */
4746 if (thresholds
->primary
) {
4747 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
4748 sizeof(struct mem_cgroup_threshold
));
4751 /* Add new threshold */
4752 new->entries
[size
- 1].eventfd
= eventfd
;
4753 new->entries
[size
- 1].threshold
= threshold
;
4755 /* Sort thresholds. Registering of new threshold isn't time-critical */
4756 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4757 compare_thresholds
, NULL
);
4759 /* Find current threshold */
4760 new->current_threshold
= -1;
4761 for (i
= 0; i
< size
; i
++) {
4762 if (new->entries
[i
].threshold
<= usage
) {
4764 * new->current_threshold will not be used until
4765 * rcu_assign_pointer(), so it's safe to increment
4768 ++new->current_threshold
;
4773 /* Free old spare buffer and save old primary buffer as spare */
4774 kfree(thresholds
->spare
);
4775 thresholds
->spare
= thresholds
->primary
;
4777 rcu_assign_pointer(thresholds
->primary
, new);
4779 /* To be sure that nobody uses thresholds */
4783 mutex_unlock(&memcg
->thresholds_lock
);
4788 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
4789 struct eventfd_ctx
*eventfd
, const char *args
)
4791 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
4794 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
4795 struct eventfd_ctx
*eventfd
, const char *args
)
4797 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
4800 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4801 struct eventfd_ctx
*eventfd
, enum res_type type
)
4803 struct mem_cgroup_thresholds
*thresholds
;
4804 struct mem_cgroup_threshold_ary
*new;
4808 mutex_lock(&memcg
->thresholds_lock
);
4811 thresholds
= &memcg
->thresholds
;
4812 usage
= mem_cgroup_usage(memcg
, false);
4813 } else if (type
== _MEMSWAP
) {
4814 thresholds
= &memcg
->memsw_thresholds
;
4815 usage
= mem_cgroup_usage(memcg
, true);
4819 if (!thresholds
->primary
)
4822 /* Check if a threshold crossed before removing */
4823 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4825 /* Calculate new number of threshold */
4827 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4828 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4832 new = thresholds
->spare
;
4834 /* Set thresholds array to NULL if we don't have thresholds */
4843 /* Copy thresholds and find current threshold */
4844 new->current_threshold
= -1;
4845 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4846 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4849 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4850 if (new->entries
[j
].threshold
<= usage
) {
4852 * new->current_threshold will not be used
4853 * until rcu_assign_pointer(), so it's safe to increment
4856 ++new->current_threshold
;
4862 /* Swap primary and spare array */
4863 thresholds
->spare
= thresholds
->primary
;
4864 /* If all events are unregistered, free the spare array */
4866 kfree(thresholds
->spare
);
4867 thresholds
->spare
= NULL
;
4870 rcu_assign_pointer(thresholds
->primary
, new);
4872 /* To be sure that nobody uses thresholds */
4875 mutex_unlock(&memcg
->thresholds_lock
);
4878 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4879 struct eventfd_ctx
*eventfd
)
4881 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
4884 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4885 struct eventfd_ctx
*eventfd
)
4887 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
4890 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
4891 struct eventfd_ctx
*eventfd
, const char *args
)
4893 struct mem_cgroup_eventfd_list
*event
;
4895 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4899 spin_lock(&memcg_oom_lock
);
4901 event
->eventfd
= eventfd
;
4902 list_add(&event
->list
, &memcg
->oom_notify
);
4904 /* already in OOM ? */
4905 if (atomic_read(&memcg
->under_oom
))
4906 eventfd_signal(eventfd
, 1);
4907 spin_unlock(&memcg_oom_lock
);
4912 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
4913 struct eventfd_ctx
*eventfd
)
4915 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4917 spin_lock(&memcg_oom_lock
);
4919 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
4920 if (ev
->eventfd
== eventfd
) {
4921 list_del(&ev
->list
);
4926 spin_unlock(&memcg_oom_lock
);
4929 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
4931 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
4933 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
4934 seq_printf(sf
, "under_oom %d\n", (bool)atomic_read(&memcg
->under_oom
));
4938 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
4939 struct cftype
*cft
, u64 val
)
4941 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4943 /* cannot set to root cgroup and only 0 and 1 are allowed */
4944 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
4947 memcg
->oom_kill_disable
= val
;
4949 memcg_oom_recover(memcg
);
4954 #ifdef CONFIG_MEMCG_KMEM
4955 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
4959 memcg
->kmemcg_id
= -1;
4960 ret
= memcg_propagate_kmem(memcg
);
4964 return mem_cgroup_sockets_init(memcg
, ss
);
4967 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
4969 mem_cgroup_sockets_destroy(memcg
);
4972 static void kmem_cgroup_css_offline(struct mem_cgroup
*memcg
)
4974 if (!memcg_kmem_is_active(memcg
))
4978 * kmem charges can outlive the cgroup. In the case of slab
4979 * pages, for instance, a page contain objects from various
4980 * processes. As we prevent from taking a reference for every
4981 * such allocation we have to be careful when doing uncharge
4982 * (see memcg_uncharge_kmem) and here during offlining.
4984 * The idea is that that only the _last_ uncharge which sees
4985 * the dead memcg will drop the last reference. An additional
4986 * reference is taken here before the group is marked dead
4987 * which is then paired with css_put during uncharge resp. here.
4989 * Although this might sound strange as this path is called from
4990 * css_offline() when the referencemight have dropped down to 0 and
4991 * shouldn't be incremented anymore (css_tryget_online() would
4992 * fail) we do not have other options because of the kmem
4993 * allocations lifetime.
4995 css_get(&memcg
->css
);
4997 memcg_kmem_mark_dead(memcg
);
4999 if (res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0)
5002 if (memcg_kmem_test_and_clear_dead(memcg
))
5003 css_put(&memcg
->css
);
5006 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
5011 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
5015 static void kmem_cgroup_css_offline(struct mem_cgroup
*memcg
)
5021 * DO NOT USE IN NEW FILES.
5023 * "cgroup.event_control" implementation.
5025 * This is way over-engineered. It tries to support fully configurable
5026 * events for each user. Such level of flexibility is completely
5027 * unnecessary especially in the light of the planned unified hierarchy.
5029 * Please deprecate this and replace with something simpler if at all
5034 * Unregister event and free resources.
5036 * Gets called from workqueue.
5038 static void memcg_event_remove(struct work_struct
*work
)
5040 struct mem_cgroup_event
*event
=
5041 container_of(work
, struct mem_cgroup_event
, remove
);
5042 struct mem_cgroup
*memcg
= event
->memcg
;
5044 remove_wait_queue(event
->wqh
, &event
->wait
);
5046 event
->unregister_event(memcg
, event
->eventfd
);
5048 /* Notify userspace the event is going away. */
5049 eventfd_signal(event
->eventfd
, 1);
5051 eventfd_ctx_put(event
->eventfd
);
5053 css_put(&memcg
->css
);
5057 * Gets called on POLLHUP on eventfd when user closes it.
5059 * Called with wqh->lock held and interrupts disabled.
5061 static int memcg_event_wake(wait_queue_t
*wait
, unsigned mode
,
5062 int sync
, void *key
)
5064 struct mem_cgroup_event
*event
=
5065 container_of(wait
, struct mem_cgroup_event
, wait
);
5066 struct mem_cgroup
*memcg
= event
->memcg
;
5067 unsigned long flags
= (unsigned long)key
;
5069 if (flags
& POLLHUP
) {
5071 * If the event has been detached at cgroup removal, we
5072 * can simply return knowing the other side will cleanup
5075 * We can't race against event freeing since the other
5076 * side will require wqh->lock via remove_wait_queue(),
5079 spin_lock(&memcg
->event_list_lock
);
5080 if (!list_empty(&event
->list
)) {
5081 list_del_init(&event
->list
);
5083 * We are in atomic context, but cgroup_event_remove()
5084 * may sleep, so we have to call it in workqueue.
5086 schedule_work(&event
->remove
);
5088 spin_unlock(&memcg
->event_list_lock
);
5094 static void memcg_event_ptable_queue_proc(struct file
*file
,
5095 wait_queue_head_t
*wqh
, poll_table
*pt
)
5097 struct mem_cgroup_event
*event
=
5098 container_of(pt
, struct mem_cgroup_event
, pt
);
5101 add_wait_queue(wqh
, &event
->wait
);
5105 * DO NOT USE IN NEW FILES.
5107 * Parse input and register new cgroup event handler.
5109 * Input must be in format '<event_fd> <control_fd> <args>'.
5110 * Interpretation of args is defined by control file implementation.
5112 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
5113 char *buf
, size_t nbytes
, loff_t off
)
5115 struct cgroup_subsys_state
*css
= of_css(of
);
5116 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5117 struct mem_cgroup_event
*event
;
5118 struct cgroup_subsys_state
*cfile_css
;
5119 unsigned int efd
, cfd
;
5126 buf
= strstrip(buf
);
5128 efd
= simple_strtoul(buf
, &endp
, 10);
5133 cfd
= simple_strtoul(buf
, &endp
, 10);
5134 if ((*endp
!= ' ') && (*endp
!= '\0'))
5138 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
5142 event
->memcg
= memcg
;
5143 INIT_LIST_HEAD(&event
->list
);
5144 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
5145 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
5146 INIT_WORK(&event
->remove
, memcg_event_remove
);
5154 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
5155 if (IS_ERR(event
->eventfd
)) {
5156 ret
= PTR_ERR(event
->eventfd
);
5163 goto out_put_eventfd
;
5166 /* the process need read permission on control file */
5167 /* AV: shouldn't we check that it's been opened for read instead? */
5168 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
5173 * Determine the event callbacks and set them in @event. This used
5174 * to be done via struct cftype but cgroup core no longer knows
5175 * about these events. The following is crude but the whole thing
5176 * is for compatibility anyway.
5178 * DO NOT ADD NEW FILES.
5180 name
= cfile
.file
->f_dentry
->d_name
.name
;
5182 if (!strcmp(name
, "memory.usage_in_bytes")) {
5183 event
->register_event
= mem_cgroup_usage_register_event
;
5184 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
5185 } else if (!strcmp(name
, "memory.oom_control")) {
5186 event
->register_event
= mem_cgroup_oom_register_event
;
5187 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
5188 } else if (!strcmp(name
, "memory.pressure_level")) {
5189 event
->register_event
= vmpressure_register_event
;
5190 event
->unregister_event
= vmpressure_unregister_event
;
5191 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
5192 event
->register_event
= memsw_cgroup_usage_register_event
;
5193 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
5200 * Verify @cfile should belong to @css. Also, remaining events are
5201 * automatically removed on cgroup destruction but the removal is
5202 * asynchronous, so take an extra ref on @css.
5204 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_dentry
->d_parent
,
5205 &memory_cgrp_subsys
);
5207 if (IS_ERR(cfile_css
))
5209 if (cfile_css
!= css
) {
5214 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
5218 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
5220 spin_lock(&memcg
->event_list_lock
);
5221 list_add(&event
->list
, &memcg
->event_list
);
5222 spin_unlock(&memcg
->event_list_lock
);
5234 eventfd_ctx_put(event
->eventfd
);
5243 static struct cftype mem_cgroup_files
[] = {
5245 .name
= "usage_in_bytes",
5246 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
5247 .read_u64
= mem_cgroup_read_u64
,
5250 .name
= "max_usage_in_bytes",
5251 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
5252 .write
= mem_cgroup_reset
,
5253 .read_u64
= mem_cgroup_read_u64
,
5256 .name
= "limit_in_bytes",
5257 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
5258 .write
= mem_cgroup_write
,
5259 .read_u64
= mem_cgroup_read_u64
,
5262 .name
= "soft_limit_in_bytes",
5263 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
5264 .write
= mem_cgroup_write
,
5265 .read_u64
= mem_cgroup_read_u64
,
5269 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
5270 .write
= mem_cgroup_reset
,
5271 .read_u64
= mem_cgroup_read_u64
,
5275 .seq_show
= memcg_stat_show
,
5278 .name
= "force_empty",
5279 .write
= mem_cgroup_force_empty_write
,
5282 .name
= "use_hierarchy",
5283 .write_u64
= mem_cgroup_hierarchy_write
,
5284 .read_u64
= mem_cgroup_hierarchy_read
,
5287 .name
= "cgroup.event_control", /* XXX: for compat */
5288 .write
= memcg_write_event_control
,
5289 .flags
= CFTYPE_NO_PREFIX
,
5293 .name
= "swappiness",
5294 .read_u64
= mem_cgroup_swappiness_read
,
5295 .write_u64
= mem_cgroup_swappiness_write
,
5298 .name
= "move_charge_at_immigrate",
5299 .read_u64
= mem_cgroup_move_charge_read
,
5300 .write_u64
= mem_cgroup_move_charge_write
,
5303 .name
= "oom_control",
5304 .seq_show
= mem_cgroup_oom_control_read
,
5305 .write_u64
= mem_cgroup_oom_control_write
,
5306 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
5309 .name
= "pressure_level",
5313 .name
= "numa_stat",
5314 .seq_show
= memcg_numa_stat_show
,
5317 #ifdef CONFIG_MEMCG_KMEM
5319 .name
= "kmem.limit_in_bytes",
5320 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
5321 .write
= mem_cgroup_write
,
5322 .read_u64
= mem_cgroup_read_u64
,
5325 .name
= "kmem.usage_in_bytes",
5326 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
5327 .read_u64
= mem_cgroup_read_u64
,
5330 .name
= "kmem.failcnt",
5331 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
5332 .write
= mem_cgroup_reset
,
5333 .read_u64
= mem_cgroup_read_u64
,
5336 .name
= "kmem.max_usage_in_bytes",
5337 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
5338 .write
= mem_cgroup_reset
,
5339 .read_u64
= mem_cgroup_read_u64
,
5341 #ifdef CONFIG_SLABINFO
5343 .name
= "kmem.slabinfo",
5344 .seq_show
= mem_cgroup_slabinfo_read
,
5348 { }, /* terminate */
5351 #ifdef CONFIG_MEMCG_SWAP
5352 static struct cftype memsw_cgroup_files
[] = {
5354 .name
= "memsw.usage_in_bytes",
5355 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
5356 .read_u64
= mem_cgroup_read_u64
,
5359 .name
= "memsw.max_usage_in_bytes",
5360 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
5361 .write
= mem_cgroup_reset
,
5362 .read_u64
= mem_cgroup_read_u64
,
5365 .name
= "memsw.limit_in_bytes",
5366 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
5367 .write
= mem_cgroup_write
,
5368 .read_u64
= mem_cgroup_read_u64
,
5371 .name
= "memsw.failcnt",
5372 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
5373 .write
= mem_cgroup_reset
,
5374 .read_u64
= mem_cgroup_read_u64
,
5376 { }, /* terminate */
5379 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
5381 struct mem_cgroup_per_node
*pn
;
5382 struct mem_cgroup_per_zone
*mz
;
5383 int zone
, tmp
= node
;
5385 * This routine is called against possible nodes.
5386 * But it's BUG to call kmalloc() against offline node.
5388 * TODO: this routine can waste much memory for nodes which will
5389 * never be onlined. It's better to use memory hotplug callback
5392 if (!node_state(node
, N_NORMAL_MEMORY
))
5394 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
5398 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
5399 mz
= &pn
->zoneinfo
[zone
];
5400 lruvec_init(&mz
->lruvec
);
5401 mz
->usage_in_excess
= 0;
5402 mz
->on_tree
= false;
5405 memcg
->nodeinfo
[node
] = pn
;
5409 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
5411 kfree(memcg
->nodeinfo
[node
]);
5414 static struct mem_cgroup
*mem_cgroup_alloc(void)
5416 struct mem_cgroup
*memcg
;
5419 size
= sizeof(struct mem_cgroup
);
5420 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
5422 memcg
= kzalloc(size
, GFP_KERNEL
);
5426 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
5429 spin_lock_init(&memcg
->pcp_counter_lock
);
5438 * At destroying mem_cgroup, references from swap_cgroup can remain.
5439 * (scanning all at force_empty is too costly...)
5441 * Instead of clearing all references at force_empty, we remember
5442 * the number of reference from swap_cgroup and free mem_cgroup when
5443 * it goes down to 0.
5445 * Removal of cgroup itself succeeds regardless of refs from swap.
5448 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
5452 mem_cgroup_remove_from_trees(memcg
);
5455 free_mem_cgroup_per_zone_info(memcg
, node
);
5457 free_percpu(memcg
->stat
);
5460 * We need to make sure that (at least for now), the jump label
5461 * destruction code runs outside of the cgroup lock. This is because
5462 * get_online_cpus(), which is called from the static_branch update,
5463 * can't be called inside the cgroup_lock. cpusets are the ones
5464 * enforcing this dependency, so if they ever change, we might as well.
5466 * schedule_work() will guarantee this happens. Be careful if you need
5467 * to move this code around, and make sure it is outside
5470 disarm_static_keys(memcg
);
5475 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5477 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
5479 if (!memcg
->res
.parent
)
5481 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
5483 EXPORT_SYMBOL(parent_mem_cgroup
);
5485 static void __init
mem_cgroup_soft_limit_tree_init(void)
5487 struct mem_cgroup_tree_per_node
*rtpn
;
5488 struct mem_cgroup_tree_per_zone
*rtpz
;
5489 int tmp
, node
, zone
;
5491 for_each_node(node
) {
5493 if (!node_state(node
, N_NORMAL_MEMORY
))
5495 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
5498 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
5500 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
5501 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
5502 rtpz
->rb_root
= RB_ROOT
;
5503 spin_lock_init(&rtpz
->lock
);
5508 static struct cgroup_subsys_state
* __ref
5509 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
5511 struct mem_cgroup
*memcg
;
5512 long error
= -ENOMEM
;
5515 memcg
= mem_cgroup_alloc();
5517 return ERR_PTR(error
);
5520 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
5524 if (parent_css
== NULL
) {
5525 root_mem_cgroup
= memcg
;
5526 res_counter_init(&memcg
->res
, NULL
);
5527 res_counter_init(&memcg
->memsw
, NULL
);
5528 res_counter_init(&memcg
->kmem
, NULL
);
5531 memcg
->last_scanned_node
= MAX_NUMNODES
;
5532 INIT_LIST_HEAD(&memcg
->oom_notify
);
5533 memcg
->move_charge_at_immigrate
= 0;
5534 mutex_init(&memcg
->thresholds_lock
);
5535 spin_lock_init(&memcg
->move_lock
);
5536 vmpressure_init(&memcg
->vmpressure
);
5537 INIT_LIST_HEAD(&memcg
->event_list
);
5538 spin_lock_init(&memcg
->event_list_lock
);
5543 __mem_cgroup_free(memcg
);
5544 return ERR_PTR(error
);
5548 mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
5550 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5551 struct mem_cgroup
*parent
= mem_cgroup_from_css(css
->parent
);
5553 if (css
->id
> MEM_CGROUP_ID_MAX
)
5559 mutex_lock(&memcg_create_mutex
);
5561 memcg
->use_hierarchy
= parent
->use_hierarchy
;
5562 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
5563 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
5565 if (parent
->use_hierarchy
) {
5566 res_counter_init(&memcg
->res
, &parent
->res
);
5567 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
5568 res_counter_init(&memcg
->kmem
, &parent
->kmem
);
5571 * No need to take a reference to the parent because cgroup
5572 * core guarantees its existence.
5575 res_counter_init(&memcg
->res
, NULL
);
5576 res_counter_init(&memcg
->memsw
, NULL
);
5577 res_counter_init(&memcg
->kmem
, NULL
);
5579 * Deeper hierachy with use_hierarchy == false doesn't make
5580 * much sense so let cgroup subsystem know about this
5581 * unfortunate state in our controller.
5583 if (parent
!= root_mem_cgroup
)
5584 memory_cgrp_subsys
.broken_hierarchy
= true;
5586 mutex_unlock(&memcg_create_mutex
);
5588 return memcg_init_kmem(memcg
, &memory_cgrp_subsys
);
5592 * Announce all parents that a group from their hierarchy is gone.
5594 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup
*memcg
)
5596 struct mem_cgroup
*parent
= memcg
;
5598 while ((parent
= parent_mem_cgroup(parent
)))
5599 mem_cgroup_iter_invalidate(parent
);
5602 * if the root memcg is not hierarchical we have to check it
5605 if (!root_mem_cgroup
->use_hierarchy
)
5606 mem_cgroup_iter_invalidate(root_mem_cgroup
);
5609 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
5611 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5612 struct mem_cgroup_event
*event
, *tmp
;
5613 struct cgroup_subsys_state
*iter
;
5616 * Unregister events and notify userspace.
5617 * Notify userspace about cgroup removing only after rmdir of cgroup
5618 * directory to avoid race between userspace and kernelspace.
5620 spin_lock(&memcg
->event_list_lock
);
5621 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
5622 list_del_init(&event
->list
);
5623 schedule_work(&event
->remove
);
5625 spin_unlock(&memcg
->event_list_lock
);
5627 kmem_cgroup_css_offline(memcg
);
5629 mem_cgroup_invalidate_reclaim_iterators(memcg
);
5632 * This requires that offlining is serialized. Right now that is
5633 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5635 css_for_each_descendant_post(iter
, css
)
5636 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter
));
5638 memcg_unregister_all_caches(memcg
);
5639 vmpressure_cleanup(&memcg
->vmpressure
);
5642 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
5644 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5646 * XXX: css_offline() would be where we should reparent all
5647 * memory to prepare the cgroup for destruction. However,
5648 * memcg does not do css_tryget_online() and res_counter charging
5649 * under the same RCU lock region, which means that charging
5650 * could race with offlining. Offlining only happens to
5651 * cgroups with no tasks in them but charges can show up
5652 * without any tasks from the swapin path when the target
5653 * memcg is looked up from the swapout record and not from the
5654 * current task as it usually is. A race like this can leak
5655 * charges and put pages with stale cgroup pointers into
5659 * lookup_swap_cgroup_id()
5661 * mem_cgroup_lookup()
5662 * css_tryget_online()
5664 * disable css_tryget_online()
5667 * reparent_charges()
5668 * res_counter_charge()
5671 * pc->mem_cgroup = dead memcg
5674 * The bulk of the charges are still moved in offline_css() to
5675 * avoid pinning a lot of pages in case a long-term reference
5676 * like a swapout record is deferring the css_free() to long
5677 * after offlining. But this makes sure we catch any charges
5678 * made after offlining:
5680 mem_cgroup_reparent_charges(memcg
);
5682 memcg_destroy_kmem(memcg
);
5683 __mem_cgroup_free(memcg
);
5687 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5688 * @css: the target css
5690 * Reset the states of the mem_cgroup associated with @css. This is
5691 * invoked when the userland requests disabling on the default hierarchy
5692 * but the memcg is pinned through dependency. The memcg should stop
5693 * applying policies and should revert to the vanilla state as it may be
5694 * made visible again.
5696 * The current implementation only resets the essential configurations.
5697 * This needs to be expanded to cover all the visible parts.
5699 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
5701 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5703 mem_cgroup_resize_limit(memcg
, ULLONG_MAX
);
5704 mem_cgroup_resize_memsw_limit(memcg
, ULLONG_MAX
);
5705 memcg_update_kmem_limit(memcg
, ULLONG_MAX
);
5706 res_counter_set_soft_limit(&memcg
->res
, ULLONG_MAX
);
5710 /* Handlers for move charge at task migration. */
5711 static int mem_cgroup_do_precharge(unsigned long count
)
5715 /* Try a single bulk charge without reclaim first */
5716 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_WAIT
, count
);
5718 mc
.precharge
+= count
;
5721 if (ret
== -EINTR
) {
5722 cancel_charge(root_mem_cgroup
, count
);
5726 /* Try charges one by one with reclaim */
5728 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_NORETRY
, 1);
5730 * In case of failure, any residual charges against
5731 * mc.to will be dropped by mem_cgroup_clear_mc()
5732 * later on. However, cancel any charges that are
5733 * bypassed to root right away or they'll be lost.
5736 cancel_charge(root_mem_cgroup
, 1);
5746 * get_mctgt_type - get target type of moving charge
5747 * @vma: the vma the pte to be checked belongs
5748 * @addr: the address corresponding to the pte to be checked
5749 * @ptent: the pte to be checked
5750 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5753 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5754 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5755 * move charge. if @target is not NULL, the page is stored in target->page
5756 * with extra refcnt got(Callers should handle it).
5757 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5758 * target for charge migration. if @target is not NULL, the entry is stored
5761 * Called with pte lock held.
5768 enum mc_target_type
{
5774 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5775 unsigned long addr
, pte_t ptent
)
5777 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5779 if (!page
|| !page_mapped(page
))
5781 if (PageAnon(page
)) {
5782 /* we don't move shared anon */
5785 } else if (!move_file())
5786 /* we ignore mapcount for file pages */
5788 if (!get_page_unless_zero(page
))
5795 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5796 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5798 struct page
*page
= NULL
;
5799 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5801 if (!move_anon() || non_swap_entry(ent
))
5804 * Because lookup_swap_cache() updates some statistics counter,
5805 * we call find_get_page() with swapper_space directly.
5807 page
= find_get_page(swap_address_space(ent
), ent
.val
);
5808 if (do_swap_account
)
5809 entry
->val
= ent
.val
;
5814 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5815 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5821 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5822 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5824 struct page
*page
= NULL
;
5825 struct address_space
*mapping
;
5828 if (!vma
->vm_file
) /* anonymous vma */
5833 mapping
= vma
->vm_file
->f_mapping
;
5834 if (pte_none(ptent
))
5835 pgoff
= linear_page_index(vma
, addr
);
5836 else /* pte_file(ptent) is true */
5837 pgoff
= pte_to_pgoff(ptent
);
5839 /* page is moved even if it's not RSS of this task(page-faulted). */
5841 /* shmem/tmpfs may report page out on swap: account for that too. */
5842 if (shmem_mapping(mapping
)) {
5843 page
= find_get_entry(mapping
, pgoff
);
5844 if (radix_tree_exceptional_entry(page
)) {
5845 swp_entry_t swp
= radix_to_swp_entry(page
);
5846 if (do_swap_account
)
5848 page
= find_get_page(swap_address_space(swp
), swp
.val
);
5851 page
= find_get_page(mapping
, pgoff
);
5853 page
= find_get_page(mapping
, pgoff
);
5858 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
5859 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5861 struct page
*page
= NULL
;
5862 struct page_cgroup
*pc
;
5863 enum mc_target_type ret
= MC_TARGET_NONE
;
5864 swp_entry_t ent
= { .val
= 0 };
5866 if (pte_present(ptent
))
5867 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5868 else if (is_swap_pte(ptent
))
5869 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
5870 else if (pte_none(ptent
) || pte_file(ptent
))
5871 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5873 if (!page
&& !ent
.val
)
5876 pc
= lookup_page_cgroup(page
);
5878 * Do only loose check w/o serialization.
5879 * mem_cgroup_move_account() checks the pc is valid or
5880 * not under LRU exclusion.
5882 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5883 ret
= MC_TARGET_PAGE
;
5885 target
->page
= page
;
5887 if (!ret
|| !target
)
5890 /* There is a swap entry and a page doesn't exist or isn't charged */
5891 if (ent
.val
&& !ret
&&
5892 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
5893 ret
= MC_TARGET_SWAP
;
5900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5902 * We don't consider swapping or file mapped pages because THP does not
5903 * support them for now.
5904 * Caller should make sure that pmd_trans_huge(pmd) is true.
5906 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5907 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5909 struct page
*page
= NULL
;
5910 struct page_cgroup
*pc
;
5911 enum mc_target_type ret
= MC_TARGET_NONE
;
5913 page
= pmd_page(pmd
);
5914 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
5917 pc
= lookup_page_cgroup(page
);
5918 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5919 ret
= MC_TARGET_PAGE
;
5922 target
->page
= page
;
5928 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5929 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5931 return MC_TARGET_NONE
;
5935 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5936 unsigned long addr
, unsigned long end
,
5937 struct mm_walk
*walk
)
5939 struct vm_area_struct
*vma
= walk
->private;
5943 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
5944 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
5945 mc
.precharge
+= HPAGE_PMD_NR
;
5950 if (pmd_trans_unstable(pmd
))
5952 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5953 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5954 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
5955 mc
.precharge
++; /* increment precharge temporarily */
5956 pte_unmap_unlock(pte
- 1, ptl
);
5962 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5964 unsigned long precharge
;
5965 struct vm_area_struct
*vma
;
5967 down_read(&mm
->mmap_sem
);
5968 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5969 struct mm_walk mem_cgroup_count_precharge_walk
= {
5970 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5974 if (is_vm_hugetlb_page(vma
))
5976 walk_page_range(vma
->vm_start
, vma
->vm_end
,
5977 &mem_cgroup_count_precharge_walk
);
5979 up_read(&mm
->mmap_sem
);
5981 precharge
= mc
.precharge
;
5987 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5989 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5991 VM_BUG_ON(mc
.moving_task
);
5992 mc
.moving_task
= current
;
5993 return mem_cgroup_do_precharge(precharge
);
5996 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5997 static void __mem_cgroup_clear_mc(void)
5999 struct mem_cgroup
*from
= mc
.from
;
6000 struct mem_cgroup
*to
= mc
.to
;
6003 /* we must uncharge all the leftover precharges from mc.to */
6005 cancel_charge(mc
.to
, mc
.precharge
);
6009 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6010 * we must uncharge here.
6012 if (mc
.moved_charge
) {
6013 cancel_charge(mc
.from
, mc
.moved_charge
);
6014 mc
.moved_charge
= 0;
6016 /* we must fixup refcnts and charges */
6017 if (mc
.moved_swap
) {
6018 /* uncharge swap account from the old cgroup */
6019 if (!mem_cgroup_is_root(mc
.from
))
6020 res_counter_uncharge(&mc
.from
->memsw
,
6021 PAGE_SIZE
* mc
.moved_swap
);
6023 for (i
= 0; i
< mc
.moved_swap
; i
++)
6024 css_put(&mc
.from
->css
);
6027 * we charged both to->res and to->memsw, so we should
6030 if (!mem_cgroup_is_root(mc
.to
))
6031 res_counter_uncharge(&mc
.to
->res
,
6032 PAGE_SIZE
* mc
.moved_swap
);
6033 /* we've already done css_get(mc.to) */
6036 memcg_oom_recover(from
);
6037 memcg_oom_recover(to
);
6038 wake_up_all(&mc
.waitq
);
6041 static void mem_cgroup_clear_mc(void)
6043 struct mem_cgroup
*from
= mc
.from
;
6046 * we must clear moving_task before waking up waiters at the end of
6049 mc
.moving_task
= NULL
;
6050 __mem_cgroup_clear_mc();
6051 spin_lock(&mc
.lock
);
6054 spin_unlock(&mc
.lock
);
6055 mem_cgroup_end_move(from
);
6058 static int mem_cgroup_can_attach(struct cgroup_subsys_state
*css
,
6059 struct cgroup_taskset
*tset
)
6061 struct task_struct
*p
= cgroup_taskset_first(tset
);
6063 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6064 unsigned long move_charge_at_immigrate
;
6067 * We are now commited to this value whatever it is. Changes in this
6068 * tunable will only affect upcoming migrations, not the current one.
6069 * So we need to save it, and keep it going.
6071 move_charge_at_immigrate
= memcg
->move_charge_at_immigrate
;
6072 if (move_charge_at_immigrate
) {
6073 struct mm_struct
*mm
;
6074 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
6076 VM_BUG_ON(from
== memcg
);
6078 mm
= get_task_mm(p
);
6081 /* We move charges only when we move a owner of the mm */
6082 if (mm
->owner
== p
) {
6085 VM_BUG_ON(mc
.precharge
);
6086 VM_BUG_ON(mc
.moved_charge
);
6087 VM_BUG_ON(mc
.moved_swap
);
6088 mem_cgroup_start_move(from
);
6089 spin_lock(&mc
.lock
);
6092 mc
.immigrate_flags
= move_charge_at_immigrate
;
6093 spin_unlock(&mc
.lock
);
6094 /* We set mc.moving_task later */
6096 ret
= mem_cgroup_precharge_mc(mm
);
6098 mem_cgroup_clear_mc();
6105 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state
*css
,
6106 struct cgroup_taskset
*tset
)
6108 mem_cgroup_clear_mc();
6111 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
6112 unsigned long addr
, unsigned long end
,
6113 struct mm_walk
*walk
)
6116 struct vm_area_struct
*vma
= walk
->private;
6119 enum mc_target_type target_type
;
6120 union mc_target target
;
6122 struct page_cgroup
*pc
;
6125 * We don't take compound_lock() here but no race with splitting thp
6127 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6128 * under splitting, which means there's no concurrent thp split,
6129 * - if another thread runs into split_huge_page() just after we
6130 * entered this if-block, the thread must wait for page table lock
6131 * to be unlocked in __split_huge_page_splitting(), where the main
6132 * part of thp split is not executed yet.
6134 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
6135 if (mc
.precharge
< HPAGE_PMD_NR
) {
6139 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
6140 if (target_type
== MC_TARGET_PAGE
) {
6142 if (!isolate_lru_page(page
)) {
6143 pc
= lookup_page_cgroup(page
);
6144 if (!mem_cgroup_move_account(page
, HPAGE_PMD_NR
,
6145 pc
, mc
.from
, mc
.to
)) {
6146 mc
.precharge
-= HPAGE_PMD_NR
;
6147 mc
.moved_charge
+= HPAGE_PMD_NR
;
6149 putback_lru_page(page
);
6157 if (pmd_trans_unstable(pmd
))
6160 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
6161 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
6162 pte_t ptent
= *(pte
++);
6168 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
6169 case MC_TARGET_PAGE
:
6171 if (isolate_lru_page(page
))
6173 pc
= lookup_page_cgroup(page
);
6174 if (!mem_cgroup_move_account(page
, 1, pc
,
6177 /* we uncharge from mc.from later. */
6180 putback_lru_page(page
);
6181 put
: /* get_mctgt_type() gets the page */
6184 case MC_TARGET_SWAP
:
6186 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
6188 /* we fixup refcnts and charges later. */
6196 pte_unmap_unlock(pte
- 1, ptl
);
6201 * We have consumed all precharges we got in can_attach().
6202 * We try charge one by one, but don't do any additional
6203 * charges to mc.to if we have failed in charge once in attach()
6206 ret
= mem_cgroup_do_precharge(1);
6214 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
6216 struct vm_area_struct
*vma
;
6218 lru_add_drain_all();
6220 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
6222 * Someone who are holding the mmap_sem might be waiting in
6223 * waitq. So we cancel all extra charges, wake up all waiters,
6224 * and retry. Because we cancel precharges, we might not be able
6225 * to move enough charges, but moving charge is a best-effort
6226 * feature anyway, so it wouldn't be a big problem.
6228 __mem_cgroup_clear_mc();
6232 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
6234 struct mm_walk mem_cgroup_move_charge_walk
= {
6235 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
6239 if (is_vm_hugetlb_page(vma
))
6241 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
6242 &mem_cgroup_move_charge_walk
);
6245 * means we have consumed all precharges and failed in
6246 * doing additional charge. Just abandon here.
6250 up_read(&mm
->mmap_sem
);
6253 static void mem_cgroup_move_task(struct cgroup_subsys_state
*css
,
6254 struct cgroup_taskset
*tset
)
6256 struct task_struct
*p
= cgroup_taskset_first(tset
);
6257 struct mm_struct
*mm
= get_task_mm(p
);
6261 mem_cgroup_move_charge(mm
);
6265 mem_cgroup_clear_mc();
6267 #else /* !CONFIG_MMU */
6268 static int mem_cgroup_can_attach(struct cgroup_subsys_state
*css
,
6269 struct cgroup_taskset
*tset
)
6273 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state
*css
,
6274 struct cgroup_taskset
*tset
)
6277 static void mem_cgroup_move_task(struct cgroup_subsys_state
*css
,
6278 struct cgroup_taskset
*tset
)
6284 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6285 * to verify whether we're attached to the default hierarchy on each mount
6288 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
6291 * use_hierarchy is forced on the default hierarchy. cgroup core
6292 * guarantees that @root doesn't have any children, so turning it
6293 * on for the root memcg is enough.
6295 if (cgroup_on_dfl(root_css
->cgroup
))
6296 mem_cgroup_from_css(root_css
)->use_hierarchy
= true;
6299 struct cgroup_subsys memory_cgrp_subsys
= {
6300 .css_alloc
= mem_cgroup_css_alloc
,
6301 .css_online
= mem_cgroup_css_online
,
6302 .css_offline
= mem_cgroup_css_offline
,
6303 .css_free
= mem_cgroup_css_free
,
6304 .css_reset
= mem_cgroup_css_reset
,
6305 .can_attach
= mem_cgroup_can_attach
,
6306 .cancel_attach
= mem_cgroup_cancel_attach
,
6307 .attach
= mem_cgroup_move_task
,
6308 .bind
= mem_cgroup_bind
,
6309 .legacy_cftypes
= mem_cgroup_files
,
6313 #ifdef CONFIG_MEMCG_SWAP
6314 static int __init
enable_swap_account(char *s
)
6316 if (!strcmp(s
, "1"))
6317 really_do_swap_account
= 1;
6318 else if (!strcmp(s
, "0"))
6319 really_do_swap_account
= 0;
6322 __setup("swapaccount=", enable_swap_account
);
6324 static void __init
memsw_file_init(void)
6326 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
6327 memsw_cgroup_files
));
6330 static void __init
enable_swap_cgroup(void)
6332 if (!mem_cgroup_disabled() && really_do_swap_account
) {
6333 do_swap_account
= 1;
6339 static void __init
enable_swap_cgroup(void)
6344 #ifdef CONFIG_MEMCG_SWAP
6346 * mem_cgroup_swapout - transfer a memsw charge to swap
6347 * @page: page whose memsw charge to transfer
6348 * @entry: swap entry to move the charge to
6350 * Transfer the memsw charge of @page to @entry.
6352 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
6354 struct page_cgroup
*pc
;
6355 unsigned short oldid
;
6357 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6358 VM_BUG_ON_PAGE(page_count(page
), page
);
6360 if (!do_swap_account
)
6363 pc
= lookup_page_cgroup(page
);
6365 /* Readahead page, never charged */
6366 if (!PageCgroupUsed(pc
))
6369 VM_BUG_ON_PAGE(!(pc
->flags
& PCG_MEMSW
), page
);
6371 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(pc
->mem_cgroup
));
6372 VM_BUG_ON_PAGE(oldid
, page
);
6374 pc
->flags
&= ~PCG_MEMSW
;
6375 css_get(&pc
->mem_cgroup
->css
);
6376 mem_cgroup_swap_statistics(pc
->mem_cgroup
, true);
6380 * mem_cgroup_uncharge_swap - uncharge a swap entry
6381 * @entry: swap entry to uncharge
6383 * Drop the memsw charge associated with @entry.
6385 void mem_cgroup_uncharge_swap(swp_entry_t entry
)
6387 struct mem_cgroup
*memcg
;
6390 if (!do_swap_account
)
6393 id
= swap_cgroup_record(entry
, 0);
6395 memcg
= mem_cgroup_lookup(id
);
6397 if (!mem_cgroup_is_root(memcg
))
6398 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
6399 mem_cgroup_swap_statistics(memcg
, false);
6400 css_put(&memcg
->css
);
6407 * mem_cgroup_try_charge - try charging a page
6408 * @page: page to charge
6409 * @mm: mm context of the victim
6410 * @gfp_mask: reclaim mode
6411 * @memcgp: charged memcg return
6413 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6414 * pages according to @gfp_mask if necessary.
6416 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6417 * Otherwise, an error code is returned.
6419 * After page->mapping has been set up, the caller must finalize the
6420 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6421 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6423 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
6424 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
)
6426 struct mem_cgroup
*memcg
= NULL
;
6427 unsigned int nr_pages
= 1;
6430 if (mem_cgroup_disabled())
6433 if (PageSwapCache(page
)) {
6434 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
6436 * Every swap fault against a single page tries to charge the
6437 * page, bail as early as possible. shmem_unuse() encounters
6438 * already charged pages, too. The USED bit is protected by
6439 * the page lock, which serializes swap cache removal, which
6440 * in turn serializes uncharging.
6442 if (PageCgroupUsed(pc
))
6446 if (PageTransHuge(page
)) {
6447 nr_pages
<<= compound_order(page
);
6448 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
6451 if (do_swap_account
&& PageSwapCache(page
))
6452 memcg
= try_get_mem_cgroup_from_page(page
);
6454 memcg
= get_mem_cgroup_from_mm(mm
);
6456 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
6458 css_put(&memcg
->css
);
6460 if (ret
== -EINTR
) {
6461 memcg
= root_mem_cgroup
;
6470 * mem_cgroup_commit_charge - commit a page charge
6471 * @page: page to charge
6472 * @memcg: memcg to charge the page to
6473 * @lrucare: page might be on LRU already
6475 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6476 * after page->mapping has been set up. This must happen atomically
6477 * as part of the page instantiation, i.e. under the page table lock
6478 * for anonymous pages, under the page lock for page and swap cache.
6480 * In addition, the page must not be on the LRU during the commit, to
6481 * prevent racing with task migration. If it might be, use @lrucare.
6483 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6485 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
6488 unsigned int nr_pages
= 1;
6490 VM_BUG_ON_PAGE(!page
->mapping
, page
);
6491 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
6493 if (mem_cgroup_disabled())
6496 * Swap faults will attempt to charge the same page multiple
6497 * times. But reuse_swap_page() might have removed the page
6498 * from swapcache already, so we can't check PageSwapCache().
6503 commit_charge(page
, memcg
, lrucare
);
6505 if (PageTransHuge(page
)) {
6506 nr_pages
<<= compound_order(page
);
6507 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
6510 local_irq_disable();
6511 mem_cgroup_charge_statistics(memcg
, page
, nr_pages
);
6512 memcg_check_events(memcg
, page
);
6515 if (do_swap_account
&& PageSwapCache(page
)) {
6516 swp_entry_t entry
= { .val
= page_private(page
) };
6518 * The swap entry might not get freed for a long time,
6519 * let's not wait for it. The page already received a
6520 * memory+swap charge, drop the swap entry duplicate.
6522 mem_cgroup_uncharge_swap(entry
);
6527 * mem_cgroup_cancel_charge - cancel a page charge
6528 * @page: page to charge
6529 * @memcg: memcg to charge the page to
6531 * Cancel a charge transaction started by mem_cgroup_try_charge().
6533 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
)
6535 unsigned int nr_pages
= 1;
6537 if (mem_cgroup_disabled())
6540 * Swap faults will attempt to charge the same page multiple
6541 * times. But reuse_swap_page() might have removed the page
6542 * from swapcache already, so we can't check PageSwapCache().
6547 if (PageTransHuge(page
)) {
6548 nr_pages
<<= compound_order(page
);
6549 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
6552 cancel_charge(memcg
, nr_pages
);
6555 static void uncharge_batch(struct mem_cgroup
*memcg
, unsigned long pgpgout
,
6556 unsigned long nr_mem
, unsigned long nr_memsw
,
6557 unsigned long nr_anon
, unsigned long nr_file
,
6558 unsigned long nr_huge
, struct page
*dummy_page
)
6560 unsigned long flags
;
6562 if (!mem_cgroup_is_root(memcg
)) {
6564 res_counter_uncharge(&memcg
->res
,
6565 nr_mem
* PAGE_SIZE
);
6567 res_counter_uncharge(&memcg
->memsw
,
6568 nr_memsw
* PAGE_SIZE
);
6569 memcg_oom_recover(memcg
);
6572 local_irq_save(flags
);
6573 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_anon
);
6574 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_file
);
6575 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
], nr_huge
);
6576 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
], pgpgout
);
6577 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_anon
+ nr_file
);
6578 memcg_check_events(memcg
, dummy_page
);
6579 local_irq_restore(flags
);
6582 static void uncharge_list(struct list_head
*page_list
)
6584 struct mem_cgroup
*memcg
= NULL
;
6585 unsigned long nr_memsw
= 0;
6586 unsigned long nr_anon
= 0;
6587 unsigned long nr_file
= 0;
6588 unsigned long nr_huge
= 0;
6589 unsigned long pgpgout
= 0;
6590 unsigned long nr_mem
= 0;
6591 struct list_head
*next
;
6594 next
= page_list
->next
;
6596 unsigned int nr_pages
= 1;
6597 struct page_cgroup
*pc
;
6599 page
= list_entry(next
, struct page
, lru
);
6600 next
= page
->lru
.next
;
6602 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6603 VM_BUG_ON_PAGE(page_count(page
), page
);
6605 pc
= lookup_page_cgroup(page
);
6606 if (!PageCgroupUsed(pc
))
6610 * Nobody should be changing or seriously looking at
6611 * pc->mem_cgroup and pc->flags at this point, we have
6612 * fully exclusive access to the page.
6615 if (memcg
!= pc
->mem_cgroup
) {
6617 uncharge_batch(memcg
, pgpgout
, nr_mem
, nr_memsw
,
6618 nr_anon
, nr_file
, nr_huge
, page
);
6619 pgpgout
= nr_mem
= nr_memsw
= 0;
6620 nr_anon
= nr_file
= nr_huge
= 0;
6622 memcg
= pc
->mem_cgroup
;
6625 if (PageTransHuge(page
)) {
6626 nr_pages
<<= compound_order(page
);
6627 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
6628 nr_huge
+= nr_pages
;
6632 nr_anon
+= nr_pages
;
6634 nr_file
+= nr_pages
;
6636 if (pc
->flags
& PCG_MEM
)
6638 if (pc
->flags
& PCG_MEMSW
)
6639 nr_memsw
+= nr_pages
;
6643 } while (next
!= page_list
);
6646 uncharge_batch(memcg
, pgpgout
, nr_mem
, nr_memsw
,
6647 nr_anon
, nr_file
, nr_huge
, page
);
6651 * mem_cgroup_uncharge - uncharge a page
6652 * @page: page to uncharge
6654 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6655 * mem_cgroup_commit_charge().
6657 void mem_cgroup_uncharge(struct page
*page
)
6659 struct page_cgroup
*pc
;
6661 if (mem_cgroup_disabled())
6664 /* Don't touch page->lru of any random page, pre-check: */
6665 pc
= lookup_page_cgroup(page
);
6666 if (!PageCgroupUsed(pc
))
6669 INIT_LIST_HEAD(&page
->lru
);
6670 uncharge_list(&page
->lru
);
6674 * mem_cgroup_uncharge_list - uncharge a list of page
6675 * @page_list: list of pages to uncharge
6677 * Uncharge a list of pages previously charged with
6678 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6680 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
6682 if (mem_cgroup_disabled())
6685 if (!list_empty(page_list
))
6686 uncharge_list(page_list
);
6690 * mem_cgroup_migrate - migrate a charge to another page
6691 * @oldpage: currently charged page
6692 * @newpage: page to transfer the charge to
6693 * @lrucare: both pages might be on the LRU already
6695 * Migrate the charge from @oldpage to @newpage.
6697 * Both pages must be locked, @newpage->mapping must be set up.
6699 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
,
6702 struct page_cgroup
*pc
;
6705 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
6706 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
6707 VM_BUG_ON_PAGE(!lrucare
&& PageLRU(oldpage
), oldpage
);
6708 VM_BUG_ON_PAGE(!lrucare
&& PageLRU(newpage
), newpage
);
6709 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
6710 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
6713 if (mem_cgroup_disabled())
6716 /* Page cache replacement: new page already charged? */
6717 pc
= lookup_page_cgroup(newpage
);
6718 if (PageCgroupUsed(pc
))
6721 /* Re-entrant migration: old page already uncharged? */
6722 pc
= lookup_page_cgroup(oldpage
);
6723 if (!PageCgroupUsed(pc
))
6726 VM_BUG_ON_PAGE(!(pc
->flags
& PCG_MEM
), oldpage
);
6727 VM_BUG_ON_PAGE(do_swap_account
&& !(pc
->flags
& PCG_MEMSW
), oldpage
);
6730 lock_page_lru(oldpage
, &isolated
);
6735 unlock_page_lru(oldpage
, isolated
);
6737 commit_charge(newpage
, pc
->mem_cgroup
, lrucare
);
6741 * subsys_initcall() for memory controller.
6743 * Some parts like hotcpu_notifier() have to be initialized from this context
6744 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6745 * everything that doesn't depend on a specific mem_cgroup structure should
6746 * be initialized from here.
6748 static int __init
mem_cgroup_init(void)
6750 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
6751 enable_swap_cgroup();
6752 mem_cgroup_soft_limit_tree_init();
6756 subsys_initcall(mem_cgroup_init
);