2 * linux/drivers/clocksource/arm_arch_timer.c
4 * Copyright (C) 2011 ARM Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 #include <linux/acpi.h>
27 #include <asm/arch_timer.h>
30 #include <clocksource/arm_arch_timer.h>
33 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
35 #define CNTVCT_LO 0x08
36 #define CNTVCT_HI 0x0c
38 #define CNTP_TVAL 0x28
40 #define CNTV_TVAL 0x38
43 #define ARCH_CP15_TIMER BIT(0)
44 #define ARCH_MEM_TIMER BIT(1)
45 static unsigned arch_timers_present __initdata
;
47 static void __iomem
*arch_counter_base
;
51 struct clock_event_device evt
;
54 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
56 static u32 arch_timer_rate
;
66 static int arch_timer_ppi
[MAX_TIMER_PPI
];
68 static struct clock_event_device __percpu
*arch_timer_evt
;
70 static bool arch_timer_use_virtual
= true;
71 static bool arch_timer_c3stop
;
72 static bool arch_timer_mem_use_virtual
;
75 * Architected system timer support.
78 static __always_inline
79 void arch_timer_reg_write(int access
, enum arch_timer_reg reg
, u32 val
,
80 struct clock_event_device
*clk
)
82 if (access
== ARCH_TIMER_MEM_PHYS_ACCESS
) {
83 struct arch_timer
*timer
= to_arch_timer(clk
);
85 case ARCH_TIMER_REG_CTRL
:
86 writel_relaxed(val
, timer
->base
+ CNTP_CTL
);
88 case ARCH_TIMER_REG_TVAL
:
89 writel_relaxed(val
, timer
->base
+ CNTP_TVAL
);
92 } else if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
) {
93 struct arch_timer
*timer
= to_arch_timer(clk
);
95 case ARCH_TIMER_REG_CTRL
:
96 writel_relaxed(val
, timer
->base
+ CNTV_CTL
);
98 case ARCH_TIMER_REG_TVAL
:
99 writel_relaxed(val
, timer
->base
+ CNTV_TVAL
);
103 arch_timer_reg_write_cp15(access
, reg
, val
);
107 static __always_inline
108 u32
arch_timer_reg_read(int access
, enum arch_timer_reg reg
,
109 struct clock_event_device
*clk
)
113 if (access
== ARCH_TIMER_MEM_PHYS_ACCESS
) {
114 struct arch_timer
*timer
= to_arch_timer(clk
);
116 case ARCH_TIMER_REG_CTRL
:
117 val
= readl_relaxed(timer
->base
+ CNTP_CTL
);
119 case ARCH_TIMER_REG_TVAL
:
120 val
= readl_relaxed(timer
->base
+ CNTP_TVAL
);
123 } else if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
) {
124 struct arch_timer
*timer
= to_arch_timer(clk
);
126 case ARCH_TIMER_REG_CTRL
:
127 val
= readl_relaxed(timer
->base
+ CNTV_CTL
);
129 case ARCH_TIMER_REG_TVAL
:
130 val
= readl_relaxed(timer
->base
+ CNTV_TVAL
);
134 val
= arch_timer_reg_read_cp15(access
, reg
);
140 static __always_inline irqreturn_t
timer_handler(const int access
,
141 struct clock_event_device
*evt
)
145 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, evt
);
146 if (ctrl
& ARCH_TIMER_CTRL_IT_STAT
) {
147 ctrl
|= ARCH_TIMER_CTRL_IT_MASK
;
148 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, evt
);
149 evt
->event_handler(evt
);
156 static irqreturn_t
arch_timer_handler_virt(int irq
, void *dev_id
)
158 struct clock_event_device
*evt
= dev_id
;
160 return timer_handler(ARCH_TIMER_VIRT_ACCESS
, evt
);
163 static irqreturn_t
arch_timer_handler_phys(int irq
, void *dev_id
)
165 struct clock_event_device
*evt
= dev_id
;
167 return timer_handler(ARCH_TIMER_PHYS_ACCESS
, evt
);
170 static irqreturn_t
arch_timer_handler_phys_mem(int irq
, void *dev_id
)
172 struct clock_event_device
*evt
= dev_id
;
174 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS
, evt
);
177 static irqreturn_t
arch_timer_handler_virt_mem(int irq
, void *dev_id
)
179 struct clock_event_device
*evt
= dev_id
;
181 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS
, evt
);
184 static __always_inline
int timer_shutdown(const int access
,
185 struct clock_event_device
*clk
)
189 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
190 ctrl
&= ~ARCH_TIMER_CTRL_ENABLE
;
191 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
196 static int arch_timer_shutdown_virt(struct clock_event_device
*clk
)
198 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS
, clk
);
201 static int arch_timer_shutdown_phys(struct clock_event_device
*clk
)
203 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS
, clk
);
206 static int arch_timer_shutdown_virt_mem(struct clock_event_device
*clk
)
208 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS
, clk
);
211 static int arch_timer_shutdown_phys_mem(struct clock_event_device
*clk
)
213 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS
, clk
);
216 static __always_inline
void set_next_event(const int access
, unsigned long evt
,
217 struct clock_event_device
*clk
)
220 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
221 ctrl
|= ARCH_TIMER_CTRL_ENABLE
;
222 ctrl
&= ~ARCH_TIMER_CTRL_IT_MASK
;
223 arch_timer_reg_write(access
, ARCH_TIMER_REG_TVAL
, evt
, clk
);
224 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
227 static int arch_timer_set_next_event_virt(unsigned long evt
,
228 struct clock_event_device
*clk
)
230 set_next_event(ARCH_TIMER_VIRT_ACCESS
, evt
, clk
);
234 static int arch_timer_set_next_event_phys(unsigned long evt
,
235 struct clock_event_device
*clk
)
237 set_next_event(ARCH_TIMER_PHYS_ACCESS
, evt
, clk
);
241 static int arch_timer_set_next_event_virt_mem(unsigned long evt
,
242 struct clock_event_device
*clk
)
244 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS
, evt
, clk
);
248 static int arch_timer_set_next_event_phys_mem(unsigned long evt
,
249 struct clock_event_device
*clk
)
251 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS
, evt
, clk
);
255 static void __arch_timer_setup(unsigned type
,
256 struct clock_event_device
*clk
)
258 clk
->features
= CLOCK_EVT_FEAT_ONESHOT
;
260 if (type
== ARCH_CP15_TIMER
) {
261 if (arch_timer_c3stop
)
262 clk
->features
|= CLOCK_EVT_FEAT_C3STOP
;
263 clk
->name
= "arch_sys_timer";
265 clk
->cpumask
= cpumask_of(smp_processor_id());
266 if (arch_timer_use_virtual
) {
267 clk
->irq
= arch_timer_ppi
[VIRT_PPI
];
268 clk
->set_state_shutdown
= arch_timer_shutdown_virt
;
269 clk
->set_next_event
= arch_timer_set_next_event_virt
;
271 clk
->irq
= arch_timer_ppi
[PHYS_SECURE_PPI
];
272 clk
->set_state_shutdown
= arch_timer_shutdown_phys
;
273 clk
->set_next_event
= arch_timer_set_next_event_phys
;
276 clk
->features
|= CLOCK_EVT_FEAT_DYNIRQ
;
277 clk
->name
= "arch_mem_timer";
279 clk
->cpumask
= cpu_all_mask
;
280 if (arch_timer_mem_use_virtual
) {
281 clk
->set_state_shutdown
= arch_timer_shutdown_virt_mem
;
282 clk
->set_next_event
=
283 arch_timer_set_next_event_virt_mem
;
285 clk
->set_state_shutdown
= arch_timer_shutdown_phys_mem
;
286 clk
->set_next_event
=
287 arch_timer_set_next_event_phys_mem
;
291 clk
->set_state_shutdown(clk
);
293 clockevents_config_and_register(clk
, arch_timer_rate
, 0xf, 0x7fffffff);
296 static void arch_timer_evtstrm_enable(int divider
)
298 u32 cntkctl
= arch_timer_get_cntkctl();
300 cntkctl
&= ~ARCH_TIMER_EVT_TRIGGER_MASK
;
301 /* Set the divider and enable virtual event stream */
302 cntkctl
|= (divider
<< ARCH_TIMER_EVT_TRIGGER_SHIFT
)
303 | ARCH_TIMER_VIRT_EVT_EN
;
304 arch_timer_set_cntkctl(cntkctl
);
305 elf_hwcap
|= HWCAP_EVTSTRM
;
307 compat_elf_hwcap
|= COMPAT_HWCAP_EVTSTRM
;
311 static void arch_timer_configure_evtstream(void)
313 int evt_stream_div
, pos
;
315 /* Find the closest power of two to the divisor */
316 evt_stream_div
= arch_timer_rate
/ ARCH_TIMER_EVT_STREAM_FREQ
;
317 pos
= fls(evt_stream_div
);
318 if (pos
> 1 && !(evt_stream_div
& (1 << (pos
- 2))))
320 /* enable event stream */
321 arch_timer_evtstrm_enable(min(pos
, 15));
324 static void arch_counter_set_user_access(void)
326 u32 cntkctl
= arch_timer_get_cntkctl();
328 /* Disable user access to the timers and the physical counter */
329 /* Also disable virtual event stream */
330 cntkctl
&= ~(ARCH_TIMER_USR_PT_ACCESS_EN
331 | ARCH_TIMER_USR_VT_ACCESS_EN
332 | ARCH_TIMER_VIRT_EVT_EN
333 | ARCH_TIMER_USR_PCT_ACCESS_EN
);
335 /* Enable user access to the virtual counter */
336 cntkctl
|= ARCH_TIMER_USR_VCT_ACCESS_EN
;
338 arch_timer_set_cntkctl(cntkctl
);
341 static int arch_timer_setup(struct clock_event_device
*clk
)
343 __arch_timer_setup(ARCH_CP15_TIMER
, clk
);
345 if (arch_timer_use_virtual
)
346 enable_percpu_irq(arch_timer_ppi
[VIRT_PPI
], 0);
348 enable_percpu_irq(arch_timer_ppi
[PHYS_SECURE_PPI
], 0);
349 if (arch_timer_ppi
[PHYS_NONSECURE_PPI
])
350 enable_percpu_irq(arch_timer_ppi
[PHYS_NONSECURE_PPI
], 0);
353 arch_counter_set_user_access();
354 if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM
))
355 arch_timer_configure_evtstream();
361 arch_timer_detect_rate(void __iomem
*cntbase
, struct device_node
*np
)
363 /* Who has more than one independent system counter? */
368 * Try to determine the frequency from the device tree or CNTFRQ,
369 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
371 if (!acpi_disabled
||
372 of_property_read_u32(np
, "clock-frequency", &arch_timer_rate
)) {
374 arch_timer_rate
= readl_relaxed(cntbase
+ CNTFRQ
);
376 arch_timer_rate
= arch_timer_get_cntfrq();
379 /* Check the timer frequency. */
380 if (arch_timer_rate
== 0)
381 pr_warn("Architected timer frequency not available\n");
384 static void arch_timer_banner(unsigned type
)
386 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
387 type
& ARCH_CP15_TIMER
? "cp15" : "",
388 type
== (ARCH_CP15_TIMER
| ARCH_MEM_TIMER
) ? " and " : "",
389 type
& ARCH_MEM_TIMER
? "mmio" : "",
390 (unsigned long)arch_timer_rate
/ 1000000,
391 (unsigned long)(arch_timer_rate
/ 10000) % 100,
392 type
& ARCH_CP15_TIMER
?
393 arch_timer_use_virtual
? "virt" : "phys" :
395 type
== (ARCH_CP15_TIMER
| ARCH_MEM_TIMER
) ? "/" : "",
396 type
& ARCH_MEM_TIMER
?
397 arch_timer_mem_use_virtual
? "virt" : "phys" :
401 u32
arch_timer_get_rate(void)
403 return arch_timer_rate
;
406 static u64
arch_counter_get_cntvct_mem(void)
408 u32 vct_lo
, vct_hi
, tmp_hi
;
411 vct_hi
= readl_relaxed(arch_counter_base
+ CNTVCT_HI
);
412 vct_lo
= readl_relaxed(arch_counter_base
+ CNTVCT_LO
);
413 tmp_hi
= readl_relaxed(arch_counter_base
+ CNTVCT_HI
);
414 } while (vct_hi
!= tmp_hi
);
416 return ((u64
) vct_hi
<< 32) | vct_lo
;
420 * Default to cp15 based access because arm64 uses this function for
421 * sched_clock() before DT is probed and the cp15 method is guaranteed
422 * to exist on arm64. arm doesn't use this before DT is probed so even
423 * if we don't have the cp15 accessors we won't have a problem.
425 u64 (*arch_timer_read_counter
)(void) = arch_counter_get_cntvct
;
427 static cycle_t
arch_counter_read(struct clocksource
*cs
)
429 return arch_timer_read_counter();
432 static cycle_t
arch_counter_read_cc(const struct cyclecounter
*cc
)
434 return arch_timer_read_counter();
437 static struct clocksource clocksource_counter
= {
438 .name
= "arch_sys_counter",
440 .read
= arch_counter_read
,
441 .mask
= CLOCKSOURCE_MASK(56),
442 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
| CLOCK_SOURCE_SUSPEND_NONSTOP
,
445 static struct cyclecounter cyclecounter
= {
446 .read
= arch_counter_read_cc
,
447 .mask
= CLOCKSOURCE_MASK(56),
450 static struct timecounter timecounter
;
452 struct timecounter
*arch_timer_get_timecounter(void)
457 static void __init
arch_counter_register(unsigned type
)
461 /* Register the CP15 based counter if we have one */
462 if (type
& ARCH_CP15_TIMER
) {
463 if (IS_ENABLED(CONFIG_ARM64
) || arch_timer_use_virtual
)
464 arch_timer_read_counter
= arch_counter_get_cntvct
;
466 arch_timer_read_counter
= arch_counter_get_cntpct
;
468 arch_timer_read_counter
= arch_counter_get_cntvct_mem
;
470 /* If the clocksource name is "arch_sys_counter" the
471 * VDSO will attempt to read the CP15-based counter.
472 * Ensure this does not happen when CP15-based
473 * counter is not available.
475 clocksource_counter
.name
= "arch_mem_counter";
478 start_count
= arch_timer_read_counter();
479 clocksource_register_hz(&clocksource_counter
, arch_timer_rate
);
480 cyclecounter
.mult
= clocksource_counter
.mult
;
481 cyclecounter
.shift
= clocksource_counter
.shift
;
482 timecounter_init(&timecounter
, &cyclecounter
, start_count
);
484 /* 56 bits minimum, so we assume worst case rollover */
485 sched_clock_register(arch_timer_read_counter
, 56, arch_timer_rate
);
488 static void arch_timer_stop(struct clock_event_device
*clk
)
490 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
491 clk
->irq
, smp_processor_id());
493 if (arch_timer_use_virtual
)
494 disable_percpu_irq(arch_timer_ppi
[VIRT_PPI
]);
496 disable_percpu_irq(arch_timer_ppi
[PHYS_SECURE_PPI
]);
497 if (arch_timer_ppi
[PHYS_NONSECURE_PPI
])
498 disable_percpu_irq(arch_timer_ppi
[PHYS_NONSECURE_PPI
]);
501 clk
->set_state_shutdown(clk
);
504 static int arch_timer_cpu_notify(struct notifier_block
*self
,
505 unsigned long action
, void *hcpu
)
508 * Grab cpu pointer in each case to avoid spurious
509 * preemptible warnings
511 switch (action
& ~CPU_TASKS_FROZEN
) {
513 arch_timer_setup(this_cpu_ptr(arch_timer_evt
));
516 arch_timer_stop(this_cpu_ptr(arch_timer_evt
));
523 static struct notifier_block arch_timer_cpu_nb
= {
524 .notifier_call
= arch_timer_cpu_notify
,
528 static unsigned int saved_cntkctl
;
529 static int arch_timer_cpu_pm_notify(struct notifier_block
*self
,
530 unsigned long action
, void *hcpu
)
532 if (action
== CPU_PM_ENTER
)
533 saved_cntkctl
= arch_timer_get_cntkctl();
534 else if (action
== CPU_PM_ENTER_FAILED
|| action
== CPU_PM_EXIT
)
535 arch_timer_set_cntkctl(saved_cntkctl
);
539 static struct notifier_block arch_timer_cpu_pm_notifier
= {
540 .notifier_call
= arch_timer_cpu_pm_notify
,
543 static int __init
arch_timer_cpu_pm_init(void)
545 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier
);
548 static int __init
arch_timer_cpu_pm_init(void)
554 static int __init
arch_timer_register(void)
559 arch_timer_evt
= alloc_percpu(struct clock_event_device
);
560 if (!arch_timer_evt
) {
565 if (arch_timer_use_virtual
) {
566 ppi
= arch_timer_ppi
[VIRT_PPI
];
567 err
= request_percpu_irq(ppi
, arch_timer_handler_virt
,
568 "arch_timer", arch_timer_evt
);
570 ppi
= arch_timer_ppi
[PHYS_SECURE_PPI
];
571 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
572 "arch_timer", arch_timer_evt
);
573 if (!err
&& arch_timer_ppi
[PHYS_NONSECURE_PPI
]) {
574 ppi
= arch_timer_ppi
[PHYS_NONSECURE_PPI
];
575 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
576 "arch_timer", arch_timer_evt
);
578 free_percpu_irq(arch_timer_ppi
[PHYS_SECURE_PPI
],
584 pr_err("arch_timer: can't register interrupt %d (%d)\n",
589 err
= register_cpu_notifier(&arch_timer_cpu_nb
);
593 err
= arch_timer_cpu_pm_init();
595 goto out_unreg_notify
;
597 /* Immediately configure the timer on the boot CPU */
598 arch_timer_setup(this_cpu_ptr(arch_timer_evt
));
603 unregister_cpu_notifier(&arch_timer_cpu_nb
);
605 if (arch_timer_use_virtual
)
606 free_percpu_irq(arch_timer_ppi
[VIRT_PPI
], arch_timer_evt
);
608 free_percpu_irq(arch_timer_ppi
[PHYS_SECURE_PPI
],
610 if (arch_timer_ppi
[PHYS_NONSECURE_PPI
])
611 free_percpu_irq(arch_timer_ppi
[PHYS_NONSECURE_PPI
],
616 free_percpu(arch_timer_evt
);
621 static int __init
arch_timer_mem_register(void __iomem
*base
, unsigned int irq
)
625 struct arch_timer
*t
;
627 t
= kzalloc(sizeof(*t
), GFP_KERNEL
);
633 __arch_timer_setup(ARCH_MEM_TIMER
, &t
->evt
);
635 if (arch_timer_mem_use_virtual
)
636 func
= arch_timer_handler_virt_mem
;
638 func
= arch_timer_handler_phys_mem
;
640 ret
= request_irq(irq
, func
, IRQF_TIMER
, "arch_mem_timer", &t
->evt
);
642 pr_err("arch_timer: Failed to request mem timer irq\n");
649 static const struct of_device_id arch_timer_of_match
[] __initconst
= {
650 { .compatible
= "arm,armv7-timer", },
651 { .compatible
= "arm,armv8-timer", },
655 static const struct of_device_id arch_timer_mem_of_match
[] __initconst
= {
656 { .compatible
= "arm,armv7-timer-mem", },
661 arch_timer_needs_probing(int type
, const struct of_device_id
*matches
)
663 struct device_node
*dn
;
664 bool needs_probing
= false;
666 dn
= of_find_matching_node(NULL
, matches
);
667 if (dn
&& of_device_is_available(dn
) && !(arch_timers_present
& type
))
668 needs_probing
= true;
671 return needs_probing
;
674 static void __init
arch_timer_common_init(void)
676 unsigned mask
= ARCH_CP15_TIMER
| ARCH_MEM_TIMER
;
678 /* Wait until both nodes are probed if we have two timers */
679 if ((arch_timers_present
& mask
) != mask
) {
680 if (arch_timer_needs_probing(ARCH_MEM_TIMER
, arch_timer_mem_of_match
))
682 if (arch_timer_needs_probing(ARCH_CP15_TIMER
, arch_timer_of_match
))
686 arch_timer_banner(arch_timers_present
);
687 arch_counter_register(arch_timers_present
);
688 arch_timer_arch_init();
691 static void __init
arch_timer_init(void)
694 * If HYP mode is available, we know that the physical timer
695 * has been configured to be accessible from PL1. Use it, so
696 * that a guest can use the virtual timer instead.
698 * If no interrupt provided for virtual timer, we'll have to
699 * stick to the physical timer. It'd better be accessible...
701 if (is_hyp_mode_available() || !arch_timer_ppi
[VIRT_PPI
]) {
702 arch_timer_use_virtual
= false;
704 if (!arch_timer_ppi
[PHYS_SECURE_PPI
] ||
705 !arch_timer_ppi
[PHYS_NONSECURE_PPI
]) {
706 pr_warn("arch_timer: No interrupt available, giving up\n");
711 arch_timer_register();
712 arch_timer_common_init();
715 static void __init
arch_timer_of_init(struct device_node
*np
)
719 if (arch_timers_present
& ARCH_CP15_TIMER
) {
720 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
724 arch_timers_present
|= ARCH_CP15_TIMER
;
725 for (i
= PHYS_SECURE_PPI
; i
< MAX_TIMER_PPI
; i
++)
726 arch_timer_ppi
[i
] = irq_of_parse_and_map(np
, i
);
728 arch_timer_detect_rate(NULL
, np
);
730 arch_timer_c3stop
= !of_property_read_bool(np
, "always-on");
733 * If we cannot rely on firmware initializing the timer registers then
734 * we should use the physical timers instead.
736 if (IS_ENABLED(CONFIG_ARM
) &&
737 of_property_read_bool(np
, "arm,cpu-registers-not-fw-configured"))
738 arch_timer_use_virtual
= false;
742 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer
, "arm,armv7-timer", arch_timer_of_init
);
743 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer
, "arm,armv8-timer", arch_timer_of_init
);
745 static void __init
arch_timer_mem_init(struct device_node
*np
)
747 struct device_node
*frame
, *best_frame
= NULL
;
748 void __iomem
*cntctlbase
, *base
;
752 arch_timers_present
|= ARCH_MEM_TIMER
;
753 cntctlbase
= of_iomap(np
, 0);
755 pr_err("arch_timer: Can't find CNTCTLBase\n");
759 cnttidr
= readl_relaxed(cntctlbase
+ CNTTIDR
);
763 * Try to find a virtual capable frame. Otherwise fall back to a
764 * physical capable frame.
766 for_each_available_child_of_node(np
, frame
) {
769 if (of_property_read_u32(frame
, "frame-number", &n
)) {
770 pr_err("arch_timer: Missing frame-number\n");
771 of_node_put(best_frame
);
776 if (cnttidr
& CNTTIDR_VIRT(n
)) {
777 of_node_put(best_frame
);
779 arch_timer_mem_use_virtual
= true;
782 of_node_put(best_frame
);
783 best_frame
= of_node_get(frame
);
786 base
= arch_counter_base
= of_iomap(best_frame
, 0);
788 pr_err("arch_timer: Can't map frame's registers\n");
789 of_node_put(best_frame
);
793 if (arch_timer_mem_use_virtual
)
794 irq
= irq_of_parse_and_map(best_frame
, 1);
796 irq
= irq_of_parse_and_map(best_frame
, 0);
797 of_node_put(best_frame
);
799 pr_err("arch_timer: Frame missing %s irq",
800 arch_timer_mem_use_virtual
? "virt" : "phys");
804 arch_timer_detect_rate(base
, np
);
805 arch_timer_mem_register(base
, irq
);
806 arch_timer_common_init();
808 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem
, "arm,armv7-timer-mem",
809 arch_timer_mem_init
);
812 static int __init
map_generic_timer_interrupt(u32 interrupt
, u32 flags
)
814 int trigger
, polarity
;
819 trigger
= (flags
& ACPI_GTDT_INTERRUPT_MODE
) ? ACPI_EDGE_SENSITIVE
820 : ACPI_LEVEL_SENSITIVE
;
822 polarity
= (flags
& ACPI_GTDT_INTERRUPT_POLARITY
) ? ACPI_ACTIVE_LOW
825 return acpi_register_gsi(NULL
, interrupt
, trigger
, polarity
);
828 /* Initialize per-processor generic timer */
829 static int __init
arch_timer_acpi_init(struct acpi_table_header
*table
)
831 struct acpi_table_gtdt
*gtdt
;
833 if (arch_timers_present
& ARCH_CP15_TIMER
) {
834 pr_warn("arch_timer: already initialized, skipping\n");
838 gtdt
= container_of(table
, struct acpi_table_gtdt
, header
);
840 arch_timers_present
|= ARCH_CP15_TIMER
;
842 arch_timer_ppi
[PHYS_SECURE_PPI
] =
843 map_generic_timer_interrupt(gtdt
->secure_el1_interrupt
,
844 gtdt
->secure_el1_flags
);
846 arch_timer_ppi
[PHYS_NONSECURE_PPI
] =
847 map_generic_timer_interrupt(gtdt
->non_secure_el1_interrupt
,
848 gtdt
->non_secure_el1_flags
);
850 arch_timer_ppi
[VIRT_PPI
] =
851 map_generic_timer_interrupt(gtdt
->virtual_timer_interrupt
,
852 gtdt
->virtual_timer_flags
);
854 arch_timer_ppi
[HYP_PPI
] =
855 map_generic_timer_interrupt(gtdt
->non_secure_el2_interrupt
,
856 gtdt
->non_secure_el2_flags
);
858 /* Get the frequency from CNTFRQ */
859 arch_timer_detect_rate(NULL
, NULL
);
861 /* Always-on capability */
862 arch_timer_c3stop
= !(gtdt
->non_secure_el1_flags
& ACPI_GTDT_ALWAYS_ON
);
867 CLOCKSOURCE_ACPI_DECLARE(arch_timer
, ACPI_SIG_GTDT
, arch_timer_acpi_init
);