4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr
;
83 EXPORT_SYMBOL(max_mapnr
);
84 EXPORT_SYMBOL(mem_map
);
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 EXPORT_SYMBOL(high_memory
);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly
=
105 #ifdef CONFIG_COMPAT_BRK
111 static int __init
disable_randmaps(char *s
)
113 randomize_va_space
= 0;
116 __setup("norandmaps", disable_randmaps
);
118 unsigned long zero_pfn __read_mostly
;
119 unsigned long highest_memmap_pfn __read_mostly
;
121 EXPORT_SYMBOL(zero_pfn
);
124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126 static int __init
init_zero_pfn(void)
128 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
131 core_initcall(init_zero_pfn
);
134 #if defined(SPLIT_RSS_COUNTING)
136 void sync_mm_rss(struct mm_struct
*mm
)
140 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
141 if (current
->rss_stat
.count
[i
]) {
142 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
143 current
->rss_stat
.count
[i
] = 0;
146 current
->rss_stat
.events
= 0;
149 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
151 struct task_struct
*task
= current
;
153 if (likely(task
->mm
== mm
))
154 task
->rss_stat
.count
[member
] += val
;
156 add_mm_counter(mm
, member
, val
);
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH (64)
163 static void check_sync_rss_stat(struct task_struct
*task
)
165 if (unlikely(task
!= current
))
167 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
168 sync_mm_rss(task
->mm
);
170 #else /* SPLIT_RSS_COUNTING */
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175 static void check_sync_rss_stat(struct task_struct
*task
)
179 #endif /* SPLIT_RSS_COUNTING */
181 #ifdef HAVE_GENERIC_MMU_GATHER
183 static int tlb_next_batch(struct mmu_gather
*tlb
)
185 struct mmu_gather_batch
*batch
;
189 tlb
->active
= batch
->next
;
193 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
196 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
203 batch
->max
= MAX_GATHER_BATCH
;
205 tlb
->active
->next
= batch
;
212 * Called to initialize an (on-stack) mmu_gather structure for page-table
213 * tear-down from @mm. The @fullmm argument is used when @mm is without
214 * users and we're going to destroy the full address space (exit/execve).
216 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
220 /* Is it from 0 to ~0? */
221 tlb
->fullmm
= !(start
| (end
+1));
222 tlb
->need_flush_all
= 0;
226 tlb
->local
.next
= NULL
;
228 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
229 tlb
->active
= &tlb
->local
;
230 tlb
->batch_count
= 0;
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
242 tlb_table_flush(tlb
);
246 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
248 struct mmu_gather_batch
*batch
;
250 for (batch
= &tlb
->local
; batch
; batch
= batch
->next
) {
251 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
254 tlb
->active
= &tlb
->local
;
257 void tlb_flush_mmu(struct mmu_gather
*tlb
)
259 if (!tlb
->need_flush
)
261 tlb_flush_mmu_tlbonly(tlb
);
262 tlb_flush_mmu_free(tlb
);
266 * Called at the end of the shootdown operation to free up any resources
267 * that were required.
269 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
271 struct mmu_gather_batch
*batch
, *next
;
275 /* keep the page table cache within bounds */
278 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
280 free_pages((unsigned long)batch
, 0);
282 tlb
->local
.next
= NULL
;
286 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
287 * handling the additional races in SMP caused by other CPUs caching valid
288 * mappings in their TLBs. Returns the number of free page slots left.
289 * When out of page slots we must call tlb_flush_mmu().
291 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
293 struct mmu_gather_batch
*batch
;
295 VM_BUG_ON(!tlb
->need_flush
);
298 batch
->pages
[batch
->nr
++] = page
;
299 if (batch
->nr
== batch
->max
) {
300 if (!tlb_next_batch(tlb
))
304 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
306 return batch
->max
- batch
->nr
;
309 #endif /* HAVE_GENERIC_MMU_GATHER */
311 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
314 * See the comment near struct mmu_table_batch.
317 static void tlb_remove_table_smp_sync(void *arg
)
319 /* Simply deliver the interrupt */
322 static void tlb_remove_table_one(void *table
)
325 * This isn't an RCU grace period and hence the page-tables cannot be
326 * assumed to be actually RCU-freed.
328 * It is however sufficient for software page-table walkers that rely on
329 * IRQ disabling. See the comment near struct mmu_table_batch.
331 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
332 __tlb_remove_table(table
);
335 static void tlb_remove_table_rcu(struct rcu_head
*head
)
337 struct mmu_table_batch
*batch
;
340 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
342 for (i
= 0; i
< batch
->nr
; i
++)
343 __tlb_remove_table(batch
->tables
[i
]);
345 free_page((unsigned long)batch
);
348 void tlb_table_flush(struct mmu_gather
*tlb
)
350 struct mmu_table_batch
**batch
= &tlb
->batch
;
353 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
358 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
360 struct mmu_table_batch
**batch
= &tlb
->batch
;
365 * When there's less then two users of this mm there cannot be a
366 * concurrent page-table walk.
368 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
369 __tlb_remove_table(table
);
373 if (*batch
== NULL
) {
374 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
375 if (*batch
== NULL
) {
376 tlb_remove_table_one(table
);
381 (*batch
)->tables
[(*batch
)->nr
++] = table
;
382 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
383 tlb_table_flush(tlb
);
386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
389 * Note: this doesn't free the actual pages themselves. That
390 * has been handled earlier when unmapping all the memory regions.
392 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
395 pgtable_t token
= pmd_pgtable(*pmd
);
397 pte_free_tlb(tlb
, token
, addr
);
398 atomic_long_dec(&tlb
->mm
->nr_ptes
);
401 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
402 unsigned long addr
, unsigned long end
,
403 unsigned long floor
, unsigned long ceiling
)
410 pmd
= pmd_offset(pud
, addr
);
412 next
= pmd_addr_end(addr
, end
);
413 if (pmd_none_or_clear_bad(pmd
))
415 free_pte_range(tlb
, pmd
, addr
);
416 } while (pmd
++, addr
= next
, addr
!= end
);
426 if (end
- 1 > ceiling
- 1)
429 pmd
= pmd_offset(pud
, start
);
431 pmd_free_tlb(tlb
, pmd
, start
);
434 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
435 unsigned long addr
, unsigned long end
,
436 unsigned long floor
, unsigned long ceiling
)
443 pud
= pud_offset(pgd
, addr
);
445 next
= pud_addr_end(addr
, end
);
446 if (pud_none_or_clear_bad(pud
))
448 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
449 } while (pud
++, addr
= next
, addr
!= end
);
455 ceiling
&= PGDIR_MASK
;
459 if (end
- 1 > ceiling
- 1)
462 pud
= pud_offset(pgd
, start
);
464 pud_free_tlb(tlb
, pud
, start
);
468 * This function frees user-level page tables of a process.
470 void free_pgd_range(struct mmu_gather
*tlb
,
471 unsigned long addr
, unsigned long end
,
472 unsigned long floor
, unsigned long ceiling
)
478 * The next few lines have given us lots of grief...
480 * Why are we testing PMD* at this top level? Because often
481 * there will be no work to do at all, and we'd prefer not to
482 * go all the way down to the bottom just to discover that.
484 * Why all these "- 1"s? Because 0 represents both the bottom
485 * of the address space and the top of it (using -1 for the
486 * top wouldn't help much: the masks would do the wrong thing).
487 * The rule is that addr 0 and floor 0 refer to the bottom of
488 * the address space, but end 0 and ceiling 0 refer to the top
489 * Comparisons need to use "end - 1" and "ceiling - 1" (though
490 * that end 0 case should be mythical).
492 * Wherever addr is brought up or ceiling brought down, we must
493 * be careful to reject "the opposite 0" before it confuses the
494 * subsequent tests. But what about where end is brought down
495 * by PMD_SIZE below? no, end can't go down to 0 there.
497 * Whereas we round start (addr) and ceiling down, by different
498 * masks at different levels, in order to test whether a table
499 * now has no other vmas using it, so can be freed, we don't
500 * bother to round floor or end up - the tests don't need that.
514 if (end
- 1 > ceiling
- 1)
519 pgd
= pgd_offset(tlb
->mm
, addr
);
521 next
= pgd_addr_end(addr
, end
);
522 if (pgd_none_or_clear_bad(pgd
))
524 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
525 } while (pgd
++, addr
= next
, addr
!= end
);
528 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
529 unsigned long floor
, unsigned long ceiling
)
532 struct vm_area_struct
*next
= vma
->vm_next
;
533 unsigned long addr
= vma
->vm_start
;
536 * Hide vma from rmap and truncate_pagecache before freeing
539 unlink_anon_vmas(vma
);
540 unlink_file_vma(vma
);
542 if (is_vm_hugetlb_page(vma
)) {
543 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
544 floor
, next
? next
->vm_start
: ceiling
);
547 * Optimization: gather nearby vmas into one call down
549 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
550 && !is_vm_hugetlb_page(next
)) {
553 unlink_anon_vmas(vma
);
554 unlink_file_vma(vma
);
556 free_pgd_range(tlb
, addr
, vma
->vm_end
,
557 floor
, next
? next
->vm_start
: ceiling
);
563 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
564 pmd_t
*pmd
, unsigned long address
)
567 pgtable_t
new = pte_alloc_one(mm
, address
);
568 int wait_split_huge_page
;
573 * Ensure all pte setup (eg. pte page lock and page clearing) are
574 * visible before the pte is made visible to other CPUs by being
575 * put into page tables.
577 * The other side of the story is the pointer chasing in the page
578 * table walking code (when walking the page table without locking;
579 * ie. most of the time). Fortunately, these data accesses consist
580 * of a chain of data-dependent loads, meaning most CPUs (alpha
581 * being the notable exception) will already guarantee loads are
582 * seen in-order. See the alpha page table accessors for the
583 * smp_read_barrier_depends() barriers in page table walking code.
585 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587 ptl
= pmd_lock(mm
, pmd
);
588 wait_split_huge_page
= 0;
589 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
590 atomic_long_inc(&mm
->nr_ptes
);
591 pmd_populate(mm
, pmd
, new);
593 } else if (unlikely(pmd_trans_splitting(*pmd
)))
594 wait_split_huge_page
= 1;
598 if (wait_split_huge_page
)
599 wait_split_huge_page(vma
->anon_vma
, pmd
);
603 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
605 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
609 smp_wmb(); /* See comment in __pte_alloc */
611 spin_lock(&init_mm
.page_table_lock
);
612 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
613 pmd_populate_kernel(&init_mm
, pmd
, new);
616 VM_BUG_ON(pmd_trans_splitting(*pmd
));
617 spin_unlock(&init_mm
.page_table_lock
);
619 pte_free_kernel(&init_mm
, new);
623 static inline void init_rss_vec(int *rss
)
625 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
628 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
632 if (current
->mm
== mm
)
634 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
636 add_mm_counter(mm
, i
, rss
[i
]);
640 * This function is called to print an error when a bad pte
641 * is found. For example, we might have a PFN-mapped pte in
642 * a region that doesn't allow it.
644 * The calling function must still handle the error.
646 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
647 pte_t pte
, struct page
*page
)
649 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
650 pud_t
*pud
= pud_offset(pgd
, addr
);
651 pmd_t
*pmd
= pmd_offset(pud
, addr
);
652 struct address_space
*mapping
;
654 static unsigned long resume
;
655 static unsigned long nr_shown
;
656 static unsigned long nr_unshown
;
659 * Allow a burst of 60 reports, then keep quiet for that minute;
660 * or allow a steady drip of one report per second.
662 if (nr_shown
== 60) {
663 if (time_before(jiffies
, resume
)) {
669 "BUG: Bad page map: %lu messages suppressed\n",
676 resume
= jiffies
+ 60 * HZ
;
678 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
679 index
= linear_page_index(vma
, addr
);
682 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
684 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
686 dump_page(page
, "bad pte");
688 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
689 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
691 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
694 printk(KERN_ALERT
"vma->vm_ops->fault: %pSR\n",
697 printk(KERN_ALERT
"vma->vm_file->f_op->mmap: %pSR\n",
698 vma
->vm_file
->f_op
->mmap
);
700 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
704 * vm_normal_page -- This function gets the "struct page" associated with a pte.
706 * "Special" mappings do not wish to be associated with a "struct page" (either
707 * it doesn't exist, or it exists but they don't want to touch it). In this
708 * case, NULL is returned here. "Normal" mappings do have a struct page.
710 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711 * pte bit, in which case this function is trivial. Secondly, an architecture
712 * may not have a spare pte bit, which requires a more complicated scheme,
715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716 * special mapping (even if there are underlying and valid "struct pages").
717 * COWed pages of a VM_PFNMAP are always normal.
719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722 * mapping will always honor the rule
724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
726 * And for normal mappings this is false.
728 * This restricts such mappings to be a linear translation from virtual address
729 * to pfn. To get around this restriction, we allow arbitrary mappings so long
730 * as the vma is not a COW mapping; in that case, we know that all ptes are
731 * special (because none can have been COWed).
734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737 * page" backing, however the difference is that _all_ pages with a struct
738 * page (that is, those where pfn_valid is true) are refcounted and considered
739 * normal pages by the VM. The disadvantage is that pages are refcounted
740 * (which can be slower and simply not an option for some PFNMAP users). The
741 * advantage is that we don't have to follow the strict linearity rule of
742 * PFNMAP mappings in order to support COWable mappings.
745 #ifdef __HAVE_ARCH_PTE_SPECIAL
746 # define HAVE_PTE_SPECIAL 1
748 # define HAVE_PTE_SPECIAL 0
750 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
753 unsigned long pfn
= pte_pfn(pte
);
755 if (HAVE_PTE_SPECIAL
) {
756 if (likely(!pte_special(pte
)))
758 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
760 if (!is_zero_pfn(pfn
))
761 print_bad_pte(vma
, addr
, pte
, NULL
);
765 /* !HAVE_PTE_SPECIAL case follows: */
767 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
768 if (vma
->vm_flags
& VM_MIXEDMAP
) {
774 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
775 if (pfn
== vma
->vm_pgoff
+ off
)
777 if (!is_cow_mapping(vma
->vm_flags
))
782 if (is_zero_pfn(pfn
))
785 if (unlikely(pfn
> highest_memmap_pfn
)) {
786 print_bad_pte(vma
, addr
, pte
, NULL
);
791 * NOTE! We still have PageReserved() pages in the page tables.
792 * eg. VDSO mappings can cause them to exist.
795 return pfn_to_page(pfn
);
799 * copy one vm_area from one task to the other. Assumes the page tables
800 * already present in the new task to be cleared in the whole range
801 * covered by this vma.
804 static inline unsigned long
805 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
806 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
807 unsigned long addr
, int *rss
)
809 unsigned long vm_flags
= vma
->vm_flags
;
810 pte_t pte
= *src_pte
;
813 /* pte contains position in swap or file, so copy. */
814 if (unlikely(!pte_present(pte
))) {
815 if (!pte_file(pte
)) {
816 swp_entry_t entry
= pte_to_swp_entry(pte
);
818 if (swap_duplicate(entry
) < 0)
821 /* make sure dst_mm is on swapoff's mmlist. */
822 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
823 spin_lock(&mmlist_lock
);
824 if (list_empty(&dst_mm
->mmlist
))
825 list_add(&dst_mm
->mmlist
,
827 spin_unlock(&mmlist_lock
);
829 if (likely(!non_swap_entry(entry
)))
831 else if (is_migration_entry(entry
)) {
832 page
= migration_entry_to_page(entry
);
839 if (is_write_migration_entry(entry
) &&
840 is_cow_mapping(vm_flags
)) {
842 * COW mappings require pages in both
843 * parent and child to be set to read.
845 make_migration_entry_read(&entry
);
846 pte
= swp_entry_to_pte(entry
);
847 if (pte_swp_soft_dirty(*src_pte
))
848 pte
= pte_swp_mksoft_dirty(pte
);
849 set_pte_at(src_mm
, addr
, src_pte
, pte
);
857 * If it's a COW mapping, write protect it both
858 * in the parent and the child
860 if (is_cow_mapping(vm_flags
)) {
861 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
862 pte
= pte_wrprotect(pte
);
866 * If it's a shared mapping, mark it clean in
869 if (vm_flags
& VM_SHARED
)
870 pte
= pte_mkclean(pte
);
871 pte
= pte_mkold(pte
);
873 page
= vm_normal_page(vma
, addr
, pte
);
884 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
888 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
889 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
890 unsigned long addr
, unsigned long end
)
892 pte_t
*orig_src_pte
, *orig_dst_pte
;
893 pte_t
*src_pte
, *dst_pte
;
894 spinlock_t
*src_ptl
, *dst_ptl
;
896 int rss
[NR_MM_COUNTERS
];
897 swp_entry_t entry
= (swp_entry_t
){0};
902 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
905 src_pte
= pte_offset_map(src_pmd
, addr
);
906 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
907 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
908 orig_src_pte
= src_pte
;
909 orig_dst_pte
= dst_pte
;
910 arch_enter_lazy_mmu_mode();
914 * We are holding two locks at this point - either of them
915 * could generate latencies in another task on another CPU.
917 if (progress
>= 32) {
919 if (need_resched() ||
920 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
923 if (pte_none(*src_pte
)) {
927 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
932 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
934 arch_leave_lazy_mmu_mode();
935 spin_unlock(src_ptl
);
936 pte_unmap(orig_src_pte
);
937 add_mm_rss_vec(dst_mm
, rss
);
938 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
942 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
951 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
952 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
953 unsigned long addr
, unsigned long end
)
955 pmd_t
*src_pmd
, *dst_pmd
;
958 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
961 src_pmd
= pmd_offset(src_pud
, addr
);
963 next
= pmd_addr_end(addr
, end
);
964 if (pmd_trans_huge(*src_pmd
)) {
966 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
967 err
= copy_huge_pmd(dst_mm
, src_mm
,
968 dst_pmd
, src_pmd
, addr
, vma
);
975 if (pmd_none_or_clear_bad(src_pmd
))
977 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
980 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
984 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
985 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
986 unsigned long addr
, unsigned long end
)
988 pud_t
*src_pud
, *dst_pud
;
991 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
994 src_pud
= pud_offset(src_pgd
, addr
);
996 next
= pud_addr_end(addr
, end
);
997 if (pud_none_or_clear_bad(src_pud
))
999 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1002 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1006 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1007 struct vm_area_struct
*vma
)
1009 pgd_t
*src_pgd
, *dst_pgd
;
1011 unsigned long addr
= vma
->vm_start
;
1012 unsigned long end
= vma
->vm_end
;
1013 unsigned long mmun_start
; /* For mmu_notifiers */
1014 unsigned long mmun_end
; /* For mmu_notifiers */
1019 * Don't copy ptes where a page fault will fill them correctly.
1020 * Fork becomes much lighter when there are big shared or private
1021 * readonly mappings. The tradeoff is that copy_page_range is more
1022 * efficient than faulting.
1024 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_NONLINEAR
|
1025 VM_PFNMAP
| VM_MIXEDMAP
))) {
1030 if (is_vm_hugetlb_page(vma
))
1031 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1033 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1035 * We do not free on error cases below as remove_vma
1036 * gets called on error from higher level routine
1038 ret
= track_pfn_copy(vma
);
1044 * We need to invalidate the secondary MMU mappings only when
1045 * there could be a permission downgrade on the ptes of the
1046 * parent mm. And a permission downgrade will only happen if
1047 * is_cow_mapping() returns true.
1049 is_cow
= is_cow_mapping(vma
->vm_flags
);
1053 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1057 dst_pgd
= pgd_offset(dst_mm
, addr
);
1058 src_pgd
= pgd_offset(src_mm
, addr
);
1060 next
= pgd_addr_end(addr
, end
);
1061 if (pgd_none_or_clear_bad(src_pgd
))
1063 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1064 vma
, addr
, next
))) {
1068 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1071 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1075 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1076 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1077 unsigned long addr
, unsigned long end
,
1078 struct zap_details
*details
)
1080 struct mm_struct
*mm
= tlb
->mm
;
1081 int force_flush
= 0;
1082 int rss
[NR_MM_COUNTERS
];
1089 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1091 arch_enter_lazy_mmu_mode();
1094 if (pte_none(ptent
)) {
1098 if (pte_present(ptent
)) {
1101 page
= vm_normal_page(vma
, addr
, ptent
);
1102 if (unlikely(details
) && page
) {
1104 * unmap_shared_mapping_pages() wants to
1105 * invalidate cache without truncating:
1106 * unmap shared but keep private pages.
1108 if (details
->check_mapping
&&
1109 details
->check_mapping
!= page
->mapping
)
1112 * Each page->index must be checked when
1113 * invalidating or truncating nonlinear.
1115 if (details
->nonlinear_vma
&&
1116 (page
->index
< details
->first_index
||
1117 page
->index
> details
->last_index
))
1120 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1122 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1123 if (unlikely(!page
))
1125 if (unlikely(details
) && details
->nonlinear_vma
1126 && linear_page_index(details
->nonlinear_vma
,
1127 addr
) != page
->index
) {
1128 pte_t ptfile
= pgoff_to_pte(page
->index
);
1129 if (pte_soft_dirty(ptent
))
1130 ptfile
= pte_file_mksoft_dirty(ptfile
);
1131 set_pte_at(mm
, addr
, pte
, ptfile
);
1134 rss
[MM_ANONPAGES
]--;
1136 if (pte_dirty(ptent
)) {
1138 set_page_dirty(page
);
1140 if (pte_young(ptent
) &&
1141 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1142 mark_page_accessed(page
);
1143 rss
[MM_FILEPAGES
]--;
1145 page_remove_rmap(page
);
1146 if (unlikely(page_mapcount(page
) < 0))
1147 print_bad_pte(vma
, addr
, ptent
, page
);
1148 if (unlikely(!__tlb_remove_page(tlb
, page
))) {
1155 * If details->check_mapping, we leave swap entries;
1156 * if details->nonlinear_vma, we leave file entries.
1158 if (unlikely(details
))
1160 if (pte_file(ptent
)) {
1161 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
1162 print_bad_pte(vma
, addr
, ptent
, NULL
);
1164 swp_entry_t entry
= pte_to_swp_entry(ptent
);
1166 if (!non_swap_entry(entry
))
1168 else if (is_migration_entry(entry
)) {
1171 page
= migration_entry_to_page(entry
);
1174 rss
[MM_ANONPAGES
]--;
1176 rss
[MM_FILEPAGES
]--;
1178 if (unlikely(!free_swap_and_cache(entry
)))
1179 print_bad_pte(vma
, addr
, ptent
, NULL
);
1181 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1182 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1184 add_mm_rss_vec(mm
, rss
);
1185 arch_leave_lazy_mmu_mode();
1187 /* Do the actual TLB flush before dropping ptl */
1189 unsigned long old_end
;
1192 * Flush the TLB just for the previous segment,
1193 * then update the range to be the remaining
1198 tlb_flush_mmu_tlbonly(tlb
);
1202 pte_unmap_unlock(start_pte
, ptl
);
1205 * If we forced a TLB flush (either due to running out of
1206 * batch buffers or because we needed to flush dirty TLB
1207 * entries before releasing the ptl), free the batched
1208 * memory too. Restart if we didn't do everything.
1212 tlb_flush_mmu_free(tlb
);
1221 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1222 struct vm_area_struct
*vma
, pud_t
*pud
,
1223 unsigned long addr
, unsigned long end
,
1224 struct zap_details
*details
)
1229 pmd
= pmd_offset(pud
, addr
);
1231 next
= pmd_addr_end(addr
, end
);
1232 if (pmd_trans_huge(*pmd
)) {
1233 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1234 #ifdef CONFIG_DEBUG_VM
1235 if (!rwsem_is_locked(&tlb
->mm
->mmap_sem
)) {
1236 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1237 __func__
, addr
, end
,
1243 split_huge_page_pmd(vma
, addr
, pmd
);
1244 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1249 * Here there can be other concurrent MADV_DONTNEED or
1250 * trans huge page faults running, and if the pmd is
1251 * none or trans huge it can change under us. This is
1252 * because MADV_DONTNEED holds the mmap_sem in read
1255 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1257 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1260 } while (pmd
++, addr
= next
, addr
!= end
);
1265 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1266 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1267 unsigned long addr
, unsigned long end
,
1268 struct zap_details
*details
)
1273 pud
= pud_offset(pgd
, addr
);
1275 next
= pud_addr_end(addr
, end
);
1276 if (pud_none_or_clear_bad(pud
))
1278 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1279 } while (pud
++, addr
= next
, addr
!= end
);
1284 static void unmap_page_range(struct mmu_gather
*tlb
,
1285 struct vm_area_struct
*vma
,
1286 unsigned long addr
, unsigned long end
,
1287 struct zap_details
*details
)
1292 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1295 BUG_ON(addr
>= end
);
1296 tlb_start_vma(tlb
, vma
);
1297 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1299 next
= pgd_addr_end(addr
, end
);
1300 if (pgd_none_or_clear_bad(pgd
))
1302 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1303 } while (pgd
++, addr
= next
, addr
!= end
);
1304 tlb_end_vma(tlb
, vma
);
1308 static void unmap_single_vma(struct mmu_gather
*tlb
,
1309 struct vm_area_struct
*vma
, unsigned long start_addr
,
1310 unsigned long end_addr
,
1311 struct zap_details
*details
)
1313 unsigned long start
= max(vma
->vm_start
, start_addr
);
1316 if (start
>= vma
->vm_end
)
1318 end
= min(vma
->vm_end
, end_addr
);
1319 if (end
<= vma
->vm_start
)
1323 uprobe_munmap(vma
, start
, end
);
1325 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1326 untrack_pfn(vma
, 0, 0);
1329 if (unlikely(is_vm_hugetlb_page(vma
))) {
1331 * It is undesirable to test vma->vm_file as it
1332 * should be non-null for valid hugetlb area.
1333 * However, vm_file will be NULL in the error
1334 * cleanup path of mmap_region. When
1335 * hugetlbfs ->mmap method fails,
1336 * mmap_region() nullifies vma->vm_file
1337 * before calling this function to clean up.
1338 * Since no pte has actually been setup, it is
1339 * safe to do nothing in this case.
1342 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1343 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1344 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1347 unmap_page_range(tlb
, vma
, start
, end
, details
);
1352 * unmap_vmas - unmap a range of memory covered by a list of vma's
1353 * @tlb: address of the caller's struct mmu_gather
1354 * @vma: the starting vma
1355 * @start_addr: virtual address at which to start unmapping
1356 * @end_addr: virtual address at which to end unmapping
1358 * Unmap all pages in the vma list.
1360 * Only addresses between `start' and `end' will be unmapped.
1362 * The VMA list must be sorted in ascending virtual address order.
1364 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1365 * range after unmap_vmas() returns. So the only responsibility here is to
1366 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1367 * drops the lock and schedules.
1369 void unmap_vmas(struct mmu_gather
*tlb
,
1370 struct vm_area_struct
*vma
, unsigned long start_addr
,
1371 unsigned long end_addr
)
1373 struct mm_struct
*mm
= vma
->vm_mm
;
1375 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1376 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1377 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1378 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1382 * zap_page_range - remove user pages in a given range
1383 * @vma: vm_area_struct holding the applicable pages
1384 * @start: starting address of pages to zap
1385 * @size: number of bytes to zap
1386 * @details: details of nonlinear truncation or shared cache invalidation
1388 * Caller must protect the VMA list
1390 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1391 unsigned long size
, struct zap_details
*details
)
1393 struct mm_struct
*mm
= vma
->vm_mm
;
1394 struct mmu_gather tlb
;
1395 unsigned long end
= start
+ size
;
1398 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1399 update_hiwater_rss(mm
);
1400 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1401 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1402 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1403 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1404 tlb_finish_mmu(&tlb
, start
, end
);
1408 * zap_page_range_single - remove user pages in a given range
1409 * @vma: vm_area_struct holding the applicable pages
1410 * @address: starting address of pages to zap
1411 * @size: number of bytes to zap
1412 * @details: details of nonlinear truncation or shared cache invalidation
1414 * The range must fit into one VMA.
1416 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1417 unsigned long size
, struct zap_details
*details
)
1419 struct mm_struct
*mm
= vma
->vm_mm
;
1420 struct mmu_gather tlb
;
1421 unsigned long end
= address
+ size
;
1424 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1425 update_hiwater_rss(mm
);
1426 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1427 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1428 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1429 tlb_finish_mmu(&tlb
, address
, end
);
1433 * zap_vma_ptes - remove ptes mapping the vma
1434 * @vma: vm_area_struct holding ptes to be zapped
1435 * @address: starting address of pages to zap
1436 * @size: number of bytes to zap
1438 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1440 * The entire address range must be fully contained within the vma.
1442 * Returns 0 if successful.
1444 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1447 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1448 !(vma
->vm_flags
& VM_PFNMAP
))
1450 zap_page_range_single(vma
, address
, size
, NULL
);
1453 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1455 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1458 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1459 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1461 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1463 VM_BUG_ON(pmd_trans_huge(*pmd
));
1464 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1471 * This is the old fallback for page remapping.
1473 * For historical reasons, it only allows reserved pages. Only
1474 * old drivers should use this, and they needed to mark their
1475 * pages reserved for the old functions anyway.
1477 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1478 struct page
*page
, pgprot_t prot
)
1480 struct mm_struct
*mm
= vma
->vm_mm
;
1489 flush_dcache_page(page
);
1490 pte
= get_locked_pte(mm
, addr
, &ptl
);
1494 if (!pte_none(*pte
))
1497 /* Ok, finally just insert the thing.. */
1499 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
1500 page_add_file_rmap(page
);
1501 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1504 pte_unmap_unlock(pte
, ptl
);
1507 pte_unmap_unlock(pte
, ptl
);
1513 * vm_insert_page - insert single page into user vma
1514 * @vma: user vma to map to
1515 * @addr: target user address of this page
1516 * @page: source kernel page
1518 * This allows drivers to insert individual pages they've allocated
1521 * The page has to be a nice clean _individual_ kernel allocation.
1522 * If you allocate a compound page, you need to have marked it as
1523 * such (__GFP_COMP), or manually just split the page up yourself
1524 * (see split_page()).
1526 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1527 * took an arbitrary page protection parameter. This doesn't allow
1528 * that. Your vma protection will have to be set up correctly, which
1529 * means that if you want a shared writable mapping, you'd better
1530 * ask for a shared writable mapping!
1532 * The page does not need to be reserved.
1534 * Usually this function is called from f_op->mmap() handler
1535 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1536 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1537 * function from other places, for example from page-fault handler.
1539 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1542 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1544 if (!page_count(page
))
1546 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1547 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1548 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1549 vma
->vm_flags
|= VM_MIXEDMAP
;
1551 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1553 EXPORT_SYMBOL(vm_insert_page
);
1555 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1556 unsigned long pfn
, pgprot_t prot
)
1558 struct mm_struct
*mm
= vma
->vm_mm
;
1564 pte
= get_locked_pte(mm
, addr
, &ptl
);
1568 if (!pte_none(*pte
))
1571 /* Ok, finally just insert the thing.. */
1572 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1573 set_pte_at(mm
, addr
, pte
, entry
);
1574 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1578 pte_unmap_unlock(pte
, ptl
);
1584 * vm_insert_pfn - insert single pfn into user vma
1585 * @vma: user vma to map to
1586 * @addr: target user address of this page
1587 * @pfn: source kernel pfn
1589 * Similar to vm_insert_page, this allows drivers to insert individual pages
1590 * they've allocated into a user vma. Same comments apply.
1592 * This function should only be called from a vm_ops->fault handler, and
1593 * in that case the handler should return NULL.
1595 * vma cannot be a COW mapping.
1597 * As this is called only for pages that do not currently exist, we
1598 * do not need to flush old virtual caches or the TLB.
1600 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1604 pgprot_t pgprot
= vma
->vm_page_prot
;
1606 * Technically, architectures with pte_special can avoid all these
1607 * restrictions (same for remap_pfn_range). However we would like
1608 * consistency in testing and feature parity among all, so we should
1609 * try to keep these invariants in place for everybody.
1611 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1612 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1613 (VM_PFNMAP
|VM_MIXEDMAP
));
1614 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1615 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1617 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1619 if (track_pfn_insert(vma
, &pgprot
, pfn
))
1622 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1626 EXPORT_SYMBOL(vm_insert_pfn
);
1628 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1631 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1633 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1637 * If we don't have pte special, then we have to use the pfn_valid()
1638 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1639 * refcount the page if pfn_valid is true (hence insert_page rather
1640 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1641 * without pte special, it would there be refcounted as a normal page.
1643 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1646 page
= pfn_to_page(pfn
);
1647 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1649 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1651 EXPORT_SYMBOL(vm_insert_mixed
);
1654 * maps a range of physical memory into the requested pages. the old
1655 * mappings are removed. any references to nonexistent pages results
1656 * in null mappings (currently treated as "copy-on-access")
1658 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1659 unsigned long addr
, unsigned long end
,
1660 unsigned long pfn
, pgprot_t prot
)
1665 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1668 arch_enter_lazy_mmu_mode();
1670 BUG_ON(!pte_none(*pte
));
1671 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1673 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1674 arch_leave_lazy_mmu_mode();
1675 pte_unmap_unlock(pte
- 1, ptl
);
1679 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1680 unsigned long addr
, unsigned long end
,
1681 unsigned long pfn
, pgprot_t prot
)
1686 pfn
-= addr
>> PAGE_SHIFT
;
1687 pmd
= pmd_alloc(mm
, pud
, addr
);
1690 VM_BUG_ON(pmd_trans_huge(*pmd
));
1692 next
= pmd_addr_end(addr
, end
);
1693 if (remap_pte_range(mm
, pmd
, addr
, next
,
1694 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1696 } while (pmd
++, addr
= next
, addr
!= end
);
1700 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1701 unsigned long addr
, unsigned long end
,
1702 unsigned long pfn
, pgprot_t prot
)
1707 pfn
-= addr
>> PAGE_SHIFT
;
1708 pud
= pud_alloc(mm
, pgd
, addr
);
1712 next
= pud_addr_end(addr
, end
);
1713 if (remap_pmd_range(mm
, pud
, addr
, next
,
1714 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1716 } while (pud
++, addr
= next
, addr
!= end
);
1721 * remap_pfn_range - remap kernel memory to userspace
1722 * @vma: user vma to map to
1723 * @addr: target user address to start at
1724 * @pfn: physical address of kernel memory
1725 * @size: size of map area
1726 * @prot: page protection flags for this mapping
1728 * Note: this is only safe if the mm semaphore is held when called.
1730 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1731 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1735 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1736 struct mm_struct
*mm
= vma
->vm_mm
;
1740 * Physically remapped pages are special. Tell the
1741 * rest of the world about it:
1742 * VM_IO tells people not to look at these pages
1743 * (accesses can have side effects).
1744 * VM_PFNMAP tells the core MM that the base pages are just
1745 * raw PFN mappings, and do not have a "struct page" associated
1748 * Disable vma merging and expanding with mremap().
1750 * Omit vma from core dump, even when VM_IO turned off.
1752 * There's a horrible special case to handle copy-on-write
1753 * behaviour that some programs depend on. We mark the "original"
1754 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1755 * See vm_normal_page() for details.
1757 if (is_cow_mapping(vma
->vm_flags
)) {
1758 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1760 vma
->vm_pgoff
= pfn
;
1763 err
= track_pfn_remap(vma
, &prot
, pfn
, addr
, PAGE_ALIGN(size
));
1767 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1769 BUG_ON(addr
>= end
);
1770 pfn
-= addr
>> PAGE_SHIFT
;
1771 pgd
= pgd_offset(mm
, addr
);
1772 flush_cache_range(vma
, addr
, end
);
1774 next
= pgd_addr_end(addr
, end
);
1775 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1776 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1779 } while (pgd
++, addr
= next
, addr
!= end
);
1782 untrack_pfn(vma
, pfn
, PAGE_ALIGN(size
));
1786 EXPORT_SYMBOL(remap_pfn_range
);
1789 * vm_iomap_memory - remap memory to userspace
1790 * @vma: user vma to map to
1791 * @start: start of area
1792 * @len: size of area
1794 * This is a simplified io_remap_pfn_range() for common driver use. The
1795 * driver just needs to give us the physical memory range to be mapped,
1796 * we'll figure out the rest from the vma information.
1798 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1799 * whatever write-combining details or similar.
1801 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1803 unsigned long vm_len
, pfn
, pages
;
1805 /* Check that the physical memory area passed in looks valid */
1806 if (start
+ len
< start
)
1809 * You *really* shouldn't map things that aren't page-aligned,
1810 * but we've historically allowed it because IO memory might
1811 * just have smaller alignment.
1813 len
+= start
& ~PAGE_MASK
;
1814 pfn
= start
>> PAGE_SHIFT
;
1815 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1816 if (pfn
+ pages
< pfn
)
1819 /* We start the mapping 'vm_pgoff' pages into the area */
1820 if (vma
->vm_pgoff
> pages
)
1822 pfn
+= vma
->vm_pgoff
;
1823 pages
-= vma
->vm_pgoff
;
1825 /* Can we fit all of the mapping? */
1826 vm_len
= vma
->vm_end
- vma
->vm_start
;
1827 if (vm_len
>> PAGE_SHIFT
> pages
)
1830 /* Ok, let it rip */
1831 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1833 EXPORT_SYMBOL(vm_iomap_memory
);
1835 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1836 unsigned long addr
, unsigned long end
,
1837 pte_fn_t fn
, void *data
)
1842 spinlock_t
*uninitialized_var(ptl
);
1844 pte
= (mm
== &init_mm
) ?
1845 pte_alloc_kernel(pmd
, addr
) :
1846 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1850 BUG_ON(pmd_huge(*pmd
));
1852 arch_enter_lazy_mmu_mode();
1854 token
= pmd_pgtable(*pmd
);
1857 err
= fn(pte
++, token
, addr
, data
);
1860 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1862 arch_leave_lazy_mmu_mode();
1865 pte_unmap_unlock(pte
-1, ptl
);
1869 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1870 unsigned long addr
, unsigned long end
,
1871 pte_fn_t fn
, void *data
)
1877 BUG_ON(pud_huge(*pud
));
1879 pmd
= pmd_alloc(mm
, pud
, addr
);
1883 next
= pmd_addr_end(addr
, end
);
1884 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1887 } while (pmd
++, addr
= next
, addr
!= end
);
1891 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1892 unsigned long addr
, unsigned long end
,
1893 pte_fn_t fn
, void *data
)
1899 pud
= pud_alloc(mm
, pgd
, addr
);
1903 next
= pud_addr_end(addr
, end
);
1904 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1907 } while (pud
++, addr
= next
, addr
!= end
);
1912 * Scan a region of virtual memory, filling in page tables as necessary
1913 * and calling a provided function on each leaf page table.
1915 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1916 unsigned long size
, pte_fn_t fn
, void *data
)
1920 unsigned long end
= addr
+ size
;
1923 BUG_ON(addr
>= end
);
1924 pgd
= pgd_offset(mm
, addr
);
1926 next
= pgd_addr_end(addr
, end
);
1927 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1930 } while (pgd
++, addr
= next
, addr
!= end
);
1934 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1937 * handle_pte_fault chooses page fault handler according to an entry
1938 * which was read non-atomically. Before making any commitment, on
1939 * those architectures or configurations (e.g. i386 with PAE) which
1940 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1941 * must check under lock before unmapping the pte and proceeding
1942 * (but do_wp_page is only called after already making such a check;
1943 * and do_anonymous_page can safely check later on).
1945 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1946 pte_t
*page_table
, pte_t orig_pte
)
1949 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1950 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1951 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1953 same
= pte_same(*page_table
, orig_pte
);
1957 pte_unmap(page_table
);
1961 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1963 debug_dma_assert_idle(src
);
1966 * If the source page was a PFN mapping, we don't have
1967 * a "struct page" for it. We do a best-effort copy by
1968 * just copying from the original user address. If that
1969 * fails, we just zero-fill it. Live with it.
1971 if (unlikely(!src
)) {
1972 void *kaddr
= kmap_atomic(dst
);
1973 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1976 * This really shouldn't fail, because the page is there
1977 * in the page tables. But it might just be unreadable,
1978 * in which case we just give up and fill the result with
1981 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1983 kunmap_atomic(kaddr
);
1984 flush_dcache_page(dst
);
1986 copy_user_highpage(dst
, src
, va
, vma
);
1990 * Notify the address space that the page is about to become writable so that
1991 * it can prohibit this or wait for the page to get into an appropriate state.
1993 * We do this without the lock held, so that it can sleep if it needs to.
1995 static int do_page_mkwrite(struct vm_area_struct
*vma
, struct page
*page
,
1996 unsigned long address
)
1998 struct vm_fault vmf
;
2001 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2002 vmf
.pgoff
= page
->index
;
2003 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2006 ret
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2007 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2009 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2011 if (!page
->mapping
) {
2013 return 0; /* retry */
2015 ret
|= VM_FAULT_LOCKED
;
2017 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2022 * This routine handles present pages, when users try to write
2023 * to a shared page. It is done by copying the page to a new address
2024 * and decrementing the shared-page counter for the old page.
2026 * Note that this routine assumes that the protection checks have been
2027 * done by the caller (the low-level page fault routine in most cases).
2028 * Thus we can safely just mark it writable once we've done any necessary
2031 * We also mark the page dirty at this point even though the page will
2032 * change only once the write actually happens. This avoids a few races,
2033 * and potentially makes it more efficient.
2035 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2036 * but allow concurrent faults), with pte both mapped and locked.
2037 * We return with mmap_sem still held, but pte unmapped and unlocked.
2039 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2040 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2041 spinlock_t
*ptl
, pte_t orig_pte
)
2044 struct page
*old_page
, *new_page
= NULL
;
2047 int page_mkwrite
= 0;
2048 struct page
*dirty_page
= NULL
;
2049 unsigned long mmun_start
= 0; /* For mmu_notifiers */
2050 unsigned long mmun_end
= 0; /* For mmu_notifiers */
2051 struct mem_cgroup
*memcg
;
2053 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2056 * VM_MIXEDMAP !pfn_valid() case
2058 * We should not cow pages in a shared writeable mapping.
2059 * Just mark the pages writable as we can't do any dirty
2060 * accounting on raw pfn maps.
2062 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2063 (VM_WRITE
|VM_SHARED
))
2069 * Take out anonymous pages first, anonymous shared vmas are
2070 * not dirty accountable.
2072 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2073 if (!trylock_page(old_page
)) {
2074 page_cache_get(old_page
);
2075 pte_unmap_unlock(page_table
, ptl
);
2076 lock_page(old_page
);
2077 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2079 if (!pte_same(*page_table
, orig_pte
)) {
2080 unlock_page(old_page
);
2083 page_cache_release(old_page
);
2085 if (reuse_swap_page(old_page
)) {
2087 * The page is all ours. Move it to our anon_vma so
2088 * the rmap code will not search our parent or siblings.
2089 * Protected against the rmap code by the page lock.
2091 page_move_anon_rmap(old_page
, vma
, address
);
2092 unlock_page(old_page
);
2095 unlock_page(old_page
);
2096 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2097 (VM_WRITE
|VM_SHARED
))) {
2099 * Only catch write-faults on shared writable pages,
2100 * read-only shared pages can get COWed by
2101 * get_user_pages(.write=1, .force=1).
2103 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2105 page_cache_get(old_page
);
2106 pte_unmap_unlock(page_table
, ptl
);
2107 tmp
= do_page_mkwrite(vma
, old_page
, address
);
2108 if (unlikely(!tmp
|| (tmp
&
2109 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2110 page_cache_release(old_page
);
2114 * Since we dropped the lock we need to revalidate
2115 * the PTE as someone else may have changed it. If
2116 * they did, we just return, as we can count on the
2117 * MMU to tell us if they didn't also make it writable.
2119 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2121 if (!pte_same(*page_table
, orig_pte
)) {
2122 unlock_page(old_page
);
2128 dirty_page
= old_page
;
2129 get_page(dirty_page
);
2133 * Clear the pages cpupid information as the existing
2134 * information potentially belongs to a now completely
2135 * unrelated process.
2138 page_cpupid_xchg_last(old_page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2140 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2141 entry
= pte_mkyoung(orig_pte
);
2142 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2143 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2144 update_mmu_cache(vma
, address
, page_table
);
2145 pte_unmap_unlock(page_table
, ptl
);
2146 ret
|= VM_FAULT_WRITE
;
2152 * Yes, Virginia, this is actually required to prevent a race
2153 * with clear_page_dirty_for_io() from clearing the page dirty
2154 * bit after it clear all dirty ptes, but before a racing
2155 * do_wp_page installs a dirty pte.
2157 * do_shared_fault is protected similarly.
2159 if (!page_mkwrite
) {
2160 wait_on_page_locked(dirty_page
);
2161 set_page_dirty_balance(dirty_page
);
2162 /* file_update_time outside page_lock */
2164 file_update_time(vma
->vm_file
);
2166 put_page(dirty_page
);
2168 struct address_space
*mapping
= dirty_page
->mapping
;
2170 set_page_dirty(dirty_page
);
2171 unlock_page(dirty_page
);
2172 page_cache_release(dirty_page
);
2175 * Some device drivers do not set page.mapping
2176 * but still dirty their pages
2178 balance_dirty_pages_ratelimited(mapping
);
2186 * Ok, we need to copy. Oh, well..
2188 page_cache_get(old_page
);
2190 pte_unmap_unlock(page_table
, ptl
);
2192 if (unlikely(anon_vma_prepare(vma
)))
2195 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2196 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2200 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2203 cow_user_page(new_page
, old_page
, address
, vma
);
2205 __SetPageUptodate(new_page
);
2207 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
))
2210 mmun_start
= address
& PAGE_MASK
;
2211 mmun_end
= mmun_start
+ PAGE_SIZE
;
2212 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2215 * Re-check the pte - we dropped the lock
2217 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2218 if (likely(pte_same(*page_table
, orig_pte
))) {
2220 if (!PageAnon(old_page
)) {
2221 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2222 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2225 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2226 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2227 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2228 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2230 * Clear the pte entry and flush it first, before updating the
2231 * pte with the new entry. This will avoid a race condition
2232 * seen in the presence of one thread doing SMC and another
2235 ptep_clear_flush(vma
, address
, page_table
);
2236 page_add_new_anon_rmap(new_page
, vma
, address
);
2237 mem_cgroup_commit_charge(new_page
, memcg
, false);
2238 lru_cache_add_active_or_unevictable(new_page
, vma
);
2240 * We call the notify macro here because, when using secondary
2241 * mmu page tables (such as kvm shadow page tables), we want the
2242 * new page to be mapped directly into the secondary page table.
2244 set_pte_at_notify(mm
, address
, page_table
, entry
);
2245 update_mmu_cache(vma
, address
, page_table
);
2248 * Only after switching the pte to the new page may
2249 * we remove the mapcount here. Otherwise another
2250 * process may come and find the rmap count decremented
2251 * before the pte is switched to the new page, and
2252 * "reuse" the old page writing into it while our pte
2253 * here still points into it and can be read by other
2256 * The critical issue is to order this
2257 * page_remove_rmap with the ptp_clear_flush above.
2258 * Those stores are ordered by (if nothing else,)
2259 * the barrier present in the atomic_add_negative
2260 * in page_remove_rmap.
2262 * Then the TLB flush in ptep_clear_flush ensures that
2263 * no process can access the old page before the
2264 * decremented mapcount is visible. And the old page
2265 * cannot be reused until after the decremented
2266 * mapcount is visible. So transitively, TLBs to
2267 * old page will be flushed before it can be reused.
2269 page_remove_rmap(old_page
);
2272 /* Free the old page.. */
2273 new_page
= old_page
;
2274 ret
|= VM_FAULT_WRITE
;
2276 mem_cgroup_cancel_charge(new_page
, memcg
);
2279 page_cache_release(new_page
);
2281 pte_unmap_unlock(page_table
, ptl
);
2282 if (mmun_end
> mmun_start
)
2283 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2286 * Don't let another task, with possibly unlocked vma,
2287 * keep the mlocked page.
2289 if ((ret
& VM_FAULT_WRITE
) && (vma
->vm_flags
& VM_LOCKED
)) {
2290 lock_page(old_page
); /* LRU manipulation */
2291 munlock_vma_page(old_page
);
2292 unlock_page(old_page
);
2294 page_cache_release(old_page
);
2298 page_cache_release(new_page
);
2301 page_cache_release(old_page
);
2302 return VM_FAULT_OOM
;
2305 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2306 unsigned long start_addr
, unsigned long end_addr
,
2307 struct zap_details
*details
)
2309 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2312 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2313 struct zap_details
*details
)
2315 struct vm_area_struct
*vma
;
2316 pgoff_t vba
, vea
, zba
, zea
;
2318 vma_interval_tree_foreach(vma
, root
,
2319 details
->first_index
, details
->last_index
) {
2321 vba
= vma
->vm_pgoff
;
2322 vea
= vba
+ vma_pages(vma
) - 1;
2323 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2324 zba
= details
->first_index
;
2327 zea
= details
->last_index
;
2331 unmap_mapping_range_vma(vma
,
2332 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2333 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2338 static inline void unmap_mapping_range_list(struct list_head
*head
,
2339 struct zap_details
*details
)
2341 struct vm_area_struct
*vma
;
2344 * In nonlinear VMAs there is no correspondence between virtual address
2345 * offset and file offset. So we must perform an exhaustive search
2346 * across *all* the pages in each nonlinear VMA, not just the pages
2347 * whose virtual address lies outside the file truncation point.
2349 list_for_each_entry(vma
, head
, shared
.nonlinear
) {
2350 details
->nonlinear_vma
= vma
;
2351 unmap_mapping_range_vma(vma
, vma
->vm_start
, vma
->vm_end
, details
);
2356 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2357 * @mapping: the address space containing mmaps to be unmapped.
2358 * @holebegin: byte in first page to unmap, relative to the start of
2359 * the underlying file. This will be rounded down to a PAGE_SIZE
2360 * boundary. Note that this is different from truncate_pagecache(), which
2361 * must keep the partial page. In contrast, we must get rid of
2363 * @holelen: size of prospective hole in bytes. This will be rounded
2364 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2366 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2367 * but 0 when invalidating pagecache, don't throw away private data.
2369 void unmap_mapping_range(struct address_space
*mapping
,
2370 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2372 struct zap_details details
;
2373 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2374 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2376 /* Check for overflow. */
2377 if (sizeof(holelen
) > sizeof(hlen
)) {
2379 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2380 if (holeend
& ~(long long)ULONG_MAX
)
2381 hlen
= ULONG_MAX
- hba
+ 1;
2384 details
.check_mapping
= even_cows
? NULL
: mapping
;
2385 details
.nonlinear_vma
= NULL
;
2386 details
.first_index
= hba
;
2387 details
.last_index
= hba
+ hlen
- 1;
2388 if (details
.last_index
< details
.first_index
)
2389 details
.last_index
= ULONG_MAX
;
2392 mutex_lock(&mapping
->i_mmap_mutex
);
2393 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2394 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2395 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2396 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2397 mutex_unlock(&mapping
->i_mmap_mutex
);
2399 EXPORT_SYMBOL(unmap_mapping_range
);
2402 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2403 * but allow concurrent faults), and pte mapped but not yet locked.
2404 * We return with pte unmapped and unlocked.
2406 * We return with the mmap_sem locked or unlocked in the same cases
2407 * as does filemap_fault().
2409 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2410 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2411 unsigned int flags
, pte_t orig_pte
)
2414 struct page
*page
, *swapcache
;
2415 struct mem_cgroup
*memcg
;
2422 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2425 entry
= pte_to_swp_entry(orig_pte
);
2426 if (unlikely(non_swap_entry(entry
))) {
2427 if (is_migration_entry(entry
)) {
2428 migration_entry_wait(mm
, pmd
, address
);
2429 } else if (is_hwpoison_entry(entry
)) {
2430 ret
= VM_FAULT_HWPOISON
;
2432 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2433 ret
= VM_FAULT_SIGBUS
;
2437 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2438 page
= lookup_swap_cache(entry
);
2440 page
= swapin_readahead(entry
,
2441 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2444 * Back out if somebody else faulted in this pte
2445 * while we released the pte lock.
2447 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2448 if (likely(pte_same(*page_table
, orig_pte
)))
2450 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2454 /* Had to read the page from swap area: Major fault */
2455 ret
= VM_FAULT_MAJOR
;
2456 count_vm_event(PGMAJFAULT
);
2457 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
2458 } else if (PageHWPoison(page
)) {
2460 * hwpoisoned dirty swapcache pages are kept for killing
2461 * owner processes (which may be unknown at hwpoison time)
2463 ret
= VM_FAULT_HWPOISON
;
2464 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2470 locked
= lock_page_or_retry(page
, mm
, flags
);
2472 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2474 ret
|= VM_FAULT_RETRY
;
2479 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2480 * release the swapcache from under us. The page pin, and pte_same
2481 * test below, are not enough to exclude that. Even if it is still
2482 * swapcache, we need to check that the page's swap has not changed.
2484 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2487 page
= ksm_might_need_to_copy(page
, vma
, address
);
2488 if (unlikely(!page
)) {
2494 if (mem_cgroup_try_charge(page
, mm
, GFP_KERNEL
, &memcg
)) {
2500 * Back out if somebody else already faulted in this pte.
2502 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2503 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2506 if (unlikely(!PageUptodate(page
))) {
2507 ret
= VM_FAULT_SIGBUS
;
2512 * The page isn't present yet, go ahead with the fault.
2514 * Be careful about the sequence of operations here.
2515 * To get its accounting right, reuse_swap_page() must be called
2516 * while the page is counted on swap but not yet in mapcount i.e.
2517 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2518 * must be called after the swap_free(), or it will never succeed.
2521 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2522 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
2523 pte
= mk_pte(page
, vma
->vm_page_prot
);
2524 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2525 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2526 flags
&= ~FAULT_FLAG_WRITE
;
2527 ret
|= VM_FAULT_WRITE
;
2530 flush_icache_page(vma
, page
);
2531 if (pte_swp_soft_dirty(orig_pte
))
2532 pte
= pte_mksoft_dirty(pte
);
2533 set_pte_at(mm
, address
, page_table
, pte
);
2534 if (page
== swapcache
) {
2535 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
2536 mem_cgroup_commit_charge(page
, memcg
, true);
2537 } else { /* ksm created a completely new copy */
2538 page_add_new_anon_rmap(page
, vma
, address
);
2539 mem_cgroup_commit_charge(page
, memcg
, false);
2540 lru_cache_add_active_or_unevictable(page
, vma
);
2544 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2545 try_to_free_swap(page
);
2547 if (page
!= swapcache
) {
2549 * Hold the lock to avoid the swap entry to be reused
2550 * until we take the PT lock for the pte_same() check
2551 * (to avoid false positives from pte_same). For
2552 * further safety release the lock after the swap_free
2553 * so that the swap count won't change under a
2554 * parallel locked swapcache.
2556 unlock_page(swapcache
);
2557 page_cache_release(swapcache
);
2560 if (flags
& FAULT_FLAG_WRITE
) {
2561 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2562 if (ret
& VM_FAULT_ERROR
)
2563 ret
&= VM_FAULT_ERROR
;
2567 /* No need to invalidate - it was non-present before */
2568 update_mmu_cache(vma
, address
, page_table
);
2570 pte_unmap_unlock(page_table
, ptl
);
2574 mem_cgroup_cancel_charge(page
, memcg
);
2575 pte_unmap_unlock(page_table
, ptl
);
2579 page_cache_release(page
);
2580 if (page
!= swapcache
) {
2581 unlock_page(swapcache
);
2582 page_cache_release(swapcache
);
2588 * This is like a special single-page "expand_{down|up}wards()",
2589 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2590 * doesn't hit another vma.
2592 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
2594 address
&= PAGE_MASK
;
2595 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
2596 struct vm_area_struct
*prev
= vma
->vm_prev
;
2599 * Is there a mapping abutting this one below?
2601 * That's only ok if it's the same stack mapping
2602 * that has gotten split..
2604 if (prev
&& prev
->vm_end
== address
)
2605 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
2607 expand_downwards(vma
, address
- PAGE_SIZE
);
2609 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
2610 struct vm_area_struct
*next
= vma
->vm_next
;
2612 /* As VM_GROWSDOWN but s/below/above/ */
2613 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
2614 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
2616 expand_upwards(vma
, address
+ PAGE_SIZE
);
2622 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2623 * but allow concurrent faults), and pte mapped but not yet locked.
2624 * We return with mmap_sem still held, but pte unmapped and unlocked.
2626 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2627 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2630 struct mem_cgroup
*memcg
;
2635 pte_unmap(page_table
);
2637 /* Check if we need to add a guard page to the stack */
2638 if (check_stack_guard_page(vma
, address
) < 0)
2639 return VM_FAULT_SIGBUS
;
2641 /* Use the zero-page for reads */
2642 if (!(flags
& FAULT_FLAG_WRITE
)) {
2643 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
2644 vma
->vm_page_prot
));
2645 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2646 if (!pte_none(*page_table
))
2651 /* Allocate our own private page. */
2652 if (unlikely(anon_vma_prepare(vma
)))
2654 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2658 * The memory barrier inside __SetPageUptodate makes sure that
2659 * preceeding stores to the page contents become visible before
2660 * the set_pte_at() write.
2662 __SetPageUptodate(page
);
2664 if (mem_cgroup_try_charge(page
, mm
, GFP_KERNEL
, &memcg
))
2667 entry
= mk_pte(page
, vma
->vm_page_prot
);
2668 if (vma
->vm_flags
& VM_WRITE
)
2669 entry
= pte_mkwrite(pte_mkdirty(entry
));
2671 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2672 if (!pte_none(*page_table
))
2675 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2676 page_add_new_anon_rmap(page
, vma
, address
);
2677 mem_cgroup_commit_charge(page
, memcg
, false);
2678 lru_cache_add_active_or_unevictable(page
, vma
);
2680 set_pte_at(mm
, address
, page_table
, entry
);
2682 /* No need to invalidate - it was non-present before */
2683 update_mmu_cache(vma
, address
, page_table
);
2685 pte_unmap_unlock(page_table
, ptl
);
2688 mem_cgroup_cancel_charge(page
, memcg
);
2689 page_cache_release(page
);
2692 page_cache_release(page
);
2694 return VM_FAULT_OOM
;
2698 * The mmap_sem must have been held on entry, and may have been
2699 * released depending on flags and vma->vm_ops->fault() return value.
2700 * See filemap_fault() and __lock_page_retry().
2702 static int __do_fault(struct vm_area_struct
*vma
, unsigned long address
,
2703 pgoff_t pgoff
, unsigned int flags
, struct page
**page
)
2705 struct vm_fault vmf
;
2708 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2713 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2714 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2717 if (unlikely(PageHWPoison(vmf
.page
))) {
2718 if (ret
& VM_FAULT_LOCKED
)
2719 unlock_page(vmf
.page
);
2720 page_cache_release(vmf
.page
);
2721 return VM_FAULT_HWPOISON
;
2724 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2725 lock_page(vmf
.page
);
2727 VM_BUG_ON_PAGE(!PageLocked(vmf
.page
), vmf
.page
);
2734 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2736 * @vma: virtual memory area
2737 * @address: user virtual address
2738 * @page: page to map
2739 * @pte: pointer to target page table entry
2740 * @write: true, if new entry is writable
2741 * @anon: true, if it's anonymous page
2743 * Caller must hold page table lock relevant for @pte.
2745 * Target users are page handler itself and implementations of
2746 * vm_ops->map_pages.
2748 void do_set_pte(struct vm_area_struct
*vma
, unsigned long address
,
2749 struct page
*page
, pte_t
*pte
, bool write
, bool anon
)
2753 flush_icache_page(vma
, page
);
2754 entry
= mk_pte(page
, vma
->vm_page_prot
);
2756 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2757 else if (pte_file(*pte
) && pte_file_soft_dirty(*pte
))
2758 entry
= pte_mksoft_dirty(entry
);
2760 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2761 page_add_new_anon_rmap(page
, vma
, address
);
2763 inc_mm_counter_fast(vma
->vm_mm
, MM_FILEPAGES
);
2764 page_add_file_rmap(page
);
2766 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
2768 /* no need to invalidate: a not-present page won't be cached */
2769 update_mmu_cache(vma
, address
, pte
);
2772 static unsigned long fault_around_bytes __read_mostly
=
2773 rounddown_pow_of_two(65536);
2775 #ifdef CONFIG_DEBUG_FS
2776 static int fault_around_bytes_get(void *data
, u64
*val
)
2778 *val
= fault_around_bytes
;
2783 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2784 * rounded down to nearest page order. It's what do_fault_around() expects to
2787 static int fault_around_bytes_set(void *data
, u64 val
)
2789 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
2791 if (val
> PAGE_SIZE
)
2792 fault_around_bytes
= rounddown_pow_of_two(val
);
2794 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
2797 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops
,
2798 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
2800 static int __init
fault_around_debugfs(void)
2804 ret
= debugfs_create_file("fault_around_bytes", 0644, NULL
, NULL
,
2805 &fault_around_bytes_fops
);
2807 pr_warn("Failed to create fault_around_bytes in debugfs");
2810 late_initcall(fault_around_debugfs
);
2814 * do_fault_around() tries to map few pages around the fault address. The hope
2815 * is that the pages will be needed soon and this will lower the number of
2818 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2819 * not ready to be mapped: not up-to-date, locked, etc.
2821 * This function is called with the page table lock taken. In the split ptlock
2822 * case the page table lock only protects only those entries which belong to
2823 * the page table corresponding to the fault address.
2825 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2828 * fault_around_pages() defines how many pages we'll try to map.
2829 * do_fault_around() expects it to return a power of two less than or equal to
2832 * The virtual address of the area that we map is naturally aligned to the
2833 * fault_around_pages() value (and therefore to page order). This way it's
2834 * easier to guarantee that we don't cross page table boundaries.
2836 static void do_fault_around(struct vm_area_struct
*vma
, unsigned long address
,
2837 pte_t
*pte
, pgoff_t pgoff
, unsigned int flags
)
2839 unsigned long start_addr
, nr_pages
, mask
;
2841 struct vm_fault vmf
;
2844 nr_pages
= ACCESS_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
2845 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
2847 start_addr
= max(address
& mask
, vma
->vm_start
);
2848 off
= ((address
- start_addr
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
2853 * max_pgoff is either end of page table or end of vma
2854 * or fault_around_pages() from pgoff, depending what is nearest.
2856 max_pgoff
= pgoff
- ((start_addr
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
2858 max_pgoff
= min3(max_pgoff
, vma_pages(vma
) + vma
->vm_pgoff
- 1,
2859 pgoff
+ nr_pages
- 1);
2861 /* Check if it makes any sense to call ->map_pages */
2862 while (!pte_none(*pte
)) {
2863 if (++pgoff
> max_pgoff
)
2865 start_addr
+= PAGE_SIZE
;
2866 if (start_addr
>= vma
->vm_end
)
2871 vmf
.virtual_address
= (void __user
*) start_addr
;
2874 vmf
.max_pgoff
= max_pgoff
;
2876 vma
->vm_ops
->map_pages(vma
, &vmf
);
2879 static int do_read_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2880 unsigned long address
, pmd_t
*pmd
,
2881 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2883 struct page
*fault_page
;
2889 * Let's call ->map_pages() first and use ->fault() as fallback
2890 * if page by the offset is not ready to be mapped (cold cache or
2893 if (vma
->vm_ops
->map_pages
&& !(flags
& FAULT_FLAG_NONLINEAR
) &&
2894 fault_around_bytes
>> PAGE_SHIFT
> 1) {
2895 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2896 do_fault_around(vma
, address
, pte
, pgoff
, flags
);
2897 if (!pte_same(*pte
, orig_pte
))
2899 pte_unmap_unlock(pte
, ptl
);
2902 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2903 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2906 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2907 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2908 pte_unmap_unlock(pte
, ptl
);
2909 unlock_page(fault_page
);
2910 page_cache_release(fault_page
);
2913 do_set_pte(vma
, address
, fault_page
, pte
, false, false);
2914 unlock_page(fault_page
);
2916 pte_unmap_unlock(pte
, ptl
);
2920 static int do_cow_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2921 unsigned long address
, pmd_t
*pmd
,
2922 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2924 struct page
*fault_page
, *new_page
;
2925 struct mem_cgroup
*memcg
;
2930 if (unlikely(anon_vma_prepare(vma
)))
2931 return VM_FAULT_OOM
;
2933 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2935 return VM_FAULT_OOM
;
2937 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
)) {
2938 page_cache_release(new_page
);
2939 return VM_FAULT_OOM
;
2942 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2943 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2946 copy_user_highpage(new_page
, fault_page
, address
, vma
);
2947 __SetPageUptodate(new_page
);
2949 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2950 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2951 pte_unmap_unlock(pte
, ptl
);
2952 unlock_page(fault_page
);
2953 page_cache_release(fault_page
);
2956 do_set_pte(vma
, address
, new_page
, pte
, true, true);
2957 mem_cgroup_commit_charge(new_page
, memcg
, false);
2958 lru_cache_add_active_or_unevictable(new_page
, vma
);
2959 pte_unmap_unlock(pte
, ptl
);
2960 unlock_page(fault_page
);
2961 page_cache_release(fault_page
);
2964 mem_cgroup_cancel_charge(new_page
, memcg
);
2965 page_cache_release(new_page
);
2969 static int do_shared_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2970 unsigned long address
, pmd_t
*pmd
,
2971 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2973 struct page
*fault_page
;
2974 struct address_space
*mapping
;
2980 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2981 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2985 * Check if the backing address space wants to know that the page is
2986 * about to become writable
2988 if (vma
->vm_ops
->page_mkwrite
) {
2989 unlock_page(fault_page
);
2990 tmp
= do_page_mkwrite(vma
, fault_page
, address
);
2991 if (unlikely(!tmp
||
2992 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2993 page_cache_release(fault_page
);
2998 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2999 if (unlikely(!pte_same(*pte
, orig_pte
))) {
3000 pte_unmap_unlock(pte
, ptl
);
3001 unlock_page(fault_page
);
3002 page_cache_release(fault_page
);
3005 do_set_pte(vma
, address
, fault_page
, pte
, true, false);
3006 pte_unmap_unlock(pte
, ptl
);
3008 if (set_page_dirty(fault_page
))
3010 mapping
= fault_page
->mapping
;
3011 unlock_page(fault_page
);
3012 if ((dirtied
|| vma
->vm_ops
->page_mkwrite
) && mapping
) {
3014 * Some device drivers do not set page.mapping but still
3017 balance_dirty_pages_ratelimited(mapping
);
3020 /* file_update_time outside page_lock */
3021 if (vma
->vm_file
&& !vma
->vm_ops
->page_mkwrite
)
3022 file_update_time(vma
->vm_file
);
3028 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3029 * but allow concurrent faults).
3030 * The mmap_sem may have been released depending on flags and our
3031 * return value. See filemap_fault() and __lock_page_or_retry().
3033 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3034 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3035 unsigned int flags
, pte_t orig_pte
)
3037 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3038 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3040 pte_unmap(page_table
);
3041 if (!(flags
& FAULT_FLAG_WRITE
))
3042 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3044 if (!(vma
->vm_flags
& VM_SHARED
))
3045 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3047 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3051 * Fault of a previously existing named mapping. Repopulate the pte
3052 * from the encoded file_pte if possible. This enables swappable
3055 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3056 * but allow concurrent faults), and pte mapped but not yet locked.
3057 * We return with pte unmapped and unlocked.
3058 * The mmap_sem may have been released depending on flags and our
3059 * return value. See filemap_fault() and __lock_page_or_retry().
3061 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3062 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3063 unsigned int flags
, pte_t orig_pte
)
3067 flags
|= FAULT_FLAG_NONLINEAR
;
3069 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3072 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3074 * Page table corrupted: show pte and kill process.
3076 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3077 return VM_FAULT_SIGBUS
;
3080 pgoff
= pte_to_pgoff(orig_pte
);
3081 if (!(flags
& FAULT_FLAG_WRITE
))
3082 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3084 if (!(vma
->vm_flags
& VM_SHARED
))
3085 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3087 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3090 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3091 unsigned long addr
, int page_nid
,
3096 count_vm_numa_event(NUMA_HINT_FAULTS
);
3097 if (page_nid
== numa_node_id()) {
3098 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3099 *flags
|= TNF_FAULT_LOCAL
;
3102 return mpol_misplaced(page
, vma
, addr
);
3105 static int do_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3106 unsigned long addr
, pte_t pte
, pte_t
*ptep
, pmd_t
*pmd
)
3108 struct page
*page
= NULL
;
3113 bool migrated
= false;
3117 * The "pte" at this point cannot be used safely without
3118 * validation through pte_unmap_same(). It's of NUMA type but
3119 * the pfn may be screwed if the read is non atomic.
3121 * ptep_modify_prot_start is not called as this is clearing
3122 * the _PAGE_NUMA bit and it is not really expected that there
3123 * would be concurrent hardware modifications to the PTE.
3125 ptl
= pte_lockptr(mm
, pmd
);
3127 if (unlikely(!pte_same(*ptep
, pte
))) {
3128 pte_unmap_unlock(ptep
, ptl
);
3132 pte
= pte_mknonnuma(pte
);
3133 set_pte_at(mm
, addr
, ptep
, pte
);
3134 update_mmu_cache(vma
, addr
, ptep
);
3136 page
= vm_normal_page(vma
, addr
, pte
);
3138 pte_unmap_unlock(ptep
, ptl
);
3141 BUG_ON(is_zero_pfn(page_to_pfn(page
)));
3144 * Avoid grouping on DSO/COW pages in specific and RO pages
3145 * in general, RO pages shouldn't hurt as much anyway since
3146 * they can be in shared cache state.
3148 if (!pte_write(pte
))
3149 flags
|= TNF_NO_GROUP
;
3152 * Flag if the page is shared between multiple address spaces. This
3153 * is later used when determining whether to group tasks together
3155 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3156 flags
|= TNF_SHARED
;
3158 last_cpupid
= page_cpupid_last(page
);
3159 page_nid
= page_to_nid(page
);
3160 target_nid
= numa_migrate_prep(page
, vma
, addr
, page_nid
, &flags
);
3161 pte_unmap_unlock(ptep
, ptl
);
3162 if (target_nid
== -1) {
3167 /* Migrate to the requested node */
3168 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3170 page_nid
= target_nid
;
3171 flags
|= TNF_MIGRATED
;
3176 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3181 * These routines also need to handle stuff like marking pages dirty
3182 * and/or accessed for architectures that don't do it in hardware (most
3183 * RISC architectures). The early dirtying is also good on the i386.
3185 * There is also a hook called "update_mmu_cache()" that architectures
3186 * with external mmu caches can use to update those (ie the Sparc or
3187 * PowerPC hashed page tables that act as extended TLBs).
3189 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3190 * but allow concurrent faults), and pte mapped but not yet locked.
3191 * We return with pte unmapped and unlocked.
3193 * The mmap_sem may have been released depending on flags and our
3194 * return value. See filemap_fault() and __lock_page_or_retry().
3196 static int handle_pte_fault(struct mm_struct
*mm
,
3197 struct vm_area_struct
*vma
, unsigned long address
,
3198 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3203 entry
= ACCESS_ONCE(*pte
);
3204 if (!pte_present(entry
)) {
3205 if (pte_none(entry
)) {
3207 if (likely(vma
->vm_ops
->fault
))
3208 return do_linear_fault(mm
, vma
, address
,
3209 pte
, pmd
, flags
, entry
);
3211 return do_anonymous_page(mm
, vma
, address
,
3214 if (pte_file(entry
))
3215 return do_nonlinear_fault(mm
, vma
, address
,
3216 pte
, pmd
, flags
, entry
);
3217 return do_swap_page(mm
, vma
, address
,
3218 pte
, pmd
, flags
, entry
);
3221 if (pte_numa(entry
))
3222 return do_numa_page(mm
, vma
, address
, entry
, pte
, pmd
);
3224 ptl
= pte_lockptr(mm
, pmd
);
3226 if (unlikely(!pte_same(*pte
, entry
)))
3228 if (flags
& FAULT_FLAG_WRITE
) {
3229 if (!pte_write(entry
))
3230 return do_wp_page(mm
, vma
, address
,
3231 pte
, pmd
, ptl
, entry
);
3232 entry
= pte_mkdirty(entry
);
3234 entry
= pte_mkyoung(entry
);
3235 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3236 update_mmu_cache(vma
, address
, pte
);
3239 * This is needed only for protection faults but the arch code
3240 * is not yet telling us if this is a protection fault or not.
3241 * This still avoids useless tlb flushes for .text page faults
3244 if (flags
& FAULT_FLAG_WRITE
)
3245 flush_tlb_fix_spurious_fault(vma
, address
);
3248 pte_unmap_unlock(pte
, ptl
);
3253 * By the time we get here, we already hold the mm semaphore
3255 * The mmap_sem may have been released depending on flags and our
3256 * return value. See filemap_fault() and __lock_page_or_retry().
3258 static int __handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3259 unsigned long address
, unsigned int flags
)
3266 if (unlikely(is_vm_hugetlb_page(vma
)))
3267 return hugetlb_fault(mm
, vma
, address
, flags
);
3269 pgd
= pgd_offset(mm
, address
);
3270 pud
= pud_alloc(mm
, pgd
, address
);
3272 return VM_FAULT_OOM
;
3273 pmd
= pmd_alloc(mm
, pud
, address
);
3275 return VM_FAULT_OOM
;
3276 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3277 int ret
= VM_FAULT_FALLBACK
;
3279 ret
= do_huge_pmd_anonymous_page(mm
, vma
, address
,
3281 if (!(ret
& VM_FAULT_FALLBACK
))
3284 pmd_t orig_pmd
= *pmd
;
3288 if (pmd_trans_huge(orig_pmd
)) {
3289 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3292 * If the pmd is splitting, return and retry the
3293 * the fault. Alternative: wait until the split
3294 * is done, and goto retry.
3296 if (pmd_trans_splitting(orig_pmd
))
3299 if (pmd_numa(orig_pmd
))
3300 return do_huge_pmd_numa_page(mm
, vma
, address
,
3303 if (dirty
&& !pmd_write(orig_pmd
)) {
3304 ret
= do_huge_pmd_wp_page(mm
, vma
, address
, pmd
,
3306 if (!(ret
& VM_FAULT_FALLBACK
))
3309 huge_pmd_set_accessed(mm
, vma
, address
, pmd
,
3317 * Use __pte_alloc instead of pte_alloc_map, because we can't
3318 * run pte_offset_map on the pmd, if an huge pmd could
3319 * materialize from under us from a different thread.
3321 if (unlikely(pmd_none(*pmd
)) &&
3322 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
3323 return VM_FAULT_OOM
;
3324 /* if an huge pmd materialized from under us just retry later */
3325 if (unlikely(pmd_trans_huge(*pmd
)))
3328 * A regular pmd is established and it can't morph into a huge pmd
3329 * from under us anymore at this point because we hold the mmap_sem
3330 * read mode and khugepaged takes it in write mode. So now it's
3331 * safe to run pte_offset_map().
3333 pte
= pte_offset_map(pmd
, address
);
3335 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3339 * By the time we get here, we already hold the mm semaphore
3341 * The mmap_sem may have been released depending on flags and our
3342 * return value. See filemap_fault() and __lock_page_or_retry().
3344 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3345 unsigned long address
, unsigned int flags
)
3349 __set_current_state(TASK_RUNNING
);
3351 count_vm_event(PGFAULT
);
3352 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3354 /* do counter updates before entering really critical section. */
3355 check_sync_rss_stat(current
);
3358 * Enable the memcg OOM handling for faults triggered in user
3359 * space. Kernel faults are handled more gracefully.
3361 if (flags
& FAULT_FLAG_USER
)
3362 mem_cgroup_oom_enable();
3364 ret
= __handle_mm_fault(mm
, vma
, address
, flags
);
3366 if (flags
& FAULT_FLAG_USER
) {
3367 mem_cgroup_oom_disable();
3369 * The task may have entered a memcg OOM situation but
3370 * if the allocation error was handled gracefully (no
3371 * VM_FAULT_OOM), there is no need to kill anything.
3372 * Just clean up the OOM state peacefully.
3374 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3375 mem_cgroup_oom_synchronize(false);
3381 #ifndef __PAGETABLE_PUD_FOLDED
3383 * Allocate page upper directory.
3384 * We've already handled the fast-path in-line.
3386 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3388 pud_t
*new = pud_alloc_one(mm
, address
);
3392 smp_wmb(); /* See comment in __pte_alloc */
3394 spin_lock(&mm
->page_table_lock
);
3395 if (pgd_present(*pgd
)) /* Another has populated it */
3398 pgd_populate(mm
, pgd
, new);
3399 spin_unlock(&mm
->page_table_lock
);
3402 #endif /* __PAGETABLE_PUD_FOLDED */
3404 #ifndef __PAGETABLE_PMD_FOLDED
3406 * Allocate page middle directory.
3407 * We've already handled the fast-path in-line.
3409 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3411 pmd_t
*new = pmd_alloc_one(mm
, address
);
3415 smp_wmb(); /* See comment in __pte_alloc */
3417 spin_lock(&mm
->page_table_lock
);
3418 #ifndef __ARCH_HAS_4LEVEL_HACK
3419 if (pud_present(*pud
)) /* Another has populated it */
3422 pud_populate(mm
, pud
, new);
3424 if (pgd_present(*pud
)) /* Another has populated it */
3427 pgd_populate(mm
, pud
, new);
3428 #endif /* __ARCH_HAS_4LEVEL_HACK */
3429 spin_unlock(&mm
->page_table_lock
);
3432 #endif /* __PAGETABLE_PMD_FOLDED */
3434 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
3435 pte_t
**ptepp
, spinlock_t
**ptlp
)
3442 pgd
= pgd_offset(mm
, address
);
3443 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3446 pud
= pud_offset(pgd
, address
);
3447 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3450 pmd
= pmd_offset(pud
, address
);
3451 VM_BUG_ON(pmd_trans_huge(*pmd
));
3452 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3455 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3459 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3462 if (!pte_present(*ptep
))
3467 pte_unmap_unlock(ptep
, *ptlp
);
3472 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3473 pte_t
**ptepp
, spinlock_t
**ptlp
)
3477 /* (void) is needed to make gcc happy */
3478 (void) __cond_lock(*ptlp
,
3479 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
3484 * follow_pfn - look up PFN at a user virtual address
3485 * @vma: memory mapping
3486 * @address: user virtual address
3487 * @pfn: location to store found PFN
3489 * Only IO mappings and raw PFN mappings are allowed.
3491 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3493 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3500 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3503 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3506 *pfn
= pte_pfn(*ptep
);
3507 pte_unmap_unlock(ptep
, ptl
);
3510 EXPORT_SYMBOL(follow_pfn
);
3512 #ifdef CONFIG_HAVE_IOREMAP_PROT
3513 int follow_phys(struct vm_area_struct
*vma
,
3514 unsigned long address
, unsigned int flags
,
3515 unsigned long *prot
, resource_size_t
*phys
)
3521 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3524 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3528 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3531 *prot
= pgprot_val(pte_pgprot(pte
));
3532 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3536 pte_unmap_unlock(ptep
, ptl
);
3541 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3542 void *buf
, int len
, int write
)
3544 resource_size_t phys_addr
;
3545 unsigned long prot
= 0;
3546 void __iomem
*maddr
;
3547 int offset
= addr
& (PAGE_SIZE
-1);
3549 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3552 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3554 memcpy_toio(maddr
+ offset
, buf
, len
);
3556 memcpy_fromio(buf
, maddr
+ offset
, len
);
3561 EXPORT_SYMBOL_GPL(generic_access_phys
);
3565 * Access another process' address space as given in mm. If non-NULL, use the
3566 * given task for page fault accounting.
3568 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
3569 unsigned long addr
, void *buf
, int len
, int write
)
3571 struct vm_area_struct
*vma
;
3572 void *old_buf
= buf
;
3574 down_read(&mm
->mmap_sem
);
3575 /* ignore errors, just check how much was successfully transferred */
3577 int bytes
, ret
, offset
;
3579 struct page
*page
= NULL
;
3581 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3582 write
, 1, &page
, &vma
);
3584 #ifndef CONFIG_HAVE_IOREMAP_PROT
3588 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3589 * we can access using slightly different code.
3591 vma
= find_vma(mm
, addr
);
3592 if (!vma
|| vma
->vm_start
> addr
)
3594 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3595 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3603 offset
= addr
& (PAGE_SIZE
-1);
3604 if (bytes
> PAGE_SIZE
-offset
)
3605 bytes
= PAGE_SIZE
-offset
;
3609 copy_to_user_page(vma
, page
, addr
,
3610 maddr
+ offset
, buf
, bytes
);
3611 set_page_dirty_lock(page
);
3613 copy_from_user_page(vma
, page
, addr
,
3614 buf
, maddr
+ offset
, bytes
);
3617 page_cache_release(page
);
3623 up_read(&mm
->mmap_sem
);
3625 return buf
- old_buf
;
3629 * access_remote_vm - access another process' address space
3630 * @mm: the mm_struct of the target address space
3631 * @addr: start address to access
3632 * @buf: source or destination buffer
3633 * @len: number of bytes to transfer
3634 * @write: whether the access is a write
3636 * The caller must hold a reference on @mm.
3638 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
3639 void *buf
, int len
, int write
)
3641 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
3645 * Access another process' address space.
3646 * Source/target buffer must be kernel space,
3647 * Do not walk the page table directly, use get_user_pages
3649 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
3650 void *buf
, int len
, int write
)
3652 struct mm_struct
*mm
;
3655 mm
= get_task_mm(tsk
);
3659 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
3666 * Print the name of a VMA.
3668 void print_vma_addr(char *prefix
, unsigned long ip
)
3670 struct mm_struct
*mm
= current
->mm
;
3671 struct vm_area_struct
*vma
;
3674 * Do not print if we are in atomic
3675 * contexts (in exception stacks, etc.):
3677 if (preempt_count())
3680 down_read(&mm
->mmap_sem
);
3681 vma
= find_vma(mm
, ip
);
3682 if (vma
&& vma
->vm_file
) {
3683 struct file
*f
= vma
->vm_file
;
3684 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3688 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3691 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
3693 vma
->vm_end
- vma
->vm_start
);
3694 free_page((unsigned long)buf
);
3697 up_read(&mm
->mmap_sem
);
3700 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3701 void might_fault(void)
3704 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3705 * holding the mmap_sem, this is safe because kernel memory doesn't
3706 * get paged out, therefore we'll never actually fault, and the
3707 * below annotations will generate false positives.
3709 if (segment_eq(get_fs(), KERNEL_DS
))
3713 * it would be nicer only to annotate paths which are not under
3714 * pagefault_disable, however that requires a larger audit and
3715 * providing helpers like get_user_atomic.
3720 __might_sleep(__FILE__
, __LINE__
, 0);
3723 might_lock_read(¤t
->mm
->mmap_sem
);
3725 EXPORT_SYMBOL(might_fault
);
3728 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3729 static void clear_gigantic_page(struct page
*page
,
3731 unsigned int pages_per_huge_page
)
3734 struct page
*p
= page
;
3737 for (i
= 0; i
< pages_per_huge_page
;
3738 i
++, p
= mem_map_next(p
, page
, i
)) {
3740 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
3743 void clear_huge_page(struct page
*page
,
3744 unsigned long addr
, unsigned int pages_per_huge_page
)
3748 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3749 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
3754 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3756 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
3760 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
3762 struct vm_area_struct
*vma
,
3763 unsigned int pages_per_huge_page
)
3766 struct page
*dst_base
= dst
;
3767 struct page
*src_base
= src
;
3769 for (i
= 0; i
< pages_per_huge_page
; ) {
3771 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
3774 dst
= mem_map_next(dst
, dst_base
, i
);
3775 src
= mem_map_next(src
, src_base
, i
);
3779 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
3780 unsigned long addr
, struct vm_area_struct
*vma
,
3781 unsigned int pages_per_huge_page
)
3785 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3786 copy_user_gigantic_page(dst
, src
, addr
, vma
,
3787 pages_per_huge_page
);
3792 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3794 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
3797 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3799 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3801 static struct kmem_cache
*page_ptl_cachep
;
3803 void __init
ptlock_cache_init(void)
3805 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
3809 bool ptlock_alloc(struct page
*page
)
3813 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
3820 void ptlock_free(struct page
*page
)
3822 kmem_cache_free(page_ptl_cachep
, page
->ptl
);