net: better IFF_XMIT_DST_RELEASE support
[linux/fpc-iii.git] / mm / memcontrol.c
blob085dc6d2f876374c07a518866ecb1d25a2e8c419
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
65 #include <asm/uaccess.h>
67 #include <trace/events/vmscan.h>
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
86 #else
87 #define do_swap_account 0
88 #endif
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
146 struct mem_cgroup_reclaim_iter {
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
159 * per-zone information in memory controller.
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
222 struct mem_cgroup_threshold_ary *spare;
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
232 * cgroup_event represents events which userspace want to receive.
234 struct mem_cgroup_event {
236 * memcg which the event belongs to.
238 struct mem_cgroup *memcg;
240 * eventfd to signal userspace about the event.
242 struct eventfd_ctx *eventfd;
244 * Each of these stored in a list by the cgroup.
246 struct list_head list;
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
288 * the counter to account for memory usage
290 struct res_counter res;
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
296 * the counter to account for mem+swap usage.
298 struct res_counter memsw;
301 * the counter to account for kernel memory usage.
303 struct res_counter kmem;
305 * Should the accounting and control be hierarchical, per subtree?
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
337 unsigned long move_charge_at_immigrate;
339 * set > 0 if pages under this cgroup are moving to other cgroup.
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
345 * percpu counter.
347 struct mem_cgroup_stat_cpu __percpu *stat;
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
362 struct list_head memcg_slab_caches;
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365 #endif
367 int last_scanned_node;
368 #if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372 #endif
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
382 /* internal only representation about the status of kmem accounting. */
383 enum {
384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
388 #ifdef CONFIG_MEMCG_KMEM
389 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
394 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
399 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
405 smp_wmb();
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
415 #endif
417 /* Stuffs for move charges at task migration. */
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
422 enum move_type {
423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
425 NR_MOVE_TYPE,
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 spinlock_t lock; /* for from, to */
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
433 unsigned long immigrate_flags;
434 unsigned long precharge;
435 unsigned long moved_charge;
436 unsigned long moved_swap;
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439 } mc = {
440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
444 static bool move_anon(void)
446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
449 static bool move_file(void)
451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
458 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
459 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
461 enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 MEM_CGROUP_CHARGE_TYPE_ANON,
464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
466 NR_CHARGE_TYPE,
469 /* for encoding cft->private value on file */
470 enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
474 _KMEM,
477 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val) ((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL (0)
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
496 static DEFINE_MUTEX(memcg_create_mutex);
498 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
500 return s ? container_of(s, struct mem_cgroup, css) : NULL;
503 /* Some nice accessors for the vmpressure. */
504 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
506 if (!memcg)
507 memcg = root_mem_cgroup;
508 return &memcg->vmpressure;
511 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
513 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
516 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
518 return (memcg == root_mem_cgroup);
522 * We restrict the id in the range of [1, 65535], so it can fit into
523 * an unsigned short.
525 #define MEM_CGROUP_ID_MAX USHRT_MAX
527 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
529 return memcg->css.id;
532 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
534 struct cgroup_subsys_state *css;
536 css = css_from_id(id, &memory_cgrp_subsys);
537 return mem_cgroup_from_css(css);
540 /* Writing them here to avoid exposing memcg's inner layout */
541 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
543 void sock_update_memcg(struct sock *sk)
545 if (mem_cgroup_sockets_enabled) {
546 struct mem_cgroup *memcg;
547 struct cg_proto *cg_proto;
549 BUG_ON(!sk->sk_prot->proto_cgroup);
551 /* Socket cloning can throw us here with sk_cgrp already
552 * filled. It won't however, necessarily happen from
553 * process context. So the test for root memcg given
554 * the current task's memcg won't help us in this case.
556 * Respecting the original socket's memcg is a better
557 * decision in this case.
559 if (sk->sk_cgrp) {
560 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
561 css_get(&sk->sk_cgrp->memcg->css);
562 return;
565 rcu_read_lock();
566 memcg = mem_cgroup_from_task(current);
567 cg_proto = sk->sk_prot->proto_cgroup(memcg);
568 if (!mem_cgroup_is_root(memcg) &&
569 memcg_proto_active(cg_proto) &&
570 css_tryget_online(&memcg->css)) {
571 sk->sk_cgrp = cg_proto;
573 rcu_read_unlock();
576 EXPORT_SYMBOL(sock_update_memcg);
578 void sock_release_memcg(struct sock *sk)
580 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
581 struct mem_cgroup *memcg;
582 WARN_ON(!sk->sk_cgrp->memcg);
583 memcg = sk->sk_cgrp->memcg;
584 css_put(&sk->sk_cgrp->memcg->css);
588 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
590 if (!memcg || mem_cgroup_is_root(memcg))
591 return NULL;
593 return &memcg->tcp_mem;
595 EXPORT_SYMBOL(tcp_proto_cgroup);
597 static void disarm_sock_keys(struct mem_cgroup *memcg)
599 if (!memcg_proto_activated(&memcg->tcp_mem))
600 return;
601 static_key_slow_dec(&memcg_socket_limit_enabled);
603 #else
604 static void disarm_sock_keys(struct mem_cgroup *memcg)
607 #endif
609 #ifdef CONFIG_MEMCG_KMEM
611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
612 * The main reason for not using cgroup id for this:
613 * this works better in sparse environments, where we have a lot of memcgs,
614 * but only a few kmem-limited. Or also, if we have, for instance, 200
615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
616 * 200 entry array for that.
618 * The current size of the caches array is stored in
619 * memcg_limited_groups_array_size. It will double each time we have to
620 * increase it.
622 static DEFINE_IDA(kmem_limited_groups);
623 int memcg_limited_groups_array_size;
626 * MIN_SIZE is different than 1, because we would like to avoid going through
627 * the alloc/free process all the time. In a small machine, 4 kmem-limited
628 * cgroups is a reasonable guess. In the future, it could be a parameter or
629 * tunable, but that is strictly not necessary.
631 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
632 * this constant directly from cgroup, but it is understandable that this is
633 * better kept as an internal representation in cgroup.c. In any case, the
634 * cgrp_id space is not getting any smaller, and we don't have to necessarily
635 * increase ours as well if it increases.
637 #define MEMCG_CACHES_MIN_SIZE 4
638 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
641 * A lot of the calls to the cache allocation functions are expected to be
642 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
643 * conditional to this static branch, we'll have to allow modules that does
644 * kmem_cache_alloc and the such to see this symbol as well
646 struct static_key memcg_kmem_enabled_key;
647 EXPORT_SYMBOL(memcg_kmem_enabled_key);
649 static void disarm_kmem_keys(struct mem_cgroup *memcg)
651 if (memcg_kmem_is_active(memcg)) {
652 static_key_slow_dec(&memcg_kmem_enabled_key);
653 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
656 * This check can't live in kmem destruction function,
657 * since the charges will outlive the cgroup
659 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
661 #else
662 static void disarm_kmem_keys(struct mem_cgroup *memcg)
665 #endif /* CONFIG_MEMCG_KMEM */
667 static void disarm_static_keys(struct mem_cgroup *memcg)
669 disarm_sock_keys(memcg);
670 disarm_kmem_keys(memcg);
673 static void drain_all_stock_async(struct mem_cgroup *memcg);
675 static struct mem_cgroup_per_zone *
676 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
678 int nid = zone_to_nid(zone);
679 int zid = zone_idx(zone);
681 return &memcg->nodeinfo[nid]->zoneinfo[zid];
684 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
686 return &memcg->css;
689 static struct mem_cgroup_per_zone *
690 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
692 int nid = page_to_nid(page);
693 int zid = page_zonenum(page);
695 return &memcg->nodeinfo[nid]->zoneinfo[zid];
698 static struct mem_cgroup_tree_per_zone *
699 soft_limit_tree_node_zone(int nid, int zid)
701 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
704 static struct mem_cgroup_tree_per_zone *
705 soft_limit_tree_from_page(struct page *page)
707 int nid = page_to_nid(page);
708 int zid = page_zonenum(page);
710 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
713 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
714 struct mem_cgroup_tree_per_zone *mctz,
715 unsigned long long new_usage_in_excess)
717 struct rb_node **p = &mctz->rb_root.rb_node;
718 struct rb_node *parent = NULL;
719 struct mem_cgroup_per_zone *mz_node;
721 if (mz->on_tree)
722 return;
724 mz->usage_in_excess = new_usage_in_excess;
725 if (!mz->usage_in_excess)
726 return;
727 while (*p) {
728 parent = *p;
729 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
730 tree_node);
731 if (mz->usage_in_excess < mz_node->usage_in_excess)
732 p = &(*p)->rb_left;
734 * We can't avoid mem cgroups that are over their soft
735 * limit by the same amount
737 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
738 p = &(*p)->rb_right;
740 rb_link_node(&mz->tree_node, parent, p);
741 rb_insert_color(&mz->tree_node, &mctz->rb_root);
742 mz->on_tree = true;
745 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
746 struct mem_cgroup_tree_per_zone *mctz)
748 if (!mz->on_tree)
749 return;
750 rb_erase(&mz->tree_node, &mctz->rb_root);
751 mz->on_tree = false;
754 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
755 struct mem_cgroup_tree_per_zone *mctz)
757 unsigned long flags;
759 spin_lock_irqsave(&mctz->lock, flags);
760 __mem_cgroup_remove_exceeded(mz, mctz);
761 spin_unlock_irqrestore(&mctz->lock, flags);
765 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
767 unsigned long long excess;
768 struct mem_cgroup_per_zone *mz;
769 struct mem_cgroup_tree_per_zone *mctz;
771 mctz = soft_limit_tree_from_page(page);
773 * Necessary to update all ancestors when hierarchy is used.
774 * because their event counter is not touched.
776 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
777 mz = mem_cgroup_page_zoneinfo(memcg, page);
778 excess = res_counter_soft_limit_excess(&memcg->res);
780 * We have to update the tree if mz is on RB-tree or
781 * mem is over its softlimit.
783 if (excess || mz->on_tree) {
784 unsigned long flags;
786 spin_lock_irqsave(&mctz->lock, flags);
787 /* if on-tree, remove it */
788 if (mz->on_tree)
789 __mem_cgroup_remove_exceeded(mz, mctz);
791 * Insert again. mz->usage_in_excess will be updated.
792 * If excess is 0, no tree ops.
794 __mem_cgroup_insert_exceeded(mz, mctz, excess);
795 spin_unlock_irqrestore(&mctz->lock, flags);
800 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
802 struct mem_cgroup_tree_per_zone *mctz;
803 struct mem_cgroup_per_zone *mz;
804 int nid, zid;
806 for_each_node(nid) {
807 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
808 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
809 mctz = soft_limit_tree_node_zone(nid, zid);
810 mem_cgroup_remove_exceeded(mz, mctz);
815 static struct mem_cgroup_per_zone *
816 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
818 struct rb_node *rightmost = NULL;
819 struct mem_cgroup_per_zone *mz;
821 retry:
822 mz = NULL;
823 rightmost = rb_last(&mctz->rb_root);
824 if (!rightmost)
825 goto done; /* Nothing to reclaim from */
827 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
829 * Remove the node now but someone else can add it back,
830 * we will to add it back at the end of reclaim to its correct
831 * position in the tree.
833 __mem_cgroup_remove_exceeded(mz, mctz);
834 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
835 !css_tryget_online(&mz->memcg->css))
836 goto retry;
837 done:
838 return mz;
841 static struct mem_cgroup_per_zone *
842 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
844 struct mem_cgroup_per_zone *mz;
846 spin_lock_irq(&mctz->lock);
847 mz = __mem_cgroup_largest_soft_limit_node(mctz);
848 spin_unlock_irq(&mctz->lock);
849 return mz;
853 * Implementation Note: reading percpu statistics for memcg.
855 * Both of vmstat[] and percpu_counter has threshold and do periodic
856 * synchronization to implement "quick" read. There are trade-off between
857 * reading cost and precision of value. Then, we may have a chance to implement
858 * a periodic synchronizion of counter in memcg's counter.
860 * But this _read() function is used for user interface now. The user accounts
861 * memory usage by memory cgroup and he _always_ requires exact value because
862 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
863 * have to visit all online cpus and make sum. So, for now, unnecessary
864 * synchronization is not implemented. (just implemented for cpu hotplug)
866 * If there are kernel internal actions which can make use of some not-exact
867 * value, and reading all cpu value can be performance bottleneck in some
868 * common workload, threashold and synchonization as vmstat[] should be
869 * implemented.
871 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
872 enum mem_cgroup_stat_index idx)
874 long val = 0;
875 int cpu;
877 get_online_cpus();
878 for_each_online_cpu(cpu)
879 val += per_cpu(memcg->stat->count[idx], cpu);
880 #ifdef CONFIG_HOTPLUG_CPU
881 spin_lock(&memcg->pcp_counter_lock);
882 val += memcg->nocpu_base.count[idx];
883 spin_unlock(&memcg->pcp_counter_lock);
884 #endif
885 put_online_cpus();
886 return val;
889 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
890 enum mem_cgroup_events_index idx)
892 unsigned long val = 0;
893 int cpu;
895 get_online_cpus();
896 for_each_online_cpu(cpu)
897 val += per_cpu(memcg->stat->events[idx], cpu);
898 #ifdef CONFIG_HOTPLUG_CPU
899 spin_lock(&memcg->pcp_counter_lock);
900 val += memcg->nocpu_base.events[idx];
901 spin_unlock(&memcg->pcp_counter_lock);
902 #endif
903 put_online_cpus();
904 return val;
907 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
908 struct page *page,
909 int nr_pages)
912 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
913 * counted as CACHE even if it's on ANON LRU.
915 if (PageAnon(page))
916 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
917 nr_pages);
918 else
919 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
920 nr_pages);
922 if (PageTransHuge(page))
923 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
924 nr_pages);
926 /* pagein of a big page is an event. So, ignore page size */
927 if (nr_pages > 0)
928 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
929 else {
930 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
931 nr_pages = -nr_pages; /* for event */
934 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
937 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
939 struct mem_cgroup_per_zone *mz;
941 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
942 return mz->lru_size[lru];
945 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
946 int nid,
947 unsigned int lru_mask)
949 unsigned long nr = 0;
950 int zid;
952 VM_BUG_ON((unsigned)nid >= nr_node_ids);
954 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
955 struct mem_cgroup_per_zone *mz;
956 enum lru_list lru;
958 for_each_lru(lru) {
959 if (!(BIT(lru) & lru_mask))
960 continue;
961 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
962 nr += mz->lru_size[lru];
965 return nr;
968 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
969 unsigned int lru_mask)
971 unsigned long nr = 0;
972 int nid;
974 for_each_node_state(nid, N_MEMORY)
975 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
976 return nr;
979 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
980 enum mem_cgroup_events_target target)
982 unsigned long val, next;
984 val = __this_cpu_read(memcg->stat->nr_page_events);
985 next = __this_cpu_read(memcg->stat->targets[target]);
986 /* from time_after() in jiffies.h */
987 if ((long)next - (long)val < 0) {
988 switch (target) {
989 case MEM_CGROUP_TARGET_THRESH:
990 next = val + THRESHOLDS_EVENTS_TARGET;
991 break;
992 case MEM_CGROUP_TARGET_SOFTLIMIT:
993 next = val + SOFTLIMIT_EVENTS_TARGET;
994 break;
995 case MEM_CGROUP_TARGET_NUMAINFO:
996 next = val + NUMAINFO_EVENTS_TARGET;
997 break;
998 default:
999 break;
1001 __this_cpu_write(memcg->stat->targets[target], next);
1002 return true;
1004 return false;
1008 * Check events in order.
1011 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1013 /* threshold event is triggered in finer grain than soft limit */
1014 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1015 MEM_CGROUP_TARGET_THRESH))) {
1016 bool do_softlimit;
1017 bool do_numainfo __maybe_unused;
1019 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1020 MEM_CGROUP_TARGET_SOFTLIMIT);
1021 #if MAX_NUMNODES > 1
1022 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1023 MEM_CGROUP_TARGET_NUMAINFO);
1024 #endif
1025 mem_cgroup_threshold(memcg);
1026 if (unlikely(do_softlimit))
1027 mem_cgroup_update_tree(memcg, page);
1028 #if MAX_NUMNODES > 1
1029 if (unlikely(do_numainfo))
1030 atomic_inc(&memcg->numainfo_events);
1031 #endif
1035 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1038 * mm_update_next_owner() may clear mm->owner to NULL
1039 * if it races with swapoff, page migration, etc.
1040 * So this can be called with p == NULL.
1042 if (unlikely(!p))
1043 return NULL;
1045 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1048 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1050 struct mem_cgroup *memcg = NULL;
1052 rcu_read_lock();
1053 do {
1055 * Page cache insertions can happen withou an
1056 * actual mm context, e.g. during disk probing
1057 * on boot, loopback IO, acct() writes etc.
1059 if (unlikely(!mm))
1060 memcg = root_mem_cgroup;
1061 else {
1062 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1063 if (unlikely(!memcg))
1064 memcg = root_mem_cgroup;
1066 } while (!css_tryget_online(&memcg->css));
1067 rcu_read_unlock();
1068 return memcg;
1072 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1073 * ref. count) or NULL if the whole root's subtree has been visited.
1075 * helper function to be used by mem_cgroup_iter
1077 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1078 struct mem_cgroup *last_visited)
1080 struct cgroup_subsys_state *prev_css, *next_css;
1082 prev_css = last_visited ? &last_visited->css : NULL;
1083 skip_node:
1084 next_css = css_next_descendant_pre(prev_css, &root->css);
1087 * Even if we found a group we have to make sure it is
1088 * alive. css && !memcg means that the groups should be
1089 * skipped and we should continue the tree walk.
1090 * last_visited css is safe to use because it is
1091 * protected by css_get and the tree walk is rcu safe.
1093 * We do not take a reference on the root of the tree walk
1094 * because we might race with the root removal when it would
1095 * be the only node in the iterated hierarchy and mem_cgroup_iter
1096 * would end up in an endless loop because it expects that at
1097 * least one valid node will be returned. Root cannot disappear
1098 * because caller of the iterator should hold it already so
1099 * skipping css reference should be safe.
1101 if (next_css) {
1102 if ((next_css == &root->css) ||
1103 ((next_css->flags & CSS_ONLINE) &&
1104 css_tryget_online(next_css)))
1105 return mem_cgroup_from_css(next_css);
1107 prev_css = next_css;
1108 goto skip_node;
1111 return NULL;
1114 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1117 * When a group in the hierarchy below root is destroyed, the
1118 * hierarchy iterator can no longer be trusted since it might
1119 * have pointed to the destroyed group. Invalidate it.
1121 atomic_inc(&root->dead_count);
1124 static struct mem_cgroup *
1125 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1126 struct mem_cgroup *root,
1127 int *sequence)
1129 struct mem_cgroup *position = NULL;
1131 * A cgroup destruction happens in two stages: offlining and
1132 * release. They are separated by a RCU grace period.
1134 * If the iterator is valid, we may still race with an
1135 * offlining. The RCU lock ensures the object won't be
1136 * released, tryget will fail if we lost the race.
1138 *sequence = atomic_read(&root->dead_count);
1139 if (iter->last_dead_count == *sequence) {
1140 smp_rmb();
1141 position = iter->last_visited;
1144 * We cannot take a reference to root because we might race
1145 * with root removal and returning NULL would end up in
1146 * an endless loop on the iterator user level when root
1147 * would be returned all the time.
1149 if (position && position != root &&
1150 !css_tryget_online(&position->css))
1151 position = NULL;
1153 return position;
1156 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1157 struct mem_cgroup *last_visited,
1158 struct mem_cgroup *new_position,
1159 struct mem_cgroup *root,
1160 int sequence)
1162 /* root reference counting symmetric to mem_cgroup_iter_load */
1163 if (last_visited && last_visited != root)
1164 css_put(&last_visited->css);
1166 * We store the sequence count from the time @last_visited was
1167 * loaded successfully instead of rereading it here so that we
1168 * don't lose destruction events in between. We could have
1169 * raced with the destruction of @new_position after all.
1171 iter->last_visited = new_position;
1172 smp_wmb();
1173 iter->last_dead_count = sequence;
1177 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1178 * @root: hierarchy root
1179 * @prev: previously returned memcg, NULL on first invocation
1180 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1182 * Returns references to children of the hierarchy below @root, or
1183 * @root itself, or %NULL after a full round-trip.
1185 * Caller must pass the return value in @prev on subsequent
1186 * invocations for reference counting, or use mem_cgroup_iter_break()
1187 * to cancel a hierarchy walk before the round-trip is complete.
1189 * Reclaimers can specify a zone and a priority level in @reclaim to
1190 * divide up the memcgs in the hierarchy among all concurrent
1191 * reclaimers operating on the same zone and priority.
1193 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1194 struct mem_cgroup *prev,
1195 struct mem_cgroup_reclaim_cookie *reclaim)
1197 struct mem_cgroup *memcg = NULL;
1198 struct mem_cgroup *last_visited = NULL;
1200 if (mem_cgroup_disabled())
1201 return NULL;
1203 if (!root)
1204 root = root_mem_cgroup;
1206 if (prev && !reclaim)
1207 last_visited = prev;
1209 if (!root->use_hierarchy && root != root_mem_cgroup) {
1210 if (prev)
1211 goto out_css_put;
1212 return root;
1215 rcu_read_lock();
1216 while (!memcg) {
1217 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1218 int uninitialized_var(seq);
1220 if (reclaim) {
1221 struct mem_cgroup_per_zone *mz;
1223 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1224 iter = &mz->reclaim_iter[reclaim->priority];
1225 if (prev && reclaim->generation != iter->generation) {
1226 iter->last_visited = NULL;
1227 goto out_unlock;
1230 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1233 memcg = __mem_cgroup_iter_next(root, last_visited);
1235 if (reclaim) {
1236 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1237 seq);
1239 if (!memcg)
1240 iter->generation++;
1241 else if (!prev && memcg)
1242 reclaim->generation = iter->generation;
1245 if (prev && !memcg)
1246 goto out_unlock;
1248 out_unlock:
1249 rcu_read_unlock();
1250 out_css_put:
1251 if (prev && prev != root)
1252 css_put(&prev->css);
1254 return memcg;
1258 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259 * @root: hierarchy root
1260 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1262 void mem_cgroup_iter_break(struct mem_cgroup *root,
1263 struct mem_cgroup *prev)
1265 if (!root)
1266 root = root_mem_cgroup;
1267 if (prev && prev != root)
1268 css_put(&prev->css);
1272 * Iteration constructs for visiting all cgroups (under a tree). If
1273 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1274 * be used for reference counting.
1276 #define for_each_mem_cgroup_tree(iter, root) \
1277 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1278 iter != NULL; \
1279 iter = mem_cgroup_iter(root, iter, NULL))
1281 #define for_each_mem_cgroup(iter) \
1282 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1283 iter != NULL; \
1284 iter = mem_cgroup_iter(NULL, iter, NULL))
1286 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1288 struct mem_cgroup *memcg;
1290 rcu_read_lock();
1291 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1292 if (unlikely(!memcg))
1293 goto out;
1295 switch (idx) {
1296 case PGFAULT:
1297 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1298 break;
1299 case PGMAJFAULT:
1300 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1301 break;
1302 default:
1303 BUG();
1305 out:
1306 rcu_read_unlock();
1308 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1311 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1312 * @zone: zone of the wanted lruvec
1313 * @memcg: memcg of the wanted lruvec
1315 * Returns the lru list vector holding pages for the given @zone and
1316 * @mem. This can be the global zone lruvec, if the memory controller
1317 * is disabled.
1319 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1320 struct mem_cgroup *memcg)
1322 struct mem_cgroup_per_zone *mz;
1323 struct lruvec *lruvec;
1325 if (mem_cgroup_disabled()) {
1326 lruvec = &zone->lruvec;
1327 goto out;
1330 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1331 lruvec = &mz->lruvec;
1332 out:
1334 * Since a node can be onlined after the mem_cgroup was created,
1335 * we have to be prepared to initialize lruvec->zone here;
1336 * and if offlined then reonlined, we need to reinitialize it.
1338 if (unlikely(lruvec->zone != zone))
1339 lruvec->zone = zone;
1340 return lruvec;
1344 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1345 * @page: the page
1346 * @zone: zone of the page
1348 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1350 struct mem_cgroup_per_zone *mz;
1351 struct mem_cgroup *memcg;
1352 struct page_cgroup *pc;
1353 struct lruvec *lruvec;
1355 if (mem_cgroup_disabled()) {
1356 lruvec = &zone->lruvec;
1357 goto out;
1360 pc = lookup_page_cgroup(page);
1361 memcg = pc->mem_cgroup;
1364 * Surreptitiously switch any uncharged offlist page to root:
1365 * an uncharged page off lru does nothing to secure
1366 * its former mem_cgroup from sudden removal.
1368 * Our caller holds lru_lock, and PageCgroupUsed is updated
1369 * under page_cgroup lock: between them, they make all uses
1370 * of pc->mem_cgroup safe.
1372 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1373 pc->mem_cgroup = memcg = root_mem_cgroup;
1375 mz = mem_cgroup_page_zoneinfo(memcg, page);
1376 lruvec = &mz->lruvec;
1377 out:
1379 * Since a node can be onlined after the mem_cgroup was created,
1380 * we have to be prepared to initialize lruvec->zone here;
1381 * and if offlined then reonlined, we need to reinitialize it.
1383 if (unlikely(lruvec->zone != zone))
1384 lruvec->zone = zone;
1385 return lruvec;
1389 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1390 * @lruvec: mem_cgroup per zone lru vector
1391 * @lru: index of lru list the page is sitting on
1392 * @nr_pages: positive when adding or negative when removing
1394 * This function must be called when a page is added to or removed from an
1395 * lru list.
1397 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1398 int nr_pages)
1400 struct mem_cgroup_per_zone *mz;
1401 unsigned long *lru_size;
1403 if (mem_cgroup_disabled())
1404 return;
1406 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1407 lru_size = mz->lru_size + lru;
1408 *lru_size += nr_pages;
1409 VM_BUG_ON((long)(*lru_size) < 0);
1413 * Checks whether given mem is same or in the root_mem_cgroup's
1414 * hierarchy subtree
1416 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1417 struct mem_cgroup *memcg)
1419 if (root_memcg == memcg)
1420 return true;
1421 if (!root_memcg->use_hierarchy || !memcg)
1422 return false;
1423 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1426 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1427 struct mem_cgroup *memcg)
1429 bool ret;
1431 rcu_read_lock();
1432 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1433 rcu_read_unlock();
1434 return ret;
1437 bool task_in_mem_cgroup(struct task_struct *task,
1438 const struct mem_cgroup *memcg)
1440 struct mem_cgroup *curr = NULL;
1441 struct task_struct *p;
1442 bool ret;
1444 p = find_lock_task_mm(task);
1445 if (p) {
1446 curr = get_mem_cgroup_from_mm(p->mm);
1447 task_unlock(p);
1448 } else {
1450 * All threads may have already detached their mm's, but the oom
1451 * killer still needs to detect if they have already been oom
1452 * killed to prevent needlessly killing additional tasks.
1454 rcu_read_lock();
1455 curr = mem_cgroup_from_task(task);
1456 if (curr)
1457 css_get(&curr->css);
1458 rcu_read_unlock();
1461 * We should check use_hierarchy of "memcg" not "curr". Because checking
1462 * use_hierarchy of "curr" here make this function true if hierarchy is
1463 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1464 * hierarchy(even if use_hierarchy is disabled in "memcg").
1466 ret = mem_cgroup_same_or_subtree(memcg, curr);
1467 css_put(&curr->css);
1468 return ret;
1471 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1473 unsigned long inactive_ratio;
1474 unsigned long inactive;
1475 unsigned long active;
1476 unsigned long gb;
1478 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1479 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1481 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1482 if (gb)
1483 inactive_ratio = int_sqrt(10 * gb);
1484 else
1485 inactive_ratio = 1;
1487 return inactive * inactive_ratio < active;
1490 #define mem_cgroup_from_res_counter(counter, member) \
1491 container_of(counter, struct mem_cgroup, member)
1494 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1495 * @memcg: the memory cgroup
1497 * Returns the maximum amount of memory @mem can be charged with, in
1498 * pages.
1500 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1502 unsigned long long margin;
1504 margin = res_counter_margin(&memcg->res);
1505 if (do_swap_account)
1506 margin = min(margin, res_counter_margin(&memcg->memsw));
1507 return margin >> PAGE_SHIFT;
1510 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1512 /* root ? */
1513 if (mem_cgroup_disabled() || !memcg->css.parent)
1514 return vm_swappiness;
1516 return memcg->swappiness;
1520 * memcg->moving_account is used for checking possibility that some thread is
1521 * calling move_account(). When a thread on CPU-A starts moving pages under
1522 * a memcg, other threads should check memcg->moving_account under
1523 * rcu_read_lock(), like this:
1525 * CPU-A CPU-B
1526 * rcu_read_lock()
1527 * memcg->moving_account+1 if (memcg->mocing_account)
1528 * take heavy locks.
1529 * synchronize_rcu() update something.
1530 * rcu_read_unlock()
1531 * start move here.
1534 /* for quick checking without looking up memcg */
1535 atomic_t memcg_moving __read_mostly;
1537 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1539 atomic_inc(&memcg_moving);
1540 atomic_inc(&memcg->moving_account);
1541 synchronize_rcu();
1544 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1547 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1548 * We check NULL in callee rather than caller.
1550 if (memcg) {
1551 atomic_dec(&memcg_moving);
1552 atomic_dec(&memcg->moving_account);
1557 * A routine for checking "mem" is under move_account() or not.
1559 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1560 * moving cgroups. This is for waiting at high-memory pressure
1561 * caused by "move".
1563 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1565 struct mem_cgroup *from;
1566 struct mem_cgroup *to;
1567 bool ret = false;
1569 * Unlike task_move routines, we access mc.to, mc.from not under
1570 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1572 spin_lock(&mc.lock);
1573 from = mc.from;
1574 to = mc.to;
1575 if (!from)
1576 goto unlock;
1578 ret = mem_cgroup_same_or_subtree(memcg, from)
1579 || mem_cgroup_same_or_subtree(memcg, to);
1580 unlock:
1581 spin_unlock(&mc.lock);
1582 return ret;
1585 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1587 if (mc.moving_task && current != mc.moving_task) {
1588 if (mem_cgroup_under_move(memcg)) {
1589 DEFINE_WAIT(wait);
1590 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1591 /* moving charge context might have finished. */
1592 if (mc.moving_task)
1593 schedule();
1594 finish_wait(&mc.waitq, &wait);
1595 return true;
1598 return false;
1602 * Take this lock when
1603 * - a code tries to modify page's memcg while it's USED.
1604 * - a code tries to modify page state accounting in a memcg.
1606 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1607 unsigned long *flags)
1609 spin_lock_irqsave(&memcg->move_lock, *flags);
1612 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1613 unsigned long *flags)
1615 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1618 #define K(x) ((x) << (PAGE_SHIFT-10))
1620 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1621 * @memcg: The memory cgroup that went over limit
1622 * @p: Task that is going to be killed
1624 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1625 * enabled
1627 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1629 /* oom_info_lock ensures that parallel ooms do not interleave */
1630 static DEFINE_MUTEX(oom_info_lock);
1631 struct mem_cgroup *iter;
1632 unsigned int i;
1634 if (!p)
1635 return;
1637 mutex_lock(&oom_info_lock);
1638 rcu_read_lock();
1640 pr_info("Task in ");
1641 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1642 pr_info(" killed as a result of limit of ");
1643 pr_cont_cgroup_path(memcg->css.cgroup);
1644 pr_info("\n");
1646 rcu_read_unlock();
1648 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1649 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1650 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1651 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1652 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1653 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1654 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1655 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1656 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1657 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1658 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1659 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1661 for_each_mem_cgroup_tree(iter, memcg) {
1662 pr_info("Memory cgroup stats for ");
1663 pr_cont_cgroup_path(iter->css.cgroup);
1664 pr_cont(":");
1666 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1667 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1668 continue;
1669 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1670 K(mem_cgroup_read_stat(iter, i)));
1673 for (i = 0; i < NR_LRU_LISTS; i++)
1674 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1675 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1677 pr_cont("\n");
1679 mutex_unlock(&oom_info_lock);
1683 * This function returns the number of memcg under hierarchy tree. Returns
1684 * 1(self count) if no children.
1686 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1688 int num = 0;
1689 struct mem_cgroup *iter;
1691 for_each_mem_cgroup_tree(iter, memcg)
1692 num++;
1693 return num;
1697 * Return the memory (and swap, if configured) limit for a memcg.
1699 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1701 u64 limit;
1703 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1706 * Do not consider swap space if we cannot swap due to swappiness
1708 if (mem_cgroup_swappiness(memcg)) {
1709 u64 memsw;
1711 limit += total_swap_pages << PAGE_SHIFT;
1712 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1715 * If memsw is finite and limits the amount of swap space
1716 * available to this memcg, return that limit.
1718 limit = min(limit, memsw);
1721 return limit;
1724 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1725 int order)
1727 struct mem_cgroup *iter;
1728 unsigned long chosen_points = 0;
1729 unsigned long totalpages;
1730 unsigned int points = 0;
1731 struct task_struct *chosen = NULL;
1734 * If current has a pending SIGKILL or is exiting, then automatically
1735 * select it. The goal is to allow it to allocate so that it may
1736 * quickly exit and free its memory.
1738 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1739 set_thread_flag(TIF_MEMDIE);
1740 return;
1743 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1744 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1745 for_each_mem_cgroup_tree(iter, memcg) {
1746 struct css_task_iter it;
1747 struct task_struct *task;
1749 css_task_iter_start(&iter->css, &it);
1750 while ((task = css_task_iter_next(&it))) {
1751 switch (oom_scan_process_thread(task, totalpages, NULL,
1752 false)) {
1753 case OOM_SCAN_SELECT:
1754 if (chosen)
1755 put_task_struct(chosen);
1756 chosen = task;
1757 chosen_points = ULONG_MAX;
1758 get_task_struct(chosen);
1759 /* fall through */
1760 case OOM_SCAN_CONTINUE:
1761 continue;
1762 case OOM_SCAN_ABORT:
1763 css_task_iter_end(&it);
1764 mem_cgroup_iter_break(memcg, iter);
1765 if (chosen)
1766 put_task_struct(chosen);
1767 return;
1768 case OOM_SCAN_OK:
1769 break;
1771 points = oom_badness(task, memcg, NULL, totalpages);
1772 if (!points || points < chosen_points)
1773 continue;
1774 /* Prefer thread group leaders for display purposes */
1775 if (points == chosen_points &&
1776 thread_group_leader(chosen))
1777 continue;
1779 if (chosen)
1780 put_task_struct(chosen);
1781 chosen = task;
1782 chosen_points = points;
1783 get_task_struct(chosen);
1785 css_task_iter_end(&it);
1788 if (!chosen)
1789 return;
1790 points = chosen_points * 1000 / totalpages;
1791 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1792 NULL, "Memory cgroup out of memory");
1795 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1796 gfp_t gfp_mask,
1797 unsigned long flags)
1799 unsigned long total = 0;
1800 bool noswap = false;
1801 int loop;
1803 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1804 noswap = true;
1805 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1806 noswap = true;
1808 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1809 if (loop)
1810 drain_all_stock_async(memcg);
1811 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1813 * Allow limit shrinkers, which are triggered directly
1814 * by userspace, to catch signals and stop reclaim
1815 * after minimal progress, regardless of the margin.
1817 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1818 break;
1819 if (mem_cgroup_margin(memcg))
1820 break;
1822 * If nothing was reclaimed after two attempts, there
1823 * may be no reclaimable pages in this hierarchy.
1825 if (loop && !total)
1826 break;
1828 return total;
1832 * test_mem_cgroup_node_reclaimable
1833 * @memcg: the target memcg
1834 * @nid: the node ID to be checked.
1835 * @noswap : specify true here if the user wants flle only information.
1837 * This function returns whether the specified memcg contains any
1838 * reclaimable pages on a node. Returns true if there are any reclaimable
1839 * pages in the node.
1841 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1842 int nid, bool noswap)
1844 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1845 return true;
1846 if (noswap || !total_swap_pages)
1847 return false;
1848 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1849 return true;
1850 return false;
1853 #if MAX_NUMNODES > 1
1856 * Always updating the nodemask is not very good - even if we have an empty
1857 * list or the wrong list here, we can start from some node and traverse all
1858 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1861 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1863 int nid;
1865 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1866 * pagein/pageout changes since the last update.
1868 if (!atomic_read(&memcg->numainfo_events))
1869 return;
1870 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1871 return;
1873 /* make a nodemask where this memcg uses memory from */
1874 memcg->scan_nodes = node_states[N_MEMORY];
1876 for_each_node_mask(nid, node_states[N_MEMORY]) {
1878 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1879 node_clear(nid, memcg->scan_nodes);
1882 atomic_set(&memcg->numainfo_events, 0);
1883 atomic_set(&memcg->numainfo_updating, 0);
1887 * Selecting a node where we start reclaim from. Because what we need is just
1888 * reducing usage counter, start from anywhere is O,K. Considering
1889 * memory reclaim from current node, there are pros. and cons.
1891 * Freeing memory from current node means freeing memory from a node which
1892 * we'll use or we've used. So, it may make LRU bad. And if several threads
1893 * hit limits, it will see a contention on a node. But freeing from remote
1894 * node means more costs for memory reclaim because of memory latency.
1896 * Now, we use round-robin. Better algorithm is welcomed.
1898 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1900 int node;
1902 mem_cgroup_may_update_nodemask(memcg);
1903 node = memcg->last_scanned_node;
1905 node = next_node(node, memcg->scan_nodes);
1906 if (node == MAX_NUMNODES)
1907 node = first_node(memcg->scan_nodes);
1909 * We call this when we hit limit, not when pages are added to LRU.
1910 * No LRU may hold pages because all pages are UNEVICTABLE or
1911 * memcg is too small and all pages are not on LRU. In that case,
1912 * we use curret node.
1914 if (unlikely(node == MAX_NUMNODES))
1915 node = numa_node_id();
1917 memcg->last_scanned_node = node;
1918 return node;
1922 * Check all nodes whether it contains reclaimable pages or not.
1923 * For quick scan, we make use of scan_nodes. This will allow us to skip
1924 * unused nodes. But scan_nodes is lazily updated and may not cotain
1925 * enough new information. We need to do double check.
1927 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1929 int nid;
1932 * quick check...making use of scan_node.
1933 * We can skip unused nodes.
1935 if (!nodes_empty(memcg->scan_nodes)) {
1936 for (nid = first_node(memcg->scan_nodes);
1937 nid < MAX_NUMNODES;
1938 nid = next_node(nid, memcg->scan_nodes)) {
1940 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1941 return true;
1945 * Check rest of nodes.
1947 for_each_node_state(nid, N_MEMORY) {
1948 if (node_isset(nid, memcg->scan_nodes))
1949 continue;
1950 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1951 return true;
1953 return false;
1956 #else
1957 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1959 return 0;
1962 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1964 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1966 #endif
1968 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1969 struct zone *zone,
1970 gfp_t gfp_mask,
1971 unsigned long *total_scanned)
1973 struct mem_cgroup *victim = NULL;
1974 int total = 0;
1975 int loop = 0;
1976 unsigned long excess;
1977 unsigned long nr_scanned;
1978 struct mem_cgroup_reclaim_cookie reclaim = {
1979 .zone = zone,
1980 .priority = 0,
1983 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1985 while (1) {
1986 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1987 if (!victim) {
1988 loop++;
1989 if (loop >= 2) {
1991 * If we have not been able to reclaim
1992 * anything, it might because there are
1993 * no reclaimable pages under this hierarchy
1995 if (!total)
1996 break;
1998 * We want to do more targeted reclaim.
1999 * excess >> 2 is not to excessive so as to
2000 * reclaim too much, nor too less that we keep
2001 * coming back to reclaim from this cgroup
2003 if (total >= (excess >> 2) ||
2004 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2005 break;
2007 continue;
2009 if (!mem_cgroup_reclaimable(victim, false))
2010 continue;
2011 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2012 zone, &nr_scanned);
2013 *total_scanned += nr_scanned;
2014 if (!res_counter_soft_limit_excess(&root_memcg->res))
2015 break;
2017 mem_cgroup_iter_break(root_memcg, victim);
2018 return total;
2021 #ifdef CONFIG_LOCKDEP
2022 static struct lockdep_map memcg_oom_lock_dep_map = {
2023 .name = "memcg_oom_lock",
2025 #endif
2027 static DEFINE_SPINLOCK(memcg_oom_lock);
2030 * Check OOM-Killer is already running under our hierarchy.
2031 * If someone is running, return false.
2033 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2035 struct mem_cgroup *iter, *failed = NULL;
2037 spin_lock(&memcg_oom_lock);
2039 for_each_mem_cgroup_tree(iter, memcg) {
2040 if (iter->oom_lock) {
2042 * this subtree of our hierarchy is already locked
2043 * so we cannot give a lock.
2045 failed = iter;
2046 mem_cgroup_iter_break(memcg, iter);
2047 break;
2048 } else
2049 iter->oom_lock = true;
2052 if (failed) {
2054 * OK, we failed to lock the whole subtree so we have
2055 * to clean up what we set up to the failing subtree
2057 for_each_mem_cgroup_tree(iter, memcg) {
2058 if (iter == failed) {
2059 mem_cgroup_iter_break(memcg, iter);
2060 break;
2062 iter->oom_lock = false;
2064 } else
2065 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2067 spin_unlock(&memcg_oom_lock);
2069 return !failed;
2072 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2074 struct mem_cgroup *iter;
2076 spin_lock(&memcg_oom_lock);
2077 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2078 for_each_mem_cgroup_tree(iter, memcg)
2079 iter->oom_lock = false;
2080 spin_unlock(&memcg_oom_lock);
2083 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2085 struct mem_cgroup *iter;
2087 for_each_mem_cgroup_tree(iter, memcg)
2088 atomic_inc(&iter->under_oom);
2091 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2093 struct mem_cgroup *iter;
2096 * When a new child is created while the hierarchy is under oom,
2097 * mem_cgroup_oom_lock() may not be called. We have to use
2098 * atomic_add_unless() here.
2100 for_each_mem_cgroup_tree(iter, memcg)
2101 atomic_add_unless(&iter->under_oom, -1, 0);
2104 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2106 struct oom_wait_info {
2107 struct mem_cgroup *memcg;
2108 wait_queue_t wait;
2111 static int memcg_oom_wake_function(wait_queue_t *wait,
2112 unsigned mode, int sync, void *arg)
2114 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2115 struct mem_cgroup *oom_wait_memcg;
2116 struct oom_wait_info *oom_wait_info;
2118 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2119 oom_wait_memcg = oom_wait_info->memcg;
2122 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2123 * Then we can use css_is_ancestor without taking care of RCU.
2125 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2126 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2127 return 0;
2128 return autoremove_wake_function(wait, mode, sync, arg);
2131 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2133 atomic_inc(&memcg->oom_wakeups);
2134 /* for filtering, pass "memcg" as argument. */
2135 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2138 static void memcg_oom_recover(struct mem_cgroup *memcg)
2140 if (memcg && atomic_read(&memcg->under_oom))
2141 memcg_wakeup_oom(memcg);
2144 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2146 if (!current->memcg_oom.may_oom)
2147 return;
2149 * We are in the middle of the charge context here, so we
2150 * don't want to block when potentially sitting on a callstack
2151 * that holds all kinds of filesystem and mm locks.
2153 * Also, the caller may handle a failed allocation gracefully
2154 * (like optional page cache readahead) and so an OOM killer
2155 * invocation might not even be necessary.
2157 * That's why we don't do anything here except remember the
2158 * OOM context and then deal with it at the end of the page
2159 * fault when the stack is unwound, the locks are released,
2160 * and when we know whether the fault was overall successful.
2162 css_get(&memcg->css);
2163 current->memcg_oom.memcg = memcg;
2164 current->memcg_oom.gfp_mask = mask;
2165 current->memcg_oom.order = order;
2169 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2170 * @handle: actually kill/wait or just clean up the OOM state
2172 * This has to be called at the end of a page fault if the memcg OOM
2173 * handler was enabled.
2175 * Memcg supports userspace OOM handling where failed allocations must
2176 * sleep on a waitqueue until the userspace task resolves the
2177 * situation. Sleeping directly in the charge context with all kinds
2178 * of locks held is not a good idea, instead we remember an OOM state
2179 * in the task and mem_cgroup_oom_synchronize() has to be called at
2180 * the end of the page fault to complete the OOM handling.
2182 * Returns %true if an ongoing memcg OOM situation was detected and
2183 * completed, %false otherwise.
2185 bool mem_cgroup_oom_synchronize(bool handle)
2187 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2188 struct oom_wait_info owait;
2189 bool locked;
2191 /* OOM is global, do not handle */
2192 if (!memcg)
2193 return false;
2195 if (!handle)
2196 goto cleanup;
2198 owait.memcg = memcg;
2199 owait.wait.flags = 0;
2200 owait.wait.func = memcg_oom_wake_function;
2201 owait.wait.private = current;
2202 INIT_LIST_HEAD(&owait.wait.task_list);
2204 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2205 mem_cgroup_mark_under_oom(memcg);
2207 locked = mem_cgroup_oom_trylock(memcg);
2209 if (locked)
2210 mem_cgroup_oom_notify(memcg);
2212 if (locked && !memcg->oom_kill_disable) {
2213 mem_cgroup_unmark_under_oom(memcg);
2214 finish_wait(&memcg_oom_waitq, &owait.wait);
2215 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2216 current->memcg_oom.order);
2217 } else {
2218 schedule();
2219 mem_cgroup_unmark_under_oom(memcg);
2220 finish_wait(&memcg_oom_waitq, &owait.wait);
2223 if (locked) {
2224 mem_cgroup_oom_unlock(memcg);
2226 * There is no guarantee that an OOM-lock contender
2227 * sees the wakeups triggered by the OOM kill
2228 * uncharges. Wake any sleepers explicitely.
2230 memcg_oom_recover(memcg);
2232 cleanup:
2233 current->memcg_oom.memcg = NULL;
2234 css_put(&memcg->css);
2235 return true;
2239 * Used to update mapped file or writeback or other statistics.
2241 * Notes: Race condition
2243 * Charging occurs during page instantiation, while the page is
2244 * unmapped and locked in page migration, or while the page table is
2245 * locked in THP migration. No race is possible.
2247 * Uncharge happens to pages with zero references, no race possible.
2249 * Charge moving between groups is protected by checking mm->moving
2250 * account and taking the move_lock in the slowpath.
2253 void __mem_cgroup_begin_update_page_stat(struct page *page,
2254 bool *locked, unsigned long *flags)
2256 struct mem_cgroup *memcg;
2257 struct page_cgroup *pc;
2259 pc = lookup_page_cgroup(page);
2260 again:
2261 memcg = pc->mem_cgroup;
2262 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2263 return;
2265 * If this memory cgroup is not under account moving, we don't
2266 * need to take move_lock_mem_cgroup(). Because we already hold
2267 * rcu_read_lock(), any calls to move_account will be delayed until
2268 * rcu_read_unlock().
2270 VM_BUG_ON(!rcu_read_lock_held());
2271 if (atomic_read(&memcg->moving_account) <= 0)
2272 return;
2274 move_lock_mem_cgroup(memcg, flags);
2275 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2276 move_unlock_mem_cgroup(memcg, flags);
2277 goto again;
2279 *locked = true;
2282 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2284 struct page_cgroup *pc = lookup_page_cgroup(page);
2287 * It's guaranteed that pc->mem_cgroup never changes while
2288 * lock is held because a routine modifies pc->mem_cgroup
2289 * should take move_lock_mem_cgroup().
2291 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2294 void mem_cgroup_update_page_stat(struct page *page,
2295 enum mem_cgroup_stat_index idx, int val)
2297 struct mem_cgroup *memcg;
2298 struct page_cgroup *pc = lookup_page_cgroup(page);
2299 unsigned long uninitialized_var(flags);
2301 if (mem_cgroup_disabled())
2302 return;
2304 VM_BUG_ON(!rcu_read_lock_held());
2305 memcg = pc->mem_cgroup;
2306 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2307 return;
2309 this_cpu_add(memcg->stat->count[idx], val);
2313 * size of first charge trial. "32" comes from vmscan.c's magic value.
2314 * TODO: maybe necessary to use big numbers in big irons.
2316 #define CHARGE_BATCH 32U
2317 struct memcg_stock_pcp {
2318 struct mem_cgroup *cached; /* this never be root cgroup */
2319 unsigned int nr_pages;
2320 struct work_struct work;
2321 unsigned long flags;
2322 #define FLUSHING_CACHED_CHARGE 0
2324 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2325 static DEFINE_MUTEX(percpu_charge_mutex);
2328 * consume_stock: Try to consume stocked charge on this cpu.
2329 * @memcg: memcg to consume from.
2330 * @nr_pages: how many pages to charge.
2332 * The charges will only happen if @memcg matches the current cpu's memcg
2333 * stock, and at least @nr_pages are available in that stock. Failure to
2334 * service an allocation will refill the stock.
2336 * returns true if successful, false otherwise.
2338 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2340 struct memcg_stock_pcp *stock;
2341 bool ret = true;
2343 if (nr_pages > CHARGE_BATCH)
2344 return false;
2346 stock = &get_cpu_var(memcg_stock);
2347 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2348 stock->nr_pages -= nr_pages;
2349 else /* need to call res_counter_charge */
2350 ret = false;
2351 put_cpu_var(memcg_stock);
2352 return ret;
2356 * Returns stocks cached in percpu to res_counter and reset cached information.
2358 static void drain_stock(struct memcg_stock_pcp *stock)
2360 struct mem_cgroup *old = stock->cached;
2362 if (stock->nr_pages) {
2363 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2365 res_counter_uncharge(&old->res, bytes);
2366 if (do_swap_account)
2367 res_counter_uncharge(&old->memsw, bytes);
2368 stock->nr_pages = 0;
2370 stock->cached = NULL;
2374 * This must be called under preempt disabled or must be called by
2375 * a thread which is pinned to local cpu.
2377 static void drain_local_stock(struct work_struct *dummy)
2379 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2380 drain_stock(stock);
2381 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2384 static void __init memcg_stock_init(void)
2386 int cpu;
2388 for_each_possible_cpu(cpu) {
2389 struct memcg_stock_pcp *stock =
2390 &per_cpu(memcg_stock, cpu);
2391 INIT_WORK(&stock->work, drain_local_stock);
2396 * Cache charges(val) which is from res_counter, to local per_cpu area.
2397 * This will be consumed by consume_stock() function, later.
2399 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2401 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2403 if (stock->cached != memcg) { /* reset if necessary */
2404 drain_stock(stock);
2405 stock->cached = memcg;
2407 stock->nr_pages += nr_pages;
2408 put_cpu_var(memcg_stock);
2412 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2413 * of the hierarchy under it. sync flag says whether we should block
2414 * until the work is done.
2416 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2418 int cpu, curcpu;
2420 /* Notify other cpus that system-wide "drain" is running */
2421 get_online_cpus();
2422 curcpu = get_cpu();
2423 for_each_online_cpu(cpu) {
2424 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2425 struct mem_cgroup *memcg;
2427 memcg = stock->cached;
2428 if (!memcg || !stock->nr_pages)
2429 continue;
2430 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2431 continue;
2432 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2433 if (cpu == curcpu)
2434 drain_local_stock(&stock->work);
2435 else
2436 schedule_work_on(cpu, &stock->work);
2439 put_cpu();
2441 if (!sync)
2442 goto out;
2444 for_each_online_cpu(cpu) {
2445 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2446 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2447 flush_work(&stock->work);
2449 out:
2450 put_online_cpus();
2454 * Tries to drain stocked charges in other cpus. This function is asynchronous
2455 * and just put a work per cpu for draining localy on each cpu. Caller can
2456 * expects some charges will be back to res_counter later but cannot wait for
2457 * it.
2459 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2462 * If someone calls draining, avoid adding more kworker runs.
2464 if (!mutex_trylock(&percpu_charge_mutex))
2465 return;
2466 drain_all_stock(root_memcg, false);
2467 mutex_unlock(&percpu_charge_mutex);
2470 /* This is a synchronous drain interface. */
2471 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2473 /* called when force_empty is called */
2474 mutex_lock(&percpu_charge_mutex);
2475 drain_all_stock(root_memcg, true);
2476 mutex_unlock(&percpu_charge_mutex);
2480 * This function drains percpu counter value from DEAD cpu and
2481 * move it to local cpu. Note that this function can be preempted.
2483 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2485 int i;
2487 spin_lock(&memcg->pcp_counter_lock);
2488 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2489 long x = per_cpu(memcg->stat->count[i], cpu);
2491 per_cpu(memcg->stat->count[i], cpu) = 0;
2492 memcg->nocpu_base.count[i] += x;
2494 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2495 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2497 per_cpu(memcg->stat->events[i], cpu) = 0;
2498 memcg->nocpu_base.events[i] += x;
2500 spin_unlock(&memcg->pcp_counter_lock);
2503 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2504 unsigned long action,
2505 void *hcpu)
2507 int cpu = (unsigned long)hcpu;
2508 struct memcg_stock_pcp *stock;
2509 struct mem_cgroup *iter;
2511 if (action == CPU_ONLINE)
2512 return NOTIFY_OK;
2514 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2515 return NOTIFY_OK;
2517 for_each_mem_cgroup(iter)
2518 mem_cgroup_drain_pcp_counter(iter, cpu);
2520 stock = &per_cpu(memcg_stock, cpu);
2521 drain_stock(stock);
2522 return NOTIFY_OK;
2525 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2526 unsigned int nr_pages)
2528 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2529 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2530 struct mem_cgroup *mem_over_limit;
2531 struct res_counter *fail_res;
2532 unsigned long nr_reclaimed;
2533 unsigned long flags = 0;
2534 unsigned long long size;
2535 int ret = 0;
2537 if (mem_cgroup_is_root(memcg))
2538 goto done;
2539 retry:
2540 if (consume_stock(memcg, nr_pages))
2541 goto done;
2543 size = batch * PAGE_SIZE;
2544 if (!res_counter_charge(&memcg->res, size, &fail_res)) {
2545 if (!do_swap_account)
2546 goto done_restock;
2547 if (!res_counter_charge(&memcg->memsw, size, &fail_res))
2548 goto done_restock;
2549 res_counter_uncharge(&memcg->res, size);
2550 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2551 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2552 } else
2553 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2555 if (batch > nr_pages) {
2556 batch = nr_pages;
2557 goto retry;
2561 * Unlike in global OOM situations, memcg is not in a physical
2562 * memory shortage. Allow dying and OOM-killed tasks to
2563 * bypass the last charges so that they can exit quickly and
2564 * free their memory.
2566 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2567 fatal_signal_pending(current) ||
2568 current->flags & PF_EXITING))
2569 goto bypass;
2571 if (unlikely(task_in_memcg_oom(current)))
2572 goto nomem;
2574 if (!(gfp_mask & __GFP_WAIT))
2575 goto nomem;
2577 nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2579 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2580 goto retry;
2582 if (gfp_mask & __GFP_NORETRY)
2583 goto nomem;
2585 * Even though the limit is exceeded at this point, reclaim
2586 * may have been able to free some pages. Retry the charge
2587 * before killing the task.
2589 * Only for regular pages, though: huge pages are rather
2590 * unlikely to succeed so close to the limit, and we fall back
2591 * to regular pages anyway in case of failure.
2593 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2594 goto retry;
2596 * At task move, charge accounts can be doubly counted. So, it's
2597 * better to wait until the end of task_move if something is going on.
2599 if (mem_cgroup_wait_acct_move(mem_over_limit))
2600 goto retry;
2602 if (nr_retries--)
2603 goto retry;
2605 if (gfp_mask & __GFP_NOFAIL)
2606 goto bypass;
2608 if (fatal_signal_pending(current))
2609 goto bypass;
2611 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2612 nomem:
2613 if (!(gfp_mask & __GFP_NOFAIL))
2614 return -ENOMEM;
2615 bypass:
2616 return -EINTR;
2618 done_restock:
2619 if (batch > nr_pages)
2620 refill_stock(memcg, batch - nr_pages);
2621 done:
2622 return ret;
2625 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2627 unsigned long bytes = nr_pages * PAGE_SIZE;
2629 if (mem_cgroup_is_root(memcg))
2630 return;
2632 res_counter_uncharge(&memcg->res, bytes);
2633 if (do_swap_account)
2634 res_counter_uncharge(&memcg->memsw, bytes);
2638 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2639 * This is useful when moving usage to parent cgroup.
2641 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2642 unsigned int nr_pages)
2644 unsigned long bytes = nr_pages * PAGE_SIZE;
2646 if (mem_cgroup_is_root(memcg))
2647 return;
2649 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2650 if (do_swap_account)
2651 res_counter_uncharge_until(&memcg->memsw,
2652 memcg->memsw.parent, bytes);
2656 * A helper function to get mem_cgroup from ID. must be called under
2657 * rcu_read_lock(). The caller is responsible for calling
2658 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2659 * refcnt from swap can be called against removed memcg.)
2661 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2663 /* ID 0 is unused ID */
2664 if (!id)
2665 return NULL;
2666 return mem_cgroup_from_id(id);
2670 * try_get_mem_cgroup_from_page - look up page's memcg association
2671 * @page: the page
2673 * Look up, get a css reference, and return the memcg that owns @page.
2675 * The page must be locked to prevent racing with swap-in and page
2676 * cache charges. If coming from an unlocked page table, the caller
2677 * must ensure the page is on the LRU or this can race with charging.
2679 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2681 struct mem_cgroup *memcg = NULL;
2682 struct page_cgroup *pc;
2683 unsigned short id;
2684 swp_entry_t ent;
2686 VM_BUG_ON_PAGE(!PageLocked(page), page);
2688 pc = lookup_page_cgroup(page);
2689 if (PageCgroupUsed(pc)) {
2690 memcg = pc->mem_cgroup;
2691 if (memcg && !css_tryget_online(&memcg->css))
2692 memcg = NULL;
2693 } else if (PageSwapCache(page)) {
2694 ent.val = page_private(page);
2695 id = lookup_swap_cgroup_id(ent);
2696 rcu_read_lock();
2697 memcg = mem_cgroup_lookup(id);
2698 if (memcg && !css_tryget_online(&memcg->css))
2699 memcg = NULL;
2700 rcu_read_unlock();
2702 return memcg;
2705 static void lock_page_lru(struct page *page, int *isolated)
2707 struct zone *zone = page_zone(page);
2709 spin_lock_irq(&zone->lru_lock);
2710 if (PageLRU(page)) {
2711 struct lruvec *lruvec;
2713 lruvec = mem_cgroup_page_lruvec(page, zone);
2714 ClearPageLRU(page);
2715 del_page_from_lru_list(page, lruvec, page_lru(page));
2716 *isolated = 1;
2717 } else
2718 *isolated = 0;
2721 static void unlock_page_lru(struct page *page, int isolated)
2723 struct zone *zone = page_zone(page);
2725 if (isolated) {
2726 struct lruvec *lruvec;
2728 lruvec = mem_cgroup_page_lruvec(page, zone);
2729 VM_BUG_ON_PAGE(PageLRU(page), page);
2730 SetPageLRU(page);
2731 add_page_to_lru_list(page, lruvec, page_lru(page));
2733 spin_unlock_irq(&zone->lru_lock);
2736 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2737 bool lrucare)
2739 struct page_cgroup *pc = lookup_page_cgroup(page);
2740 int isolated;
2742 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2744 * we don't need page_cgroup_lock about tail pages, becase they are not
2745 * accessed by any other context at this point.
2749 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2750 * may already be on some other mem_cgroup's LRU. Take care of it.
2752 if (lrucare)
2753 lock_page_lru(page, &isolated);
2756 * Nobody should be changing or seriously looking at
2757 * pc->mem_cgroup and pc->flags at this point:
2759 * - the page is uncharged
2761 * - the page is off-LRU
2763 * - an anonymous fault has exclusive page access, except for
2764 * a locked page table
2766 * - a page cache insertion, a swapin fault, or a migration
2767 * have the page locked
2769 pc->mem_cgroup = memcg;
2770 pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
2772 if (lrucare)
2773 unlock_page_lru(page, isolated);
2776 static DEFINE_MUTEX(set_limit_mutex);
2778 #ifdef CONFIG_MEMCG_KMEM
2780 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2781 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2783 static DEFINE_MUTEX(memcg_slab_mutex);
2785 static DEFINE_MUTEX(activate_kmem_mutex);
2787 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2789 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2790 memcg_kmem_is_active(memcg);
2794 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2795 * in the memcg_cache_params struct.
2797 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2799 struct kmem_cache *cachep;
2801 VM_BUG_ON(p->is_root_cache);
2802 cachep = p->root_cache;
2803 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2806 #ifdef CONFIG_SLABINFO
2807 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2809 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2810 struct memcg_cache_params *params;
2812 if (!memcg_can_account_kmem(memcg))
2813 return -EIO;
2815 print_slabinfo_header(m);
2817 mutex_lock(&memcg_slab_mutex);
2818 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2819 cache_show(memcg_params_to_cache(params), m);
2820 mutex_unlock(&memcg_slab_mutex);
2822 return 0;
2824 #endif
2826 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2828 struct res_counter *fail_res;
2829 int ret = 0;
2831 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2832 if (ret)
2833 return ret;
2835 ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
2836 if (ret == -EINTR) {
2838 * try_charge() chose to bypass to root due to OOM kill or
2839 * fatal signal. Since our only options are to either fail
2840 * the allocation or charge it to this cgroup, do it as a
2841 * temporary condition. But we can't fail. From a kmem/slab
2842 * perspective, the cache has already been selected, by
2843 * mem_cgroup_kmem_get_cache(), so it is too late to change
2844 * our minds.
2846 * This condition will only trigger if the task entered
2847 * memcg_charge_kmem in a sane state, but was OOM-killed
2848 * during try_charge() above. Tasks that were already dying
2849 * when the allocation triggers should have been already
2850 * directed to the root cgroup in memcontrol.h
2852 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2853 if (do_swap_account)
2854 res_counter_charge_nofail(&memcg->memsw, size,
2855 &fail_res);
2856 ret = 0;
2857 } else if (ret)
2858 res_counter_uncharge(&memcg->kmem, size);
2860 return ret;
2863 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2865 res_counter_uncharge(&memcg->res, size);
2866 if (do_swap_account)
2867 res_counter_uncharge(&memcg->memsw, size);
2869 /* Not down to 0 */
2870 if (res_counter_uncharge(&memcg->kmem, size))
2871 return;
2874 * Releases a reference taken in kmem_cgroup_css_offline in case
2875 * this last uncharge is racing with the offlining code or it is
2876 * outliving the memcg existence.
2878 * The memory barrier imposed by test&clear is paired with the
2879 * explicit one in memcg_kmem_mark_dead().
2881 if (memcg_kmem_test_and_clear_dead(memcg))
2882 css_put(&memcg->css);
2886 * helper for acessing a memcg's index. It will be used as an index in the
2887 * child cache array in kmem_cache, and also to derive its name. This function
2888 * will return -1 when this is not a kmem-limited memcg.
2890 int memcg_cache_id(struct mem_cgroup *memcg)
2892 return memcg ? memcg->kmemcg_id : -1;
2895 static size_t memcg_caches_array_size(int num_groups)
2897 ssize_t size;
2898 if (num_groups <= 0)
2899 return 0;
2901 size = 2 * num_groups;
2902 if (size < MEMCG_CACHES_MIN_SIZE)
2903 size = MEMCG_CACHES_MIN_SIZE;
2904 else if (size > MEMCG_CACHES_MAX_SIZE)
2905 size = MEMCG_CACHES_MAX_SIZE;
2907 return size;
2911 * We should update the current array size iff all caches updates succeed. This
2912 * can only be done from the slab side. The slab mutex needs to be held when
2913 * calling this.
2915 void memcg_update_array_size(int num)
2917 if (num > memcg_limited_groups_array_size)
2918 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2921 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2923 struct memcg_cache_params *cur_params = s->memcg_params;
2925 VM_BUG_ON(!is_root_cache(s));
2927 if (num_groups > memcg_limited_groups_array_size) {
2928 int i;
2929 struct memcg_cache_params *new_params;
2930 ssize_t size = memcg_caches_array_size(num_groups);
2932 size *= sizeof(void *);
2933 size += offsetof(struct memcg_cache_params, memcg_caches);
2935 new_params = kzalloc(size, GFP_KERNEL);
2936 if (!new_params)
2937 return -ENOMEM;
2939 new_params->is_root_cache = true;
2942 * There is the chance it will be bigger than
2943 * memcg_limited_groups_array_size, if we failed an allocation
2944 * in a cache, in which case all caches updated before it, will
2945 * have a bigger array.
2947 * But if that is the case, the data after
2948 * memcg_limited_groups_array_size is certainly unused
2950 for (i = 0; i < memcg_limited_groups_array_size; i++) {
2951 if (!cur_params->memcg_caches[i])
2952 continue;
2953 new_params->memcg_caches[i] =
2954 cur_params->memcg_caches[i];
2958 * Ideally, we would wait until all caches succeed, and only
2959 * then free the old one. But this is not worth the extra
2960 * pointer per-cache we'd have to have for this.
2962 * It is not a big deal if some caches are left with a size
2963 * bigger than the others. And all updates will reset this
2964 * anyway.
2966 rcu_assign_pointer(s->memcg_params, new_params);
2967 if (cur_params)
2968 kfree_rcu(cur_params, rcu_head);
2970 return 0;
2973 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
2974 struct kmem_cache *root_cache)
2976 size_t size;
2978 if (!memcg_kmem_enabled())
2979 return 0;
2981 if (!memcg) {
2982 size = offsetof(struct memcg_cache_params, memcg_caches);
2983 size += memcg_limited_groups_array_size * sizeof(void *);
2984 } else
2985 size = sizeof(struct memcg_cache_params);
2987 s->memcg_params = kzalloc(size, GFP_KERNEL);
2988 if (!s->memcg_params)
2989 return -ENOMEM;
2991 if (memcg) {
2992 s->memcg_params->memcg = memcg;
2993 s->memcg_params->root_cache = root_cache;
2994 css_get(&memcg->css);
2995 } else
2996 s->memcg_params->is_root_cache = true;
2998 return 0;
3001 void memcg_free_cache_params(struct kmem_cache *s)
3003 if (!s->memcg_params)
3004 return;
3005 if (!s->memcg_params->is_root_cache)
3006 css_put(&s->memcg_params->memcg->css);
3007 kfree(s->memcg_params);
3010 static void memcg_register_cache(struct mem_cgroup *memcg,
3011 struct kmem_cache *root_cache)
3013 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
3014 memcg_slab_mutex */
3015 struct kmem_cache *cachep;
3016 int id;
3018 lockdep_assert_held(&memcg_slab_mutex);
3020 id = memcg_cache_id(memcg);
3023 * Since per-memcg caches are created asynchronously on first
3024 * allocation (see memcg_kmem_get_cache()), several threads can try to
3025 * create the same cache, but only one of them may succeed.
3027 if (cache_from_memcg_idx(root_cache, id))
3028 return;
3030 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3031 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3033 * If we could not create a memcg cache, do not complain, because
3034 * that's not critical at all as we can always proceed with the root
3035 * cache.
3037 if (!cachep)
3038 return;
3040 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3043 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3044 * barrier here to ensure nobody will see the kmem_cache partially
3045 * initialized.
3047 smp_wmb();
3049 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3050 root_cache->memcg_params->memcg_caches[id] = cachep;
3053 static void memcg_unregister_cache(struct kmem_cache *cachep)
3055 struct kmem_cache *root_cache;
3056 struct mem_cgroup *memcg;
3057 int id;
3059 lockdep_assert_held(&memcg_slab_mutex);
3061 BUG_ON(is_root_cache(cachep));
3063 root_cache = cachep->memcg_params->root_cache;
3064 memcg = cachep->memcg_params->memcg;
3065 id = memcg_cache_id(memcg);
3067 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3068 root_cache->memcg_params->memcg_caches[id] = NULL;
3070 list_del(&cachep->memcg_params->list);
3072 kmem_cache_destroy(cachep);
3076 * During the creation a new cache, we need to disable our accounting mechanism
3077 * altogether. This is true even if we are not creating, but rather just
3078 * enqueing new caches to be created.
3080 * This is because that process will trigger allocations; some visible, like
3081 * explicit kmallocs to auxiliary data structures, name strings and internal
3082 * cache structures; some well concealed, like INIT_WORK() that can allocate
3083 * objects during debug.
3085 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3086 * to it. This may not be a bounded recursion: since the first cache creation
3087 * failed to complete (waiting on the allocation), we'll just try to create the
3088 * cache again, failing at the same point.
3090 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3091 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3092 * inside the following two functions.
3094 static inline void memcg_stop_kmem_account(void)
3096 VM_BUG_ON(!current->mm);
3097 current->memcg_kmem_skip_account++;
3100 static inline void memcg_resume_kmem_account(void)
3102 VM_BUG_ON(!current->mm);
3103 current->memcg_kmem_skip_account--;
3106 int __memcg_cleanup_cache_params(struct kmem_cache *s)
3108 struct kmem_cache *c;
3109 int i, failed = 0;
3111 mutex_lock(&memcg_slab_mutex);
3112 for_each_memcg_cache_index(i) {
3113 c = cache_from_memcg_idx(s, i);
3114 if (!c)
3115 continue;
3117 memcg_unregister_cache(c);
3119 if (cache_from_memcg_idx(s, i))
3120 failed++;
3122 mutex_unlock(&memcg_slab_mutex);
3123 return failed;
3126 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3128 struct kmem_cache *cachep;
3129 struct memcg_cache_params *params, *tmp;
3131 if (!memcg_kmem_is_active(memcg))
3132 return;
3134 mutex_lock(&memcg_slab_mutex);
3135 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
3136 cachep = memcg_params_to_cache(params);
3137 kmem_cache_shrink(cachep);
3138 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3139 memcg_unregister_cache(cachep);
3141 mutex_unlock(&memcg_slab_mutex);
3144 struct memcg_register_cache_work {
3145 struct mem_cgroup *memcg;
3146 struct kmem_cache *cachep;
3147 struct work_struct work;
3150 static void memcg_register_cache_func(struct work_struct *w)
3152 struct memcg_register_cache_work *cw =
3153 container_of(w, struct memcg_register_cache_work, work);
3154 struct mem_cgroup *memcg = cw->memcg;
3155 struct kmem_cache *cachep = cw->cachep;
3157 mutex_lock(&memcg_slab_mutex);
3158 memcg_register_cache(memcg, cachep);
3159 mutex_unlock(&memcg_slab_mutex);
3161 css_put(&memcg->css);
3162 kfree(cw);
3166 * Enqueue the creation of a per-memcg kmem_cache.
3168 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3169 struct kmem_cache *cachep)
3171 struct memcg_register_cache_work *cw;
3173 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3174 if (cw == NULL) {
3175 css_put(&memcg->css);
3176 return;
3179 cw->memcg = memcg;
3180 cw->cachep = cachep;
3182 INIT_WORK(&cw->work, memcg_register_cache_func);
3183 schedule_work(&cw->work);
3186 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3187 struct kmem_cache *cachep)
3190 * We need to stop accounting when we kmalloc, because if the
3191 * corresponding kmalloc cache is not yet created, the first allocation
3192 * in __memcg_schedule_register_cache will recurse.
3194 * However, it is better to enclose the whole function. Depending on
3195 * the debugging options enabled, INIT_WORK(), for instance, can
3196 * trigger an allocation. This too, will make us recurse. Because at
3197 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3198 * the safest choice is to do it like this, wrapping the whole function.
3200 memcg_stop_kmem_account();
3201 __memcg_schedule_register_cache(memcg, cachep);
3202 memcg_resume_kmem_account();
3205 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3207 int res;
3209 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3210 PAGE_SIZE << order);
3211 if (!res)
3212 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3213 return res;
3216 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3218 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3219 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3223 * Return the kmem_cache we're supposed to use for a slab allocation.
3224 * We try to use the current memcg's version of the cache.
3226 * If the cache does not exist yet, if we are the first user of it,
3227 * we either create it immediately, if possible, or create it asynchronously
3228 * in a workqueue.
3229 * In the latter case, we will let the current allocation go through with
3230 * the original cache.
3232 * Can't be called in interrupt context or from kernel threads.
3233 * This function needs to be called with rcu_read_lock() held.
3235 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3236 gfp_t gfp)
3238 struct mem_cgroup *memcg;
3239 struct kmem_cache *memcg_cachep;
3241 VM_BUG_ON(!cachep->memcg_params);
3242 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3244 if (!current->mm || current->memcg_kmem_skip_account)
3245 return cachep;
3247 rcu_read_lock();
3248 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3250 if (!memcg_can_account_kmem(memcg))
3251 goto out;
3253 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3254 if (likely(memcg_cachep)) {
3255 cachep = memcg_cachep;
3256 goto out;
3259 /* The corresponding put will be done in the workqueue. */
3260 if (!css_tryget_online(&memcg->css))
3261 goto out;
3262 rcu_read_unlock();
3265 * If we are in a safe context (can wait, and not in interrupt
3266 * context), we could be be predictable and return right away.
3267 * This would guarantee that the allocation being performed
3268 * already belongs in the new cache.
3270 * However, there are some clashes that can arrive from locking.
3271 * For instance, because we acquire the slab_mutex while doing
3272 * memcg_create_kmem_cache, this means no further allocation
3273 * could happen with the slab_mutex held. So it's better to
3274 * defer everything.
3276 memcg_schedule_register_cache(memcg, cachep);
3277 return cachep;
3278 out:
3279 rcu_read_unlock();
3280 return cachep;
3284 * We need to verify if the allocation against current->mm->owner's memcg is
3285 * possible for the given order. But the page is not allocated yet, so we'll
3286 * need a further commit step to do the final arrangements.
3288 * It is possible for the task to switch cgroups in this mean time, so at
3289 * commit time, we can't rely on task conversion any longer. We'll then use
3290 * the handle argument to return to the caller which cgroup we should commit
3291 * against. We could also return the memcg directly and avoid the pointer
3292 * passing, but a boolean return value gives better semantics considering
3293 * the compiled-out case as well.
3295 * Returning true means the allocation is possible.
3297 bool
3298 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3300 struct mem_cgroup *memcg;
3301 int ret;
3303 *_memcg = NULL;
3306 * Disabling accounting is only relevant for some specific memcg
3307 * internal allocations. Therefore we would initially not have such
3308 * check here, since direct calls to the page allocator that are
3309 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3310 * outside memcg core. We are mostly concerned with cache allocations,
3311 * and by having this test at memcg_kmem_get_cache, we are already able
3312 * to relay the allocation to the root cache and bypass the memcg cache
3313 * altogether.
3315 * There is one exception, though: the SLUB allocator does not create
3316 * large order caches, but rather service large kmallocs directly from
3317 * the page allocator. Therefore, the following sequence when backed by
3318 * the SLUB allocator:
3320 * memcg_stop_kmem_account();
3321 * kmalloc(<large_number>)
3322 * memcg_resume_kmem_account();
3324 * would effectively ignore the fact that we should skip accounting,
3325 * since it will drive us directly to this function without passing
3326 * through the cache selector memcg_kmem_get_cache. Such large
3327 * allocations are extremely rare but can happen, for instance, for the
3328 * cache arrays. We bring this test here.
3330 if (!current->mm || current->memcg_kmem_skip_account)
3331 return true;
3333 memcg = get_mem_cgroup_from_mm(current->mm);
3335 if (!memcg_can_account_kmem(memcg)) {
3336 css_put(&memcg->css);
3337 return true;
3340 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3341 if (!ret)
3342 *_memcg = memcg;
3344 css_put(&memcg->css);
3345 return (ret == 0);
3348 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3349 int order)
3351 struct page_cgroup *pc;
3353 VM_BUG_ON(mem_cgroup_is_root(memcg));
3355 /* The page allocation failed. Revert */
3356 if (!page) {
3357 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3358 return;
3361 * The page is freshly allocated and not visible to any
3362 * outside callers yet. Set up pc non-atomically.
3364 pc = lookup_page_cgroup(page);
3365 pc->mem_cgroup = memcg;
3366 pc->flags = PCG_USED;
3369 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3371 struct mem_cgroup *memcg = NULL;
3372 struct page_cgroup *pc;
3375 pc = lookup_page_cgroup(page);
3376 if (!PageCgroupUsed(pc))
3377 return;
3379 memcg = pc->mem_cgroup;
3380 pc->flags = 0;
3383 * We trust that only if there is a memcg associated with the page, it
3384 * is a valid allocation
3386 if (!memcg)
3387 return;
3389 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3390 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3392 #else
3393 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3396 #endif /* CONFIG_MEMCG_KMEM */
3398 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3401 * Because tail pages are not marked as "used", set it. We're under
3402 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3403 * charge/uncharge will be never happen and move_account() is done under
3404 * compound_lock(), so we don't have to take care of races.
3406 void mem_cgroup_split_huge_fixup(struct page *head)
3408 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3409 struct page_cgroup *pc;
3410 struct mem_cgroup *memcg;
3411 int i;
3413 if (mem_cgroup_disabled())
3414 return;
3416 memcg = head_pc->mem_cgroup;
3417 for (i = 1; i < HPAGE_PMD_NR; i++) {
3418 pc = head_pc + i;
3419 pc->mem_cgroup = memcg;
3420 pc->flags = head_pc->flags;
3422 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3423 HPAGE_PMD_NR);
3425 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3428 * mem_cgroup_move_account - move account of the page
3429 * @page: the page
3430 * @nr_pages: number of regular pages (>1 for huge pages)
3431 * @pc: page_cgroup of the page.
3432 * @from: mem_cgroup which the page is moved from.
3433 * @to: mem_cgroup which the page is moved to. @from != @to.
3435 * The caller must confirm following.
3436 * - page is not on LRU (isolate_page() is useful.)
3437 * - compound_lock is held when nr_pages > 1
3439 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3440 * from old cgroup.
3442 static int mem_cgroup_move_account(struct page *page,
3443 unsigned int nr_pages,
3444 struct page_cgroup *pc,
3445 struct mem_cgroup *from,
3446 struct mem_cgroup *to)
3448 unsigned long flags;
3449 int ret;
3451 VM_BUG_ON(from == to);
3452 VM_BUG_ON_PAGE(PageLRU(page), page);
3454 * The page is isolated from LRU. So, collapse function
3455 * will not handle this page. But page splitting can happen.
3456 * Do this check under compound_page_lock(). The caller should
3457 * hold it.
3459 ret = -EBUSY;
3460 if (nr_pages > 1 && !PageTransHuge(page))
3461 goto out;
3464 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3465 * of its source page while we change it: page migration takes
3466 * both pages off the LRU, but page cache replacement doesn't.
3468 if (!trylock_page(page))
3469 goto out;
3471 ret = -EINVAL;
3472 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3473 goto out_unlock;
3475 move_lock_mem_cgroup(from, &flags);
3477 if (!PageAnon(page) && page_mapped(page)) {
3478 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3479 nr_pages);
3480 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3481 nr_pages);
3484 if (PageWriteback(page)) {
3485 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3486 nr_pages);
3487 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3488 nr_pages);
3492 * It is safe to change pc->mem_cgroup here because the page
3493 * is referenced, charged, and isolated - we can't race with
3494 * uncharging, charging, migration, or LRU putback.
3497 /* caller should have done css_get */
3498 pc->mem_cgroup = to;
3499 move_unlock_mem_cgroup(from, &flags);
3500 ret = 0;
3502 local_irq_disable();
3503 mem_cgroup_charge_statistics(to, page, nr_pages);
3504 memcg_check_events(to, page);
3505 mem_cgroup_charge_statistics(from, page, -nr_pages);
3506 memcg_check_events(from, page);
3507 local_irq_enable();
3508 out_unlock:
3509 unlock_page(page);
3510 out:
3511 return ret;
3515 * mem_cgroup_move_parent - moves page to the parent group
3516 * @page: the page to move
3517 * @pc: page_cgroup of the page
3518 * @child: page's cgroup
3520 * move charges to its parent or the root cgroup if the group has no
3521 * parent (aka use_hierarchy==0).
3522 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3523 * mem_cgroup_move_account fails) the failure is always temporary and
3524 * it signals a race with a page removal/uncharge or migration. In the
3525 * first case the page is on the way out and it will vanish from the LRU
3526 * on the next attempt and the call should be retried later.
3527 * Isolation from the LRU fails only if page has been isolated from
3528 * the LRU since we looked at it and that usually means either global
3529 * reclaim or migration going on. The page will either get back to the
3530 * LRU or vanish.
3531 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3532 * (!PageCgroupUsed) or moved to a different group. The page will
3533 * disappear in the next attempt.
3535 static int mem_cgroup_move_parent(struct page *page,
3536 struct page_cgroup *pc,
3537 struct mem_cgroup *child)
3539 struct mem_cgroup *parent;
3540 unsigned int nr_pages;
3541 unsigned long uninitialized_var(flags);
3542 int ret;
3544 VM_BUG_ON(mem_cgroup_is_root(child));
3546 ret = -EBUSY;
3547 if (!get_page_unless_zero(page))
3548 goto out;
3549 if (isolate_lru_page(page))
3550 goto put;
3552 nr_pages = hpage_nr_pages(page);
3554 parent = parent_mem_cgroup(child);
3556 * If no parent, move charges to root cgroup.
3558 if (!parent)
3559 parent = root_mem_cgroup;
3561 if (nr_pages > 1) {
3562 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3563 flags = compound_lock_irqsave(page);
3566 ret = mem_cgroup_move_account(page, nr_pages,
3567 pc, child, parent);
3568 if (!ret)
3569 __mem_cgroup_cancel_local_charge(child, nr_pages);
3571 if (nr_pages > 1)
3572 compound_unlock_irqrestore(page, flags);
3573 putback_lru_page(page);
3574 put:
3575 put_page(page);
3576 out:
3577 return ret;
3580 #ifdef CONFIG_MEMCG_SWAP
3581 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3582 bool charge)
3584 int val = (charge) ? 1 : -1;
3585 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3589 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3590 * @entry: swap entry to be moved
3591 * @from: mem_cgroup which the entry is moved from
3592 * @to: mem_cgroup which the entry is moved to
3594 * It succeeds only when the swap_cgroup's record for this entry is the same
3595 * as the mem_cgroup's id of @from.
3597 * Returns 0 on success, -EINVAL on failure.
3599 * The caller must have charged to @to, IOW, called res_counter_charge() about
3600 * both res and memsw, and called css_get().
3602 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3603 struct mem_cgroup *from, struct mem_cgroup *to)
3605 unsigned short old_id, new_id;
3607 old_id = mem_cgroup_id(from);
3608 new_id = mem_cgroup_id(to);
3610 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3611 mem_cgroup_swap_statistics(from, false);
3612 mem_cgroup_swap_statistics(to, true);
3614 * This function is only called from task migration context now.
3615 * It postpones res_counter and refcount handling till the end
3616 * of task migration(mem_cgroup_clear_mc()) for performance
3617 * improvement. But we cannot postpone css_get(to) because if
3618 * the process that has been moved to @to does swap-in, the
3619 * refcount of @to might be decreased to 0.
3621 * We are in attach() phase, so the cgroup is guaranteed to be
3622 * alive, so we can just call css_get().
3624 css_get(&to->css);
3625 return 0;
3627 return -EINVAL;
3629 #else
3630 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3631 struct mem_cgroup *from, struct mem_cgroup *to)
3633 return -EINVAL;
3635 #endif
3637 #ifdef CONFIG_DEBUG_VM
3638 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3640 struct page_cgroup *pc;
3642 pc = lookup_page_cgroup(page);
3644 * Can be NULL while feeding pages into the page allocator for
3645 * the first time, i.e. during boot or memory hotplug;
3646 * or when mem_cgroup_disabled().
3648 if (likely(pc) && PageCgroupUsed(pc))
3649 return pc;
3650 return NULL;
3653 bool mem_cgroup_bad_page_check(struct page *page)
3655 if (mem_cgroup_disabled())
3656 return false;
3658 return lookup_page_cgroup_used(page) != NULL;
3661 void mem_cgroup_print_bad_page(struct page *page)
3663 struct page_cgroup *pc;
3665 pc = lookup_page_cgroup_used(page);
3666 if (pc) {
3667 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3668 pc, pc->flags, pc->mem_cgroup);
3671 #endif
3673 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3674 unsigned long long val)
3676 int retry_count;
3677 u64 memswlimit, memlimit;
3678 int ret = 0;
3679 int children = mem_cgroup_count_children(memcg);
3680 u64 curusage, oldusage;
3681 int enlarge;
3684 * For keeping hierarchical_reclaim simple, how long we should retry
3685 * is depends on callers. We set our retry-count to be function
3686 * of # of children which we should visit in this loop.
3688 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3690 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3692 enlarge = 0;
3693 while (retry_count) {
3694 if (signal_pending(current)) {
3695 ret = -EINTR;
3696 break;
3699 * Rather than hide all in some function, I do this in
3700 * open coded manner. You see what this really does.
3701 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3703 mutex_lock(&set_limit_mutex);
3704 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3705 if (memswlimit < val) {
3706 ret = -EINVAL;
3707 mutex_unlock(&set_limit_mutex);
3708 break;
3711 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3712 if (memlimit < val)
3713 enlarge = 1;
3715 ret = res_counter_set_limit(&memcg->res, val);
3716 if (!ret) {
3717 if (memswlimit == val)
3718 memcg->memsw_is_minimum = true;
3719 else
3720 memcg->memsw_is_minimum = false;
3722 mutex_unlock(&set_limit_mutex);
3724 if (!ret)
3725 break;
3727 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3728 MEM_CGROUP_RECLAIM_SHRINK);
3729 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3730 /* Usage is reduced ? */
3731 if (curusage >= oldusage)
3732 retry_count--;
3733 else
3734 oldusage = curusage;
3736 if (!ret && enlarge)
3737 memcg_oom_recover(memcg);
3739 return ret;
3742 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3743 unsigned long long val)
3745 int retry_count;
3746 u64 memlimit, memswlimit, oldusage, curusage;
3747 int children = mem_cgroup_count_children(memcg);
3748 int ret = -EBUSY;
3749 int enlarge = 0;
3751 /* see mem_cgroup_resize_res_limit */
3752 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3753 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3754 while (retry_count) {
3755 if (signal_pending(current)) {
3756 ret = -EINTR;
3757 break;
3760 * Rather than hide all in some function, I do this in
3761 * open coded manner. You see what this really does.
3762 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3764 mutex_lock(&set_limit_mutex);
3765 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3766 if (memlimit > val) {
3767 ret = -EINVAL;
3768 mutex_unlock(&set_limit_mutex);
3769 break;
3771 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3772 if (memswlimit < val)
3773 enlarge = 1;
3774 ret = res_counter_set_limit(&memcg->memsw, val);
3775 if (!ret) {
3776 if (memlimit == val)
3777 memcg->memsw_is_minimum = true;
3778 else
3779 memcg->memsw_is_minimum = false;
3781 mutex_unlock(&set_limit_mutex);
3783 if (!ret)
3784 break;
3786 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3787 MEM_CGROUP_RECLAIM_NOSWAP |
3788 MEM_CGROUP_RECLAIM_SHRINK);
3789 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3790 /* Usage is reduced ? */
3791 if (curusage >= oldusage)
3792 retry_count--;
3793 else
3794 oldusage = curusage;
3796 if (!ret && enlarge)
3797 memcg_oom_recover(memcg);
3798 return ret;
3801 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3802 gfp_t gfp_mask,
3803 unsigned long *total_scanned)
3805 unsigned long nr_reclaimed = 0;
3806 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3807 unsigned long reclaimed;
3808 int loop = 0;
3809 struct mem_cgroup_tree_per_zone *mctz;
3810 unsigned long long excess;
3811 unsigned long nr_scanned;
3813 if (order > 0)
3814 return 0;
3816 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3818 * This loop can run a while, specially if mem_cgroup's continuously
3819 * keep exceeding their soft limit and putting the system under
3820 * pressure
3822 do {
3823 if (next_mz)
3824 mz = next_mz;
3825 else
3826 mz = mem_cgroup_largest_soft_limit_node(mctz);
3827 if (!mz)
3828 break;
3830 nr_scanned = 0;
3831 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3832 gfp_mask, &nr_scanned);
3833 nr_reclaimed += reclaimed;
3834 *total_scanned += nr_scanned;
3835 spin_lock_irq(&mctz->lock);
3838 * If we failed to reclaim anything from this memory cgroup
3839 * it is time to move on to the next cgroup
3841 next_mz = NULL;
3842 if (!reclaimed) {
3843 do {
3845 * Loop until we find yet another one.
3847 * By the time we get the soft_limit lock
3848 * again, someone might have aded the
3849 * group back on the RB tree. Iterate to
3850 * make sure we get a different mem.
3851 * mem_cgroup_largest_soft_limit_node returns
3852 * NULL if no other cgroup is present on
3853 * the tree
3855 next_mz =
3856 __mem_cgroup_largest_soft_limit_node(mctz);
3857 if (next_mz == mz)
3858 css_put(&next_mz->memcg->css);
3859 else /* next_mz == NULL or other memcg */
3860 break;
3861 } while (1);
3863 __mem_cgroup_remove_exceeded(mz, mctz);
3864 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3866 * One school of thought says that we should not add
3867 * back the node to the tree if reclaim returns 0.
3868 * But our reclaim could return 0, simply because due
3869 * to priority we are exposing a smaller subset of
3870 * memory to reclaim from. Consider this as a longer
3871 * term TODO.
3873 /* If excess == 0, no tree ops */
3874 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3875 spin_unlock_irq(&mctz->lock);
3876 css_put(&mz->memcg->css);
3877 loop++;
3879 * Could not reclaim anything and there are no more
3880 * mem cgroups to try or we seem to be looping without
3881 * reclaiming anything.
3883 if (!nr_reclaimed &&
3884 (next_mz == NULL ||
3885 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3886 break;
3887 } while (!nr_reclaimed);
3888 if (next_mz)
3889 css_put(&next_mz->memcg->css);
3890 return nr_reclaimed;
3894 * mem_cgroup_force_empty_list - clears LRU of a group
3895 * @memcg: group to clear
3896 * @node: NUMA node
3897 * @zid: zone id
3898 * @lru: lru to to clear
3900 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3901 * reclaim the pages page themselves - pages are moved to the parent (or root)
3902 * group.
3904 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3905 int node, int zid, enum lru_list lru)
3907 struct lruvec *lruvec;
3908 unsigned long flags;
3909 struct list_head *list;
3910 struct page *busy;
3911 struct zone *zone;
3913 zone = &NODE_DATA(node)->node_zones[zid];
3914 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3915 list = &lruvec->lists[lru];
3917 busy = NULL;
3918 do {
3919 struct page_cgroup *pc;
3920 struct page *page;
3922 spin_lock_irqsave(&zone->lru_lock, flags);
3923 if (list_empty(list)) {
3924 spin_unlock_irqrestore(&zone->lru_lock, flags);
3925 break;
3927 page = list_entry(list->prev, struct page, lru);
3928 if (busy == page) {
3929 list_move(&page->lru, list);
3930 busy = NULL;
3931 spin_unlock_irqrestore(&zone->lru_lock, flags);
3932 continue;
3934 spin_unlock_irqrestore(&zone->lru_lock, flags);
3936 pc = lookup_page_cgroup(page);
3938 if (mem_cgroup_move_parent(page, pc, memcg)) {
3939 /* found lock contention or "pc" is obsolete. */
3940 busy = page;
3941 } else
3942 busy = NULL;
3943 cond_resched();
3944 } while (!list_empty(list));
3948 * make mem_cgroup's charge to be 0 if there is no task by moving
3949 * all the charges and pages to the parent.
3950 * This enables deleting this mem_cgroup.
3952 * Caller is responsible for holding css reference on the memcg.
3954 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3956 int node, zid;
3957 u64 usage;
3959 do {
3960 /* This is for making all *used* pages to be on LRU. */
3961 lru_add_drain_all();
3962 drain_all_stock_sync(memcg);
3963 mem_cgroup_start_move(memcg);
3964 for_each_node_state(node, N_MEMORY) {
3965 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3966 enum lru_list lru;
3967 for_each_lru(lru) {
3968 mem_cgroup_force_empty_list(memcg,
3969 node, zid, lru);
3973 mem_cgroup_end_move(memcg);
3974 memcg_oom_recover(memcg);
3975 cond_resched();
3978 * Kernel memory may not necessarily be trackable to a specific
3979 * process. So they are not migrated, and therefore we can't
3980 * expect their value to drop to 0 here.
3981 * Having res filled up with kmem only is enough.
3983 * This is a safety check because mem_cgroup_force_empty_list
3984 * could have raced with mem_cgroup_replace_page_cache callers
3985 * so the lru seemed empty but the page could have been added
3986 * right after the check. RES_USAGE should be safe as we always
3987 * charge before adding to the LRU.
3989 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
3990 res_counter_read_u64(&memcg->kmem, RES_USAGE);
3991 } while (usage > 0);
3995 * Test whether @memcg has children, dead or alive. Note that this
3996 * function doesn't care whether @memcg has use_hierarchy enabled and
3997 * returns %true if there are child csses according to the cgroup
3998 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
4000 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4002 bool ret;
4005 * The lock does not prevent addition or deletion of children, but
4006 * it prevents a new child from being initialized based on this
4007 * parent in css_online(), so it's enough to decide whether
4008 * hierarchically inherited attributes can still be changed or not.
4010 lockdep_assert_held(&memcg_create_mutex);
4012 rcu_read_lock();
4013 ret = css_next_child(NULL, &memcg->css);
4014 rcu_read_unlock();
4015 return ret;
4019 * Reclaims as many pages from the given memcg as possible and moves
4020 * the rest to the parent.
4022 * Caller is responsible for holding css reference for memcg.
4024 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4026 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4028 /* we call try-to-free pages for make this cgroup empty */
4029 lru_add_drain_all();
4030 /* try to free all pages in this cgroup */
4031 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4032 int progress;
4034 if (signal_pending(current))
4035 return -EINTR;
4037 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4038 false);
4039 if (!progress) {
4040 nr_retries--;
4041 /* maybe some writeback is necessary */
4042 congestion_wait(BLK_RW_ASYNC, HZ/10);
4047 return 0;
4050 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4051 char *buf, size_t nbytes,
4052 loff_t off)
4054 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4056 if (mem_cgroup_is_root(memcg))
4057 return -EINVAL;
4058 return mem_cgroup_force_empty(memcg) ?: nbytes;
4061 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4062 struct cftype *cft)
4064 return mem_cgroup_from_css(css)->use_hierarchy;
4067 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4068 struct cftype *cft, u64 val)
4070 int retval = 0;
4071 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4072 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
4074 mutex_lock(&memcg_create_mutex);
4076 if (memcg->use_hierarchy == val)
4077 goto out;
4080 * If parent's use_hierarchy is set, we can't make any modifications
4081 * in the child subtrees. If it is unset, then the change can
4082 * occur, provided the current cgroup has no children.
4084 * For the root cgroup, parent_mem is NULL, we allow value to be
4085 * set if there are no children.
4087 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4088 (val == 1 || val == 0)) {
4089 if (!memcg_has_children(memcg))
4090 memcg->use_hierarchy = val;
4091 else
4092 retval = -EBUSY;
4093 } else
4094 retval = -EINVAL;
4096 out:
4097 mutex_unlock(&memcg_create_mutex);
4099 return retval;
4102 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4103 enum mem_cgroup_stat_index idx)
4105 struct mem_cgroup *iter;
4106 long val = 0;
4108 /* Per-cpu values can be negative, use a signed accumulator */
4109 for_each_mem_cgroup_tree(iter, memcg)
4110 val += mem_cgroup_read_stat(iter, idx);
4112 if (val < 0) /* race ? */
4113 val = 0;
4114 return val;
4117 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4119 u64 val;
4121 if (!mem_cgroup_is_root(memcg)) {
4122 if (!swap)
4123 return res_counter_read_u64(&memcg->res, RES_USAGE);
4124 else
4125 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4129 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4130 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4132 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4133 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4135 if (swap)
4136 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4138 return val << PAGE_SHIFT;
4142 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4143 struct cftype *cft)
4145 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4146 enum res_type type = MEMFILE_TYPE(cft->private);
4147 int name = MEMFILE_ATTR(cft->private);
4149 switch (type) {
4150 case _MEM:
4151 if (name == RES_USAGE)
4152 return mem_cgroup_usage(memcg, false);
4153 return res_counter_read_u64(&memcg->res, name);
4154 case _MEMSWAP:
4155 if (name == RES_USAGE)
4156 return mem_cgroup_usage(memcg, true);
4157 return res_counter_read_u64(&memcg->memsw, name);
4158 case _KMEM:
4159 return res_counter_read_u64(&memcg->kmem, name);
4160 break;
4161 default:
4162 BUG();
4166 #ifdef CONFIG_MEMCG_KMEM
4167 /* should be called with activate_kmem_mutex held */
4168 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4169 unsigned long long limit)
4171 int err = 0;
4172 int memcg_id;
4174 if (memcg_kmem_is_active(memcg))
4175 return 0;
4178 * We are going to allocate memory for data shared by all memory
4179 * cgroups so let's stop accounting here.
4181 memcg_stop_kmem_account();
4184 * For simplicity, we won't allow this to be disabled. It also can't
4185 * be changed if the cgroup has children already, or if tasks had
4186 * already joined.
4188 * If tasks join before we set the limit, a person looking at
4189 * kmem.usage_in_bytes will have no way to determine when it took
4190 * place, which makes the value quite meaningless.
4192 * After it first became limited, changes in the value of the limit are
4193 * of course permitted.
4195 mutex_lock(&memcg_create_mutex);
4196 if (cgroup_has_tasks(memcg->css.cgroup) ||
4197 (memcg->use_hierarchy && memcg_has_children(memcg)))
4198 err = -EBUSY;
4199 mutex_unlock(&memcg_create_mutex);
4200 if (err)
4201 goto out;
4203 memcg_id = ida_simple_get(&kmem_limited_groups,
4204 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4205 if (memcg_id < 0) {
4206 err = memcg_id;
4207 goto out;
4211 * Make sure we have enough space for this cgroup in each root cache's
4212 * memcg_params.
4214 mutex_lock(&memcg_slab_mutex);
4215 err = memcg_update_all_caches(memcg_id + 1);
4216 mutex_unlock(&memcg_slab_mutex);
4217 if (err)
4218 goto out_rmid;
4220 memcg->kmemcg_id = memcg_id;
4221 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4224 * We couldn't have accounted to this cgroup, because it hasn't got the
4225 * active bit set yet, so this should succeed.
4227 err = res_counter_set_limit(&memcg->kmem, limit);
4228 VM_BUG_ON(err);
4230 static_key_slow_inc(&memcg_kmem_enabled_key);
4232 * Setting the active bit after enabling static branching will
4233 * guarantee no one starts accounting before all call sites are
4234 * patched.
4236 memcg_kmem_set_active(memcg);
4237 out:
4238 memcg_resume_kmem_account();
4239 return err;
4241 out_rmid:
4242 ida_simple_remove(&kmem_limited_groups, memcg_id);
4243 goto out;
4246 static int memcg_activate_kmem(struct mem_cgroup *memcg,
4247 unsigned long long limit)
4249 int ret;
4251 mutex_lock(&activate_kmem_mutex);
4252 ret = __memcg_activate_kmem(memcg, limit);
4253 mutex_unlock(&activate_kmem_mutex);
4254 return ret;
4257 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4258 unsigned long long val)
4260 int ret;
4262 if (!memcg_kmem_is_active(memcg))
4263 ret = memcg_activate_kmem(memcg, val);
4264 else
4265 ret = res_counter_set_limit(&memcg->kmem, val);
4266 return ret;
4269 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4271 int ret = 0;
4272 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4274 if (!parent)
4275 return 0;
4277 mutex_lock(&activate_kmem_mutex);
4279 * If the parent cgroup is not kmem-active now, it cannot be activated
4280 * after this point, because it has at least one child already.
4282 if (memcg_kmem_is_active(parent))
4283 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4284 mutex_unlock(&activate_kmem_mutex);
4285 return ret;
4287 #else
4288 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4289 unsigned long long val)
4291 return -EINVAL;
4293 #endif /* CONFIG_MEMCG_KMEM */
4296 * The user of this function is...
4297 * RES_LIMIT.
4299 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4300 char *buf, size_t nbytes, loff_t off)
4302 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4303 enum res_type type;
4304 int name;
4305 unsigned long long val;
4306 int ret;
4308 buf = strstrip(buf);
4309 type = MEMFILE_TYPE(of_cft(of)->private);
4310 name = MEMFILE_ATTR(of_cft(of)->private);
4312 switch (name) {
4313 case RES_LIMIT:
4314 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4315 ret = -EINVAL;
4316 break;
4318 /* This function does all necessary parse...reuse it */
4319 ret = res_counter_memparse_write_strategy(buf, &val);
4320 if (ret)
4321 break;
4322 if (type == _MEM)
4323 ret = mem_cgroup_resize_limit(memcg, val);
4324 else if (type == _MEMSWAP)
4325 ret = mem_cgroup_resize_memsw_limit(memcg, val);
4326 else if (type == _KMEM)
4327 ret = memcg_update_kmem_limit(memcg, val);
4328 else
4329 return -EINVAL;
4330 break;
4331 case RES_SOFT_LIMIT:
4332 ret = res_counter_memparse_write_strategy(buf, &val);
4333 if (ret)
4334 break;
4336 * For memsw, soft limits are hard to implement in terms
4337 * of semantics, for now, we support soft limits for
4338 * control without swap
4340 if (type == _MEM)
4341 ret = res_counter_set_soft_limit(&memcg->res, val);
4342 else
4343 ret = -EINVAL;
4344 break;
4345 default:
4346 ret = -EINVAL; /* should be BUG() ? */
4347 break;
4349 return ret ?: nbytes;
4352 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4353 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4355 unsigned long long min_limit, min_memsw_limit, tmp;
4357 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4358 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4359 if (!memcg->use_hierarchy)
4360 goto out;
4362 while (memcg->css.parent) {
4363 memcg = mem_cgroup_from_css(memcg->css.parent);
4364 if (!memcg->use_hierarchy)
4365 break;
4366 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4367 min_limit = min(min_limit, tmp);
4368 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4369 min_memsw_limit = min(min_memsw_limit, tmp);
4371 out:
4372 *mem_limit = min_limit;
4373 *memsw_limit = min_memsw_limit;
4376 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4377 size_t nbytes, loff_t off)
4379 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4380 int name;
4381 enum res_type type;
4383 type = MEMFILE_TYPE(of_cft(of)->private);
4384 name = MEMFILE_ATTR(of_cft(of)->private);
4386 switch (name) {
4387 case RES_MAX_USAGE:
4388 if (type == _MEM)
4389 res_counter_reset_max(&memcg->res);
4390 else if (type == _MEMSWAP)
4391 res_counter_reset_max(&memcg->memsw);
4392 else if (type == _KMEM)
4393 res_counter_reset_max(&memcg->kmem);
4394 else
4395 return -EINVAL;
4396 break;
4397 case RES_FAILCNT:
4398 if (type == _MEM)
4399 res_counter_reset_failcnt(&memcg->res);
4400 else if (type == _MEMSWAP)
4401 res_counter_reset_failcnt(&memcg->memsw);
4402 else if (type == _KMEM)
4403 res_counter_reset_failcnt(&memcg->kmem);
4404 else
4405 return -EINVAL;
4406 break;
4409 return nbytes;
4412 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4413 struct cftype *cft)
4415 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4418 #ifdef CONFIG_MMU
4419 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4420 struct cftype *cft, u64 val)
4422 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4424 if (val >= (1 << NR_MOVE_TYPE))
4425 return -EINVAL;
4428 * No kind of locking is needed in here, because ->can_attach() will
4429 * check this value once in the beginning of the process, and then carry
4430 * on with stale data. This means that changes to this value will only
4431 * affect task migrations starting after the change.
4433 memcg->move_charge_at_immigrate = val;
4434 return 0;
4436 #else
4437 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4438 struct cftype *cft, u64 val)
4440 return -ENOSYS;
4442 #endif
4444 #ifdef CONFIG_NUMA
4445 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4447 struct numa_stat {
4448 const char *name;
4449 unsigned int lru_mask;
4452 static const struct numa_stat stats[] = {
4453 { "total", LRU_ALL },
4454 { "file", LRU_ALL_FILE },
4455 { "anon", LRU_ALL_ANON },
4456 { "unevictable", BIT(LRU_UNEVICTABLE) },
4458 const struct numa_stat *stat;
4459 int nid;
4460 unsigned long nr;
4461 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4463 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4464 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4465 seq_printf(m, "%s=%lu", stat->name, nr);
4466 for_each_node_state(nid, N_MEMORY) {
4467 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4468 stat->lru_mask);
4469 seq_printf(m, " N%d=%lu", nid, nr);
4471 seq_putc(m, '\n');
4474 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4475 struct mem_cgroup *iter;
4477 nr = 0;
4478 for_each_mem_cgroup_tree(iter, memcg)
4479 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4480 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4481 for_each_node_state(nid, N_MEMORY) {
4482 nr = 0;
4483 for_each_mem_cgroup_tree(iter, memcg)
4484 nr += mem_cgroup_node_nr_lru_pages(
4485 iter, nid, stat->lru_mask);
4486 seq_printf(m, " N%d=%lu", nid, nr);
4488 seq_putc(m, '\n');
4491 return 0;
4493 #endif /* CONFIG_NUMA */
4495 static inline void mem_cgroup_lru_names_not_uptodate(void)
4497 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4500 static int memcg_stat_show(struct seq_file *m, void *v)
4502 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4503 struct mem_cgroup *mi;
4504 unsigned int i;
4506 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4507 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4508 continue;
4509 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4510 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4513 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4514 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4515 mem_cgroup_read_events(memcg, i));
4517 for (i = 0; i < NR_LRU_LISTS; i++)
4518 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4519 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4521 /* Hierarchical information */
4523 unsigned long long limit, memsw_limit;
4524 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4525 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4526 if (do_swap_account)
4527 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4528 memsw_limit);
4531 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4532 long long val = 0;
4534 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4535 continue;
4536 for_each_mem_cgroup_tree(mi, memcg)
4537 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4538 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4541 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4542 unsigned long long val = 0;
4544 for_each_mem_cgroup_tree(mi, memcg)
4545 val += mem_cgroup_read_events(mi, i);
4546 seq_printf(m, "total_%s %llu\n",
4547 mem_cgroup_events_names[i], val);
4550 for (i = 0; i < NR_LRU_LISTS; i++) {
4551 unsigned long long val = 0;
4553 for_each_mem_cgroup_tree(mi, memcg)
4554 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4555 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4558 #ifdef CONFIG_DEBUG_VM
4560 int nid, zid;
4561 struct mem_cgroup_per_zone *mz;
4562 struct zone_reclaim_stat *rstat;
4563 unsigned long recent_rotated[2] = {0, 0};
4564 unsigned long recent_scanned[2] = {0, 0};
4566 for_each_online_node(nid)
4567 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4568 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4569 rstat = &mz->lruvec.reclaim_stat;
4571 recent_rotated[0] += rstat->recent_rotated[0];
4572 recent_rotated[1] += rstat->recent_rotated[1];
4573 recent_scanned[0] += rstat->recent_scanned[0];
4574 recent_scanned[1] += rstat->recent_scanned[1];
4576 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4577 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4578 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4579 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4581 #endif
4583 return 0;
4586 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4587 struct cftype *cft)
4589 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4591 return mem_cgroup_swappiness(memcg);
4594 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4595 struct cftype *cft, u64 val)
4597 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4599 if (val > 100)
4600 return -EINVAL;
4602 if (css->parent)
4603 memcg->swappiness = val;
4604 else
4605 vm_swappiness = val;
4607 return 0;
4610 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4612 struct mem_cgroup_threshold_ary *t;
4613 u64 usage;
4614 int i;
4616 rcu_read_lock();
4617 if (!swap)
4618 t = rcu_dereference(memcg->thresholds.primary);
4619 else
4620 t = rcu_dereference(memcg->memsw_thresholds.primary);
4622 if (!t)
4623 goto unlock;
4625 usage = mem_cgroup_usage(memcg, swap);
4628 * current_threshold points to threshold just below or equal to usage.
4629 * If it's not true, a threshold was crossed after last
4630 * call of __mem_cgroup_threshold().
4632 i = t->current_threshold;
4635 * Iterate backward over array of thresholds starting from
4636 * current_threshold and check if a threshold is crossed.
4637 * If none of thresholds below usage is crossed, we read
4638 * only one element of the array here.
4640 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4641 eventfd_signal(t->entries[i].eventfd, 1);
4643 /* i = current_threshold + 1 */
4644 i++;
4647 * Iterate forward over array of thresholds starting from
4648 * current_threshold+1 and check if a threshold is crossed.
4649 * If none of thresholds above usage is crossed, we read
4650 * only one element of the array here.
4652 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4653 eventfd_signal(t->entries[i].eventfd, 1);
4655 /* Update current_threshold */
4656 t->current_threshold = i - 1;
4657 unlock:
4658 rcu_read_unlock();
4661 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4663 while (memcg) {
4664 __mem_cgroup_threshold(memcg, false);
4665 if (do_swap_account)
4666 __mem_cgroup_threshold(memcg, true);
4668 memcg = parent_mem_cgroup(memcg);
4672 static int compare_thresholds(const void *a, const void *b)
4674 const struct mem_cgroup_threshold *_a = a;
4675 const struct mem_cgroup_threshold *_b = b;
4677 if (_a->threshold > _b->threshold)
4678 return 1;
4680 if (_a->threshold < _b->threshold)
4681 return -1;
4683 return 0;
4686 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4688 struct mem_cgroup_eventfd_list *ev;
4690 spin_lock(&memcg_oom_lock);
4692 list_for_each_entry(ev, &memcg->oom_notify, list)
4693 eventfd_signal(ev->eventfd, 1);
4695 spin_unlock(&memcg_oom_lock);
4696 return 0;
4699 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4701 struct mem_cgroup *iter;
4703 for_each_mem_cgroup_tree(iter, memcg)
4704 mem_cgroup_oom_notify_cb(iter);
4707 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4708 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4710 struct mem_cgroup_thresholds *thresholds;
4711 struct mem_cgroup_threshold_ary *new;
4712 u64 threshold, usage;
4713 int i, size, ret;
4715 ret = res_counter_memparse_write_strategy(args, &threshold);
4716 if (ret)
4717 return ret;
4719 mutex_lock(&memcg->thresholds_lock);
4721 if (type == _MEM) {
4722 thresholds = &memcg->thresholds;
4723 usage = mem_cgroup_usage(memcg, false);
4724 } else if (type == _MEMSWAP) {
4725 thresholds = &memcg->memsw_thresholds;
4726 usage = mem_cgroup_usage(memcg, true);
4727 } else
4728 BUG();
4730 /* Check if a threshold crossed before adding a new one */
4731 if (thresholds->primary)
4732 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4734 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4736 /* Allocate memory for new array of thresholds */
4737 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4738 GFP_KERNEL);
4739 if (!new) {
4740 ret = -ENOMEM;
4741 goto unlock;
4743 new->size = size;
4745 /* Copy thresholds (if any) to new array */
4746 if (thresholds->primary) {
4747 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4748 sizeof(struct mem_cgroup_threshold));
4751 /* Add new threshold */
4752 new->entries[size - 1].eventfd = eventfd;
4753 new->entries[size - 1].threshold = threshold;
4755 /* Sort thresholds. Registering of new threshold isn't time-critical */
4756 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4757 compare_thresholds, NULL);
4759 /* Find current threshold */
4760 new->current_threshold = -1;
4761 for (i = 0; i < size; i++) {
4762 if (new->entries[i].threshold <= usage) {
4764 * new->current_threshold will not be used until
4765 * rcu_assign_pointer(), so it's safe to increment
4766 * it here.
4768 ++new->current_threshold;
4769 } else
4770 break;
4773 /* Free old spare buffer and save old primary buffer as spare */
4774 kfree(thresholds->spare);
4775 thresholds->spare = thresholds->primary;
4777 rcu_assign_pointer(thresholds->primary, new);
4779 /* To be sure that nobody uses thresholds */
4780 synchronize_rcu();
4782 unlock:
4783 mutex_unlock(&memcg->thresholds_lock);
4785 return ret;
4788 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4789 struct eventfd_ctx *eventfd, const char *args)
4791 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4794 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4795 struct eventfd_ctx *eventfd, const char *args)
4797 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4800 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4801 struct eventfd_ctx *eventfd, enum res_type type)
4803 struct mem_cgroup_thresholds *thresholds;
4804 struct mem_cgroup_threshold_ary *new;
4805 u64 usage;
4806 int i, j, size;
4808 mutex_lock(&memcg->thresholds_lock);
4810 if (type == _MEM) {
4811 thresholds = &memcg->thresholds;
4812 usage = mem_cgroup_usage(memcg, false);
4813 } else if (type == _MEMSWAP) {
4814 thresholds = &memcg->memsw_thresholds;
4815 usage = mem_cgroup_usage(memcg, true);
4816 } else
4817 BUG();
4819 if (!thresholds->primary)
4820 goto unlock;
4822 /* Check if a threshold crossed before removing */
4823 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4825 /* Calculate new number of threshold */
4826 size = 0;
4827 for (i = 0; i < thresholds->primary->size; i++) {
4828 if (thresholds->primary->entries[i].eventfd != eventfd)
4829 size++;
4832 new = thresholds->spare;
4834 /* Set thresholds array to NULL if we don't have thresholds */
4835 if (!size) {
4836 kfree(new);
4837 new = NULL;
4838 goto swap_buffers;
4841 new->size = size;
4843 /* Copy thresholds and find current threshold */
4844 new->current_threshold = -1;
4845 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4846 if (thresholds->primary->entries[i].eventfd == eventfd)
4847 continue;
4849 new->entries[j] = thresholds->primary->entries[i];
4850 if (new->entries[j].threshold <= usage) {
4852 * new->current_threshold will not be used
4853 * until rcu_assign_pointer(), so it's safe to increment
4854 * it here.
4856 ++new->current_threshold;
4858 j++;
4861 swap_buffers:
4862 /* Swap primary and spare array */
4863 thresholds->spare = thresholds->primary;
4864 /* If all events are unregistered, free the spare array */
4865 if (!new) {
4866 kfree(thresholds->spare);
4867 thresholds->spare = NULL;
4870 rcu_assign_pointer(thresholds->primary, new);
4872 /* To be sure that nobody uses thresholds */
4873 synchronize_rcu();
4874 unlock:
4875 mutex_unlock(&memcg->thresholds_lock);
4878 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4879 struct eventfd_ctx *eventfd)
4881 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4884 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4885 struct eventfd_ctx *eventfd)
4887 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4890 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4891 struct eventfd_ctx *eventfd, const char *args)
4893 struct mem_cgroup_eventfd_list *event;
4895 event = kmalloc(sizeof(*event), GFP_KERNEL);
4896 if (!event)
4897 return -ENOMEM;
4899 spin_lock(&memcg_oom_lock);
4901 event->eventfd = eventfd;
4902 list_add(&event->list, &memcg->oom_notify);
4904 /* already in OOM ? */
4905 if (atomic_read(&memcg->under_oom))
4906 eventfd_signal(eventfd, 1);
4907 spin_unlock(&memcg_oom_lock);
4909 return 0;
4912 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4913 struct eventfd_ctx *eventfd)
4915 struct mem_cgroup_eventfd_list *ev, *tmp;
4917 spin_lock(&memcg_oom_lock);
4919 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4920 if (ev->eventfd == eventfd) {
4921 list_del(&ev->list);
4922 kfree(ev);
4926 spin_unlock(&memcg_oom_lock);
4929 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4931 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4933 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4934 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4935 return 0;
4938 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4939 struct cftype *cft, u64 val)
4941 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4943 /* cannot set to root cgroup and only 0 and 1 are allowed */
4944 if (!css->parent || !((val == 0) || (val == 1)))
4945 return -EINVAL;
4947 memcg->oom_kill_disable = val;
4948 if (!val)
4949 memcg_oom_recover(memcg);
4951 return 0;
4954 #ifdef CONFIG_MEMCG_KMEM
4955 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4957 int ret;
4959 memcg->kmemcg_id = -1;
4960 ret = memcg_propagate_kmem(memcg);
4961 if (ret)
4962 return ret;
4964 return mem_cgroup_sockets_init(memcg, ss);
4967 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4969 mem_cgroup_sockets_destroy(memcg);
4972 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4974 if (!memcg_kmem_is_active(memcg))
4975 return;
4978 * kmem charges can outlive the cgroup. In the case of slab
4979 * pages, for instance, a page contain objects from various
4980 * processes. As we prevent from taking a reference for every
4981 * such allocation we have to be careful when doing uncharge
4982 * (see memcg_uncharge_kmem) and here during offlining.
4984 * The idea is that that only the _last_ uncharge which sees
4985 * the dead memcg will drop the last reference. An additional
4986 * reference is taken here before the group is marked dead
4987 * which is then paired with css_put during uncharge resp. here.
4989 * Although this might sound strange as this path is called from
4990 * css_offline() when the referencemight have dropped down to 0 and
4991 * shouldn't be incremented anymore (css_tryget_online() would
4992 * fail) we do not have other options because of the kmem
4993 * allocations lifetime.
4995 css_get(&memcg->css);
4997 memcg_kmem_mark_dead(memcg);
4999 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5000 return;
5002 if (memcg_kmem_test_and_clear_dead(memcg))
5003 css_put(&memcg->css);
5005 #else
5006 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5008 return 0;
5011 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5015 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5018 #endif
5021 * DO NOT USE IN NEW FILES.
5023 * "cgroup.event_control" implementation.
5025 * This is way over-engineered. It tries to support fully configurable
5026 * events for each user. Such level of flexibility is completely
5027 * unnecessary especially in the light of the planned unified hierarchy.
5029 * Please deprecate this and replace with something simpler if at all
5030 * possible.
5034 * Unregister event and free resources.
5036 * Gets called from workqueue.
5038 static void memcg_event_remove(struct work_struct *work)
5040 struct mem_cgroup_event *event =
5041 container_of(work, struct mem_cgroup_event, remove);
5042 struct mem_cgroup *memcg = event->memcg;
5044 remove_wait_queue(event->wqh, &event->wait);
5046 event->unregister_event(memcg, event->eventfd);
5048 /* Notify userspace the event is going away. */
5049 eventfd_signal(event->eventfd, 1);
5051 eventfd_ctx_put(event->eventfd);
5052 kfree(event);
5053 css_put(&memcg->css);
5057 * Gets called on POLLHUP on eventfd when user closes it.
5059 * Called with wqh->lock held and interrupts disabled.
5061 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5062 int sync, void *key)
5064 struct mem_cgroup_event *event =
5065 container_of(wait, struct mem_cgroup_event, wait);
5066 struct mem_cgroup *memcg = event->memcg;
5067 unsigned long flags = (unsigned long)key;
5069 if (flags & POLLHUP) {
5071 * If the event has been detached at cgroup removal, we
5072 * can simply return knowing the other side will cleanup
5073 * for us.
5075 * We can't race against event freeing since the other
5076 * side will require wqh->lock via remove_wait_queue(),
5077 * which we hold.
5079 spin_lock(&memcg->event_list_lock);
5080 if (!list_empty(&event->list)) {
5081 list_del_init(&event->list);
5083 * We are in atomic context, but cgroup_event_remove()
5084 * may sleep, so we have to call it in workqueue.
5086 schedule_work(&event->remove);
5088 spin_unlock(&memcg->event_list_lock);
5091 return 0;
5094 static void memcg_event_ptable_queue_proc(struct file *file,
5095 wait_queue_head_t *wqh, poll_table *pt)
5097 struct mem_cgroup_event *event =
5098 container_of(pt, struct mem_cgroup_event, pt);
5100 event->wqh = wqh;
5101 add_wait_queue(wqh, &event->wait);
5105 * DO NOT USE IN NEW FILES.
5107 * Parse input and register new cgroup event handler.
5109 * Input must be in format '<event_fd> <control_fd> <args>'.
5110 * Interpretation of args is defined by control file implementation.
5112 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5113 char *buf, size_t nbytes, loff_t off)
5115 struct cgroup_subsys_state *css = of_css(of);
5116 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5117 struct mem_cgroup_event *event;
5118 struct cgroup_subsys_state *cfile_css;
5119 unsigned int efd, cfd;
5120 struct fd efile;
5121 struct fd cfile;
5122 const char *name;
5123 char *endp;
5124 int ret;
5126 buf = strstrip(buf);
5128 efd = simple_strtoul(buf, &endp, 10);
5129 if (*endp != ' ')
5130 return -EINVAL;
5131 buf = endp + 1;
5133 cfd = simple_strtoul(buf, &endp, 10);
5134 if ((*endp != ' ') && (*endp != '\0'))
5135 return -EINVAL;
5136 buf = endp + 1;
5138 event = kzalloc(sizeof(*event), GFP_KERNEL);
5139 if (!event)
5140 return -ENOMEM;
5142 event->memcg = memcg;
5143 INIT_LIST_HEAD(&event->list);
5144 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5145 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5146 INIT_WORK(&event->remove, memcg_event_remove);
5148 efile = fdget(efd);
5149 if (!efile.file) {
5150 ret = -EBADF;
5151 goto out_kfree;
5154 event->eventfd = eventfd_ctx_fileget(efile.file);
5155 if (IS_ERR(event->eventfd)) {
5156 ret = PTR_ERR(event->eventfd);
5157 goto out_put_efile;
5160 cfile = fdget(cfd);
5161 if (!cfile.file) {
5162 ret = -EBADF;
5163 goto out_put_eventfd;
5166 /* the process need read permission on control file */
5167 /* AV: shouldn't we check that it's been opened for read instead? */
5168 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5169 if (ret < 0)
5170 goto out_put_cfile;
5173 * Determine the event callbacks and set them in @event. This used
5174 * to be done via struct cftype but cgroup core no longer knows
5175 * about these events. The following is crude but the whole thing
5176 * is for compatibility anyway.
5178 * DO NOT ADD NEW FILES.
5180 name = cfile.file->f_dentry->d_name.name;
5182 if (!strcmp(name, "memory.usage_in_bytes")) {
5183 event->register_event = mem_cgroup_usage_register_event;
5184 event->unregister_event = mem_cgroup_usage_unregister_event;
5185 } else if (!strcmp(name, "memory.oom_control")) {
5186 event->register_event = mem_cgroup_oom_register_event;
5187 event->unregister_event = mem_cgroup_oom_unregister_event;
5188 } else if (!strcmp(name, "memory.pressure_level")) {
5189 event->register_event = vmpressure_register_event;
5190 event->unregister_event = vmpressure_unregister_event;
5191 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5192 event->register_event = memsw_cgroup_usage_register_event;
5193 event->unregister_event = memsw_cgroup_usage_unregister_event;
5194 } else {
5195 ret = -EINVAL;
5196 goto out_put_cfile;
5200 * Verify @cfile should belong to @css. Also, remaining events are
5201 * automatically removed on cgroup destruction but the removal is
5202 * asynchronous, so take an extra ref on @css.
5204 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5205 &memory_cgrp_subsys);
5206 ret = -EINVAL;
5207 if (IS_ERR(cfile_css))
5208 goto out_put_cfile;
5209 if (cfile_css != css) {
5210 css_put(cfile_css);
5211 goto out_put_cfile;
5214 ret = event->register_event(memcg, event->eventfd, buf);
5215 if (ret)
5216 goto out_put_css;
5218 efile.file->f_op->poll(efile.file, &event->pt);
5220 spin_lock(&memcg->event_list_lock);
5221 list_add(&event->list, &memcg->event_list);
5222 spin_unlock(&memcg->event_list_lock);
5224 fdput(cfile);
5225 fdput(efile);
5227 return nbytes;
5229 out_put_css:
5230 css_put(css);
5231 out_put_cfile:
5232 fdput(cfile);
5233 out_put_eventfd:
5234 eventfd_ctx_put(event->eventfd);
5235 out_put_efile:
5236 fdput(efile);
5237 out_kfree:
5238 kfree(event);
5240 return ret;
5243 static struct cftype mem_cgroup_files[] = {
5245 .name = "usage_in_bytes",
5246 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5247 .read_u64 = mem_cgroup_read_u64,
5250 .name = "max_usage_in_bytes",
5251 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5252 .write = mem_cgroup_reset,
5253 .read_u64 = mem_cgroup_read_u64,
5256 .name = "limit_in_bytes",
5257 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5258 .write = mem_cgroup_write,
5259 .read_u64 = mem_cgroup_read_u64,
5262 .name = "soft_limit_in_bytes",
5263 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5264 .write = mem_cgroup_write,
5265 .read_u64 = mem_cgroup_read_u64,
5268 .name = "failcnt",
5269 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5270 .write = mem_cgroup_reset,
5271 .read_u64 = mem_cgroup_read_u64,
5274 .name = "stat",
5275 .seq_show = memcg_stat_show,
5278 .name = "force_empty",
5279 .write = mem_cgroup_force_empty_write,
5282 .name = "use_hierarchy",
5283 .write_u64 = mem_cgroup_hierarchy_write,
5284 .read_u64 = mem_cgroup_hierarchy_read,
5287 .name = "cgroup.event_control", /* XXX: for compat */
5288 .write = memcg_write_event_control,
5289 .flags = CFTYPE_NO_PREFIX,
5290 .mode = S_IWUGO,
5293 .name = "swappiness",
5294 .read_u64 = mem_cgroup_swappiness_read,
5295 .write_u64 = mem_cgroup_swappiness_write,
5298 .name = "move_charge_at_immigrate",
5299 .read_u64 = mem_cgroup_move_charge_read,
5300 .write_u64 = mem_cgroup_move_charge_write,
5303 .name = "oom_control",
5304 .seq_show = mem_cgroup_oom_control_read,
5305 .write_u64 = mem_cgroup_oom_control_write,
5306 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5309 .name = "pressure_level",
5311 #ifdef CONFIG_NUMA
5313 .name = "numa_stat",
5314 .seq_show = memcg_numa_stat_show,
5316 #endif
5317 #ifdef CONFIG_MEMCG_KMEM
5319 .name = "kmem.limit_in_bytes",
5320 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5321 .write = mem_cgroup_write,
5322 .read_u64 = mem_cgroup_read_u64,
5325 .name = "kmem.usage_in_bytes",
5326 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5327 .read_u64 = mem_cgroup_read_u64,
5330 .name = "kmem.failcnt",
5331 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5332 .write = mem_cgroup_reset,
5333 .read_u64 = mem_cgroup_read_u64,
5336 .name = "kmem.max_usage_in_bytes",
5337 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5338 .write = mem_cgroup_reset,
5339 .read_u64 = mem_cgroup_read_u64,
5341 #ifdef CONFIG_SLABINFO
5343 .name = "kmem.slabinfo",
5344 .seq_show = mem_cgroup_slabinfo_read,
5346 #endif
5347 #endif
5348 { }, /* terminate */
5351 #ifdef CONFIG_MEMCG_SWAP
5352 static struct cftype memsw_cgroup_files[] = {
5354 .name = "memsw.usage_in_bytes",
5355 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5356 .read_u64 = mem_cgroup_read_u64,
5359 .name = "memsw.max_usage_in_bytes",
5360 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5361 .write = mem_cgroup_reset,
5362 .read_u64 = mem_cgroup_read_u64,
5365 .name = "memsw.limit_in_bytes",
5366 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5367 .write = mem_cgroup_write,
5368 .read_u64 = mem_cgroup_read_u64,
5371 .name = "memsw.failcnt",
5372 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5373 .write = mem_cgroup_reset,
5374 .read_u64 = mem_cgroup_read_u64,
5376 { }, /* terminate */
5378 #endif
5379 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5381 struct mem_cgroup_per_node *pn;
5382 struct mem_cgroup_per_zone *mz;
5383 int zone, tmp = node;
5385 * This routine is called against possible nodes.
5386 * But it's BUG to call kmalloc() against offline node.
5388 * TODO: this routine can waste much memory for nodes which will
5389 * never be onlined. It's better to use memory hotplug callback
5390 * function.
5392 if (!node_state(node, N_NORMAL_MEMORY))
5393 tmp = -1;
5394 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5395 if (!pn)
5396 return 1;
5398 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5399 mz = &pn->zoneinfo[zone];
5400 lruvec_init(&mz->lruvec);
5401 mz->usage_in_excess = 0;
5402 mz->on_tree = false;
5403 mz->memcg = memcg;
5405 memcg->nodeinfo[node] = pn;
5406 return 0;
5409 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5411 kfree(memcg->nodeinfo[node]);
5414 static struct mem_cgroup *mem_cgroup_alloc(void)
5416 struct mem_cgroup *memcg;
5417 size_t size;
5419 size = sizeof(struct mem_cgroup);
5420 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5422 memcg = kzalloc(size, GFP_KERNEL);
5423 if (!memcg)
5424 return NULL;
5426 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5427 if (!memcg->stat)
5428 goto out_free;
5429 spin_lock_init(&memcg->pcp_counter_lock);
5430 return memcg;
5432 out_free:
5433 kfree(memcg);
5434 return NULL;
5438 * At destroying mem_cgroup, references from swap_cgroup can remain.
5439 * (scanning all at force_empty is too costly...)
5441 * Instead of clearing all references at force_empty, we remember
5442 * the number of reference from swap_cgroup and free mem_cgroup when
5443 * it goes down to 0.
5445 * Removal of cgroup itself succeeds regardless of refs from swap.
5448 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5450 int node;
5452 mem_cgroup_remove_from_trees(memcg);
5454 for_each_node(node)
5455 free_mem_cgroup_per_zone_info(memcg, node);
5457 free_percpu(memcg->stat);
5460 * We need to make sure that (at least for now), the jump label
5461 * destruction code runs outside of the cgroup lock. This is because
5462 * get_online_cpus(), which is called from the static_branch update,
5463 * can't be called inside the cgroup_lock. cpusets are the ones
5464 * enforcing this dependency, so if they ever change, we might as well.
5466 * schedule_work() will guarantee this happens. Be careful if you need
5467 * to move this code around, and make sure it is outside
5468 * the cgroup_lock.
5470 disarm_static_keys(memcg);
5471 kfree(memcg);
5475 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5477 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5479 if (!memcg->res.parent)
5480 return NULL;
5481 return mem_cgroup_from_res_counter(memcg->res.parent, res);
5483 EXPORT_SYMBOL(parent_mem_cgroup);
5485 static void __init mem_cgroup_soft_limit_tree_init(void)
5487 struct mem_cgroup_tree_per_node *rtpn;
5488 struct mem_cgroup_tree_per_zone *rtpz;
5489 int tmp, node, zone;
5491 for_each_node(node) {
5492 tmp = node;
5493 if (!node_state(node, N_NORMAL_MEMORY))
5494 tmp = -1;
5495 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5496 BUG_ON(!rtpn);
5498 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5500 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5501 rtpz = &rtpn->rb_tree_per_zone[zone];
5502 rtpz->rb_root = RB_ROOT;
5503 spin_lock_init(&rtpz->lock);
5508 static struct cgroup_subsys_state * __ref
5509 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5511 struct mem_cgroup *memcg;
5512 long error = -ENOMEM;
5513 int node;
5515 memcg = mem_cgroup_alloc();
5516 if (!memcg)
5517 return ERR_PTR(error);
5519 for_each_node(node)
5520 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5521 goto free_out;
5523 /* root ? */
5524 if (parent_css == NULL) {
5525 root_mem_cgroup = memcg;
5526 res_counter_init(&memcg->res, NULL);
5527 res_counter_init(&memcg->memsw, NULL);
5528 res_counter_init(&memcg->kmem, NULL);
5531 memcg->last_scanned_node = MAX_NUMNODES;
5532 INIT_LIST_HEAD(&memcg->oom_notify);
5533 memcg->move_charge_at_immigrate = 0;
5534 mutex_init(&memcg->thresholds_lock);
5535 spin_lock_init(&memcg->move_lock);
5536 vmpressure_init(&memcg->vmpressure);
5537 INIT_LIST_HEAD(&memcg->event_list);
5538 spin_lock_init(&memcg->event_list_lock);
5540 return &memcg->css;
5542 free_out:
5543 __mem_cgroup_free(memcg);
5544 return ERR_PTR(error);
5547 static int
5548 mem_cgroup_css_online(struct cgroup_subsys_state *css)
5550 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5551 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5553 if (css->id > MEM_CGROUP_ID_MAX)
5554 return -ENOSPC;
5556 if (!parent)
5557 return 0;
5559 mutex_lock(&memcg_create_mutex);
5561 memcg->use_hierarchy = parent->use_hierarchy;
5562 memcg->oom_kill_disable = parent->oom_kill_disable;
5563 memcg->swappiness = mem_cgroup_swappiness(parent);
5565 if (parent->use_hierarchy) {
5566 res_counter_init(&memcg->res, &parent->res);
5567 res_counter_init(&memcg->memsw, &parent->memsw);
5568 res_counter_init(&memcg->kmem, &parent->kmem);
5571 * No need to take a reference to the parent because cgroup
5572 * core guarantees its existence.
5574 } else {
5575 res_counter_init(&memcg->res, NULL);
5576 res_counter_init(&memcg->memsw, NULL);
5577 res_counter_init(&memcg->kmem, NULL);
5579 * Deeper hierachy with use_hierarchy == false doesn't make
5580 * much sense so let cgroup subsystem know about this
5581 * unfortunate state in our controller.
5583 if (parent != root_mem_cgroup)
5584 memory_cgrp_subsys.broken_hierarchy = true;
5586 mutex_unlock(&memcg_create_mutex);
5588 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
5592 * Announce all parents that a group from their hierarchy is gone.
5594 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
5596 struct mem_cgroup *parent = memcg;
5598 while ((parent = parent_mem_cgroup(parent)))
5599 mem_cgroup_iter_invalidate(parent);
5602 * if the root memcg is not hierarchical we have to check it
5603 * explicitely.
5605 if (!root_mem_cgroup->use_hierarchy)
5606 mem_cgroup_iter_invalidate(root_mem_cgroup);
5609 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5611 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5612 struct mem_cgroup_event *event, *tmp;
5613 struct cgroup_subsys_state *iter;
5616 * Unregister events and notify userspace.
5617 * Notify userspace about cgroup removing only after rmdir of cgroup
5618 * directory to avoid race between userspace and kernelspace.
5620 spin_lock(&memcg->event_list_lock);
5621 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5622 list_del_init(&event->list);
5623 schedule_work(&event->remove);
5625 spin_unlock(&memcg->event_list_lock);
5627 kmem_cgroup_css_offline(memcg);
5629 mem_cgroup_invalidate_reclaim_iterators(memcg);
5632 * This requires that offlining is serialized. Right now that is
5633 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5635 css_for_each_descendant_post(iter, css)
5636 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
5638 memcg_unregister_all_caches(memcg);
5639 vmpressure_cleanup(&memcg->vmpressure);
5642 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5644 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5646 * XXX: css_offline() would be where we should reparent all
5647 * memory to prepare the cgroup for destruction. However,
5648 * memcg does not do css_tryget_online() and res_counter charging
5649 * under the same RCU lock region, which means that charging
5650 * could race with offlining. Offlining only happens to
5651 * cgroups with no tasks in them but charges can show up
5652 * without any tasks from the swapin path when the target
5653 * memcg is looked up from the swapout record and not from the
5654 * current task as it usually is. A race like this can leak
5655 * charges and put pages with stale cgroup pointers into
5656 * circulation:
5658 * #0 #1
5659 * lookup_swap_cgroup_id()
5660 * rcu_read_lock()
5661 * mem_cgroup_lookup()
5662 * css_tryget_online()
5663 * rcu_read_unlock()
5664 * disable css_tryget_online()
5665 * call_rcu()
5666 * offline_css()
5667 * reparent_charges()
5668 * res_counter_charge()
5669 * css_put()
5670 * css_free()
5671 * pc->mem_cgroup = dead memcg
5672 * add page to lru
5674 * The bulk of the charges are still moved in offline_css() to
5675 * avoid pinning a lot of pages in case a long-term reference
5676 * like a swapout record is deferring the css_free() to long
5677 * after offlining. But this makes sure we catch any charges
5678 * made after offlining:
5680 mem_cgroup_reparent_charges(memcg);
5682 memcg_destroy_kmem(memcg);
5683 __mem_cgroup_free(memcg);
5687 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5688 * @css: the target css
5690 * Reset the states of the mem_cgroup associated with @css. This is
5691 * invoked when the userland requests disabling on the default hierarchy
5692 * but the memcg is pinned through dependency. The memcg should stop
5693 * applying policies and should revert to the vanilla state as it may be
5694 * made visible again.
5696 * The current implementation only resets the essential configurations.
5697 * This needs to be expanded to cover all the visible parts.
5699 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5701 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5703 mem_cgroup_resize_limit(memcg, ULLONG_MAX);
5704 mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
5705 memcg_update_kmem_limit(memcg, ULLONG_MAX);
5706 res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
5709 #ifdef CONFIG_MMU
5710 /* Handlers for move charge at task migration. */
5711 static int mem_cgroup_do_precharge(unsigned long count)
5713 int ret;
5715 /* Try a single bulk charge without reclaim first */
5716 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5717 if (!ret) {
5718 mc.precharge += count;
5719 return ret;
5721 if (ret == -EINTR) {
5722 cancel_charge(root_mem_cgroup, count);
5723 return ret;
5726 /* Try charges one by one with reclaim */
5727 while (count--) {
5728 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5730 * In case of failure, any residual charges against
5731 * mc.to will be dropped by mem_cgroup_clear_mc()
5732 * later on. However, cancel any charges that are
5733 * bypassed to root right away or they'll be lost.
5735 if (ret == -EINTR)
5736 cancel_charge(root_mem_cgroup, 1);
5737 if (ret)
5738 return ret;
5739 mc.precharge++;
5740 cond_resched();
5742 return 0;
5746 * get_mctgt_type - get target type of moving charge
5747 * @vma: the vma the pte to be checked belongs
5748 * @addr: the address corresponding to the pte to be checked
5749 * @ptent: the pte to be checked
5750 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5752 * Returns
5753 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5754 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5755 * move charge. if @target is not NULL, the page is stored in target->page
5756 * with extra refcnt got(Callers should handle it).
5757 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5758 * target for charge migration. if @target is not NULL, the entry is stored
5759 * in target->ent.
5761 * Called with pte lock held.
5763 union mc_target {
5764 struct page *page;
5765 swp_entry_t ent;
5768 enum mc_target_type {
5769 MC_TARGET_NONE = 0,
5770 MC_TARGET_PAGE,
5771 MC_TARGET_SWAP,
5774 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5775 unsigned long addr, pte_t ptent)
5777 struct page *page = vm_normal_page(vma, addr, ptent);
5779 if (!page || !page_mapped(page))
5780 return NULL;
5781 if (PageAnon(page)) {
5782 /* we don't move shared anon */
5783 if (!move_anon())
5784 return NULL;
5785 } else if (!move_file())
5786 /* we ignore mapcount for file pages */
5787 return NULL;
5788 if (!get_page_unless_zero(page))
5789 return NULL;
5791 return page;
5794 #ifdef CONFIG_SWAP
5795 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5796 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5798 struct page *page = NULL;
5799 swp_entry_t ent = pte_to_swp_entry(ptent);
5801 if (!move_anon() || non_swap_entry(ent))
5802 return NULL;
5804 * Because lookup_swap_cache() updates some statistics counter,
5805 * we call find_get_page() with swapper_space directly.
5807 page = find_get_page(swap_address_space(ent), ent.val);
5808 if (do_swap_account)
5809 entry->val = ent.val;
5811 return page;
5813 #else
5814 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5815 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5817 return NULL;
5819 #endif
5821 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5822 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5824 struct page *page = NULL;
5825 struct address_space *mapping;
5826 pgoff_t pgoff;
5828 if (!vma->vm_file) /* anonymous vma */
5829 return NULL;
5830 if (!move_file())
5831 return NULL;
5833 mapping = vma->vm_file->f_mapping;
5834 if (pte_none(ptent))
5835 pgoff = linear_page_index(vma, addr);
5836 else /* pte_file(ptent) is true */
5837 pgoff = pte_to_pgoff(ptent);
5839 /* page is moved even if it's not RSS of this task(page-faulted). */
5840 #ifdef CONFIG_SWAP
5841 /* shmem/tmpfs may report page out on swap: account for that too. */
5842 if (shmem_mapping(mapping)) {
5843 page = find_get_entry(mapping, pgoff);
5844 if (radix_tree_exceptional_entry(page)) {
5845 swp_entry_t swp = radix_to_swp_entry(page);
5846 if (do_swap_account)
5847 *entry = swp;
5848 page = find_get_page(swap_address_space(swp), swp.val);
5850 } else
5851 page = find_get_page(mapping, pgoff);
5852 #else
5853 page = find_get_page(mapping, pgoff);
5854 #endif
5855 return page;
5858 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5859 unsigned long addr, pte_t ptent, union mc_target *target)
5861 struct page *page = NULL;
5862 struct page_cgroup *pc;
5863 enum mc_target_type ret = MC_TARGET_NONE;
5864 swp_entry_t ent = { .val = 0 };
5866 if (pte_present(ptent))
5867 page = mc_handle_present_pte(vma, addr, ptent);
5868 else if (is_swap_pte(ptent))
5869 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5870 else if (pte_none(ptent) || pte_file(ptent))
5871 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5873 if (!page && !ent.val)
5874 return ret;
5875 if (page) {
5876 pc = lookup_page_cgroup(page);
5878 * Do only loose check w/o serialization.
5879 * mem_cgroup_move_account() checks the pc is valid or
5880 * not under LRU exclusion.
5882 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5883 ret = MC_TARGET_PAGE;
5884 if (target)
5885 target->page = page;
5887 if (!ret || !target)
5888 put_page(page);
5890 /* There is a swap entry and a page doesn't exist or isn't charged */
5891 if (ent.val && !ret &&
5892 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5893 ret = MC_TARGET_SWAP;
5894 if (target)
5895 target->ent = ent;
5897 return ret;
5900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5902 * We don't consider swapping or file mapped pages because THP does not
5903 * support them for now.
5904 * Caller should make sure that pmd_trans_huge(pmd) is true.
5906 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5907 unsigned long addr, pmd_t pmd, union mc_target *target)
5909 struct page *page = NULL;
5910 struct page_cgroup *pc;
5911 enum mc_target_type ret = MC_TARGET_NONE;
5913 page = pmd_page(pmd);
5914 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5915 if (!move_anon())
5916 return ret;
5917 pc = lookup_page_cgroup(page);
5918 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5919 ret = MC_TARGET_PAGE;
5920 if (target) {
5921 get_page(page);
5922 target->page = page;
5925 return ret;
5927 #else
5928 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5929 unsigned long addr, pmd_t pmd, union mc_target *target)
5931 return MC_TARGET_NONE;
5933 #endif
5935 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5936 unsigned long addr, unsigned long end,
5937 struct mm_walk *walk)
5939 struct vm_area_struct *vma = walk->private;
5940 pte_t *pte;
5941 spinlock_t *ptl;
5943 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5944 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5945 mc.precharge += HPAGE_PMD_NR;
5946 spin_unlock(ptl);
5947 return 0;
5950 if (pmd_trans_unstable(pmd))
5951 return 0;
5952 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5953 for (; addr != end; pte++, addr += PAGE_SIZE)
5954 if (get_mctgt_type(vma, addr, *pte, NULL))
5955 mc.precharge++; /* increment precharge temporarily */
5956 pte_unmap_unlock(pte - 1, ptl);
5957 cond_resched();
5959 return 0;
5962 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5964 unsigned long precharge;
5965 struct vm_area_struct *vma;
5967 down_read(&mm->mmap_sem);
5968 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5969 struct mm_walk mem_cgroup_count_precharge_walk = {
5970 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5971 .mm = mm,
5972 .private = vma,
5974 if (is_vm_hugetlb_page(vma))
5975 continue;
5976 walk_page_range(vma->vm_start, vma->vm_end,
5977 &mem_cgroup_count_precharge_walk);
5979 up_read(&mm->mmap_sem);
5981 precharge = mc.precharge;
5982 mc.precharge = 0;
5984 return precharge;
5987 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5989 unsigned long precharge = mem_cgroup_count_precharge(mm);
5991 VM_BUG_ON(mc.moving_task);
5992 mc.moving_task = current;
5993 return mem_cgroup_do_precharge(precharge);
5996 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5997 static void __mem_cgroup_clear_mc(void)
5999 struct mem_cgroup *from = mc.from;
6000 struct mem_cgroup *to = mc.to;
6001 int i;
6003 /* we must uncharge all the leftover precharges from mc.to */
6004 if (mc.precharge) {
6005 cancel_charge(mc.to, mc.precharge);
6006 mc.precharge = 0;
6009 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6010 * we must uncharge here.
6012 if (mc.moved_charge) {
6013 cancel_charge(mc.from, mc.moved_charge);
6014 mc.moved_charge = 0;
6016 /* we must fixup refcnts and charges */
6017 if (mc.moved_swap) {
6018 /* uncharge swap account from the old cgroup */
6019 if (!mem_cgroup_is_root(mc.from))
6020 res_counter_uncharge(&mc.from->memsw,
6021 PAGE_SIZE * mc.moved_swap);
6023 for (i = 0; i < mc.moved_swap; i++)
6024 css_put(&mc.from->css);
6027 * we charged both to->res and to->memsw, so we should
6028 * uncharge to->res.
6030 if (!mem_cgroup_is_root(mc.to))
6031 res_counter_uncharge(&mc.to->res,
6032 PAGE_SIZE * mc.moved_swap);
6033 /* we've already done css_get(mc.to) */
6034 mc.moved_swap = 0;
6036 memcg_oom_recover(from);
6037 memcg_oom_recover(to);
6038 wake_up_all(&mc.waitq);
6041 static void mem_cgroup_clear_mc(void)
6043 struct mem_cgroup *from = mc.from;
6046 * we must clear moving_task before waking up waiters at the end of
6047 * task migration.
6049 mc.moving_task = NULL;
6050 __mem_cgroup_clear_mc();
6051 spin_lock(&mc.lock);
6052 mc.from = NULL;
6053 mc.to = NULL;
6054 spin_unlock(&mc.lock);
6055 mem_cgroup_end_move(from);
6058 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6059 struct cgroup_taskset *tset)
6061 struct task_struct *p = cgroup_taskset_first(tset);
6062 int ret = 0;
6063 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6064 unsigned long move_charge_at_immigrate;
6067 * We are now commited to this value whatever it is. Changes in this
6068 * tunable will only affect upcoming migrations, not the current one.
6069 * So we need to save it, and keep it going.
6071 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6072 if (move_charge_at_immigrate) {
6073 struct mm_struct *mm;
6074 struct mem_cgroup *from = mem_cgroup_from_task(p);
6076 VM_BUG_ON(from == memcg);
6078 mm = get_task_mm(p);
6079 if (!mm)
6080 return 0;
6081 /* We move charges only when we move a owner of the mm */
6082 if (mm->owner == p) {
6083 VM_BUG_ON(mc.from);
6084 VM_BUG_ON(mc.to);
6085 VM_BUG_ON(mc.precharge);
6086 VM_BUG_ON(mc.moved_charge);
6087 VM_BUG_ON(mc.moved_swap);
6088 mem_cgroup_start_move(from);
6089 spin_lock(&mc.lock);
6090 mc.from = from;
6091 mc.to = memcg;
6092 mc.immigrate_flags = move_charge_at_immigrate;
6093 spin_unlock(&mc.lock);
6094 /* We set mc.moving_task later */
6096 ret = mem_cgroup_precharge_mc(mm);
6097 if (ret)
6098 mem_cgroup_clear_mc();
6100 mmput(mm);
6102 return ret;
6105 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6106 struct cgroup_taskset *tset)
6108 mem_cgroup_clear_mc();
6111 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6112 unsigned long addr, unsigned long end,
6113 struct mm_walk *walk)
6115 int ret = 0;
6116 struct vm_area_struct *vma = walk->private;
6117 pte_t *pte;
6118 spinlock_t *ptl;
6119 enum mc_target_type target_type;
6120 union mc_target target;
6121 struct page *page;
6122 struct page_cgroup *pc;
6125 * We don't take compound_lock() here but no race with splitting thp
6126 * happens because:
6127 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6128 * under splitting, which means there's no concurrent thp split,
6129 * - if another thread runs into split_huge_page() just after we
6130 * entered this if-block, the thread must wait for page table lock
6131 * to be unlocked in __split_huge_page_splitting(), where the main
6132 * part of thp split is not executed yet.
6134 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6135 if (mc.precharge < HPAGE_PMD_NR) {
6136 spin_unlock(ptl);
6137 return 0;
6139 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6140 if (target_type == MC_TARGET_PAGE) {
6141 page = target.page;
6142 if (!isolate_lru_page(page)) {
6143 pc = lookup_page_cgroup(page);
6144 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6145 pc, mc.from, mc.to)) {
6146 mc.precharge -= HPAGE_PMD_NR;
6147 mc.moved_charge += HPAGE_PMD_NR;
6149 putback_lru_page(page);
6151 put_page(page);
6153 spin_unlock(ptl);
6154 return 0;
6157 if (pmd_trans_unstable(pmd))
6158 return 0;
6159 retry:
6160 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6161 for (; addr != end; addr += PAGE_SIZE) {
6162 pte_t ptent = *(pte++);
6163 swp_entry_t ent;
6165 if (!mc.precharge)
6166 break;
6168 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6169 case MC_TARGET_PAGE:
6170 page = target.page;
6171 if (isolate_lru_page(page))
6172 goto put;
6173 pc = lookup_page_cgroup(page);
6174 if (!mem_cgroup_move_account(page, 1, pc,
6175 mc.from, mc.to)) {
6176 mc.precharge--;
6177 /* we uncharge from mc.from later. */
6178 mc.moved_charge++;
6180 putback_lru_page(page);
6181 put: /* get_mctgt_type() gets the page */
6182 put_page(page);
6183 break;
6184 case MC_TARGET_SWAP:
6185 ent = target.ent;
6186 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6187 mc.precharge--;
6188 /* we fixup refcnts and charges later. */
6189 mc.moved_swap++;
6191 break;
6192 default:
6193 break;
6196 pte_unmap_unlock(pte - 1, ptl);
6197 cond_resched();
6199 if (addr != end) {
6201 * We have consumed all precharges we got in can_attach().
6202 * We try charge one by one, but don't do any additional
6203 * charges to mc.to if we have failed in charge once in attach()
6204 * phase.
6206 ret = mem_cgroup_do_precharge(1);
6207 if (!ret)
6208 goto retry;
6211 return ret;
6214 static void mem_cgroup_move_charge(struct mm_struct *mm)
6216 struct vm_area_struct *vma;
6218 lru_add_drain_all();
6219 retry:
6220 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6222 * Someone who are holding the mmap_sem might be waiting in
6223 * waitq. So we cancel all extra charges, wake up all waiters,
6224 * and retry. Because we cancel precharges, we might not be able
6225 * to move enough charges, but moving charge is a best-effort
6226 * feature anyway, so it wouldn't be a big problem.
6228 __mem_cgroup_clear_mc();
6229 cond_resched();
6230 goto retry;
6232 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6233 int ret;
6234 struct mm_walk mem_cgroup_move_charge_walk = {
6235 .pmd_entry = mem_cgroup_move_charge_pte_range,
6236 .mm = mm,
6237 .private = vma,
6239 if (is_vm_hugetlb_page(vma))
6240 continue;
6241 ret = walk_page_range(vma->vm_start, vma->vm_end,
6242 &mem_cgroup_move_charge_walk);
6243 if (ret)
6245 * means we have consumed all precharges and failed in
6246 * doing additional charge. Just abandon here.
6248 break;
6250 up_read(&mm->mmap_sem);
6253 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6254 struct cgroup_taskset *tset)
6256 struct task_struct *p = cgroup_taskset_first(tset);
6257 struct mm_struct *mm = get_task_mm(p);
6259 if (mm) {
6260 if (mc.to)
6261 mem_cgroup_move_charge(mm);
6262 mmput(mm);
6264 if (mc.to)
6265 mem_cgroup_clear_mc();
6267 #else /* !CONFIG_MMU */
6268 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6269 struct cgroup_taskset *tset)
6271 return 0;
6273 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6274 struct cgroup_taskset *tset)
6277 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6278 struct cgroup_taskset *tset)
6281 #endif
6284 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6285 * to verify whether we're attached to the default hierarchy on each mount
6286 * attempt.
6288 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6291 * use_hierarchy is forced on the default hierarchy. cgroup core
6292 * guarantees that @root doesn't have any children, so turning it
6293 * on for the root memcg is enough.
6295 if (cgroup_on_dfl(root_css->cgroup))
6296 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6299 struct cgroup_subsys memory_cgrp_subsys = {
6300 .css_alloc = mem_cgroup_css_alloc,
6301 .css_online = mem_cgroup_css_online,
6302 .css_offline = mem_cgroup_css_offline,
6303 .css_free = mem_cgroup_css_free,
6304 .css_reset = mem_cgroup_css_reset,
6305 .can_attach = mem_cgroup_can_attach,
6306 .cancel_attach = mem_cgroup_cancel_attach,
6307 .attach = mem_cgroup_move_task,
6308 .bind = mem_cgroup_bind,
6309 .legacy_cftypes = mem_cgroup_files,
6310 .early_init = 0,
6313 #ifdef CONFIG_MEMCG_SWAP
6314 static int __init enable_swap_account(char *s)
6316 if (!strcmp(s, "1"))
6317 really_do_swap_account = 1;
6318 else if (!strcmp(s, "0"))
6319 really_do_swap_account = 0;
6320 return 1;
6322 __setup("swapaccount=", enable_swap_account);
6324 static void __init memsw_file_init(void)
6326 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6327 memsw_cgroup_files));
6330 static void __init enable_swap_cgroup(void)
6332 if (!mem_cgroup_disabled() && really_do_swap_account) {
6333 do_swap_account = 1;
6334 memsw_file_init();
6338 #else
6339 static void __init enable_swap_cgroup(void)
6342 #endif
6344 #ifdef CONFIG_MEMCG_SWAP
6346 * mem_cgroup_swapout - transfer a memsw charge to swap
6347 * @page: page whose memsw charge to transfer
6348 * @entry: swap entry to move the charge to
6350 * Transfer the memsw charge of @page to @entry.
6352 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6354 struct page_cgroup *pc;
6355 unsigned short oldid;
6357 VM_BUG_ON_PAGE(PageLRU(page), page);
6358 VM_BUG_ON_PAGE(page_count(page), page);
6360 if (!do_swap_account)
6361 return;
6363 pc = lookup_page_cgroup(page);
6365 /* Readahead page, never charged */
6366 if (!PageCgroupUsed(pc))
6367 return;
6369 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
6371 oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
6372 VM_BUG_ON_PAGE(oldid, page);
6374 pc->flags &= ~PCG_MEMSW;
6375 css_get(&pc->mem_cgroup->css);
6376 mem_cgroup_swap_statistics(pc->mem_cgroup, true);
6380 * mem_cgroup_uncharge_swap - uncharge a swap entry
6381 * @entry: swap entry to uncharge
6383 * Drop the memsw charge associated with @entry.
6385 void mem_cgroup_uncharge_swap(swp_entry_t entry)
6387 struct mem_cgroup *memcg;
6388 unsigned short id;
6390 if (!do_swap_account)
6391 return;
6393 id = swap_cgroup_record(entry, 0);
6394 rcu_read_lock();
6395 memcg = mem_cgroup_lookup(id);
6396 if (memcg) {
6397 if (!mem_cgroup_is_root(memcg))
6398 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
6399 mem_cgroup_swap_statistics(memcg, false);
6400 css_put(&memcg->css);
6402 rcu_read_unlock();
6404 #endif
6407 * mem_cgroup_try_charge - try charging a page
6408 * @page: page to charge
6409 * @mm: mm context of the victim
6410 * @gfp_mask: reclaim mode
6411 * @memcgp: charged memcg return
6413 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6414 * pages according to @gfp_mask if necessary.
6416 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6417 * Otherwise, an error code is returned.
6419 * After page->mapping has been set up, the caller must finalize the
6420 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6421 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6423 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6424 gfp_t gfp_mask, struct mem_cgroup **memcgp)
6426 struct mem_cgroup *memcg = NULL;
6427 unsigned int nr_pages = 1;
6428 int ret = 0;
6430 if (mem_cgroup_disabled())
6431 goto out;
6433 if (PageSwapCache(page)) {
6434 struct page_cgroup *pc = lookup_page_cgroup(page);
6436 * Every swap fault against a single page tries to charge the
6437 * page, bail as early as possible. shmem_unuse() encounters
6438 * already charged pages, too. The USED bit is protected by
6439 * the page lock, which serializes swap cache removal, which
6440 * in turn serializes uncharging.
6442 if (PageCgroupUsed(pc))
6443 goto out;
6446 if (PageTransHuge(page)) {
6447 nr_pages <<= compound_order(page);
6448 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6451 if (do_swap_account && PageSwapCache(page))
6452 memcg = try_get_mem_cgroup_from_page(page);
6453 if (!memcg)
6454 memcg = get_mem_cgroup_from_mm(mm);
6456 ret = try_charge(memcg, gfp_mask, nr_pages);
6458 css_put(&memcg->css);
6460 if (ret == -EINTR) {
6461 memcg = root_mem_cgroup;
6462 ret = 0;
6464 out:
6465 *memcgp = memcg;
6466 return ret;
6470 * mem_cgroup_commit_charge - commit a page charge
6471 * @page: page to charge
6472 * @memcg: memcg to charge the page to
6473 * @lrucare: page might be on LRU already
6475 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6476 * after page->mapping has been set up. This must happen atomically
6477 * as part of the page instantiation, i.e. under the page table lock
6478 * for anonymous pages, under the page lock for page and swap cache.
6480 * In addition, the page must not be on the LRU during the commit, to
6481 * prevent racing with task migration. If it might be, use @lrucare.
6483 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6485 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6486 bool lrucare)
6488 unsigned int nr_pages = 1;
6490 VM_BUG_ON_PAGE(!page->mapping, page);
6491 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6493 if (mem_cgroup_disabled())
6494 return;
6496 * Swap faults will attempt to charge the same page multiple
6497 * times. But reuse_swap_page() might have removed the page
6498 * from swapcache already, so we can't check PageSwapCache().
6500 if (!memcg)
6501 return;
6503 commit_charge(page, memcg, lrucare);
6505 if (PageTransHuge(page)) {
6506 nr_pages <<= compound_order(page);
6507 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6510 local_irq_disable();
6511 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6512 memcg_check_events(memcg, page);
6513 local_irq_enable();
6515 if (do_swap_account && PageSwapCache(page)) {
6516 swp_entry_t entry = { .val = page_private(page) };
6518 * The swap entry might not get freed for a long time,
6519 * let's not wait for it. The page already received a
6520 * memory+swap charge, drop the swap entry duplicate.
6522 mem_cgroup_uncharge_swap(entry);
6527 * mem_cgroup_cancel_charge - cancel a page charge
6528 * @page: page to charge
6529 * @memcg: memcg to charge the page to
6531 * Cancel a charge transaction started by mem_cgroup_try_charge().
6533 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6535 unsigned int nr_pages = 1;
6537 if (mem_cgroup_disabled())
6538 return;
6540 * Swap faults will attempt to charge the same page multiple
6541 * times. But reuse_swap_page() might have removed the page
6542 * from swapcache already, so we can't check PageSwapCache().
6544 if (!memcg)
6545 return;
6547 if (PageTransHuge(page)) {
6548 nr_pages <<= compound_order(page);
6549 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6552 cancel_charge(memcg, nr_pages);
6555 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
6556 unsigned long nr_mem, unsigned long nr_memsw,
6557 unsigned long nr_anon, unsigned long nr_file,
6558 unsigned long nr_huge, struct page *dummy_page)
6560 unsigned long flags;
6562 if (!mem_cgroup_is_root(memcg)) {
6563 if (nr_mem)
6564 res_counter_uncharge(&memcg->res,
6565 nr_mem * PAGE_SIZE);
6566 if (nr_memsw)
6567 res_counter_uncharge(&memcg->memsw,
6568 nr_memsw * PAGE_SIZE);
6569 memcg_oom_recover(memcg);
6572 local_irq_save(flags);
6573 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6574 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6575 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6576 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6577 __this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6578 memcg_check_events(memcg, dummy_page);
6579 local_irq_restore(flags);
6582 static void uncharge_list(struct list_head *page_list)
6584 struct mem_cgroup *memcg = NULL;
6585 unsigned long nr_memsw = 0;
6586 unsigned long nr_anon = 0;
6587 unsigned long nr_file = 0;
6588 unsigned long nr_huge = 0;
6589 unsigned long pgpgout = 0;
6590 unsigned long nr_mem = 0;
6591 struct list_head *next;
6592 struct page *page;
6594 next = page_list->next;
6595 do {
6596 unsigned int nr_pages = 1;
6597 struct page_cgroup *pc;
6599 page = list_entry(next, struct page, lru);
6600 next = page->lru.next;
6602 VM_BUG_ON_PAGE(PageLRU(page), page);
6603 VM_BUG_ON_PAGE(page_count(page), page);
6605 pc = lookup_page_cgroup(page);
6606 if (!PageCgroupUsed(pc))
6607 continue;
6610 * Nobody should be changing or seriously looking at
6611 * pc->mem_cgroup and pc->flags at this point, we have
6612 * fully exclusive access to the page.
6615 if (memcg != pc->mem_cgroup) {
6616 if (memcg) {
6617 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6618 nr_anon, nr_file, nr_huge, page);
6619 pgpgout = nr_mem = nr_memsw = 0;
6620 nr_anon = nr_file = nr_huge = 0;
6622 memcg = pc->mem_cgroup;
6625 if (PageTransHuge(page)) {
6626 nr_pages <<= compound_order(page);
6627 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6628 nr_huge += nr_pages;
6631 if (PageAnon(page))
6632 nr_anon += nr_pages;
6633 else
6634 nr_file += nr_pages;
6636 if (pc->flags & PCG_MEM)
6637 nr_mem += nr_pages;
6638 if (pc->flags & PCG_MEMSW)
6639 nr_memsw += nr_pages;
6640 pc->flags = 0;
6642 pgpgout++;
6643 } while (next != page_list);
6645 if (memcg)
6646 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6647 nr_anon, nr_file, nr_huge, page);
6651 * mem_cgroup_uncharge - uncharge a page
6652 * @page: page to uncharge
6654 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6655 * mem_cgroup_commit_charge().
6657 void mem_cgroup_uncharge(struct page *page)
6659 struct page_cgroup *pc;
6661 if (mem_cgroup_disabled())
6662 return;
6664 /* Don't touch page->lru of any random page, pre-check: */
6665 pc = lookup_page_cgroup(page);
6666 if (!PageCgroupUsed(pc))
6667 return;
6669 INIT_LIST_HEAD(&page->lru);
6670 uncharge_list(&page->lru);
6674 * mem_cgroup_uncharge_list - uncharge a list of page
6675 * @page_list: list of pages to uncharge
6677 * Uncharge a list of pages previously charged with
6678 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6680 void mem_cgroup_uncharge_list(struct list_head *page_list)
6682 if (mem_cgroup_disabled())
6683 return;
6685 if (!list_empty(page_list))
6686 uncharge_list(page_list);
6690 * mem_cgroup_migrate - migrate a charge to another page
6691 * @oldpage: currently charged page
6692 * @newpage: page to transfer the charge to
6693 * @lrucare: both pages might be on the LRU already
6695 * Migrate the charge from @oldpage to @newpage.
6697 * Both pages must be locked, @newpage->mapping must be set up.
6699 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6700 bool lrucare)
6702 struct page_cgroup *pc;
6703 int isolated;
6705 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6706 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6707 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6708 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6709 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6710 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6711 newpage);
6713 if (mem_cgroup_disabled())
6714 return;
6716 /* Page cache replacement: new page already charged? */
6717 pc = lookup_page_cgroup(newpage);
6718 if (PageCgroupUsed(pc))
6719 return;
6721 /* Re-entrant migration: old page already uncharged? */
6722 pc = lookup_page_cgroup(oldpage);
6723 if (!PageCgroupUsed(pc))
6724 return;
6726 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6727 VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6729 if (lrucare)
6730 lock_page_lru(oldpage, &isolated);
6732 pc->flags = 0;
6734 if (lrucare)
6735 unlock_page_lru(oldpage, isolated);
6737 commit_charge(newpage, pc->mem_cgroup, lrucare);
6741 * subsys_initcall() for memory controller.
6743 * Some parts like hotcpu_notifier() have to be initialized from this context
6744 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6745 * everything that doesn't depend on a specific mem_cgroup structure should
6746 * be initialized from here.
6748 static int __init mem_cgroup_init(void)
6750 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6751 enable_swap_cgroup();
6752 mem_cgroup_soft_limit_tree_init();
6753 memcg_stock_init();
6754 return 0;
6756 subsys_initcall(mem_cgroup_init);