4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
45 static void free_swap_count_continuations(struct swap_info_struct
*);
46 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
48 DEFINE_SPINLOCK(swap_lock
);
49 static unsigned int nr_swapfiles
;
50 atomic_long_t nr_swap_pages
;
52 * Some modules use swappable objects and may try to swap them out under
53 * memory pressure (via the shrinker). Before doing so, they may wish to
54 * check to see if any swap space is available.
56 EXPORT_SYMBOL_GPL(nr_swap_pages
);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages
;
59 static int least_priority
;
61 static const char Bad_file
[] = "Bad swap file entry ";
62 static const char Unused_file
[] = "Unused swap file entry ";
63 static const char Bad_offset
[] = "Bad swap offset entry ";
64 static const char Unused_offset
[] = "Unused swap offset entry ";
67 * all active swap_info_structs
68 * protected with swap_lock, and ordered by priority.
70 PLIST_HEAD(swap_active_head
);
73 * all available (active, not full) swap_info_structs
74 * protected with swap_avail_lock, ordered by priority.
75 * This is used by get_swap_page() instead of swap_active_head
76 * because swap_active_head includes all swap_info_structs,
77 * but get_swap_page() doesn't need to look at full ones.
78 * This uses its own lock instead of swap_lock because when a
79 * swap_info_struct changes between not-full/full, it needs to
80 * add/remove itself to/from this list, but the swap_info_struct->lock
81 * is held and the locking order requires swap_lock to be taken
82 * before any swap_info_struct->lock.
84 static PLIST_HEAD(swap_avail_head
);
85 static DEFINE_SPINLOCK(swap_avail_lock
);
87 struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
89 static DEFINE_MUTEX(swapon_mutex
);
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
95 static inline unsigned char swap_count(unsigned char ent
)
97 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
100 /* returns 1 if swap entry is freed */
102 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
104 swp_entry_t entry
= swp_entry(si
->type
, offset
);
108 page
= find_get_page(swap_address_space(entry
), swp_offset(entry
));
112 * This function is called from scan_swap_map() and it's called
113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 * We have to use trylock for avoiding deadlock. This is a special
115 * case and you should use try_to_free_swap() with explicit lock_page()
116 * in usual operations.
118 if (trylock_page(page
)) {
119 ret
= try_to_free_swap(page
);
127 * swapon tell device that all the old swap contents can be discarded,
128 * to allow the swap device to optimize its wear-levelling.
130 static int discard_swap(struct swap_info_struct
*si
)
132 struct swap_extent
*se
;
133 sector_t start_block
;
137 /* Do not discard the swap header page! */
138 se
= &si
->first_swap_extent
;
139 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
140 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
142 err
= blkdev_issue_discard(si
->bdev
, start_block
,
143 nr_blocks
, GFP_KERNEL
, 0);
149 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
150 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
151 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
153 err
= blkdev_issue_discard(si
->bdev
, start_block
,
154 nr_blocks
, GFP_KERNEL
, 0);
160 return err
; /* That will often be -EOPNOTSUPP */
164 * swap allocation tell device that a cluster of swap can now be discarded,
165 * to allow the swap device to optimize its wear-levelling.
167 static void discard_swap_cluster(struct swap_info_struct
*si
,
168 pgoff_t start_page
, pgoff_t nr_pages
)
170 struct swap_extent
*se
= si
->curr_swap_extent
;
171 int found_extent
= 0;
174 if (se
->start_page
<= start_page
&&
175 start_page
< se
->start_page
+ se
->nr_pages
) {
176 pgoff_t offset
= start_page
- se
->start_page
;
177 sector_t start_block
= se
->start_block
+ offset
;
178 sector_t nr_blocks
= se
->nr_pages
- offset
;
180 if (nr_blocks
> nr_pages
)
181 nr_blocks
= nr_pages
;
182 start_page
+= nr_blocks
;
183 nr_pages
-= nr_blocks
;
186 si
->curr_swap_extent
= se
;
188 start_block
<<= PAGE_SHIFT
- 9;
189 nr_blocks
<<= PAGE_SHIFT
- 9;
190 if (blkdev_issue_discard(si
->bdev
, start_block
,
191 nr_blocks
, GFP_NOIO
, 0))
195 se
= list_next_entry(se
, list
);
199 #define SWAPFILE_CLUSTER 256
200 #define LATENCY_LIMIT 256
202 static inline void cluster_set_flag(struct swap_cluster_info
*info
,
208 static inline unsigned int cluster_count(struct swap_cluster_info
*info
)
213 static inline void cluster_set_count(struct swap_cluster_info
*info
,
219 static inline void cluster_set_count_flag(struct swap_cluster_info
*info
,
220 unsigned int c
, unsigned int f
)
226 static inline unsigned int cluster_next(struct swap_cluster_info
*info
)
231 static inline void cluster_set_next(struct swap_cluster_info
*info
,
237 static inline void cluster_set_next_flag(struct swap_cluster_info
*info
,
238 unsigned int n
, unsigned int f
)
244 static inline bool cluster_is_free(struct swap_cluster_info
*info
)
246 return info
->flags
& CLUSTER_FLAG_FREE
;
249 static inline bool cluster_is_null(struct swap_cluster_info
*info
)
251 return info
->flags
& CLUSTER_FLAG_NEXT_NULL
;
254 static inline void cluster_set_null(struct swap_cluster_info
*info
)
256 info
->flags
= CLUSTER_FLAG_NEXT_NULL
;
260 static inline bool cluster_list_empty(struct swap_cluster_list
*list
)
262 return cluster_is_null(&list
->head
);
265 static inline unsigned int cluster_list_first(struct swap_cluster_list
*list
)
267 return cluster_next(&list
->head
);
270 static void cluster_list_init(struct swap_cluster_list
*list
)
272 cluster_set_null(&list
->head
);
273 cluster_set_null(&list
->tail
);
276 static void cluster_list_add_tail(struct swap_cluster_list
*list
,
277 struct swap_cluster_info
*ci
,
280 if (cluster_list_empty(list
)) {
281 cluster_set_next_flag(&list
->head
, idx
, 0);
282 cluster_set_next_flag(&list
->tail
, idx
, 0);
284 unsigned int tail
= cluster_next(&list
->tail
);
286 cluster_set_next(&ci
[tail
], idx
);
287 cluster_set_next_flag(&list
->tail
, idx
, 0);
291 static unsigned int cluster_list_del_first(struct swap_cluster_list
*list
,
292 struct swap_cluster_info
*ci
)
296 idx
= cluster_next(&list
->head
);
297 if (cluster_next(&list
->tail
) == idx
) {
298 cluster_set_null(&list
->head
);
299 cluster_set_null(&list
->tail
);
301 cluster_set_next_flag(&list
->head
,
302 cluster_next(&ci
[idx
]), 0);
307 /* Add a cluster to discard list and schedule it to do discard */
308 static void swap_cluster_schedule_discard(struct swap_info_struct
*si
,
312 * If scan_swap_map() can't find a free cluster, it will check
313 * si->swap_map directly. To make sure the discarding cluster isn't
314 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
315 * will be cleared after discard
317 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
318 SWAP_MAP_BAD
, SWAPFILE_CLUSTER
);
320 cluster_list_add_tail(&si
->discard_clusters
, si
->cluster_info
, idx
);
322 schedule_work(&si
->discard_work
);
326 * Doing discard actually. After a cluster discard is finished, the cluster
327 * will be added to free cluster list. caller should hold si->lock.
329 static void swap_do_scheduled_discard(struct swap_info_struct
*si
)
331 struct swap_cluster_info
*info
;
334 info
= si
->cluster_info
;
336 while (!cluster_list_empty(&si
->discard_clusters
)) {
337 idx
= cluster_list_del_first(&si
->discard_clusters
, info
);
338 spin_unlock(&si
->lock
);
340 discard_swap_cluster(si
, idx
* SWAPFILE_CLUSTER
,
343 spin_lock(&si
->lock
);
344 cluster_set_flag(&info
[idx
], CLUSTER_FLAG_FREE
);
345 cluster_list_add_tail(&si
->free_clusters
, info
, idx
);
346 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
347 0, SWAPFILE_CLUSTER
);
351 static void swap_discard_work(struct work_struct
*work
)
353 struct swap_info_struct
*si
;
355 si
= container_of(work
, struct swap_info_struct
, discard_work
);
357 spin_lock(&si
->lock
);
358 swap_do_scheduled_discard(si
);
359 spin_unlock(&si
->lock
);
363 * The cluster corresponding to page_nr will be used. The cluster will be
364 * removed from free cluster list and its usage counter will be increased.
366 static void inc_cluster_info_page(struct swap_info_struct
*p
,
367 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
369 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
373 if (cluster_is_free(&cluster_info
[idx
])) {
374 VM_BUG_ON(cluster_list_first(&p
->free_clusters
) != idx
);
375 cluster_list_del_first(&p
->free_clusters
, cluster_info
);
376 cluster_set_count_flag(&cluster_info
[idx
], 0, 0);
379 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) >= SWAPFILE_CLUSTER
);
380 cluster_set_count(&cluster_info
[idx
],
381 cluster_count(&cluster_info
[idx
]) + 1);
385 * The cluster corresponding to page_nr decreases one usage. If the usage
386 * counter becomes 0, which means no page in the cluster is in using, we can
387 * optionally discard the cluster and add it to free cluster list.
389 static void dec_cluster_info_page(struct swap_info_struct
*p
,
390 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
392 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
397 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) == 0);
398 cluster_set_count(&cluster_info
[idx
],
399 cluster_count(&cluster_info
[idx
]) - 1);
401 if (cluster_count(&cluster_info
[idx
]) == 0) {
403 * If the swap is discardable, prepare discard the cluster
404 * instead of free it immediately. The cluster will be freed
407 if ((p
->flags
& (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) ==
408 (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) {
409 swap_cluster_schedule_discard(p
, idx
);
413 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
414 cluster_list_add_tail(&p
->free_clusters
, cluster_info
, idx
);
419 * It's possible scan_swap_map() uses a free cluster in the middle of free
420 * cluster list. Avoiding such abuse to avoid list corruption.
423 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct
*si
,
424 unsigned long offset
)
426 struct percpu_cluster
*percpu_cluster
;
429 offset
/= SWAPFILE_CLUSTER
;
430 conflict
= !cluster_list_empty(&si
->free_clusters
) &&
431 offset
!= cluster_list_first(&si
->free_clusters
) &&
432 cluster_is_free(&si
->cluster_info
[offset
]);
437 percpu_cluster
= this_cpu_ptr(si
->percpu_cluster
);
438 cluster_set_null(&percpu_cluster
->index
);
443 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
444 * might involve allocating a new cluster for current CPU too.
446 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct
*si
,
447 unsigned long *offset
, unsigned long *scan_base
)
449 struct percpu_cluster
*cluster
;
454 cluster
= this_cpu_ptr(si
->percpu_cluster
);
455 if (cluster_is_null(&cluster
->index
)) {
456 if (!cluster_list_empty(&si
->free_clusters
)) {
457 cluster
->index
= si
->free_clusters
.head
;
458 cluster
->next
= cluster_next(&cluster
->index
) *
460 } else if (!cluster_list_empty(&si
->discard_clusters
)) {
462 * we don't have free cluster but have some clusters in
463 * discarding, do discard now and reclaim them
465 swap_do_scheduled_discard(si
);
466 *scan_base
= *offset
= si
->cluster_next
;
475 * Other CPUs can use our cluster if they can't find a free cluster,
476 * check if there is still free entry in the cluster
479 while (tmp
< si
->max
&& tmp
< (cluster_next(&cluster
->index
) + 1) *
481 if (!si
->swap_map
[tmp
]) {
488 cluster_set_null(&cluster
->index
);
491 cluster
->next
= tmp
+ 1;
496 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
499 unsigned long offset
;
500 unsigned long scan_base
;
501 unsigned long last_in_cluster
= 0;
502 int latency_ration
= LATENCY_LIMIT
;
505 * We try to cluster swap pages by allocating them sequentially
506 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
507 * way, however, we resort to first-free allocation, starting
508 * a new cluster. This prevents us from scattering swap pages
509 * all over the entire swap partition, so that we reduce
510 * overall disk seek times between swap pages. -- sct
511 * But we do now try to find an empty cluster. -Andrea
512 * And we let swap pages go all over an SSD partition. Hugh
515 si
->flags
+= SWP_SCANNING
;
516 scan_base
= offset
= si
->cluster_next
;
519 if (si
->cluster_info
) {
520 scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
);
524 if (unlikely(!si
->cluster_nr
--)) {
525 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
526 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
530 spin_unlock(&si
->lock
);
533 * If seek is expensive, start searching for new cluster from
534 * start of partition, to minimize the span of allocated swap.
535 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
536 * case, just handled by scan_swap_map_try_ssd_cluster() above.
538 scan_base
= offset
= si
->lowest_bit
;
539 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
541 /* Locate the first empty (unaligned) cluster */
542 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
543 if (si
->swap_map
[offset
])
544 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
545 else if (offset
== last_in_cluster
) {
546 spin_lock(&si
->lock
);
547 offset
-= SWAPFILE_CLUSTER
- 1;
548 si
->cluster_next
= offset
;
549 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
552 if (unlikely(--latency_ration
< 0)) {
554 latency_ration
= LATENCY_LIMIT
;
559 spin_lock(&si
->lock
);
560 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
564 if (si
->cluster_info
) {
565 while (scan_swap_map_ssd_cluster_conflict(si
, offset
))
566 scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
);
568 if (!(si
->flags
& SWP_WRITEOK
))
570 if (!si
->highest_bit
)
572 if (offset
> si
->highest_bit
)
573 scan_base
= offset
= si
->lowest_bit
;
575 /* reuse swap entry of cache-only swap if not busy. */
576 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
578 spin_unlock(&si
->lock
);
579 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
580 spin_lock(&si
->lock
);
581 /* entry was freed successfully, try to use this again */
584 goto scan
; /* check next one */
587 if (si
->swap_map
[offset
])
590 if (offset
== si
->lowest_bit
)
592 if (offset
== si
->highest_bit
)
595 if (si
->inuse_pages
== si
->pages
) {
596 si
->lowest_bit
= si
->max
;
598 spin_lock(&swap_avail_lock
);
599 plist_del(&si
->avail_list
, &swap_avail_head
);
600 spin_unlock(&swap_avail_lock
);
602 si
->swap_map
[offset
] = usage
;
603 inc_cluster_info_page(si
, si
->cluster_info
, offset
);
604 si
->cluster_next
= offset
+ 1;
605 si
->flags
-= SWP_SCANNING
;
610 spin_unlock(&si
->lock
);
611 while (++offset
<= si
->highest_bit
) {
612 if (!si
->swap_map
[offset
]) {
613 spin_lock(&si
->lock
);
616 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
617 spin_lock(&si
->lock
);
620 if (unlikely(--latency_ration
< 0)) {
622 latency_ration
= LATENCY_LIMIT
;
625 offset
= si
->lowest_bit
;
626 while (offset
< scan_base
) {
627 if (!si
->swap_map
[offset
]) {
628 spin_lock(&si
->lock
);
631 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
632 spin_lock(&si
->lock
);
635 if (unlikely(--latency_ration
< 0)) {
637 latency_ration
= LATENCY_LIMIT
;
641 spin_lock(&si
->lock
);
644 si
->flags
-= SWP_SCANNING
;
648 swp_entry_t
get_swap_page(void)
650 struct swap_info_struct
*si
, *next
;
653 if (atomic_long_read(&nr_swap_pages
) <= 0)
655 atomic_long_dec(&nr_swap_pages
);
657 spin_lock(&swap_avail_lock
);
660 plist_for_each_entry_safe(si
, next
, &swap_avail_head
, avail_list
) {
661 /* requeue si to after same-priority siblings */
662 plist_requeue(&si
->avail_list
, &swap_avail_head
);
663 spin_unlock(&swap_avail_lock
);
664 spin_lock(&si
->lock
);
665 if (!si
->highest_bit
|| !(si
->flags
& SWP_WRITEOK
)) {
666 spin_lock(&swap_avail_lock
);
667 if (plist_node_empty(&si
->avail_list
)) {
668 spin_unlock(&si
->lock
);
671 WARN(!si
->highest_bit
,
672 "swap_info %d in list but !highest_bit\n",
674 WARN(!(si
->flags
& SWP_WRITEOK
),
675 "swap_info %d in list but !SWP_WRITEOK\n",
677 plist_del(&si
->avail_list
, &swap_avail_head
);
678 spin_unlock(&si
->lock
);
682 /* This is called for allocating swap entry for cache */
683 offset
= scan_swap_map(si
, SWAP_HAS_CACHE
);
684 spin_unlock(&si
->lock
);
686 return swp_entry(si
->type
, offset
);
687 pr_debug("scan_swap_map of si %d failed to find offset\n",
689 spin_lock(&swap_avail_lock
);
692 * if we got here, it's likely that si was almost full before,
693 * and since scan_swap_map() can drop the si->lock, multiple
694 * callers probably all tried to get a page from the same si
695 * and it filled up before we could get one; or, the si filled
696 * up between us dropping swap_avail_lock and taking si->lock.
697 * Since we dropped the swap_avail_lock, the swap_avail_head
698 * list may have been modified; so if next is still in the
699 * swap_avail_head list then try it, otherwise start over.
701 if (plist_node_empty(&next
->avail_list
))
705 spin_unlock(&swap_avail_lock
);
707 atomic_long_inc(&nr_swap_pages
);
709 return (swp_entry_t
) {0};
712 /* The only caller of this function is now suspend routine */
713 swp_entry_t
get_swap_page_of_type(int type
)
715 struct swap_info_struct
*si
;
718 si
= swap_info
[type
];
719 spin_lock(&si
->lock
);
720 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
721 atomic_long_dec(&nr_swap_pages
);
722 /* This is called for allocating swap entry, not cache */
723 offset
= scan_swap_map(si
, 1);
725 spin_unlock(&si
->lock
);
726 return swp_entry(type
, offset
);
728 atomic_long_inc(&nr_swap_pages
);
730 spin_unlock(&si
->lock
);
731 return (swp_entry_t
) {0};
734 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
736 struct swap_info_struct
*p
;
737 unsigned long offset
, type
;
741 type
= swp_type(entry
);
742 if (type
>= nr_swapfiles
)
745 if (!(p
->flags
& SWP_USED
))
747 offset
= swp_offset(entry
);
748 if (offset
>= p
->max
)
750 if (!p
->swap_map
[offset
])
756 pr_err("swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
759 pr_err("swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
762 pr_err("swap_free: %s%08lx\n", Unused_file
, entry
.val
);
765 pr_err("swap_free: %s%08lx\n", Bad_file
, entry
.val
);
770 static unsigned char swap_entry_free(struct swap_info_struct
*p
,
771 swp_entry_t entry
, unsigned char usage
)
773 unsigned long offset
= swp_offset(entry
);
775 unsigned char has_cache
;
777 count
= p
->swap_map
[offset
];
778 has_cache
= count
& SWAP_HAS_CACHE
;
779 count
&= ~SWAP_HAS_CACHE
;
781 if (usage
== SWAP_HAS_CACHE
) {
782 VM_BUG_ON(!has_cache
);
784 } else if (count
== SWAP_MAP_SHMEM
) {
786 * Or we could insist on shmem.c using a special
787 * swap_shmem_free() and free_shmem_swap_and_cache()...
790 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
791 if (count
== COUNT_CONTINUED
) {
792 if (swap_count_continued(p
, offset
, count
))
793 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
795 count
= SWAP_MAP_MAX
;
800 usage
= count
| has_cache
;
801 p
->swap_map
[offset
] = usage
;
803 /* free if no reference */
805 mem_cgroup_uncharge_swap(entry
);
806 dec_cluster_info_page(p
, p
->cluster_info
, offset
);
807 if (offset
< p
->lowest_bit
)
808 p
->lowest_bit
= offset
;
809 if (offset
> p
->highest_bit
) {
810 bool was_full
= !p
->highest_bit
;
811 p
->highest_bit
= offset
;
812 if (was_full
&& (p
->flags
& SWP_WRITEOK
)) {
813 spin_lock(&swap_avail_lock
);
814 WARN_ON(!plist_node_empty(&p
->avail_list
));
815 if (plist_node_empty(&p
->avail_list
))
816 plist_add(&p
->avail_list
,
818 spin_unlock(&swap_avail_lock
);
821 atomic_long_inc(&nr_swap_pages
);
823 frontswap_invalidate_page(p
->type
, offset
);
824 if (p
->flags
& SWP_BLKDEV
) {
825 struct gendisk
*disk
= p
->bdev
->bd_disk
;
826 if (disk
->fops
->swap_slot_free_notify
)
827 disk
->fops
->swap_slot_free_notify(p
->bdev
,
836 * Caller has made sure that the swap device corresponding to entry
837 * is still around or has not been recycled.
839 void swap_free(swp_entry_t entry
)
841 struct swap_info_struct
*p
;
843 p
= swap_info_get(entry
);
845 swap_entry_free(p
, entry
, 1);
846 spin_unlock(&p
->lock
);
851 * Called after dropping swapcache to decrease refcnt to swap entries.
853 void swapcache_free(swp_entry_t entry
)
855 struct swap_info_struct
*p
;
857 p
= swap_info_get(entry
);
859 swap_entry_free(p
, entry
, SWAP_HAS_CACHE
);
860 spin_unlock(&p
->lock
);
865 * How many references to page are currently swapped out?
866 * This does not give an exact answer when swap count is continued,
867 * but does include the high COUNT_CONTINUED flag to allow for that.
869 int page_swapcount(struct page
*page
)
872 struct swap_info_struct
*p
;
875 entry
.val
= page_private(page
);
876 p
= swap_info_get(entry
);
878 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
879 spin_unlock(&p
->lock
);
885 * How many references to @entry are currently swapped out?
886 * This considers COUNT_CONTINUED so it returns exact answer.
888 int swp_swapcount(swp_entry_t entry
)
890 int count
, tmp_count
, n
;
891 struct swap_info_struct
*p
;
896 p
= swap_info_get(entry
);
900 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
901 if (!(count
& COUNT_CONTINUED
))
904 count
&= ~COUNT_CONTINUED
;
905 n
= SWAP_MAP_MAX
+ 1;
907 offset
= swp_offset(entry
);
908 page
= vmalloc_to_page(p
->swap_map
+ offset
);
909 offset
&= ~PAGE_MASK
;
910 VM_BUG_ON(page_private(page
) != SWP_CONTINUED
);
913 page
= list_next_entry(page
, lru
);
914 map
= kmap_atomic(page
);
915 tmp_count
= map
[offset
];
918 count
+= (tmp_count
& ~COUNT_CONTINUED
) * n
;
919 n
*= (SWAP_CONT_MAX
+ 1);
920 } while (tmp_count
& COUNT_CONTINUED
);
922 spin_unlock(&p
->lock
);
927 * We can write to an anon page without COW if there are no other references
928 * to it. And as a side-effect, free up its swap: because the old content
929 * on disk will never be read, and seeking back there to write new content
930 * later would only waste time away from clustering.
932 * NOTE: total_mapcount should not be relied upon by the caller if
933 * reuse_swap_page() returns false, but it may be always overwritten
934 * (see the other implementation for CONFIG_SWAP=n).
936 bool reuse_swap_page(struct page
*page
, int *total_mapcount
)
940 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
941 if (unlikely(PageKsm(page
)))
943 count
= page_trans_huge_mapcount(page
, total_mapcount
);
944 if (count
<= 1 && PageSwapCache(page
)) {
945 count
+= page_swapcount(page
);
948 if (!PageWriteback(page
)) {
949 delete_from_swap_cache(page
);
953 struct swap_info_struct
*p
;
955 entry
.val
= page_private(page
);
956 p
= swap_info_get(entry
);
957 if (p
->flags
& SWP_STABLE_WRITES
) {
958 spin_unlock(&p
->lock
);
961 spin_unlock(&p
->lock
);
969 * If swap is getting full, or if there are no more mappings of this page,
970 * then try_to_free_swap is called to free its swap space.
972 int try_to_free_swap(struct page
*page
)
974 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
976 if (!PageSwapCache(page
))
978 if (PageWriteback(page
))
980 if (page_swapcount(page
))
984 * Once hibernation has begun to create its image of memory,
985 * there's a danger that one of the calls to try_to_free_swap()
986 * - most probably a call from __try_to_reclaim_swap() while
987 * hibernation is allocating its own swap pages for the image,
988 * but conceivably even a call from memory reclaim - will free
989 * the swap from a page which has already been recorded in the
990 * image as a clean swapcache page, and then reuse its swap for
991 * another page of the image. On waking from hibernation, the
992 * original page might be freed under memory pressure, then
993 * later read back in from swap, now with the wrong data.
995 * Hibernation suspends storage while it is writing the image
996 * to disk so check that here.
998 if (pm_suspended_storage())
1001 delete_from_swap_cache(page
);
1007 * Free the swap entry like above, but also try to
1008 * free the page cache entry if it is the last user.
1010 int free_swap_and_cache(swp_entry_t entry
)
1012 struct swap_info_struct
*p
;
1013 struct page
*page
= NULL
;
1015 if (non_swap_entry(entry
))
1018 p
= swap_info_get(entry
);
1020 if (swap_entry_free(p
, entry
, 1) == SWAP_HAS_CACHE
) {
1021 page
= find_get_page(swap_address_space(entry
),
1023 if (page
&& !trylock_page(page
)) {
1028 spin_unlock(&p
->lock
);
1032 * Not mapped elsewhere, or swap space full? Free it!
1033 * Also recheck PageSwapCache now page is locked (above).
1035 if (PageSwapCache(page
) && !PageWriteback(page
) &&
1036 (!page_mapped(page
) || mem_cgroup_swap_full(page
))) {
1037 delete_from_swap_cache(page
);
1046 #ifdef CONFIG_HIBERNATION
1048 * Find the swap type that corresponds to given device (if any).
1050 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1051 * from 0, in which the swap header is expected to be located.
1053 * This is needed for the suspend to disk (aka swsusp).
1055 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
1057 struct block_device
*bdev
= NULL
;
1061 bdev
= bdget(device
);
1063 spin_lock(&swap_lock
);
1064 for (type
= 0; type
< nr_swapfiles
; type
++) {
1065 struct swap_info_struct
*sis
= swap_info
[type
];
1067 if (!(sis
->flags
& SWP_WRITEOK
))
1072 *bdev_p
= bdgrab(sis
->bdev
);
1074 spin_unlock(&swap_lock
);
1077 if (bdev
== sis
->bdev
) {
1078 struct swap_extent
*se
= &sis
->first_swap_extent
;
1080 if (se
->start_block
== offset
) {
1082 *bdev_p
= bdgrab(sis
->bdev
);
1084 spin_unlock(&swap_lock
);
1090 spin_unlock(&swap_lock
);
1098 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1099 * corresponding to given index in swap_info (swap type).
1101 sector_t
swapdev_block(int type
, pgoff_t offset
)
1103 struct block_device
*bdev
;
1105 if ((unsigned int)type
>= nr_swapfiles
)
1107 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
1109 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
1113 * Return either the total number of swap pages of given type, or the number
1114 * of free pages of that type (depending on @free)
1116 * This is needed for software suspend
1118 unsigned int count_swap_pages(int type
, int free
)
1122 spin_lock(&swap_lock
);
1123 if ((unsigned int)type
< nr_swapfiles
) {
1124 struct swap_info_struct
*sis
= swap_info
[type
];
1126 spin_lock(&sis
->lock
);
1127 if (sis
->flags
& SWP_WRITEOK
) {
1130 n
-= sis
->inuse_pages
;
1132 spin_unlock(&sis
->lock
);
1134 spin_unlock(&swap_lock
);
1137 #endif /* CONFIG_HIBERNATION */
1139 static inline int pte_same_as_swp(pte_t pte
, pte_t swp_pte
)
1141 return pte_same(pte_swp_clear_soft_dirty(pte
), swp_pte
);
1145 * No need to decide whether this PTE shares the swap entry with others,
1146 * just let do_wp_page work it out if a write is requested later - to
1147 * force COW, vm_page_prot omits write permission from any private vma.
1149 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1150 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
1152 struct page
*swapcache
;
1153 struct mem_cgroup
*memcg
;
1159 page
= ksm_might_need_to_copy(page
, vma
, addr
);
1160 if (unlikely(!page
))
1163 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
1169 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
1170 if (unlikely(!pte_same_as_swp(*pte
, swp_entry_to_pte(entry
)))) {
1171 mem_cgroup_cancel_charge(page
, memcg
, false);
1176 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
1177 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
1179 set_pte_at(vma
->vm_mm
, addr
, pte
,
1180 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
1181 if (page
== swapcache
) {
1182 page_add_anon_rmap(page
, vma
, addr
, false);
1183 mem_cgroup_commit_charge(page
, memcg
, true, false);
1184 } else { /* ksm created a completely new copy */
1185 page_add_new_anon_rmap(page
, vma
, addr
, false);
1186 mem_cgroup_commit_charge(page
, memcg
, false, false);
1187 lru_cache_add_active_or_unevictable(page
, vma
);
1191 * Move the page to the active list so it is not
1192 * immediately swapped out again after swapon.
1194 activate_page(page
);
1196 pte_unmap_unlock(pte
, ptl
);
1198 if (page
!= swapcache
) {
1205 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1206 unsigned long addr
, unsigned long end
,
1207 swp_entry_t entry
, struct page
*page
)
1209 pte_t swp_pte
= swp_entry_to_pte(entry
);
1214 * We don't actually need pte lock while scanning for swp_pte: since
1215 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1216 * page table while we're scanning; though it could get zapped, and on
1217 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1218 * of unmatched parts which look like swp_pte, so unuse_pte must
1219 * recheck under pte lock. Scanning without pte lock lets it be
1220 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1222 pte
= pte_offset_map(pmd
, addr
);
1225 * swapoff spends a _lot_ of time in this loop!
1226 * Test inline before going to call unuse_pte.
1228 if (unlikely(pte_same_as_swp(*pte
, swp_pte
))) {
1230 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
1233 pte
= pte_offset_map(pmd
, addr
);
1235 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1241 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
1242 unsigned long addr
, unsigned long end
,
1243 swp_entry_t entry
, struct page
*page
)
1249 pmd
= pmd_offset(pud
, addr
);
1251 next
= pmd_addr_end(addr
, end
);
1252 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1254 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
1257 } while (pmd
++, addr
= next
, addr
!= end
);
1261 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
1262 unsigned long addr
, unsigned long end
,
1263 swp_entry_t entry
, struct page
*page
)
1269 pud
= pud_offset(pgd
, addr
);
1271 next
= pud_addr_end(addr
, end
);
1272 if (pud_none_or_clear_bad(pud
))
1274 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
1277 } while (pud
++, addr
= next
, addr
!= end
);
1281 static int unuse_vma(struct vm_area_struct
*vma
,
1282 swp_entry_t entry
, struct page
*page
)
1285 unsigned long addr
, end
, next
;
1288 if (page_anon_vma(page
)) {
1289 addr
= page_address_in_vma(page
, vma
);
1290 if (addr
== -EFAULT
)
1293 end
= addr
+ PAGE_SIZE
;
1295 addr
= vma
->vm_start
;
1299 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1301 next
= pgd_addr_end(addr
, end
);
1302 if (pgd_none_or_clear_bad(pgd
))
1304 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
1307 } while (pgd
++, addr
= next
, addr
!= end
);
1311 static int unuse_mm(struct mm_struct
*mm
,
1312 swp_entry_t entry
, struct page
*page
)
1314 struct vm_area_struct
*vma
;
1317 if (!down_read_trylock(&mm
->mmap_sem
)) {
1319 * Activate page so shrink_inactive_list is unlikely to unmap
1320 * its ptes while lock is dropped, so swapoff can make progress.
1322 activate_page(page
);
1324 down_read(&mm
->mmap_sem
);
1327 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1328 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1331 up_read(&mm
->mmap_sem
);
1332 return (ret
< 0)? ret
: 0;
1336 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1337 * from current position to next entry still in use.
1338 * Recycle to start on reaching the end, returning 0 when empty.
1340 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1341 unsigned int prev
, bool frontswap
)
1343 unsigned int max
= si
->max
;
1344 unsigned int i
= prev
;
1345 unsigned char count
;
1348 * No need for swap_lock here: we're just looking
1349 * for whether an entry is in use, not modifying it; false
1350 * hits are okay, and sys_swapoff() has already prevented new
1351 * allocations from this area (while holding swap_lock).
1360 * No entries in use at top of swap_map,
1361 * loop back to start and recheck there.
1368 if (frontswap_test(si
, i
))
1373 count
= READ_ONCE(si
->swap_map
[i
]);
1374 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1381 * We completely avoid races by reading each swap page in advance,
1382 * and then search for the process using it. All the necessary
1383 * page table adjustments can then be made atomically.
1385 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1386 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1388 int try_to_unuse(unsigned int type
, bool frontswap
,
1389 unsigned long pages_to_unuse
)
1391 struct swap_info_struct
*si
= swap_info
[type
];
1392 struct mm_struct
*start_mm
;
1393 volatile unsigned char *swap_map
; /* swap_map is accessed without
1394 * locking. Mark it as volatile
1395 * to prevent compiler doing
1398 unsigned char swcount
;
1405 * When searching mms for an entry, a good strategy is to
1406 * start at the first mm we freed the previous entry from
1407 * (though actually we don't notice whether we or coincidence
1408 * freed the entry). Initialize this start_mm with a hold.
1410 * A simpler strategy would be to start at the last mm we
1411 * freed the previous entry from; but that would take less
1412 * advantage of mmlist ordering, which clusters forked mms
1413 * together, child after parent. If we race with dup_mmap(), we
1414 * prefer to resolve parent before child, lest we miss entries
1415 * duplicated after we scanned child: using last mm would invert
1418 start_mm
= &init_mm
;
1419 atomic_inc(&init_mm
.mm_users
);
1422 * Keep on scanning until all entries have gone. Usually,
1423 * one pass through swap_map is enough, but not necessarily:
1424 * there are races when an instance of an entry might be missed.
1426 while ((i
= find_next_to_unuse(si
, i
, frontswap
)) != 0) {
1427 if (signal_pending(current
)) {
1433 * Get a page for the entry, using the existing swap
1434 * cache page if there is one. Otherwise, get a clean
1435 * page and read the swap into it.
1437 swap_map
= &si
->swap_map
[i
];
1438 entry
= swp_entry(type
, i
);
1439 page
= read_swap_cache_async(entry
,
1440 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1443 * Either swap_duplicate() failed because entry
1444 * has been freed independently, and will not be
1445 * reused since sys_swapoff() already disabled
1446 * allocation from here, or alloc_page() failed.
1448 swcount
= *swap_map
;
1450 * We don't hold lock here, so the swap entry could be
1451 * SWAP_MAP_BAD (when the cluster is discarding).
1452 * Instead of fail out, We can just skip the swap
1453 * entry because swapoff will wait for discarding
1456 if (!swcount
|| swcount
== SWAP_MAP_BAD
)
1463 * Don't hold on to start_mm if it looks like exiting.
1465 if (atomic_read(&start_mm
->mm_users
) == 1) {
1467 start_mm
= &init_mm
;
1468 atomic_inc(&init_mm
.mm_users
);
1472 * Wait for and lock page. When do_swap_page races with
1473 * try_to_unuse, do_swap_page can handle the fault much
1474 * faster than try_to_unuse can locate the entry. This
1475 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1476 * defer to do_swap_page in such a case - in some tests,
1477 * do_swap_page and try_to_unuse repeatedly compete.
1479 wait_on_page_locked(page
);
1480 wait_on_page_writeback(page
);
1482 wait_on_page_writeback(page
);
1485 * Remove all references to entry.
1487 swcount
= *swap_map
;
1488 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
1489 retval
= shmem_unuse(entry
, page
);
1490 /* page has already been unlocked and released */
1495 if (swap_count(swcount
) && start_mm
!= &init_mm
)
1496 retval
= unuse_mm(start_mm
, entry
, page
);
1498 if (swap_count(*swap_map
)) {
1499 int set_start_mm
= (*swap_map
>= swcount
);
1500 struct list_head
*p
= &start_mm
->mmlist
;
1501 struct mm_struct
*new_start_mm
= start_mm
;
1502 struct mm_struct
*prev_mm
= start_mm
;
1503 struct mm_struct
*mm
;
1505 atomic_inc(&new_start_mm
->mm_users
);
1506 atomic_inc(&prev_mm
->mm_users
);
1507 spin_lock(&mmlist_lock
);
1508 while (swap_count(*swap_map
) && !retval
&&
1509 (p
= p
->next
) != &start_mm
->mmlist
) {
1510 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1511 if (!atomic_inc_not_zero(&mm
->mm_users
))
1513 spin_unlock(&mmlist_lock
);
1519 swcount
= *swap_map
;
1520 if (!swap_count(swcount
)) /* any usage ? */
1522 else if (mm
== &init_mm
)
1525 retval
= unuse_mm(mm
, entry
, page
);
1527 if (set_start_mm
&& *swap_map
< swcount
) {
1528 mmput(new_start_mm
);
1529 atomic_inc(&mm
->mm_users
);
1533 spin_lock(&mmlist_lock
);
1535 spin_unlock(&mmlist_lock
);
1538 start_mm
= new_start_mm
;
1547 * If a reference remains (rare), we would like to leave
1548 * the page in the swap cache; but try_to_unmap could
1549 * then re-duplicate the entry once we drop page lock,
1550 * so we might loop indefinitely; also, that page could
1551 * not be swapped out to other storage meanwhile. So:
1552 * delete from cache even if there's another reference,
1553 * after ensuring that the data has been saved to disk -
1554 * since if the reference remains (rarer), it will be
1555 * read from disk into another page. Splitting into two
1556 * pages would be incorrect if swap supported "shared
1557 * private" pages, but they are handled by tmpfs files.
1559 * Given how unuse_vma() targets one particular offset
1560 * in an anon_vma, once the anon_vma has been determined,
1561 * this splitting happens to be just what is needed to
1562 * handle where KSM pages have been swapped out: re-reading
1563 * is unnecessarily slow, but we can fix that later on.
1565 if (swap_count(*swap_map
) &&
1566 PageDirty(page
) && PageSwapCache(page
)) {
1567 struct writeback_control wbc
= {
1568 .sync_mode
= WB_SYNC_NONE
,
1571 swap_writepage(page
, &wbc
);
1573 wait_on_page_writeback(page
);
1577 * It is conceivable that a racing task removed this page from
1578 * swap cache just before we acquired the page lock at the top,
1579 * or while we dropped it in unuse_mm(). The page might even
1580 * be back in swap cache on another swap area: that we must not
1581 * delete, since it may not have been written out to swap yet.
1583 if (PageSwapCache(page
) &&
1584 likely(page_private(page
) == entry
.val
))
1585 delete_from_swap_cache(page
);
1588 * So we could skip searching mms once swap count went
1589 * to 1, we did not mark any present ptes as dirty: must
1590 * mark page dirty so shrink_page_list will preserve it.
1597 * Make sure that we aren't completely killing
1598 * interactive performance.
1601 if (frontswap
&& pages_to_unuse
> 0) {
1602 if (!--pages_to_unuse
)
1612 * After a successful try_to_unuse, if no swap is now in use, we know
1613 * we can empty the mmlist. swap_lock must be held on entry and exit.
1614 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1615 * added to the mmlist just after page_duplicate - before would be racy.
1617 static void drain_mmlist(void)
1619 struct list_head
*p
, *next
;
1622 for (type
= 0; type
< nr_swapfiles
; type
++)
1623 if (swap_info
[type
]->inuse_pages
)
1625 spin_lock(&mmlist_lock
);
1626 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1628 spin_unlock(&mmlist_lock
);
1632 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1633 * corresponds to page offset for the specified swap entry.
1634 * Note that the type of this function is sector_t, but it returns page offset
1635 * into the bdev, not sector offset.
1637 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
1639 struct swap_info_struct
*sis
;
1640 struct swap_extent
*start_se
;
1641 struct swap_extent
*se
;
1644 sis
= swap_info
[swp_type(entry
)];
1647 offset
= swp_offset(entry
);
1648 start_se
= sis
->curr_swap_extent
;
1652 if (se
->start_page
<= offset
&&
1653 offset
< (se
->start_page
+ se
->nr_pages
)) {
1654 return se
->start_block
+ (offset
- se
->start_page
);
1656 se
= list_next_entry(se
, list
);
1657 sis
->curr_swap_extent
= se
;
1658 BUG_ON(se
== start_se
); /* It *must* be present */
1663 * Returns the page offset into bdev for the specified page's swap entry.
1665 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
1668 entry
.val
= page_private(page
);
1669 return map_swap_entry(entry
, bdev
);
1673 * Free all of a swapdev's extent information
1675 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1677 while (!list_empty(&sis
->first_swap_extent
.list
)) {
1678 struct swap_extent
*se
;
1680 se
= list_first_entry(&sis
->first_swap_extent
.list
,
1681 struct swap_extent
, list
);
1682 list_del(&se
->list
);
1686 if (sis
->flags
& SWP_FILE
) {
1687 struct file
*swap_file
= sis
->swap_file
;
1688 struct address_space
*mapping
= swap_file
->f_mapping
;
1690 sis
->flags
&= ~SWP_FILE
;
1691 mapping
->a_ops
->swap_deactivate(swap_file
);
1696 * Add a block range (and the corresponding page range) into this swapdev's
1697 * extent list. The extent list is kept sorted in page order.
1699 * This function rather assumes that it is called in ascending page order.
1702 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1703 unsigned long nr_pages
, sector_t start_block
)
1705 struct swap_extent
*se
;
1706 struct swap_extent
*new_se
;
1707 struct list_head
*lh
;
1709 if (start_page
== 0) {
1710 se
= &sis
->first_swap_extent
;
1711 sis
->curr_swap_extent
= se
;
1713 se
->nr_pages
= nr_pages
;
1714 se
->start_block
= start_block
;
1717 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
1718 se
= list_entry(lh
, struct swap_extent
, list
);
1719 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1720 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1722 se
->nr_pages
+= nr_pages
;
1728 * No merge. Insert a new extent, preserving ordering.
1730 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1733 new_se
->start_page
= start_page
;
1734 new_se
->nr_pages
= nr_pages
;
1735 new_se
->start_block
= start_block
;
1737 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
1742 * A `swap extent' is a simple thing which maps a contiguous range of pages
1743 * onto a contiguous range of disk blocks. An ordered list of swap extents
1744 * is built at swapon time and is then used at swap_writepage/swap_readpage
1745 * time for locating where on disk a page belongs.
1747 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1748 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1749 * swap files identically.
1751 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1752 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1753 * swapfiles are handled *identically* after swapon time.
1755 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1756 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1757 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1758 * requirements, they are simply tossed out - we will never use those blocks
1761 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1762 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1763 * which will scribble on the fs.
1765 * The amount of disk space which a single swap extent represents varies.
1766 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1767 * extents in the list. To avoid much list walking, we cache the previous
1768 * search location in `curr_swap_extent', and start new searches from there.
1769 * This is extremely effective. The average number of iterations in
1770 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1772 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1774 struct file
*swap_file
= sis
->swap_file
;
1775 struct address_space
*mapping
= swap_file
->f_mapping
;
1776 struct inode
*inode
= mapping
->host
;
1779 if (S_ISBLK(inode
->i_mode
)) {
1780 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1785 if (mapping
->a_ops
->swap_activate
) {
1786 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
1788 sis
->flags
|= SWP_FILE
;
1789 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1795 return generic_swapfile_activate(sis
, swap_file
, span
);
1798 static void _enable_swap_info(struct swap_info_struct
*p
, int prio
,
1799 unsigned char *swap_map
,
1800 struct swap_cluster_info
*cluster_info
)
1805 p
->prio
= --least_priority
;
1807 * the plist prio is negated because plist ordering is
1808 * low-to-high, while swap ordering is high-to-low
1810 p
->list
.prio
= -p
->prio
;
1811 p
->avail_list
.prio
= -p
->prio
;
1812 p
->swap_map
= swap_map
;
1813 p
->cluster_info
= cluster_info
;
1814 p
->flags
|= SWP_WRITEOK
;
1815 atomic_long_add(p
->pages
, &nr_swap_pages
);
1816 total_swap_pages
+= p
->pages
;
1818 assert_spin_locked(&swap_lock
);
1820 * both lists are plists, and thus priority ordered.
1821 * swap_active_head needs to be priority ordered for swapoff(),
1822 * which on removal of any swap_info_struct with an auto-assigned
1823 * (i.e. negative) priority increments the auto-assigned priority
1824 * of any lower-priority swap_info_structs.
1825 * swap_avail_head needs to be priority ordered for get_swap_page(),
1826 * which allocates swap pages from the highest available priority
1829 plist_add(&p
->list
, &swap_active_head
);
1830 spin_lock(&swap_avail_lock
);
1831 plist_add(&p
->avail_list
, &swap_avail_head
);
1832 spin_unlock(&swap_avail_lock
);
1835 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
1836 unsigned char *swap_map
,
1837 struct swap_cluster_info
*cluster_info
,
1838 unsigned long *frontswap_map
)
1840 frontswap_init(p
->type
, frontswap_map
);
1841 spin_lock(&swap_lock
);
1842 spin_lock(&p
->lock
);
1843 _enable_swap_info(p
, prio
, swap_map
, cluster_info
);
1844 spin_unlock(&p
->lock
);
1845 spin_unlock(&swap_lock
);
1848 static void reinsert_swap_info(struct swap_info_struct
*p
)
1850 spin_lock(&swap_lock
);
1851 spin_lock(&p
->lock
);
1852 _enable_swap_info(p
, p
->prio
, p
->swap_map
, p
->cluster_info
);
1853 spin_unlock(&p
->lock
);
1854 spin_unlock(&swap_lock
);
1857 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1859 struct swap_info_struct
*p
= NULL
;
1860 unsigned char *swap_map
;
1861 struct swap_cluster_info
*cluster_info
;
1862 unsigned long *frontswap_map
;
1863 struct file
*swap_file
, *victim
;
1864 struct address_space
*mapping
;
1865 struct inode
*inode
;
1866 struct filename
*pathname
;
1868 unsigned int old_block_size
;
1870 if (!capable(CAP_SYS_ADMIN
))
1873 BUG_ON(!current
->mm
);
1875 pathname
= getname(specialfile
);
1876 if (IS_ERR(pathname
))
1877 return PTR_ERR(pathname
);
1879 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1880 err
= PTR_ERR(victim
);
1884 mapping
= victim
->f_mapping
;
1885 spin_lock(&swap_lock
);
1886 plist_for_each_entry(p
, &swap_active_head
, list
) {
1887 if (p
->flags
& SWP_WRITEOK
) {
1888 if (p
->swap_file
->f_mapping
== mapping
) {
1896 spin_unlock(&swap_lock
);
1899 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
1900 vm_unacct_memory(p
->pages
);
1903 spin_unlock(&swap_lock
);
1906 spin_lock(&swap_avail_lock
);
1907 plist_del(&p
->avail_list
, &swap_avail_head
);
1908 spin_unlock(&swap_avail_lock
);
1909 spin_lock(&p
->lock
);
1911 struct swap_info_struct
*si
= p
;
1913 plist_for_each_entry_continue(si
, &swap_active_head
, list
) {
1916 si
->avail_list
.prio
--;
1920 plist_del(&p
->list
, &swap_active_head
);
1921 atomic_long_sub(p
->pages
, &nr_swap_pages
);
1922 total_swap_pages
-= p
->pages
;
1923 p
->flags
&= ~SWP_WRITEOK
;
1924 spin_unlock(&p
->lock
);
1925 spin_unlock(&swap_lock
);
1927 set_current_oom_origin();
1928 err
= try_to_unuse(p
->type
, false, 0); /* force unuse all pages */
1929 clear_current_oom_origin();
1932 /* re-insert swap space back into swap_list */
1933 reinsert_swap_info(p
);
1937 flush_work(&p
->discard_work
);
1939 destroy_swap_extents(p
);
1940 if (p
->flags
& SWP_CONTINUED
)
1941 free_swap_count_continuations(p
);
1943 mutex_lock(&swapon_mutex
);
1944 spin_lock(&swap_lock
);
1945 spin_lock(&p
->lock
);
1948 /* wait for anyone still in scan_swap_map */
1949 p
->highest_bit
= 0; /* cuts scans short */
1950 while (p
->flags
>= SWP_SCANNING
) {
1951 spin_unlock(&p
->lock
);
1952 spin_unlock(&swap_lock
);
1953 schedule_timeout_uninterruptible(1);
1954 spin_lock(&swap_lock
);
1955 spin_lock(&p
->lock
);
1958 swap_file
= p
->swap_file
;
1959 old_block_size
= p
->old_block_size
;
1960 p
->swap_file
= NULL
;
1962 swap_map
= p
->swap_map
;
1964 cluster_info
= p
->cluster_info
;
1965 p
->cluster_info
= NULL
;
1966 frontswap_map
= frontswap_map_get(p
);
1967 spin_unlock(&p
->lock
);
1968 spin_unlock(&swap_lock
);
1969 frontswap_invalidate_area(p
->type
);
1970 frontswap_map_set(p
, NULL
);
1971 mutex_unlock(&swapon_mutex
);
1972 free_percpu(p
->percpu_cluster
);
1973 p
->percpu_cluster
= NULL
;
1975 vfree(cluster_info
);
1976 vfree(frontswap_map
);
1977 /* Destroy swap account information */
1978 swap_cgroup_swapoff(p
->type
);
1980 inode
= mapping
->host
;
1981 if (S_ISBLK(inode
->i_mode
)) {
1982 struct block_device
*bdev
= I_BDEV(inode
);
1983 set_blocksize(bdev
, old_block_size
);
1984 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
1987 inode
->i_flags
&= ~S_SWAPFILE
;
1988 inode_unlock(inode
);
1990 filp_close(swap_file
, NULL
);
1993 * Clear the SWP_USED flag after all resources are freed so that swapon
1994 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1995 * not hold p->lock after we cleared its SWP_WRITEOK.
1997 spin_lock(&swap_lock
);
1999 spin_unlock(&swap_lock
);
2002 atomic_inc(&proc_poll_event
);
2003 wake_up_interruptible(&proc_poll_wait
);
2006 filp_close(victim
, NULL
);
2012 #ifdef CONFIG_PROC_FS
2013 static unsigned swaps_poll(struct file
*file
, poll_table
*wait
)
2015 struct seq_file
*seq
= file
->private_data
;
2017 poll_wait(file
, &proc_poll_wait
, wait
);
2019 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
2020 seq
->poll_event
= atomic_read(&proc_poll_event
);
2021 return POLLIN
| POLLRDNORM
| POLLERR
| POLLPRI
;
2024 return POLLIN
| POLLRDNORM
;
2028 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
2030 struct swap_info_struct
*si
;
2034 mutex_lock(&swapon_mutex
);
2037 return SEQ_START_TOKEN
;
2039 for (type
= 0; type
< nr_swapfiles
; type
++) {
2040 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2041 si
= swap_info
[type
];
2042 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2051 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
2053 struct swap_info_struct
*si
= v
;
2056 if (v
== SEQ_START_TOKEN
)
2059 type
= si
->type
+ 1;
2061 for (; type
< nr_swapfiles
; type
++) {
2062 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2063 si
= swap_info
[type
];
2064 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2073 static void swap_stop(struct seq_file
*swap
, void *v
)
2075 mutex_unlock(&swapon_mutex
);
2078 static int swap_show(struct seq_file
*swap
, void *v
)
2080 struct swap_info_struct
*si
= v
;
2084 if (si
== SEQ_START_TOKEN
) {
2085 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2089 file
= si
->swap_file
;
2090 len
= seq_file_path(swap
, file
, " \t\n\\");
2091 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
2092 len
< 40 ? 40 - len
: 1, " ",
2093 S_ISBLK(file_inode(file
)->i_mode
) ?
2094 "partition" : "file\t",
2095 si
->pages
<< (PAGE_SHIFT
- 10),
2096 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
2101 static const struct seq_operations swaps_op
= {
2102 .start
= swap_start
,
2108 static int swaps_open(struct inode
*inode
, struct file
*file
)
2110 struct seq_file
*seq
;
2113 ret
= seq_open(file
, &swaps_op
);
2117 seq
= file
->private_data
;
2118 seq
->poll_event
= atomic_read(&proc_poll_event
);
2122 static const struct file_operations proc_swaps_operations
= {
2125 .llseek
= seq_lseek
,
2126 .release
= seq_release
,
2130 static int __init
procswaps_init(void)
2132 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
2135 __initcall(procswaps_init
);
2136 #endif /* CONFIG_PROC_FS */
2138 #ifdef MAX_SWAPFILES_CHECK
2139 static int __init
max_swapfiles_check(void)
2141 MAX_SWAPFILES_CHECK();
2144 late_initcall(max_swapfiles_check
);
2147 static struct swap_info_struct
*alloc_swap_info(void)
2149 struct swap_info_struct
*p
;
2152 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
2154 return ERR_PTR(-ENOMEM
);
2156 spin_lock(&swap_lock
);
2157 for (type
= 0; type
< nr_swapfiles
; type
++) {
2158 if (!(swap_info
[type
]->flags
& SWP_USED
))
2161 if (type
>= MAX_SWAPFILES
) {
2162 spin_unlock(&swap_lock
);
2164 return ERR_PTR(-EPERM
);
2166 if (type
>= nr_swapfiles
) {
2168 swap_info
[type
] = p
;
2170 * Write swap_info[type] before nr_swapfiles, in case a
2171 * racing procfs swap_start() or swap_next() is reading them.
2172 * (We never shrink nr_swapfiles, we never free this entry.)
2178 p
= swap_info
[type
];
2180 * Do not memset this entry: a racing procfs swap_next()
2181 * would be relying on p->type to remain valid.
2184 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
2185 plist_node_init(&p
->list
, 0);
2186 plist_node_init(&p
->avail_list
, 0);
2187 p
->flags
= SWP_USED
;
2188 spin_unlock(&swap_lock
);
2189 spin_lock_init(&p
->lock
);
2194 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
2198 if (S_ISBLK(inode
->i_mode
)) {
2199 p
->bdev
= bdgrab(I_BDEV(inode
));
2200 error
= blkdev_get(p
->bdev
,
2201 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
, p
);
2206 p
->old_block_size
= block_size(p
->bdev
);
2207 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
2210 p
->flags
|= SWP_BLKDEV
;
2211 } else if (S_ISREG(inode
->i_mode
)) {
2212 p
->bdev
= inode
->i_sb
->s_bdev
;
2214 if (IS_SWAPFILE(inode
))
2222 static unsigned long read_swap_header(struct swap_info_struct
*p
,
2223 union swap_header
*swap_header
,
2224 struct inode
*inode
)
2227 unsigned long maxpages
;
2228 unsigned long swapfilepages
;
2229 unsigned long last_page
;
2231 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
2232 pr_err("Unable to find swap-space signature\n");
2236 /* swap partition endianess hack... */
2237 if (swab32(swap_header
->info
.version
) == 1) {
2238 swab32s(&swap_header
->info
.version
);
2239 swab32s(&swap_header
->info
.last_page
);
2240 swab32s(&swap_header
->info
.nr_badpages
);
2241 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2243 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
2244 swab32s(&swap_header
->info
.badpages
[i
]);
2246 /* Check the swap header's sub-version */
2247 if (swap_header
->info
.version
!= 1) {
2248 pr_warn("Unable to handle swap header version %d\n",
2249 swap_header
->info
.version
);
2254 p
->cluster_next
= 1;
2258 * Find out how many pages are allowed for a single swap
2259 * device. There are two limiting factors: 1) the number
2260 * of bits for the swap offset in the swp_entry_t type, and
2261 * 2) the number of bits in the swap pte as defined by the
2262 * different architectures. In order to find the
2263 * largest possible bit mask, a swap entry with swap type 0
2264 * and swap offset ~0UL is created, encoded to a swap pte,
2265 * decoded to a swp_entry_t again, and finally the swap
2266 * offset is extracted. This will mask all the bits from
2267 * the initial ~0UL mask that can't be encoded in either
2268 * the swp_entry_t or the architecture definition of a
2271 maxpages
= swp_offset(pte_to_swp_entry(
2272 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2273 last_page
= swap_header
->info
.last_page
;
2274 if (last_page
> maxpages
) {
2275 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2276 maxpages
<< (PAGE_SHIFT
- 10),
2277 last_page
<< (PAGE_SHIFT
- 10));
2279 if (maxpages
> last_page
) {
2280 maxpages
= last_page
+ 1;
2281 /* p->max is an unsigned int: don't overflow it */
2282 if ((unsigned int)maxpages
== 0)
2283 maxpages
= UINT_MAX
;
2285 p
->highest_bit
= maxpages
- 1;
2289 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
2290 if (swapfilepages
&& maxpages
> swapfilepages
) {
2291 pr_warn("Swap area shorter than signature indicates\n");
2294 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
2296 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2302 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
2303 union swap_header
*swap_header
,
2304 unsigned char *swap_map
,
2305 struct swap_cluster_info
*cluster_info
,
2306 unsigned long maxpages
,
2310 unsigned int nr_good_pages
;
2312 unsigned long nr_clusters
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
2313 unsigned long idx
= p
->cluster_next
/ SWAPFILE_CLUSTER
;
2315 nr_good_pages
= maxpages
- 1; /* omit header page */
2317 cluster_list_init(&p
->free_clusters
);
2318 cluster_list_init(&p
->discard_clusters
);
2320 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
2321 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
2322 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
2324 if (page_nr
< maxpages
) {
2325 swap_map
[page_nr
] = SWAP_MAP_BAD
;
2328 * Haven't marked the cluster free yet, no list
2329 * operation involved
2331 inc_cluster_info_page(p
, cluster_info
, page_nr
);
2335 /* Haven't marked the cluster free yet, no list operation involved */
2336 for (i
= maxpages
; i
< round_up(maxpages
, SWAPFILE_CLUSTER
); i
++)
2337 inc_cluster_info_page(p
, cluster_info
, i
);
2339 if (nr_good_pages
) {
2340 swap_map
[0] = SWAP_MAP_BAD
;
2342 * Not mark the cluster free yet, no list
2343 * operation involved
2345 inc_cluster_info_page(p
, cluster_info
, 0);
2347 p
->pages
= nr_good_pages
;
2348 nr_extents
= setup_swap_extents(p
, span
);
2351 nr_good_pages
= p
->pages
;
2353 if (!nr_good_pages
) {
2354 pr_warn("Empty swap-file\n");
2361 for (i
= 0; i
< nr_clusters
; i
++) {
2362 if (!cluster_count(&cluster_info
[idx
])) {
2363 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
2364 cluster_list_add_tail(&p
->free_clusters
, cluster_info
,
2368 if (idx
== nr_clusters
)
2375 * Helper to sys_swapon determining if a given swap
2376 * backing device queue supports DISCARD operations.
2378 static bool swap_discardable(struct swap_info_struct
*si
)
2380 struct request_queue
*q
= bdev_get_queue(si
->bdev
);
2382 if (!q
|| !blk_queue_discard(q
))
2388 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
2390 struct swap_info_struct
*p
;
2391 struct filename
*name
;
2392 struct file
*swap_file
= NULL
;
2393 struct address_space
*mapping
;
2396 union swap_header
*swap_header
;
2399 unsigned long maxpages
;
2400 unsigned char *swap_map
= NULL
;
2401 struct swap_cluster_info
*cluster_info
= NULL
;
2402 unsigned long *frontswap_map
= NULL
;
2403 struct page
*page
= NULL
;
2404 struct inode
*inode
= NULL
;
2406 if (swap_flags
& ~SWAP_FLAGS_VALID
)
2409 if (!capable(CAP_SYS_ADMIN
))
2412 p
= alloc_swap_info();
2416 INIT_WORK(&p
->discard_work
, swap_discard_work
);
2418 name
= getname(specialfile
);
2420 error
= PTR_ERR(name
);
2424 swap_file
= file_open_name(name
, O_RDWR
|O_LARGEFILE
, 0);
2425 if (IS_ERR(swap_file
)) {
2426 error
= PTR_ERR(swap_file
);
2431 p
->swap_file
= swap_file
;
2432 mapping
= swap_file
->f_mapping
;
2433 inode
= mapping
->host
;
2435 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2436 error
= claim_swapfile(p
, inode
);
2437 if (unlikely(error
))
2441 * Read the swap header.
2443 if (!mapping
->a_ops
->readpage
) {
2447 page
= read_mapping_page(mapping
, 0, swap_file
);
2449 error
= PTR_ERR(page
);
2452 swap_header
= kmap(page
);
2454 maxpages
= read_swap_header(p
, swap_header
, inode
);
2455 if (unlikely(!maxpages
)) {
2460 /* OK, set up the swap map and apply the bad block list */
2461 swap_map
= vzalloc(maxpages
);
2467 if (bdi_cap_stable_pages_required(inode_to_bdi(inode
)))
2468 p
->flags
|= SWP_STABLE_WRITES
;
2470 if (p
->bdev
&& blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
2473 p
->flags
|= SWP_SOLIDSTATE
;
2475 * select a random position to start with to help wear leveling
2478 p
->cluster_next
= 1 + (prandom_u32() % p
->highest_bit
);
2480 cluster_info
= vzalloc(DIV_ROUND_UP(maxpages
,
2481 SWAPFILE_CLUSTER
) * sizeof(*cluster_info
));
2482 if (!cluster_info
) {
2486 p
->percpu_cluster
= alloc_percpu(struct percpu_cluster
);
2487 if (!p
->percpu_cluster
) {
2491 for_each_possible_cpu(cpu
) {
2492 struct percpu_cluster
*cluster
;
2493 cluster
= per_cpu_ptr(p
->percpu_cluster
, cpu
);
2494 cluster_set_null(&cluster
->index
);
2498 error
= swap_cgroup_swapon(p
->type
, maxpages
);
2502 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
2503 cluster_info
, maxpages
, &span
);
2504 if (unlikely(nr_extents
< 0)) {
2508 /* frontswap enabled? set up bit-per-page map for frontswap */
2509 if (IS_ENABLED(CONFIG_FRONTSWAP
))
2510 frontswap_map
= vzalloc(BITS_TO_LONGS(maxpages
) * sizeof(long));
2512 if (p
->bdev
&&(swap_flags
& SWAP_FLAG_DISCARD
) && swap_discardable(p
)) {
2514 * When discard is enabled for swap with no particular
2515 * policy flagged, we set all swap discard flags here in
2516 * order to sustain backward compatibility with older
2517 * swapon(8) releases.
2519 p
->flags
|= (SWP_DISCARDABLE
| SWP_AREA_DISCARD
|
2523 * By flagging sys_swapon, a sysadmin can tell us to
2524 * either do single-time area discards only, or to just
2525 * perform discards for released swap page-clusters.
2526 * Now it's time to adjust the p->flags accordingly.
2528 if (swap_flags
& SWAP_FLAG_DISCARD_ONCE
)
2529 p
->flags
&= ~SWP_PAGE_DISCARD
;
2530 else if (swap_flags
& SWAP_FLAG_DISCARD_PAGES
)
2531 p
->flags
&= ~SWP_AREA_DISCARD
;
2533 /* issue a swapon-time discard if it's still required */
2534 if (p
->flags
& SWP_AREA_DISCARD
) {
2535 int err
= discard_swap(p
);
2537 pr_err("swapon: discard_swap(%p): %d\n",
2542 mutex_lock(&swapon_mutex
);
2544 if (swap_flags
& SWAP_FLAG_PREFER
)
2546 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
2547 enable_swap_info(p
, prio
, swap_map
, cluster_info
, frontswap_map
);
2549 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2550 p
->pages
<<(PAGE_SHIFT
-10), name
->name
, p
->prio
,
2551 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2552 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2553 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "",
2554 (p
->flags
& SWP_AREA_DISCARD
) ? "s" : "",
2555 (p
->flags
& SWP_PAGE_DISCARD
) ? "c" : "",
2556 (frontswap_map
) ? "FS" : "");
2558 mutex_unlock(&swapon_mutex
);
2559 atomic_inc(&proc_poll_event
);
2560 wake_up_interruptible(&proc_poll_wait
);
2562 if (S_ISREG(inode
->i_mode
))
2563 inode
->i_flags
|= S_SWAPFILE
;
2567 free_percpu(p
->percpu_cluster
);
2568 p
->percpu_cluster
= NULL
;
2569 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
2570 set_blocksize(p
->bdev
, p
->old_block_size
);
2571 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2573 destroy_swap_extents(p
);
2574 swap_cgroup_swapoff(p
->type
);
2575 spin_lock(&swap_lock
);
2576 p
->swap_file
= NULL
;
2578 spin_unlock(&swap_lock
);
2580 vfree(cluster_info
);
2582 if (inode
&& S_ISREG(inode
->i_mode
)) {
2583 inode_unlock(inode
);
2586 filp_close(swap_file
, NULL
);
2589 if (page
&& !IS_ERR(page
)) {
2595 if (inode
&& S_ISREG(inode
->i_mode
))
2596 inode_unlock(inode
);
2600 void si_swapinfo(struct sysinfo
*val
)
2603 unsigned long nr_to_be_unused
= 0;
2605 spin_lock(&swap_lock
);
2606 for (type
= 0; type
< nr_swapfiles
; type
++) {
2607 struct swap_info_struct
*si
= swap_info
[type
];
2609 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
2610 nr_to_be_unused
+= si
->inuse_pages
;
2612 val
->freeswap
= atomic_long_read(&nr_swap_pages
) + nr_to_be_unused
;
2613 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2614 spin_unlock(&swap_lock
);
2618 * Verify that a swap entry is valid and increment its swap map count.
2620 * Returns error code in following case.
2622 * - swp_entry is invalid -> EINVAL
2623 * - swp_entry is migration entry -> EINVAL
2624 * - swap-cache reference is requested but there is already one. -> EEXIST
2625 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2626 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2628 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
2630 struct swap_info_struct
*p
;
2631 unsigned long offset
, type
;
2632 unsigned char count
;
2633 unsigned char has_cache
;
2636 if (non_swap_entry(entry
))
2639 type
= swp_type(entry
);
2640 if (type
>= nr_swapfiles
)
2642 p
= swap_info
[type
];
2643 offset
= swp_offset(entry
);
2645 spin_lock(&p
->lock
);
2646 if (unlikely(offset
>= p
->max
))
2649 count
= p
->swap_map
[offset
];
2652 * swapin_readahead() doesn't check if a swap entry is valid, so the
2653 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2655 if (unlikely(swap_count(count
) == SWAP_MAP_BAD
)) {
2660 has_cache
= count
& SWAP_HAS_CACHE
;
2661 count
&= ~SWAP_HAS_CACHE
;
2664 if (usage
== SWAP_HAS_CACHE
) {
2666 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2667 if (!has_cache
&& count
)
2668 has_cache
= SWAP_HAS_CACHE
;
2669 else if (has_cache
) /* someone else added cache */
2671 else /* no users remaining */
2674 } else if (count
|| has_cache
) {
2676 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
2678 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
2680 else if (swap_count_continued(p
, offset
, count
))
2681 count
= COUNT_CONTINUED
;
2685 err
= -ENOENT
; /* unused swap entry */
2687 p
->swap_map
[offset
] = count
| has_cache
;
2690 spin_unlock(&p
->lock
);
2695 pr_err("swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2700 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2701 * (in which case its reference count is never incremented).
2703 void swap_shmem_alloc(swp_entry_t entry
)
2705 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
2709 * Increase reference count of swap entry by 1.
2710 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2711 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2712 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2713 * might occur if a page table entry has got corrupted.
2715 int swap_duplicate(swp_entry_t entry
)
2719 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
2720 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
2725 * @entry: swap entry for which we allocate swap cache.
2727 * Called when allocating swap cache for existing swap entry,
2728 * This can return error codes. Returns 0 at success.
2729 * -EBUSY means there is a swap cache.
2730 * Note: return code is different from swap_duplicate().
2732 int swapcache_prepare(swp_entry_t entry
)
2734 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
2737 struct swap_info_struct
*page_swap_info(struct page
*page
)
2739 swp_entry_t swap
= { .val
= page_private(page
) };
2740 return swap_info
[swp_type(swap
)];
2744 * out-of-line __page_file_ methods to avoid include hell.
2746 struct address_space
*__page_file_mapping(struct page
*page
)
2748 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
2749 return page_swap_info(page
)->swap_file
->f_mapping
;
2751 EXPORT_SYMBOL_GPL(__page_file_mapping
);
2753 pgoff_t
__page_file_index(struct page
*page
)
2755 swp_entry_t swap
= { .val
= page_private(page
) };
2756 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
2757 return swp_offset(swap
);
2759 EXPORT_SYMBOL_GPL(__page_file_index
);
2762 * add_swap_count_continuation - called when a swap count is duplicated
2763 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2764 * page of the original vmalloc'ed swap_map, to hold the continuation count
2765 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2766 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2768 * These continuation pages are seldom referenced: the common paths all work
2769 * on the original swap_map, only referring to a continuation page when the
2770 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2772 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2773 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2774 * can be called after dropping locks.
2776 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
2778 struct swap_info_struct
*si
;
2781 struct page
*list_page
;
2783 unsigned char count
;
2786 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2787 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2789 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
2791 si
= swap_info_get(entry
);
2794 * An acceptable race has occurred since the failing
2795 * __swap_duplicate(): the swap entry has been freed,
2796 * perhaps even the whole swap_map cleared for swapoff.
2801 offset
= swp_offset(entry
);
2802 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
2804 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
2806 * The higher the swap count, the more likely it is that tasks
2807 * will race to add swap count continuation: we need to avoid
2808 * over-provisioning.
2814 spin_unlock(&si
->lock
);
2819 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2820 * no architecture is using highmem pages for kernel page tables: so it
2821 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2823 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2824 offset
&= ~PAGE_MASK
;
2827 * Page allocation does not initialize the page's lru field,
2828 * but it does always reset its private field.
2830 if (!page_private(head
)) {
2831 BUG_ON(count
& COUNT_CONTINUED
);
2832 INIT_LIST_HEAD(&head
->lru
);
2833 set_page_private(head
, SWP_CONTINUED
);
2834 si
->flags
|= SWP_CONTINUED
;
2837 list_for_each_entry(list_page
, &head
->lru
, lru
) {
2841 * If the previous map said no continuation, but we've found
2842 * a continuation page, free our allocation and use this one.
2844 if (!(count
& COUNT_CONTINUED
))
2847 map
= kmap_atomic(list_page
) + offset
;
2852 * If this continuation count now has some space in it,
2853 * free our allocation and use this one.
2855 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
2859 list_add_tail(&page
->lru
, &head
->lru
);
2860 page
= NULL
; /* now it's attached, don't free it */
2862 spin_unlock(&si
->lock
);
2870 * swap_count_continued - when the original swap_map count is incremented
2871 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2872 * into, carry if so, or else fail until a new continuation page is allocated;
2873 * when the original swap_map count is decremented from 0 with continuation,
2874 * borrow from the continuation and report whether it still holds more.
2875 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2877 static bool swap_count_continued(struct swap_info_struct
*si
,
2878 pgoff_t offset
, unsigned char count
)
2884 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2885 if (page_private(head
) != SWP_CONTINUED
) {
2886 BUG_ON(count
& COUNT_CONTINUED
);
2887 return false; /* need to add count continuation */
2890 offset
&= ~PAGE_MASK
;
2891 page
= list_entry(head
->lru
.next
, struct page
, lru
);
2892 map
= kmap_atomic(page
) + offset
;
2894 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
2895 goto init_map
; /* jump over SWAP_CONT_MAX checks */
2897 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
2899 * Think of how you add 1 to 999
2901 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
2903 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2904 BUG_ON(page
== head
);
2905 map
= kmap_atomic(page
) + offset
;
2907 if (*map
== SWAP_CONT_MAX
) {
2909 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2911 return false; /* add count continuation */
2912 map
= kmap_atomic(page
) + offset
;
2913 init_map
: *map
= 0; /* we didn't zero the page */
2917 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2918 while (page
!= head
) {
2919 map
= kmap_atomic(page
) + offset
;
2920 *map
= COUNT_CONTINUED
;
2922 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2924 return true; /* incremented */
2926 } else { /* decrementing */
2928 * Think of how you subtract 1 from 1000
2930 BUG_ON(count
!= COUNT_CONTINUED
);
2931 while (*map
== COUNT_CONTINUED
) {
2933 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2934 BUG_ON(page
== head
);
2935 map
= kmap_atomic(page
) + offset
;
2942 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2943 while (page
!= head
) {
2944 map
= kmap_atomic(page
) + offset
;
2945 *map
= SWAP_CONT_MAX
| count
;
2946 count
= COUNT_CONTINUED
;
2948 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2950 return count
== COUNT_CONTINUED
;
2955 * free_swap_count_continuations - swapoff free all the continuation pages
2956 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2958 static void free_swap_count_continuations(struct swap_info_struct
*si
)
2962 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
2964 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2965 if (page_private(head
)) {
2966 struct page
*page
, *next
;
2968 list_for_each_entry_safe(page
, next
, &head
->lru
, lru
) {
2969 list_del(&page
->lru
);