btrfs: fix crash when trying to resume balance without the resume flag
[linux/fpc-iii.git] / mm / sparse.c
blob7af5e7a92528b4edf622a388faf3e39672144801
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * sparse memory mappings.
4 */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
21 * Permanent SPARSEMEM data:
23 * 1) mem_section - memory sections, mem_map's for valid memory
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
45 int page_to_nid(const struct page *page)
47 return section_to_node_table[page_to_section(page)];
49 EXPORT_SYMBOL(page_to_nid);
51 static void set_section_nid(unsigned long section_nr, int nid)
53 section_to_node_table[section_nr] = nid;
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
59 #endif
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
68 if (slab_is_available())
69 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 else
71 section = memblock_virt_alloc_node(array_size, nid);
73 return section;
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
78 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79 struct mem_section *section;
81 if (mem_section[root])
82 return -EEXIST;
84 section = sparse_index_alloc(nid);
85 if (!section)
86 return -ENOMEM;
88 mem_section[root] = section;
90 return 0;
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr, int nid)
95 return 0;
97 #endif
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section* ms)
102 unsigned long root_nr;
103 struct mem_section *root = NULL;
105 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107 if (!root)
108 continue;
110 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111 break;
114 VM_BUG_ON(!root);
116 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
118 #else
119 int __section_nr(struct mem_section* ms)
121 return (int)(ms - mem_section[0]);
123 #endif
126 * During early boot, before section_mem_map is used for an actual
127 * mem_map, we use section_mem_map to store the section's NUMA
128 * node. This keeps us from having to use another data structure. The
129 * node information is cleared just before we store the real mem_map.
131 static inline unsigned long sparse_encode_early_nid(int nid)
133 return (nid << SECTION_NID_SHIFT);
136 static inline int sparse_early_nid(struct mem_section *section)
138 return (section->section_mem_map >> SECTION_NID_SHIFT);
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 unsigned long *end_pfn)
145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
148 * Sanity checks - do not allow an architecture to pass
149 * in larger pfns than the maximum scope of sparsemem:
151 if (*start_pfn > max_sparsemem_pfn) {
152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 *start_pfn, *end_pfn, max_sparsemem_pfn);
155 WARN_ON_ONCE(1);
156 *start_pfn = max_sparsemem_pfn;
157 *end_pfn = max_sparsemem_pfn;
158 } else if (*end_pfn > max_sparsemem_pfn) {
159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 *start_pfn, *end_pfn, max_sparsemem_pfn);
162 WARN_ON_ONCE(1);
163 *end_pfn = max_sparsemem_pfn;
168 * There are a number of times that we loop over NR_MEM_SECTIONS,
169 * looking for section_present() on each. But, when we have very
170 * large physical address spaces, NR_MEM_SECTIONS can also be
171 * very large which makes the loops quite long.
173 * Keeping track of this gives us an easy way to break out of
174 * those loops early.
176 int __highest_present_section_nr;
177 static void section_mark_present(struct mem_section *ms)
179 int section_nr = __section_nr(ms);
181 if (section_nr > __highest_present_section_nr)
182 __highest_present_section_nr = section_nr;
184 ms->section_mem_map |= SECTION_MARKED_PRESENT;
187 static inline int next_present_section_nr(int section_nr)
189 do {
190 section_nr++;
191 if (present_section_nr(section_nr))
192 return section_nr;
193 } while ((section_nr < NR_MEM_SECTIONS) &&
194 (section_nr <= __highest_present_section_nr));
196 return -1;
198 #define for_each_present_section_nr(start, section_nr) \
199 for (section_nr = next_present_section_nr(start-1); \
200 ((section_nr >= 0) && \
201 (section_nr < NR_MEM_SECTIONS) && \
202 (section_nr <= __highest_present_section_nr)); \
203 section_nr = next_present_section_nr(section_nr))
205 /* Record a memory area against a node. */
206 void __init memory_present(int nid, unsigned long start, unsigned long end)
208 unsigned long pfn;
210 #ifdef CONFIG_SPARSEMEM_EXTREME
211 if (unlikely(!mem_section)) {
212 unsigned long size, align;
214 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
215 align = 1 << (INTERNODE_CACHE_SHIFT);
216 mem_section = memblock_virt_alloc(size, align);
218 #endif
220 start &= PAGE_SECTION_MASK;
221 mminit_validate_memmodel_limits(&start, &end);
222 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
223 unsigned long section = pfn_to_section_nr(pfn);
224 struct mem_section *ms;
226 sparse_index_init(section, nid);
227 set_section_nid(section, nid);
229 ms = __nr_to_section(section);
230 if (!ms->section_mem_map) {
231 ms->section_mem_map = sparse_encode_early_nid(nid) |
232 SECTION_IS_ONLINE;
233 section_mark_present(ms);
239 * Only used by the i386 NUMA architecures, but relatively
240 * generic code.
242 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
243 unsigned long end_pfn)
245 unsigned long pfn;
246 unsigned long nr_pages = 0;
248 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
249 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
250 if (nid != early_pfn_to_nid(pfn))
251 continue;
253 if (pfn_present(pfn))
254 nr_pages += PAGES_PER_SECTION;
257 return nr_pages * sizeof(struct page);
261 * Subtle, we encode the real pfn into the mem_map such that
262 * the identity pfn - section_mem_map will return the actual
263 * physical page frame number.
265 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
267 unsigned long coded_mem_map =
268 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
269 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
270 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
271 return coded_mem_map;
275 * Decode mem_map from the coded memmap
277 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
279 /* mask off the extra low bits of information */
280 coded_mem_map &= SECTION_MAP_MASK;
281 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
284 static int __meminit sparse_init_one_section(struct mem_section *ms,
285 unsigned long pnum, struct page *mem_map,
286 unsigned long *pageblock_bitmap)
288 if (!present_section(ms))
289 return -EINVAL;
291 ms->section_mem_map &= ~SECTION_MAP_MASK;
292 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
293 SECTION_HAS_MEM_MAP;
294 ms->pageblock_flags = pageblock_bitmap;
296 return 1;
299 unsigned long usemap_size(void)
301 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
304 #ifdef CONFIG_MEMORY_HOTPLUG
305 static unsigned long *__kmalloc_section_usemap(void)
307 return kmalloc(usemap_size(), GFP_KERNEL);
309 #endif /* CONFIG_MEMORY_HOTPLUG */
311 #ifdef CONFIG_MEMORY_HOTREMOVE
312 static unsigned long * __init
313 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
314 unsigned long size)
316 unsigned long goal, limit;
317 unsigned long *p;
318 int nid;
320 * A page may contain usemaps for other sections preventing the
321 * page being freed and making a section unremovable while
322 * other sections referencing the usemap remain active. Similarly,
323 * a pgdat can prevent a section being removed. If section A
324 * contains a pgdat and section B contains the usemap, both
325 * sections become inter-dependent. This allocates usemaps
326 * from the same section as the pgdat where possible to avoid
327 * this problem.
329 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
330 limit = goal + (1UL << PA_SECTION_SHIFT);
331 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
332 again:
333 p = memblock_virt_alloc_try_nid_nopanic(size,
334 SMP_CACHE_BYTES, goal, limit,
335 nid);
336 if (!p && limit) {
337 limit = 0;
338 goto again;
340 return p;
343 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
345 unsigned long usemap_snr, pgdat_snr;
346 static unsigned long old_usemap_snr;
347 static unsigned long old_pgdat_snr;
348 struct pglist_data *pgdat = NODE_DATA(nid);
349 int usemap_nid;
351 /* First call */
352 if (!old_usemap_snr) {
353 old_usemap_snr = NR_MEM_SECTIONS;
354 old_pgdat_snr = NR_MEM_SECTIONS;
357 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
358 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
359 if (usemap_snr == pgdat_snr)
360 return;
362 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
363 /* skip redundant message */
364 return;
366 old_usemap_snr = usemap_snr;
367 old_pgdat_snr = pgdat_snr;
369 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
370 if (usemap_nid != nid) {
371 pr_info("node %d must be removed before remove section %ld\n",
372 nid, usemap_snr);
373 return;
376 * There is a circular dependency.
377 * Some platforms allow un-removable section because they will just
378 * gather other removable sections for dynamic partitioning.
379 * Just notify un-removable section's number here.
381 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
382 usemap_snr, pgdat_snr, nid);
384 #else
385 static unsigned long * __init
386 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
387 unsigned long size)
389 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
392 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
395 #endif /* CONFIG_MEMORY_HOTREMOVE */
397 static void __init sparse_early_usemaps_alloc_node(void *data,
398 unsigned long pnum_begin,
399 unsigned long pnum_end,
400 unsigned long usemap_count, int nodeid)
402 void *usemap;
403 unsigned long pnum;
404 unsigned long **usemap_map = (unsigned long **)data;
405 int size = usemap_size();
407 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
408 size * usemap_count);
409 if (!usemap) {
410 pr_warn("%s: allocation failed\n", __func__);
411 return;
414 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
415 if (!present_section_nr(pnum))
416 continue;
417 usemap_map[pnum] = usemap;
418 usemap += size;
419 check_usemap_section_nr(nodeid, usemap_map[pnum]);
423 #ifndef CONFIG_SPARSEMEM_VMEMMAP
424 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
425 struct vmem_altmap *altmap)
427 struct page *map;
428 unsigned long size;
430 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
431 if (map)
432 return map;
434 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
435 map = memblock_virt_alloc_try_nid(size,
436 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
437 BOOTMEM_ALLOC_ACCESSIBLE, nid);
438 return map;
440 void __init sparse_mem_maps_populate_node(struct page **map_map,
441 unsigned long pnum_begin,
442 unsigned long pnum_end,
443 unsigned long map_count, int nodeid)
445 void *map;
446 unsigned long pnum;
447 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
449 map = alloc_remap(nodeid, size * map_count);
450 if (map) {
451 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
452 if (!present_section_nr(pnum))
453 continue;
454 map_map[pnum] = map;
455 map += size;
457 return;
460 size = PAGE_ALIGN(size);
461 map = memblock_virt_alloc_try_nid_raw(size * map_count,
462 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
463 BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
464 if (map) {
465 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
466 if (!present_section_nr(pnum))
467 continue;
468 map_map[pnum] = map;
469 map += size;
471 return;
474 /* fallback */
475 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
476 struct mem_section *ms;
478 if (!present_section_nr(pnum))
479 continue;
480 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
481 if (map_map[pnum])
482 continue;
483 ms = __nr_to_section(pnum);
484 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
485 __func__);
486 ms->section_mem_map = 0;
489 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
491 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
492 static void __init sparse_early_mem_maps_alloc_node(void *data,
493 unsigned long pnum_begin,
494 unsigned long pnum_end,
495 unsigned long map_count, int nodeid)
497 struct page **map_map = (struct page **)data;
498 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
499 map_count, nodeid);
501 #else
502 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
504 struct page *map;
505 struct mem_section *ms = __nr_to_section(pnum);
506 int nid = sparse_early_nid(ms);
508 map = sparse_mem_map_populate(pnum, nid, NULL);
509 if (map)
510 return map;
512 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
513 __func__);
514 ms->section_mem_map = 0;
515 return NULL;
517 #endif
519 void __weak __meminit vmemmap_populate_print_last(void)
524 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
525 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
527 static void __init alloc_usemap_and_memmap(void (*alloc_func)
528 (void *, unsigned long, unsigned long,
529 unsigned long, int), void *data)
531 unsigned long pnum;
532 unsigned long map_count;
533 int nodeid_begin = 0;
534 unsigned long pnum_begin = 0;
536 for_each_present_section_nr(0, pnum) {
537 struct mem_section *ms;
539 ms = __nr_to_section(pnum);
540 nodeid_begin = sparse_early_nid(ms);
541 pnum_begin = pnum;
542 break;
544 map_count = 1;
545 for_each_present_section_nr(pnum_begin + 1, pnum) {
546 struct mem_section *ms;
547 int nodeid;
549 ms = __nr_to_section(pnum);
550 nodeid = sparse_early_nid(ms);
551 if (nodeid == nodeid_begin) {
552 map_count++;
553 continue;
555 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
556 alloc_func(data, pnum_begin, pnum,
557 map_count, nodeid_begin);
558 /* new start, update count etc*/
559 nodeid_begin = nodeid;
560 pnum_begin = pnum;
561 map_count = 1;
563 /* ok, last chunk */
564 alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
565 map_count, nodeid_begin);
569 * Allocate the accumulated non-linear sections, allocate a mem_map
570 * for each and record the physical to section mapping.
572 void __init sparse_init(void)
574 unsigned long pnum;
575 struct page *map;
576 unsigned long *usemap;
577 unsigned long **usemap_map;
578 int size;
579 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
580 int size2;
581 struct page **map_map;
582 #endif
584 /* see include/linux/mmzone.h 'struct mem_section' definition */
585 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
587 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
588 set_pageblock_order();
591 * map is using big page (aka 2M in x86 64 bit)
592 * usemap is less one page (aka 24 bytes)
593 * so alloc 2M (with 2M align) and 24 bytes in turn will
594 * make next 2M slip to one more 2M later.
595 * then in big system, the memory will have a lot of holes...
596 * here try to allocate 2M pages continuously.
598 * powerpc need to call sparse_init_one_section right after each
599 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
601 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
602 usemap_map = memblock_virt_alloc(size, 0);
603 if (!usemap_map)
604 panic("can not allocate usemap_map\n");
605 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
606 (void *)usemap_map);
608 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
609 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
610 map_map = memblock_virt_alloc(size2, 0);
611 if (!map_map)
612 panic("can not allocate map_map\n");
613 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
614 (void *)map_map);
615 #endif
617 for_each_present_section_nr(0, pnum) {
618 usemap = usemap_map[pnum];
619 if (!usemap)
620 continue;
622 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
623 map = map_map[pnum];
624 #else
625 map = sparse_early_mem_map_alloc(pnum);
626 #endif
627 if (!map)
628 continue;
630 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
631 usemap);
634 vmemmap_populate_print_last();
636 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
637 memblock_free_early(__pa(map_map), size2);
638 #endif
639 memblock_free_early(__pa(usemap_map), size);
642 #ifdef CONFIG_MEMORY_HOTPLUG
644 /* Mark all memory sections within the pfn range as online */
645 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
647 unsigned long pfn;
649 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
650 unsigned long section_nr = pfn_to_section_nr(pfn);
651 struct mem_section *ms;
653 /* onlining code should never touch invalid ranges */
654 if (WARN_ON(!valid_section_nr(section_nr)))
655 continue;
657 ms = __nr_to_section(section_nr);
658 ms->section_mem_map |= SECTION_IS_ONLINE;
662 #ifdef CONFIG_MEMORY_HOTREMOVE
663 /* Mark all memory sections within the pfn range as online */
664 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
666 unsigned long pfn;
668 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
669 unsigned long section_nr = pfn_to_section_nr(start_pfn);
670 struct mem_section *ms;
673 * TODO this needs some double checking. Offlining code makes
674 * sure to check pfn_valid but those checks might be just bogus
676 if (WARN_ON(!valid_section_nr(section_nr)))
677 continue;
679 ms = __nr_to_section(section_nr);
680 ms->section_mem_map &= ~SECTION_IS_ONLINE;
683 #endif
685 #ifdef CONFIG_SPARSEMEM_VMEMMAP
686 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
687 struct vmem_altmap *altmap)
689 /* This will make the necessary allocations eventually. */
690 return sparse_mem_map_populate(pnum, nid, altmap);
692 static void __kfree_section_memmap(struct page *memmap,
693 struct vmem_altmap *altmap)
695 unsigned long start = (unsigned long)memmap;
696 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
698 vmemmap_free(start, end, altmap);
700 #ifdef CONFIG_MEMORY_HOTREMOVE
701 static void free_map_bootmem(struct page *memmap)
703 unsigned long start = (unsigned long)memmap;
704 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
706 vmemmap_free(start, end, NULL);
708 #endif /* CONFIG_MEMORY_HOTREMOVE */
709 #else
710 static struct page *__kmalloc_section_memmap(void)
712 struct page *page, *ret;
713 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
715 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
716 if (page)
717 goto got_map_page;
719 ret = vmalloc(memmap_size);
720 if (ret)
721 goto got_map_ptr;
723 return NULL;
724 got_map_page:
725 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
726 got_map_ptr:
728 return ret;
731 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
732 struct vmem_altmap *altmap)
734 return __kmalloc_section_memmap();
737 static void __kfree_section_memmap(struct page *memmap,
738 struct vmem_altmap *altmap)
740 if (is_vmalloc_addr(memmap))
741 vfree(memmap);
742 else
743 free_pages((unsigned long)memmap,
744 get_order(sizeof(struct page) * PAGES_PER_SECTION));
747 #ifdef CONFIG_MEMORY_HOTREMOVE
748 static void free_map_bootmem(struct page *memmap)
750 unsigned long maps_section_nr, removing_section_nr, i;
751 unsigned long magic, nr_pages;
752 struct page *page = virt_to_page(memmap);
754 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
755 >> PAGE_SHIFT;
757 for (i = 0; i < nr_pages; i++, page++) {
758 magic = (unsigned long) page->freelist;
760 BUG_ON(magic == NODE_INFO);
762 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
763 removing_section_nr = page_private(page);
766 * When this function is called, the removing section is
767 * logical offlined state. This means all pages are isolated
768 * from page allocator. If removing section's memmap is placed
769 * on the same section, it must not be freed.
770 * If it is freed, page allocator may allocate it which will
771 * be removed physically soon.
773 if (maps_section_nr != removing_section_nr)
774 put_page_bootmem(page);
777 #endif /* CONFIG_MEMORY_HOTREMOVE */
778 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
781 * returns the number of sections whose mem_maps were properly
782 * set. If this is <=0, then that means that the passed-in
783 * map was not consumed and must be freed.
785 int __meminit sparse_add_one_section(struct pglist_data *pgdat,
786 unsigned long start_pfn, struct vmem_altmap *altmap)
788 unsigned long section_nr = pfn_to_section_nr(start_pfn);
789 struct mem_section *ms;
790 struct page *memmap;
791 unsigned long *usemap;
792 unsigned long flags;
793 int ret;
796 * no locking for this, because it does its own
797 * plus, it does a kmalloc
799 ret = sparse_index_init(section_nr, pgdat->node_id);
800 if (ret < 0 && ret != -EEXIST)
801 return ret;
802 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
803 if (!memmap)
804 return -ENOMEM;
805 usemap = __kmalloc_section_usemap();
806 if (!usemap) {
807 __kfree_section_memmap(memmap, altmap);
808 return -ENOMEM;
811 pgdat_resize_lock(pgdat, &flags);
813 ms = __pfn_to_section(start_pfn);
814 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
815 ret = -EEXIST;
816 goto out;
819 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
821 section_mark_present(ms);
823 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
825 out:
826 pgdat_resize_unlock(pgdat, &flags);
827 if (ret <= 0) {
828 kfree(usemap);
829 __kfree_section_memmap(memmap, altmap);
831 return ret;
834 #ifdef CONFIG_MEMORY_HOTREMOVE
835 #ifdef CONFIG_MEMORY_FAILURE
836 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
838 int i;
840 if (!memmap)
841 return;
843 for (i = 0; i < nr_pages; i++) {
844 if (PageHWPoison(&memmap[i])) {
845 atomic_long_sub(1, &num_poisoned_pages);
846 ClearPageHWPoison(&memmap[i]);
850 #else
851 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
854 #endif
856 static void free_section_usemap(struct page *memmap, unsigned long *usemap,
857 struct vmem_altmap *altmap)
859 struct page *usemap_page;
861 if (!usemap)
862 return;
864 usemap_page = virt_to_page(usemap);
866 * Check to see if allocation came from hot-plug-add
868 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
869 kfree(usemap);
870 if (memmap)
871 __kfree_section_memmap(memmap, altmap);
872 return;
876 * The usemap came from bootmem. This is packed with other usemaps
877 * on the section which has pgdat at boot time. Just keep it as is now.
880 if (memmap)
881 free_map_bootmem(memmap);
884 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
885 unsigned long map_offset, struct vmem_altmap *altmap)
887 struct page *memmap = NULL;
888 unsigned long *usemap = NULL, flags;
889 struct pglist_data *pgdat = zone->zone_pgdat;
891 pgdat_resize_lock(pgdat, &flags);
892 if (ms->section_mem_map) {
893 usemap = ms->pageblock_flags;
894 memmap = sparse_decode_mem_map(ms->section_mem_map,
895 __section_nr(ms));
896 ms->section_mem_map = 0;
897 ms->pageblock_flags = NULL;
899 pgdat_resize_unlock(pgdat, &flags);
901 clear_hwpoisoned_pages(memmap + map_offset,
902 PAGES_PER_SECTION - map_offset);
903 free_section_usemap(memmap, usemap, altmap);
905 #endif /* CONFIG_MEMORY_HOTREMOVE */
906 #endif /* CONFIG_MEMORY_HOTPLUG */