Staging: pohmelfs: fix printk format warnings v2
[linux/fpc-iii.git] / kernel / futex.c
blob6b50a024bca22e32b0a606fb4b7ea6daf1525967
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
59 #include <asm/futex.h>
61 #include "rtmutex_common.h"
63 int __read_mostly futex_cmpxchg_enabled;
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
68 * Priority Inheritance state:
70 struct futex_pi_state {
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
75 struct list_head list;
78 * The PI object:
80 struct rt_mutex pi_mutex;
82 struct task_struct *owner;
83 atomic_t refcount;
85 union futex_key key;
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiter, then make the second condition true.
97 struct futex_q {
98 struct plist_node list;
99 /* There can only be a single waiter */
100 wait_queue_head_t waiter;
102 /* Which hash list lock to use: */
103 spinlock_t *lock_ptr;
105 /* Key which the futex is hashed on: */
106 union futex_key key;
108 /* Optional priority inheritance state: */
109 struct futex_pi_state *pi_state;
110 struct task_struct *task;
112 /* Bitset for the optional bitmasked wakeup */
113 u32 bitset;
117 * Hash buckets are shared by all the futex_keys that hash to the same
118 * location. Each key may have multiple futex_q structures, one for each task
119 * waiting on a futex.
121 struct futex_hash_bucket {
122 spinlock_t lock;
123 struct plist_head chain;
126 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
129 * We hash on the keys returned from get_futex_key (see below).
131 static struct futex_hash_bucket *hash_futex(union futex_key *key)
133 u32 hash = jhash2((u32*)&key->both.word,
134 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
135 key->both.offset);
136 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
140 * Return 1 if two futex_keys are equal, 0 otherwise.
142 static inline int match_futex(union futex_key *key1, union futex_key *key2)
144 return (key1->both.word == key2->both.word
145 && key1->both.ptr == key2->both.ptr
146 && key1->both.offset == key2->both.offset);
150 * Take a reference to the resource addressed by a key.
151 * Can be called while holding spinlocks.
154 static void get_futex_key_refs(union futex_key *key)
156 if (!key->both.ptr)
157 return;
159 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
160 case FUT_OFF_INODE:
161 atomic_inc(&key->shared.inode->i_count);
162 break;
163 case FUT_OFF_MMSHARED:
164 atomic_inc(&key->private.mm->mm_count);
165 break;
170 * Drop a reference to the resource addressed by a key.
171 * The hash bucket spinlock must not be held.
173 static void drop_futex_key_refs(union futex_key *key)
175 if (!key->both.ptr) {
176 /* If we're here then we tried to put a key we failed to get */
177 WARN_ON_ONCE(1);
178 return;
181 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
182 case FUT_OFF_INODE:
183 iput(key->shared.inode);
184 break;
185 case FUT_OFF_MMSHARED:
186 mmdrop(key->private.mm);
187 break;
192 * get_futex_key - Get parameters which are the keys for a futex.
193 * @uaddr: virtual address of the futex
194 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
195 * @key: address where result is stored.
197 * Returns a negative error code or 0
198 * The key words are stored in *key on success.
200 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
201 * offset_within_page). For private mappings, it's (uaddr, current->mm).
202 * We can usually work out the index without swapping in the page.
204 * lock_page() might sleep, the caller should not hold a spinlock.
206 static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
208 unsigned long address = (unsigned long)uaddr;
209 struct mm_struct *mm = current->mm;
210 struct page *page;
211 int err;
214 * The futex address must be "naturally" aligned.
216 key->both.offset = address % PAGE_SIZE;
217 if (unlikely((address % sizeof(u32)) != 0))
218 return -EINVAL;
219 address -= key->both.offset;
222 * PROCESS_PRIVATE futexes are fast.
223 * As the mm cannot disappear under us and the 'key' only needs
224 * virtual address, we dont even have to find the underlying vma.
225 * Note : We do have to check 'uaddr' is a valid user address,
226 * but access_ok() should be faster than find_vma()
228 if (!fshared) {
229 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
230 return -EFAULT;
231 key->private.mm = mm;
232 key->private.address = address;
233 get_futex_key_refs(key);
234 return 0;
237 again:
238 err = get_user_pages_fast(address, 1, 0, &page);
239 if (err < 0)
240 return err;
242 lock_page(page);
243 if (!page->mapping) {
244 unlock_page(page);
245 put_page(page);
246 goto again;
250 * Private mappings are handled in a simple way.
252 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
253 * it's a read-only handle, it's expected that futexes attach to
254 * the object not the particular process.
256 if (PageAnon(page)) {
257 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
258 key->private.mm = mm;
259 key->private.address = address;
260 } else {
261 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
262 key->shared.inode = page->mapping->host;
263 key->shared.pgoff = page->index;
266 get_futex_key_refs(key);
268 unlock_page(page);
269 put_page(page);
270 return 0;
273 static inline
274 void put_futex_key(int fshared, union futex_key *key)
276 drop_futex_key_refs(key);
279 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
281 u32 curval;
283 pagefault_disable();
284 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
285 pagefault_enable();
287 return curval;
290 static int get_futex_value_locked(u32 *dest, u32 __user *from)
292 int ret;
294 pagefault_disable();
295 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
296 pagefault_enable();
298 return ret ? -EFAULT : 0;
303 * PI code:
305 static int refill_pi_state_cache(void)
307 struct futex_pi_state *pi_state;
309 if (likely(current->pi_state_cache))
310 return 0;
312 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
314 if (!pi_state)
315 return -ENOMEM;
317 INIT_LIST_HEAD(&pi_state->list);
318 /* pi_mutex gets initialized later */
319 pi_state->owner = NULL;
320 atomic_set(&pi_state->refcount, 1);
321 pi_state->key = FUTEX_KEY_INIT;
323 current->pi_state_cache = pi_state;
325 return 0;
328 static struct futex_pi_state * alloc_pi_state(void)
330 struct futex_pi_state *pi_state = current->pi_state_cache;
332 WARN_ON(!pi_state);
333 current->pi_state_cache = NULL;
335 return pi_state;
338 static void free_pi_state(struct futex_pi_state *pi_state)
340 if (!atomic_dec_and_test(&pi_state->refcount))
341 return;
344 * If pi_state->owner is NULL, the owner is most probably dying
345 * and has cleaned up the pi_state already
347 if (pi_state->owner) {
348 spin_lock_irq(&pi_state->owner->pi_lock);
349 list_del_init(&pi_state->list);
350 spin_unlock_irq(&pi_state->owner->pi_lock);
352 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
355 if (current->pi_state_cache)
356 kfree(pi_state);
357 else {
359 * pi_state->list is already empty.
360 * clear pi_state->owner.
361 * refcount is at 0 - put it back to 1.
363 pi_state->owner = NULL;
364 atomic_set(&pi_state->refcount, 1);
365 current->pi_state_cache = pi_state;
370 * Look up the task based on what TID userspace gave us.
371 * We dont trust it.
373 static struct task_struct * futex_find_get_task(pid_t pid)
375 struct task_struct *p;
376 const struct cred *cred = current_cred(), *pcred;
378 rcu_read_lock();
379 p = find_task_by_vpid(pid);
380 if (!p) {
381 p = ERR_PTR(-ESRCH);
382 } else {
383 pcred = __task_cred(p);
384 if (cred->euid != pcred->euid &&
385 cred->euid != pcred->uid)
386 p = ERR_PTR(-ESRCH);
387 else
388 get_task_struct(p);
391 rcu_read_unlock();
393 return p;
397 * This task is holding PI mutexes at exit time => bad.
398 * Kernel cleans up PI-state, but userspace is likely hosed.
399 * (Robust-futex cleanup is separate and might save the day for userspace.)
401 void exit_pi_state_list(struct task_struct *curr)
403 struct list_head *next, *head = &curr->pi_state_list;
404 struct futex_pi_state *pi_state;
405 struct futex_hash_bucket *hb;
406 union futex_key key = FUTEX_KEY_INIT;
408 if (!futex_cmpxchg_enabled)
409 return;
411 * We are a ZOMBIE and nobody can enqueue itself on
412 * pi_state_list anymore, but we have to be careful
413 * versus waiters unqueueing themselves:
415 spin_lock_irq(&curr->pi_lock);
416 while (!list_empty(head)) {
418 next = head->next;
419 pi_state = list_entry(next, struct futex_pi_state, list);
420 key = pi_state->key;
421 hb = hash_futex(&key);
422 spin_unlock_irq(&curr->pi_lock);
424 spin_lock(&hb->lock);
426 spin_lock_irq(&curr->pi_lock);
428 * We dropped the pi-lock, so re-check whether this
429 * task still owns the PI-state:
431 if (head->next != next) {
432 spin_unlock(&hb->lock);
433 continue;
436 WARN_ON(pi_state->owner != curr);
437 WARN_ON(list_empty(&pi_state->list));
438 list_del_init(&pi_state->list);
439 pi_state->owner = NULL;
440 spin_unlock_irq(&curr->pi_lock);
442 rt_mutex_unlock(&pi_state->pi_mutex);
444 spin_unlock(&hb->lock);
446 spin_lock_irq(&curr->pi_lock);
448 spin_unlock_irq(&curr->pi_lock);
451 static int
452 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
453 union futex_key *key, struct futex_pi_state **ps)
455 struct futex_pi_state *pi_state = NULL;
456 struct futex_q *this, *next;
457 struct plist_head *head;
458 struct task_struct *p;
459 pid_t pid = uval & FUTEX_TID_MASK;
461 head = &hb->chain;
463 plist_for_each_entry_safe(this, next, head, list) {
464 if (match_futex(&this->key, key)) {
466 * Another waiter already exists - bump up
467 * the refcount and return its pi_state:
469 pi_state = this->pi_state;
471 * Userspace might have messed up non PI and PI futexes
473 if (unlikely(!pi_state))
474 return -EINVAL;
476 WARN_ON(!atomic_read(&pi_state->refcount));
477 WARN_ON(pid && pi_state->owner &&
478 pi_state->owner->pid != pid);
480 atomic_inc(&pi_state->refcount);
481 *ps = pi_state;
483 return 0;
488 * We are the first waiter - try to look up the real owner and attach
489 * the new pi_state to it, but bail out when TID = 0
491 if (!pid)
492 return -ESRCH;
493 p = futex_find_get_task(pid);
494 if (IS_ERR(p))
495 return PTR_ERR(p);
498 * We need to look at the task state flags to figure out,
499 * whether the task is exiting. To protect against the do_exit
500 * change of the task flags, we do this protected by
501 * p->pi_lock:
503 spin_lock_irq(&p->pi_lock);
504 if (unlikely(p->flags & PF_EXITING)) {
506 * The task is on the way out. When PF_EXITPIDONE is
507 * set, we know that the task has finished the
508 * cleanup:
510 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
512 spin_unlock_irq(&p->pi_lock);
513 put_task_struct(p);
514 return ret;
517 pi_state = alloc_pi_state();
520 * Initialize the pi_mutex in locked state and make 'p'
521 * the owner of it:
523 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
525 /* Store the key for possible exit cleanups: */
526 pi_state->key = *key;
528 WARN_ON(!list_empty(&pi_state->list));
529 list_add(&pi_state->list, &p->pi_state_list);
530 pi_state->owner = p;
531 spin_unlock_irq(&p->pi_lock);
533 put_task_struct(p);
535 *ps = pi_state;
537 return 0;
541 * The hash bucket lock must be held when this is called.
542 * Afterwards, the futex_q must not be accessed.
544 static void wake_futex(struct futex_q *q)
546 plist_del(&q->list, &q->list.plist);
548 * The lock in wake_up_all() is a crucial memory barrier after the
549 * plist_del() and also before assigning to q->lock_ptr.
551 wake_up(&q->waiter);
553 * The waiting task can free the futex_q as soon as this is written,
554 * without taking any locks. This must come last.
556 * A memory barrier is required here to prevent the following store to
557 * lock_ptr from getting ahead of the wakeup. Clearing the lock at the
558 * end of wake_up() does not prevent this store from moving.
560 smp_wmb();
561 q->lock_ptr = NULL;
564 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
566 struct task_struct *new_owner;
567 struct futex_pi_state *pi_state = this->pi_state;
568 u32 curval, newval;
570 if (!pi_state)
571 return -EINVAL;
573 spin_lock(&pi_state->pi_mutex.wait_lock);
574 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
577 * This happens when we have stolen the lock and the original
578 * pending owner did not enqueue itself back on the rt_mutex.
579 * Thats not a tragedy. We know that way, that a lock waiter
580 * is on the fly. We make the futex_q waiter the pending owner.
582 if (!new_owner)
583 new_owner = this->task;
586 * We pass it to the next owner. (The WAITERS bit is always
587 * kept enabled while there is PI state around. We must also
588 * preserve the owner died bit.)
590 if (!(uval & FUTEX_OWNER_DIED)) {
591 int ret = 0;
593 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
595 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
597 if (curval == -EFAULT)
598 ret = -EFAULT;
599 else if (curval != uval)
600 ret = -EINVAL;
601 if (ret) {
602 spin_unlock(&pi_state->pi_mutex.wait_lock);
603 return ret;
607 spin_lock_irq(&pi_state->owner->pi_lock);
608 WARN_ON(list_empty(&pi_state->list));
609 list_del_init(&pi_state->list);
610 spin_unlock_irq(&pi_state->owner->pi_lock);
612 spin_lock_irq(&new_owner->pi_lock);
613 WARN_ON(!list_empty(&pi_state->list));
614 list_add(&pi_state->list, &new_owner->pi_state_list);
615 pi_state->owner = new_owner;
616 spin_unlock_irq(&new_owner->pi_lock);
618 spin_unlock(&pi_state->pi_mutex.wait_lock);
619 rt_mutex_unlock(&pi_state->pi_mutex);
621 return 0;
624 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
626 u32 oldval;
629 * There is no waiter, so we unlock the futex. The owner died
630 * bit has not to be preserved here. We are the owner:
632 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
634 if (oldval == -EFAULT)
635 return oldval;
636 if (oldval != uval)
637 return -EAGAIN;
639 return 0;
643 * Express the locking dependencies for lockdep:
645 static inline void
646 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
648 if (hb1 <= hb2) {
649 spin_lock(&hb1->lock);
650 if (hb1 < hb2)
651 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
652 } else { /* hb1 > hb2 */
653 spin_lock(&hb2->lock);
654 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
658 static inline void
659 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
661 spin_unlock(&hb1->lock);
662 if (hb1 != hb2)
663 spin_unlock(&hb2->lock);
667 * Wake up waiters matching bitset queued on this futex (uaddr).
669 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
671 struct futex_hash_bucket *hb;
672 struct futex_q *this, *next;
673 struct plist_head *head;
674 union futex_key key = FUTEX_KEY_INIT;
675 int ret;
677 if (!bitset)
678 return -EINVAL;
680 ret = get_futex_key(uaddr, fshared, &key);
681 if (unlikely(ret != 0))
682 goto out;
684 hb = hash_futex(&key);
685 spin_lock(&hb->lock);
686 head = &hb->chain;
688 plist_for_each_entry_safe(this, next, head, list) {
689 if (match_futex (&this->key, &key)) {
690 if (this->pi_state) {
691 ret = -EINVAL;
692 break;
695 /* Check if one of the bits is set in both bitsets */
696 if (!(this->bitset & bitset))
697 continue;
699 wake_futex(this);
700 if (++ret >= nr_wake)
701 break;
705 spin_unlock(&hb->lock);
706 put_futex_key(fshared, &key);
707 out:
708 return ret;
712 * Wake up all waiters hashed on the physical page that is mapped
713 * to this virtual address:
715 static int
716 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
717 int nr_wake, int nr_wake2, int op)
719 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
720 struct futex_hash_bucket *hb1, *hb2;
721 struct plist_head *head;
722 struct futex_q *this, *next;
723 int ret, op_ret;
725 retry:
726 ret = get_futex_key(uaddr1, fshared, &key1);
727 if (unlikely(ret != 0))
728 goto out;
729 ret = get_futex_key(uaddr2, fshared, &key2);
730 if (unlikely(ret != 0))
731 goto out_put_key1;
733 hb1 = hash_futex(&key1);
734 hb2 = hash_futex(&key2);
736 double_lock_hb(hb1, hb2);
737 retry_private:
738 op_ret = futex_atomic_op_inuser(op, uaddr2);
739 if (unlikely(op_ret < 0)) {
740 u32 dummy;
742 double_unlock_hb(hb1, hb2);
744 #ifndef CONFIG_MMU
746 * we don't get EFAULT from MMU faults if we don't have an MMU,
747 * but we might get them from range checking
749 ret = op_ret;
750 goto out_put_keys;
751 #endif
753 if (unlikely(op_ret != -EFAULT)) {
754 ret = op_ret;
755 goto out_put_keys;
758 ret = get_user(dummy, uaddr2);
759 if (ret)
760 goto out_put_keys;
762 if (!fshared)
763 goto retry_private;
765 put_futex_key(fshared, &key2);
766 put_futex_key(fshared, &key1);
767 goto retry;
770 head = &hb1->chain;
772 plist_for_each_entry_safe(this, next, head, list) {
773 if (match_futex (&this->key, &key1)) {
774 wake_futex(this);
775 if (++ret >= nr_wake)
776 break;
780 if (op_ret > 0) {
781 head = &hb2->chain;
783 op_ret = 0;
784 plist_for_each_entry_safe(this, next, head, list) {
785 if (match_futex (&this->key, &key2)) {
786 wake_futex(this);
787 if (++op_ret >= nr_wake2)
788 break;
791 ret += op_ret;
794 double_unlock_hb(hb1, hb2);
795 out_put_keys:
796 put_futex_key(fshared, &key2);
797 out_put_key1:
798 put_futex_key(fshared, &key1);
799 out:
800 return ret;
804 * Requeue all waiters hashed on one physical page to another
805 * physical page.
807 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
808 int nr_wake, int nr_requeue, u32 *cmpval)
810 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
811 struct futex_hash_bucket *hb1, *hb2;
812 struct plist_head *head1;
813 struct futex_q *this, *next;
814 int ret, drop_count = 0;
816 retry:
817 ret = get_futex_key(uaddr1, fshared, &key1);
818 if (unlikely(ret != 0))
819 goto out;
820 ret = get_futex_key(uaddr2, fshared, &key2);
821 if (unlikely(ret != 0))
822 goto out_put_key1;
824 hb1 = hash_futex(&key1);
825 hb2 = hash_futex(&key2);
827 retry_private:
828 double_lock_hb(hb1, hb2);
830 if (likely(cmpval != NULL)) {
831 u32 curval;
833 ret = get_futex_value_locked(&curval, uaddr1);
835 if (unlikely(ret)) {
836 double_unlock_hb(hb1, hb2);
838 ret = get_user(curval, uaddr1);
839 if (ret)
840 goto out_put_keys;
842 if (!fshared)
843 goto retry_private;
845 put_futex_key(fshared, &key2);
846 put_futex_key(fshared, &key1);
847 goto retry;
849 if (curval != *cmpval) {
850 ret = -EAGAIN;
851 goto out_unlock;
855 head1 = &hb1->chain;
856 plist_for_each_entry_safe(this, next, head1, list) {
857 if (!match_futex (&this->key, &key1))
858 continue;
859 if (++ret <= nr_wake) {
860 wake_futex(this);
861 } else {
863 * If key1 and key2 hash to the same bucket, no need to
864 * requeue.
866 if (likely(head1 != &hb2->chain)) {
867 plist_del(&this->list, &hb1->chain);
868 plist_add(&this->list, &hb2->chain);
869 this->lock_ptr = &hb2->lock;
870 #ifdef CONFIG_DEBUG_PI_LIST
871 this->list.plist.lock = &hb2->lock;
872 #endif
874 this->key = key2;
875 get_futex_key_refs(&key2);
876 drop_count++;
878 if (ret - nr_wake >= nr_requeue)
879 break;
883 out_unlock:
884 double_unlock_hb(hb1, hb2);
886 /* drop_futex_key_refs() must be called outside the spinlocks. */
887 while (--drop_count >= 0)
888 drop_futex_key_refs(&key1);
890 out_put_keys:
891 put_futex_key(fshared, &key2);
892 out_put_key1:
893 put_futex_key(fshared, &key1);
894 out:
895 return ret;
898 /* The key must be already stored in q->key. */
899 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
901 struct futex_hash_bucket *hb;
903 init_waitqueue_head(&q->waiter);
905 get_futex_key_refs(&q->key);
906 hb = hash_futex(&q->key);
907 q->lock_ptr = &hb->lock;
909 spin_lock(&hb->lock);
910 return hb;
913 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
915 int prio;
918 * The priority used to register this element is
919 * - either the real thread-priority for the real-time threads
920 * (i.e. threads with a priority lower than MAX_RT_PRIO)
921 * - or MAX_RT_PRIO for non-RT threads.
922 * Thus, all RT-threads are woken first in priority order, and
923 * the others are woken last, in FIFO order.
925 prio = min(current->normal_prio, MAX_RT_PRIO);
927 plist_node_init(&q->list, prio);
928 #ifdef CONFIG_DEBUG_PI_LIST
929 q->list.plist.lock = &hb->lock;
930 #endif
931 plist_add(&q->list, &hb->chain);
932 q->task = current;
933 spin_unlock(&hb->lock);
936 static inline void
937 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
939 spin_unlock(&hb->lock);
940 drop_futex_key_refs(&q->key);
944 * queue_me and unqueue_me must be called as a pair, each
945 * exactly once. They are called with the hashed spinlock held.
948 /* Return 1 if we were still queued (ie. 0 means we were woken) */
949 static int unqueue_me(struct futex_q *q)
951 spinlock_t *lock_ptr;
952 int ret = 0;
954 /* In the common case we don't take the spinlock, which is nice. */
955 retry:
956 lock_ptr = q->lock_ptr;
957 barrier();
958 if (lock_ptr != NULL) {
959 spin_lock(lock_ptr);
961 * q->lock_ptr can change between reading it and
962 * spin_lock(), causing us to take the wrong lock. This
963 * corrects the race condition.
965 * Reasoning goes like this: if we have the wrong lock,
966 * q->lock_ptr must have changed (maybe several times)
967 * between reading it and the spin_lock(). It can
968 * change again after the spin_lock() but only if it was
969 * already changed before the spin_lock(). It cannot,
970 * however, change back to the original value. Therefore
971 * we can detect whether we acquired the correct lock.
973 if (unlikely(lock_ptr != q->lock_ptr)) {
974 spin_unlock(lock_ptr);
975 goto retry;
977 WARN_ON(plist_node_empty(&q->list));
978 plist_del(&q->list, &q->list.plist);
980 BUG_ON(q->pi_state);
982 spin_unlock(lock_ptr);
983 ret = 1;
986 drop_futex_key_refs(&q->key);
987 return ret;
991 * PI futexes can not be requeued and must remove themself from the
992 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
993 * and dropped here.
995 static void unqueue_me_pi(struct futex_q *q)
997 WARN_ON(plist_node_empty(&q->list));
998 plist_del(&q->list, &q->list.plist);
1000 BUG_ON(!q->pi_state);
1001 free_pi_state(q->pi_state);
1002 q->pi_state = NULL;
1004 spin_unlock(q->lock_ptr);
1006 drop_futex_key_refs(&q->key);
1010 * Fixup the pi_state owner with the new owner.
1012 * Must be called with hash bucket lock held and mm->sem held for non
1013 * private futexes.
1015 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1016 struct task_struct *newowner, int fshared)
1018 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1019 struct futex_pi_state *pi_state = q->pi_state;
1020 struct task_struct *oldowner = pi_state->owner;
1021 u32 uval, curval, newval;
1022 int ret;
1024 /* Owner died? */
1025 if (!pi_state->owner)
1026 newtid |= FUTEX_OWNER_DIED;
1029 * We are here either because we stole the rtmutex from the
1030 * pending owner or we are the pending owner which failed to
1031 * get the rtmutex. We have to replace the pending owner TID
1032 * in the user space variable. This must be atomic as we have
1033 * to preserve the owner died bit here.
1035 * Note: We write the user space value _before_ changing the pi_state
1036 * because we can fault here. Imagine swapped out pages or a fork
1037 * that marked all the anonymous memory readonly for cow.
1039 * Modifying pi_state _before_ the user space value would
1040 * leave the pi_state in an inconsistent state when we fault
1041 * here, because we need to drop the hash bucket lock to
1042 * handle the fault. This might be observed in the PID check
1043 * in lookup_pi_state.
1045 retry:
1046 if (get_futex_value_locked(&uval, uaddr))
1047 goto handle_fault;
1049 while (1) {
1050 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1052 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1054 if (curval == -EFAULT)
1055 goto handle_fault;
1056 if (curval == uval)
1057 break;
1058 uval = curval;
1062 * We fixed up user space. Now we need to fix the pi_state
1063 * itself.
1065 if (pi_state->owner != NULL) {
1066 spin_lock_irq(&pi_state->owner->pi_lock);
1067 WARN_ON(list_empty(&pi_state->list));
1068 list_del_init(&pi_state->list);
1069 spin_unlock_irq(&pi_state->owner->pi_lock);
1072 pi_state->owner = newowner;
1074 spin_lock_irq(&newowner->pi_lock);
1075 WARN_ON(!list_empty(&pi_state->list));
1076 list_add(&pi_state->list, &newowner->pi_state_list);
1077 spin_unlock_irq(&newowner->pi_lock);
1078 return 0;
1081 * To handle the page fault we need to drop the hash bucket
1082 * lock here. That gives the other task (either the pending
1083 * owner itself or the task which stole the rtmutex) the
1084 * chance to try the fixup of the pi_state. So once we are
1085 * back from handling the fault we need to check the pi_state
1086 * after reacquiring the hash bucket lock and before trying to
1087 * do another fixup. When the fixup has been done already we
1088 * simply return.
1090 handle_fault:
1091 spin_unlock(q->lock_ptr);
1093 ret = get_user(uval, uaddr);
1095 spin_lock(q->lock_ptr);
1098 * Check if someone else fixed it for us:
1100 if (pi_state->owner != oldowner)
1101 return 0;
1103 if (ret)
1104 return ret;
1106 goto retry;
1110 * In case we must use restart_block to restart a futex_wait,
1111 * we encode in the 'flags' shared capability
1113 #define FLAGS_SHARED 0x01
1114 #define FLAGS_CLOCKRT 0x02
1116 static long futex_wait_restart(struct restart_block *restart);
1118 static int futex_wait(u32 __user *uaddr, int fshared,
1119 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1121 struct task_struct *curr = current;
1122 struct restart_block *restart;
1123 DECLARE_WAITQUEUE(wait, curr);
1124 struct futex_hash_bucket *hb;
1125 struct futex_q q;
1126 u32 uval;
1127 int ret;
1128 struct hrtimer_sleeper t;
1129 int rem = 0;
1131 if (!bitset)
1132 return -EINVAL;
1134 q.pi_state = NULL;
1135 q.bitset = bitset;
1136 retry:
1137 q.key = FUTEX_KEY_INIT;
1138 ret = get_futex_key(uaddr, fshared, &q.key);
1139 if (unlikely(ret != 0))
1140 goto out;
1142 retry_private:
1143 hb = queue_lock(&q);
1146 * Access the page AFTER the hash-bucket is locked.
1147 * Order is important:
1149 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1150 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1152 * The basic logical guarantee of a futex is that it blocks ONLY
1153 * if cond(var) is known to be true at the time of blocking, for
1154 * any cond. If we queued after testing *uaddr, that would open
1155 * a race condition where we could block indefinitely with
1156 * cond(var) false, which would violate the guarantee.
1158 * A consequence is that futex_wait() can return zero and absorb
1159 * a wakeup when *uaddr != val on entry to the syscall. This is
1160 * rare, but normal.
1162 * For shared futexes, we hold the mmap semaphore, so the mapping
1163 * cannot have changed since we looked it up in get_futex_key.
1165 ret = get_futex_value_locked(&uval, uaddr);
1167 if (unlikely(ret)) {
1168 queue_unlock(&q, hb);
1170 ret = get_user(uval, uaddr);
1171 if (ret)
1172 goto out_put_key;
1174 if (!fshared)
1175 goto retry_private;
1177 put_futex_key(fshared, &q.key);
1178 goto retry;
1180 ret = -EWOULDBLOCK;
1181 if (unlikely(uval != val)) {
1182 queue_unlock(&q, hb);
1183 goto out_put_key;
1186 /* Only actually queue if *uaddr contained val. */
1187 queue_me(&q, hb);
1190 * There might have been scheduling since the queue_me(), as we
1191 * cannot hold a spinlock across the get_user() in case it
1192 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1193 * queueing ourselves into the futex hash. This code thus has to
1194 * rely on the futex_wake() code removing us from hash when it
1195 * wakes us up.
1198 /* add_wait_queue is the barrier after __set_current_state. */
1199 __set_current_state(TASK_INTERRUPTIBLE);
1200 add_wait_queue(&q.waiter, &wait);
1202 * !plist_node_empty() is safe here without any lock.
1203 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1205 if (likely(!plist_node_empty(&q.list))) {
1206 if (!abs_time)
1207 schedule();
1208 else {
1209 hrtimer_init_on_stack(&t.timer,
1210 clockrt ? CLOCK_REALTIME :
1211 CLOCK_MONOTONIC,
1212 HRTIMER_MODE_ABS);
1213 hrtimer_init_sleeper(&t, current);
1214 hrtimer_set_expires_range_ns(&t.timer, *abs_time,
1215 current->timer_slack_ns);
1217 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
1218 if (!hrtimer_active(&t.timer))
1219 t.task = NULL;
1222 * the timer could have already expired, in which
1223 * case current would be flagged for rescheduling.
1224 * Don't bother calling schedule.
1226 if (likely(t.task))
1227 schedule();
1229 hrtimer_cancel(&t.timer);
1231 /* Flag if a timeout occured */
1232 rem = (t.task == NULL);
1234 destroy_hrtimer_on_stack(&t.timer);
1237 __set_current_state(TASK_RUNNING);
1240 * NOTE: we don't remove ourselves from the waitqueue because
1241 * we are the only user of it.
1244 /* If we were woken (and unqueued), we succeeded, whatever. */
1245 ret = 0;
1246 if (!unqueue_me(&q))
1247 goto out_put_key;
1248 ret = -ETIMEDOUT;
1249 if (rem)
1250 goto out_put_key;
1253 * We expect signal_pending(current), but another thread may
1254 * have handled it for us already.
1256 ret = -ERESTARTSYS;
1257 if (!abs_time)
1258 goto out_put_key;
1260 restart = &current_thread_info()->restart_block;
1261 restart->fn = futex_wait_restart;
1262 restart->futex.uaddr = (u32 *)uaddr;
1263 restart->futex.val = val;
1264 restart->futex.time = abs_time->tv64;
1265 restart->futex.bitset = bitset;
1266 restart->futex.flags = 0;
1268 if (fshared)
1269 restart->futex.flags |= FLAGS_SHARED;
1270 if (clockrt)
1271 restart->futex.flags |= FLAGS_CLOCKRT;
1273 ret = -ERESTART_RESTARTBLOCK;
1275 out_put_key:
1276 put_futex_key(fshared, &q.key);
1277 out:
1278 return ret;
1282 static long futex_wait_restart(struct restart_block *restart)
1284 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1285 int fshared = 0;
1286 ktime_t t;
1288 t.tv64 = restart->futex.time;
1289 restart->fn = do_no_restart_syscall;
1290 if (restart->futex.flags & FLAGS_SHARED)
1291 fshared = 1;
1292 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1293 restart->futex.bitset,
1294 restart->futex.flags & FLAGS_CLOCKRT);
1299 * Userspace tried a 0 -> TID atomic transition of the futex value
1300 * and failed. The kernel side here does the whole locking operation:
1301 * if there are waiters then it will block, it does PI, etc. (Due to
1302 * races the kernel might see a 0 value of the futex too.)
1304 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1305 int detect, ktime_t *time, int trylock)
1307 struct hrtimer_sleeper timeout, *to = NULL;
1308 struct task_struct *curr = current;
1309 struct futex_hash_bucket *hb;
1310 u32 uval, newval, curval;
1311 struct futex_q q;
1312 int ret, lock_taken, ownerdied = 0;
1314 if (refill_pi_state_cache())
1315 return -ENOMEM;
1317 if (time) {
1318 to = &timeout;
1319 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1320 HRTIMER_MODE_ABS);
1321 hrtimer_init_sleeper(to, current);
1322 hrtimer_set_expires(&to->timer, *time);
1325 q.pi_state = NULL;
1326 retry:
1327 q.key = FUTEX_KEY_INIT;
1328 ret = get_futex_key(uaddr, fshared, &q.key);
1329 if (unlikely(ret != 0))
1330 goto out;
1332 retry_private:
1333 hb = queue_lock(&q);
1335 retry_locked:
1336 ret = lock_taken = 0;
1339 * To avoid races, we attempt to take the lock here again
1340 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1341 * the locks. It will most likely not succeed.
1343 newval = task_pid_vnr(current);
1345 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1347 if (unlikely(curval == -EFAULT))
1348 goto uaddr_faulted;
1351 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1352 * situation and we return success to user space.
1354 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1355 ret = -EDEADLK;
1356 goto out_unlock_put_key;
1360 * Surprise - we got the lock. Just return to userspace:
1362 if (unlikely(!curval))
1363 goto out_unlock_put_key;
1365 uval = curval;
1368 * Set the WAITERS flag, so the owner will know it has someone
1369 * to wake at next unlock
1371 newval = curval | FUTEX_WAITERS;
1374 * There are two cases, where a futex might have no owner (the
1375 * owner TID is 0): OWNER_DIED. We take over the futex in this
1376 * case. We also do an unconditional take over, when the owner
1377 * of the futex died.
1379 * This is safe as we are protected by the hash bucket lock !
1381 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1382 /* Keep the OWNER_DIED bit */
1383 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1384 ownerdied = 0;
1385 lock_taken = 1;
1388 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1390 if (unlikely(curval == -EFAULT))
1391 goto uaddr_faulted;
1392 if (unlikely(curval != uval))
1393 goto retry_locked;
1396 * We took the lock due to owner died take over.
1398 if (unlikely(lock_taken))
1399 goto out_unlock_put_key;
1402 * We dont have the lock. Look up the PI state (or create it if
1403 * we are the first waiter):
1405 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1407 if (unlikely(ret)) {
1408 switch (ret) {
1410 case -EAGAIN:
1412 * Task is exiting and we just wait for the
1413 * exit to complete.
1415 queue_unlock(&q, hb);
1416 put_futex_key(fshared, &q.key);
1417 cond_resched();
1418 goto retry;
1420 case -ESRCH:
1422 * No owner found for this futex. Check if the
1423 * OWNER_DIED bit is set to figure out whether
1424 * this is a robust futex or not.
1426 if (get_futex_value_locked(&curval, uaddr))
1427 goto uaddr_faulted;
1430 * We simply start over in case of a robust
1431 * futex. The code above will take the futex
1432 * and return happy.
1434 if (curval & FUTEX_OWNER_DIED) {
1435 ownerdied = 1;
1436 goto retry_locked;
1438 default:
1439 goto out_unlock_put_key;
1444 * Only actually queue now that the atomic ops are done:
1446 queue_me(&q, hb);
1448 WARN_ON(!q.pi_state);
1450 * Block on the PI mutex:
1452 if (!trylock)
1453 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1454 else {
1455 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1456 /* Fixup the trylock return value: */
1457 ret = ret ? 0 : -EWOULDBLOCK;
1460 spin_lock(q.lock_ptr);
1462 if (!ret) {
1464 * Got the lock. We might not be the anticipated owner
1465 * if we did a lock-steal - fix up the PI-state in
1466 * that case:
1468 if (q.pi_state->owner != curr)
1469 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1470 } else {
1472 * Catch the rare case, where the lock was released
1473 * when we were on the way back before we locked the
1474 * hash bucket.
1476 if (q.pi_state->owner == curr) {
1478 * Try to get the rt_mutex now. This might
1479 * fail as some other task acquired the
1480 * rt_mutex after we removed ourself from the
1481 * rt_mutex waiters list.
1483 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1484 ret = 0;
1485 else {
1487 * pi_state is incorrect, some other
1488 * task did a lock steal and we
1489 * returned due to timeout or signal
1490 * without taking the rt_mutex. Too
1491 * late. We can access the
1492 * rt_mutex_owner without locking, as
1493 * the other task is now blocked on
1494 * the hash bucket lock. Fix the state
1495 * up.
1497 struct task_struct *owner;
1498 int res;
1500 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1501 res = fixup_pi_state_owner(uaddr, &q, owner,
1502 fshared);
1504 /* propagate -EFAULT, if the fixup failed */
1505 if (res)
1506 ret = res;
1508 } else {
1510 * Paranoia check. If we did not take the lock
1511 * in the trylock above, then we should not be
1512 * the owner of the rtmutex, neither the real
1513 * nor the pending one:
1515 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1516 printk(KERN_ERR "futex_lock_pi: ret = %d "
1517 "pi-mutex: %p pi-state %p\n", ret,
1518 q.pi_state->pi_mutex.owner,
1519 q.pi_state->owner);
1524 * If fixup_pi_state_owner() faulted and was unable to handle the
1525 * fault, unlock it and return the fault to userspace.
1527 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1528 rt_mutex_unlock(&q.pi_state->pi_mutex);
1530 /* Unqueue and drop the lock */
1531 unqueue_me_pi(&q);
1533 if (to)
1534 destroy_hrtimer_on_stack(&to->timer);
1535 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1537 out_unlock_put_key:
1538 queue_unlock(&q, hb);
1540 out_put_key:
1541 put_futex_key(fshared, &q.key);
1542 out:
1543 if (to)
1544 destroy_hrtimer_on_stack(&to->timer);
1545 return ret;
1547 uaddr_faulted:
1549 * We have to r/w *(int __user *)uaddr, and we have to modify it
1550 * atomically. Therefore, if we continue to fault after get_user()
1551 * below, we need to handle the fault ourselves, while still holding
1552 * the mmap_sem. This can occur if the uaddr is under contention as
1553 * we have to drop the mmap_sem in order to call get_user().
1555 queue_unlock(&q, hb);
1557 ret = get_user(uval, uaddr);
1558 if (ret)
1559 goto out_put_key;
1561 if (!fshared)
1562 goto retry_private;
1564 put_futex_key(fshared, &q.key);
1565 goto retry;
1570 * Userspace attempted a TID -> 0 atomic transition, and failed.
1571 * This is the in-kernel slowpath: we look up the PI state (if any),
1572 * and do the rt-mutex unlock.
1574 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1576 struct futex_hash_bucket *hb;
1577 struct futex_q *this, *next;
1578 u32 uval;
1579 struct plist_head *head;
1580 union futex_key key = FUTEX_KEY_INIT;
1581 int ret;
1583 retry:
1584 if (get_user(uval, uaddr))
1585 return -EFAULT;
1587 * We release only a lock we actually own:
1589 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1590 return -EPERM;
1592 ret = get_futex_key(uaddr, fshared, &key);
1593 if (unlikely(ret != 0))
1594 goto out;
1596 hb = hash_futex(&key);
1597 spin_lock(&hb->lock);
1600 * To avoid races, try to do the TID -> 0 atomic transition
1601 * again. If it succeeds then we can return without waking
1602 * anyone else up:
1604 if (!(uval & FUTEX_OWNER_DIED))
1605 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1608 if (unlikely(uval == -EFAULT))
1609 goto pi_faulted;
1611 * Rare case: we managed to release the lock atomically,
1612 * no need to wake anyone else up:
1614 if (unlikely(uval == task_pid_vnr(current)))
1615 goto out_unlock;
1618 * Ok, other tasks may need to be woken up - check waiters
1619 * and do the wakeup if necessary:
1621 head = &hb->chain;
1623 plist_for_each_entry_safe(this, next, head, list) {
1624 if (!match_futex (&this->key, &key))
1625 continue;
1626 ret = wake_futex_pi(uaddr, uval, this);
1628 * The atomic access to the futex value
1629 * generated a pagefault, so retry the
1630 * user-access and the wakeup:
1632 if (ret == -EFAULT)
1633 goto pi_faulted;
1634 goto out_unlock;
1637 * No waiters - kernel unlocks the futex:
1639 if (!(uval & FUTEX_OWNER_DIED)) {
1640 ret = unlock_futex_pi(uaddr, uval);
1641 if (ret == -EFAULT)
1642 goto pi_faulted;
1645 out_unlock:
1646 spin_unlock(&hb->lock);
1647 put_futex_key(fshared, &key);
1649 out:
1650 return ret;
1652 pi_faulted:
1654 * We have to r/w *(int __user *)uaddr, and we have to modify it
1655 * atomically. Therefore, if we continue to fault after get_user()
1656 * below, we need to handle the fault ourselves, while still holding
1657 * the mmap_sem. This can occur if the uaddr is under contention as
1658 * we have to drop the mmap_sem in order to call get_user().
1660 spin_unlock(&hb->lock);
1661 put_futex_key(fshared, &key);
1663 ret = get_user(uval, uaddr);
1664 if (!ret)
1665 goto retry;
1667 return ret;
1671 * Support for robust futexes: the kernel cleans up held futexes at
1672 * thread exit time.
1674 * Implementation: user-space maintains a per-thread list of locks it
1675 * is holding. Upon do_exit(), the kernel carefully walks this list,
1676 * and marks all locks that are owned by this thread with the
1677 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1678 * always manipulated with the lock held, so the list is private and
1679 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1680 * field, to allow the kernel to clean up if the thread dies after
1681 * acquiring the lock, but just before it could have added itself to
1682 * the list. There can only be one such pending lock.
1686 * sys_set_robust_list - set the robust-futex list head of a task
1687 * @head: pointer to the list-head
1688 * @len: length of the list-head, as userspace expects
1690 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
1691 size_t, len)
1693 if (!futex_cmpxchg_enabled)
1694 return -ENOSYS;
1696 * The kernel knows only one size for now:
1698 if (unlikely(len != sizeof(*head)))
1699 return -EINVAL;
1701 current->robust_list = head;
1703 return 0;
1707 * sys_get_robust_list - get the robust-futex list head of a task
1708 * @pid: pid of the process [zero for current task]
1709 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1710 * @len_ptr: pointer to a length field, the kernel fills in the header size
1712 SYSCALL_DEFINE3(get_robust_list, int, pid,
1713 struct robust_list_head __user * __user *, head_ptr,
1714 size_t __user *, len_ptr)
1716 struct robust_list_head __user *head;
1717 unsigned long ret;
1718 const struct cred *cred = current_cred(), *pcred;
1720 if (!futex_cmpxchg_enabled)
1721 return -ENOSYS;
1723 if (!pid)
1724 head = current->robust_list;
1725 else {
1726 struct task_struct *p;
1728 ret = -ESRCH;
1729 rcu_read_lock();
1730 p = find_task_by_vpid(pid);
1731 if (!p)
1732 goto err_unlock;
1733 ret = -EPERM;
1734 pcred = __task_cred(p);
1735 if (cred->euid != pcred->euid &&
1736 cred->euid != pcred->uid &&
1737 !capable(CAP_SYS_PTRACE))
1738 goto err_unlock;
1739 head = p->robust_list;
1740 rcu_read_unlock();
1743 if (put_user(sizeof(*head), len_ptr))
1744 return -EFAULT;
1745 return put_user(head, head_ptr);
1747 err_unlock:
1748 rcu_read_unlock();
1750 return ret;
1754 * Process a futex-list entry, check whether it's owned by the
1755 * dying task, and do notification if so:
1757 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1759 u32 uval, nval, mval;
1761 retry:
1762 if (get_user(uval, uaddr))
1763 return -1;
1765 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1767 * Ok, this dying thread is truly holding a futex
1768 * of interest. Set the OWNER_DIED bit atomically
1769 * via cmpxchg, and if the value had FUTEX_WAITERS
1770 * set, wake up a waiter (if any). (We have to do a
1771 * futex_wake() even if OWNER_DIED is already set -
1772 * to handle the rare but possible case of recursive
1773 * thread-death.) The rest of the cleanup is done in
1774 * userspace.
1776 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1777 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1779 if (nval == -EFAULT)
1780 return -1;
1782 if (nval != uval)
1783 goto retry;
1786 * Wake robust non-PI futexes here. The wakeup of
1787 * PI futexes happens in exit_pi_state():
1789 if (!pi && (uval & FUTEX_WAITERS))
1790 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
1792 return 0;
1796 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1798 static inline int fetch_robust_entry(struct robust_list __user **entry,
1799 struct robust_list __user * __user *head,
1800 int *pi)
1802 unsigned long uentry;
1804 if (get_user(uentry, (unsigned long __user *)head))
1805 return -EFAULT;
1807 *entry = (void __user *)(uentry & ~1UL);
1808 *pi = uentry & 1;
1810 return 0;
1814 * Walk curr->robust_list (very carefully, it's a userspace list!)
1815 * and mark any locks found there dead, and notify any waiters.
1817 * We silently return on any sign of list-walking problem.
1819 void exit_robust_list(struct task_struct *curr)
1821 struct robust_list_head __user *head = curr->robust_list;
1822 struct robust_list __user *entry, *next_entry, *pending;
1823 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1824 unsigned long futex_offset;
1825 int rc;
1827 if (!futex_cmpxchg_enabled)
1828 return;
1831 * Fetch the list head (which was registered earlier, via
1832 * sys_set_robust_list()):
1834 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1835 return;
1837 * Fetch the relative futex offset:
1839 if (get_user(futex_offset, &head->futex_offset))
1840 return;
1842 * Fetch any possibly pending lock-add first, and handle it
1843 * if it exists:
1845 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1846 return;
1848 next_entry = NULL; /* avoid warning with gcc */
1849 while (entry != &head->list) {
1851 * Fetch the next entry in the list before calling
1852 * handle_futex_death:
1854 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1856 * A pending lock might already be on the list, so
1857 * don't process it twice:
1859 if (entry != pending)
1860 if (handle_futex_death((void __user *)entry + futex_offset,
1861 curr, pi))
1862 return;
1863 if (rc)
1864 return;
1865 entry = next_entry;
1866 pi = next_pi;
1868 * Avoid excessively long or circular lists:
1870 if (!--limit)
1871 break;
1873 cond_resched();
1876 if (pending)
1877 handle_futex_death((void __user *)pending + futex_offset,
1878 curr, pip);
1881 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1882 u32 __user *uaddr2, u32 val2, u32 val3)
1884 int clockrt, ret = -ENOSYS;
1885 int cmd = op & FUTEX_CMD_MASK;
1886 int fshared = 0;
1888 if (!(op & FUTEX_PRIVATE_FLAG))
1889 fshared = 1;
1891 clockrt = op & FUTEX_CLOCK_REALTIME;
1892 if (clockrt && cmd != FUTEX_WAIT_BITSET)
1893 return -ENOSYS;
1895 switch (cmd) {
1896 case FUTEX_WAIT:
1897 val3 = FUTEX_BITSET_MATCH_ANY;
1898 case FUTEX_WAIT_BITSET:
1899 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1900 break;
1901 case FUTEX_WAKE:
1902 val3 = FUTEX_BITSET_MATCH_ANY;
1903 case FUTEX_WAKE_BITSET:
1904 ret = futex_wake(uaddr, fshared, val, val3);
1905 break;
1906 case FUTEX_REQUEUE:
1907 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1908 break;
1909 case FUTEX_CMP_REQUEUE:
1910 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1911 break;
1912 case FUTEX_WAKE_OP:
1913 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
1914 break;
1915 case FUTEX_LOCK_PI:
1916 if (futex_cmpxchg_enabled)
1917 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
1918 break;
1919 case FUTEX_UNLOCK_PI:
1920 if (futex_cmpxchg_enabled)
1921 ret = futex_unlock_pi(uaddr, fshared);
1922 break;
1923 case FUTEX_TRYLOCK_PI:
1924 if (futex_cmpxchg_enabled)
1925 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
1926 break;
1927 default:
1928 ret = -ENOSYS;
1930 return ret;
1934 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
1935 struct timespec __user *, utime, u32 __user *, uaddr2,
1936 u32, val3)
1938 struct timespec ts;
1939 ktime_t t, *tp = NULL;
1940 u32 val2 = 0;
1941 int cmd = op & FUTEX_CMD_MASK;
1943 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1944 cmd == FUTEX_WAIT_BITSET)) {
1945 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1946 return -EFAULT;
1947 if (!timespec_valid(&ts))
1948 return -EINVAL;
1950 t = timespec_to_ktime(ts);
1951 if (cmd == FUTEX_WAIT)
1952 t = ktime_add_safe(ktime_get(), t);
1953 tp = &t;
1956 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
1957 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1959 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1960 cmd == FUTEX_WAKE_OP)
1961 val2 = (u32) (unsigned long) utime;
1963 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1966 static int __init futex_init(void)
1968 u32 curval;
1969 int i;
1972 * This will fail and we want it. Some arch implementations do
1973 * runtime detection of the futex_atomic_cmpxchg_inatomic()
1974 * functionality. We want to know that before we call in any
1975 * of the complex code paths. Also we want to prevent
1976 * registration of robust lists in that case. NULL is
1977 * guaranteed to fault and we get -EFAULT on functional
1978 * implementation, the non functional ones will return
1979 * -ENOSYS.
1981 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
1982 if (curval == -EFAULT)
1983 futex_cmpxchg_enabled = 1;
1985 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
1986 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
1987 spin_lock_init(&futex_queues[i].lock);
1990 return 0;
1992 __initcall(futex_init);