2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm-generic/pci-bridge.h>
29 #include <asm/setup.h>
30 #include <linux/aer.h>
33 const char *pci_power_names
[] = {
34 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
36 EXPORT_SYMBOL_GPL(pci_power_names
);
38 int isa_dma_bridge_buggy
;
39 EXPORT_SYMBOL(isa_dma_bridge_buggy
);
42 EXPORT_SYMBOL(pci_pci_problems
);
44 unsigned int pci_pm_d3_delay
;
46 static void pci_pme_list_scan(struct work_struct
*work
);
48 static LIST_HEAD(pci_pme_list
);
49 static DEFINE_MUTEX(pci_pme_list_mutex
);
50 static DECLARE_DELAYED_WORK(pci_pme_work
, pci_pme_list_scan
);
52 struct pci_pme_device
{
53 struct list_head list
;
57 #define PME_TIMEOUT 1000 /* How long between PME checks */
59 static void pci_dev_d3_sleep(struct pci_dev
*dev
)
61 unsigned int delay
= dev
->d3_delay
;
63 if (delay
< pci_pm_d3_delay
)
64 delay
= pci_pm_d3_delay
;
69 #ifdef CONFIG_PCI_DOMAINS
70 int pci_domains_supported
= 1;
73 #define DEFAULT_CARDBUS_IO_SIZE (256)
74 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
75 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
76 unsigned long pci_cardbus_io_size
= DEFAULT_CARDBUS_IO_SIZE
;
77 unsigned long pci_cardbus_mem_size
= DEFAULT_CARDBUS_MEM_SIZE
;
79 #define DEFAULT_HOTPLUG_IO_SIZE (256)
80 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
81 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
82 unsigned long pci_hotplug_io_size
= DEFAULT_HOTPLUG_IO_SIZE
;
83 unsigned long pci_hotplug_mem_size
= DEFAULT_HOTPLUG_MEM_SIZE
;
85 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_DEFAULT
;
88 * The default CLS is used if arch didn't set CLS explicitly and not
89 * all pci devices agree on the same value. Arch can override either
90 * the dfl or actual value as it sees fit. Don't forget this is
91 * measured in 32-bit words, not bytes.
93 u8 pci_dfl_cache_line_size
= L1_CACHE_BYTES
>> 2;
94 u8 pci_cache_line_size
;
97 * If we set up a device for bus mastering, we need to check the latency
98 * timer as certain BIOSes forget to set it properly.
100 unsigned int pcibios_max_latency
= 255;
102 /* If set, the PCIe ARI capability will not be used. */
103 static bool pcie_ari_disabled
;
106 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
107 * @bus: pointer to PCI bus structure to search
109 * Given a PCI bus, returns the highest PCI bus number present in the set
110 * including the given PCI bus and its list of child PCI buses.
112 unsigned char pci_bus_max_busnr(struct pci_bus
*bus
)
115 unsigned char max
, n
;
117 max
= bus
->busn_res
.end
;
118 list_for_each_entry(tmp
, &bus
->children
, node
) {
119 n
= pci_bus_max_busnr(tmp
);
125 EXPORT_SYMBOL_GPL(pci_bus_max_busnr
);
127 #ifdef CONFIG_HAS_IOMEM
128 void __iomem
*pci_ioremap_bar(struct pci_dev
*pdev
, int bar
)
130 struct resource
*res
= &pdev
->resource
[bar
];
133 * Make sure the BAR is actually a memory resource, not an IO resource
135 if (res
->flags
& IORESOURCE_UNSET
|| !(res
->flags
& IORESOURCE_MEM
)) {
136 dev_warn(&pdev
->dev
, "can't ioremap BAR %d: %pR\n", bar
, res
);
139 return ioremap_nocache(res
->start
, resource_size(res
));
141 EXPORT_SYMBOL_GPL(pci_ioremap_bar
);
143 void __iomem
*pci_ioremap_wc_bar(struct pci_dev
*pdev
, int bar
)
146 * Make sure the BAR is actually a memory resource, not an IO resource
148 if (!(pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)) {
152 return ioremap_wc(pci_resource_start(pdev
, bar
),
153 pci_resource_len(pdev
, bar
));
155 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar
);
159 static int __pci_find_next_cap_ttl(struct pci_bus
*bus
, unsigned int devfn
,
160 u8 pos
, int cap
, int *ttl
)
165 pci_bus_read_config_byte(bus
, devfn
, pos
, &pos
);
171 pci_bus_read_config_word(bus
, devfn
, pos
, &ent
);
183 static int __pci_find_next_cap(struct pci_bus
*bus
, unsigned int devfn
,
186 int ttl
= PCI_FIND_CAP_TTL
;
188 return __pci_find_next_cap_ttl(bus
, devfn
, pos
, cap
, &ttl
);
191 int pci_find_next_capability(struct pci_dev
*dev
, u8 pos
, int cap
)
193 return __pci_find_next_cap(dev
->bus
, dev
->devfn
,
194 pos
+ PCI_CAP_LIST_NEXT
, cap
);
196 EXPORT_SYMBOL_GPL(pci_find_next_capability
);
198 static int __pci_bus_find_cap_start(struct pci_bus
*bus
,
199 unsigned int devfn
, u8 hdr_type
)
203 pci_bus_read_config_word(bus
, devfn
, PCI_STATUS
, &status
);
204 if (!(status
& PCI_STATUS_CAP_LIST
))
208 case PCI_HEADER_TYPE_NORMAL
:
209 case PCI_HEADER_TYPE_BRIDGE
:
210 return PCI_CAPABILITY_LIST
;
211 case PCI_HEADER_TYPE_CARDBUS
:
212 return PCI_CB_CAPABILITY_LIST
;
219 * pci_find_capability - query for devices' capabilities
220 * @dev: PCI device to query
221 * @cap: capability code
223 * Tell if a device supports a given PCI capability.
224 * Returns the address of the requested capability structure within the
225 * device's PCI configuration space or 0 in case the device does not
226 * support it. Possible values for @cap:
228 * %PCI_CAP_ID_PM Power Management
229 * %PCI_CAP_ID_AGP Accelerated Graphics Port
230 * %PCI_CAP_ID_VPD Vital Product Data
231 * %PCI_CAP_ID_SLOTID Slot Identification
232 * %PCI_CAP_ID_MSI Message Signalled Interrupts
233 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
234 * %PCI_CAP_ID_PCIX PCI-X
235 * %PCI_CAP_ID_EXP PCI Express
237 int pci_find_capability(struct pci_dev
*dev
, int cap
)
241 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
243 pos
= __pci_find_next_cap(dev
->bus
, dev
->devfn
, pos
, cap
);
247 EXPORT_SYMBOL(pci_find_capability
);
250 * pci_bus_find_capability - query for devices' capabilities
251 * @bus: the PCI bus to query
252 * @devfn: PCI device to query
253 * @cap: capability code
255 * Like pci_find_capability() but works for pci devices that do not have a
256 * pci_dev structure set up yet.
258 * Returns the address of the requested capability structure within the
259 * device's PCI configuration space or 0 in case the device does not
262 int pci_bus_find_capability(struct pci_bus
*bus
, unsigned int devfn
, int cap
)
267 pci_bus_read_config_byte(bus
, devfn
, PCI_HEADER_TYPE
, &hdr_type
);
269 pos
= __pci_bus_find_cap_start(bus
, devfn
, hdr_type
& 0x7f);
271 pos
= __pci_find_next_cap(bus
, devfn
, pos
, cap
);
275 EXPORT_SYMBOL(pci_bus_find_capability
);
278 * pci_find_next_ext_capability - Find an extended capability
279 * @dev: PCI device to query
280 * @start: address at which to start looking (0 to start at beginning of list)
281 * @cap: capability code
283 * Returns the address of the next matching extended capability structure
284 * within the device's PCI configuration space or 0 if the device does
285 * not support it. Some capabilities can occur several times, e.g., the
286 * vendor-specific capability, and this provides a way to find them all.
288 int pci_find_next_ext_capability(struct pci_dev
*dev
, int start
, int cap
)
292 int pos
= PCI_CFG_SPACE_SIZE
;
294 /* minimum 8 bytes per capability */
295 ttl
= (PCI_CFG_SPACE_EXP_SIZE
- PCI_CFG_SPACE_SIZE
) / 8;
297 if (dev
->cfg_size
<= PCI_CFG_SPACE_SIZE
)
303 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
307 * If we have no capabilities, this is indicated by cap ID,
308 * cap version and next pointer all being 0.
314 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
!= start
)
317 pos
= PCI_EXT_CAP_NEXT(header
);
318 if (pos
< PCI_CFG_SPACE_SIZE
)
321 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
327 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability
);
330 * pci_find_ext_capability - Find an extended capability
331 * @dev: PCI device to query
332 * @cap: capability code
334 * Returns the address of the requested extended capability structure
335 * within the device's PCI configuration space or 0 if the device does
336 * not support it. Possible values for @cap:
338 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
339 * %PCI_EXT_CAP_ID_VC Virtual Channel
340 * %PCI_EXT_CAP_ID_DSN Device Serial Number
341 * %PCI_EXT_CAP_ID_PWR Power Budgeting
343 int pci_find_ext_capability(struct pci_dev
*dev
, int cap
)
345 return pci_find_next_ext_capability(dev
, 0, cap
);
347 EXPORT_SYMBOL_GPL(pci_find_ext_capability
);
349 static int __pci_find_next_ht_cap(struct pci_dev
*dev
, int pos
, int ht_cap
)
351 int rc
, ttl
= PCI_FIND_CAP_TTL
;
354 if (ht_cap
== HT_CAPTYPE_SLAVE
|| ht_cap
== HT_CAPTYPE_HOST
)
355 mask
= HT_3BIT_CAP_MASK
;
357 mask
= HT_5BIT_CAP_MASK
;
359 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
, pos
,
360 PCI_CAP_ID_HT
, &ttl
);
362 rc
= pci_read_config_byte(dev
, pos
+ 3, &cap
);
363 if (rc
!= PCIBIOS_SUCCESSFUL
)
366 if ((cap
& mask
) == ht_cap
)
369 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
,
370 pos
+ PCI_CAP_LIST_NEXT
,
371 PCI_CAP_ID_HT
, &ttl
);
377 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
378 * @dev: PCI device to query
379 * @pos: Position from which to continue searching
380 * @ht_cap: Hypertransport capability code
382 * To be used in conjunction with pci_find_ht_capability() to search for
383 * all capabilities matching @ht_cap. @pos should always be a value returned
384 * from pci_find_ht_capability().
386 * NB. To be 100% safe against broken PCI devices, the caller should take
387 * steps to avoid an infinite loop.
389 int pci_find_next_ht_capability(struct pci_dev
*dev
, int pos
, int ht_cap
)
391 return __pci_find_next_ht_cap(dev
, pos
+ PCI_CAP_LIST_NEXT
, ht_cap
);
393 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability
);
396 * pci_find_ht_capability - query a device's Hypertransport capabilities
397 * @dev: PCI device to query
398 * @ht_cap: Hypertransport capability code
400 * Tell if a device supports a given Hypertransport capability.
401 * Returns an address within the device's PCI configuration space
402 * or 0 in case the device does not support the request capability.
403 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
404 * which has a Hypertransport capability matching @ht_cap.
406 int pci_find_ht_capability(struct pci_dev
*dev
, int ht_cap
)
410 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
412 pos
= __pci_find_next_ht_cap(dev
, pos
, ht_cap
);
416 EXPORT_SYMBOL_GPL(pci_find_ht_capability
);
419 * pci_find_parent_resource - return resource region of parent bus of given region
420 * @dev: PCI device structure contains resources to be searched
421 * @res: child resource record for which parent is sought
423 * For given resource region of given device, return the resource
424 * region of parent bus the given region is contained in.
426 struct resource
*pci_find_parent_resource(const struct pci_dev
*dev
,
427 struct resource
*res
)
429 const struct pci_bus
*bus
= dev
->bus
;
433 pci_bus_for_each_resource(bus
, r
, i
) {
436 if (res
->start
&& resource_contains(r
, res
)) {
439 * If the window is prefetchable but the BAR is
440 * not, the allocator made a mistake.
442 if (r
->flags
& IORESOURCE_PREFETCH
&&
443 !(res
->flags
& IORESOURCE_PREFETCH
))
447 * If we're below a transparent bridge, there may
448 * be both a positively-decoded aperture and a
449 * subtractively-decoded region that contain the BAR.
450 * We want the positively-decoded one, so this depends
451 * on pci_bus_for_each_resource() giving us those
459 EXPORT_SYMBOL(pci_find_parent_resource
);
462 * pci_find_pcie_root_port - return PCIe Root Port
463 * @dev: PCI device to query
465 * Traverse up the parent chain and return the PCIe Root Port PCI Device
466 * for a given PCI Device.
468 struct pci_dev
*pci_find_pcie_root_port(struct pci_dev
*dev
)
470 struct pci_dev
*bridge
, *highest_pcie_bridge
= NULL
;
472 bridge
= pci_upstream_bridge(dev
);
473 while (bridge
&& pci_is_pcie(bridge
)) {
474 highest_pcie_bridge
= bridge
;
475 bridge
= pci_upstream_bridge(bridge
);
478 if (pci_pcie_type(highest_pcie_bridge
) != PCI_EXP_TYPE_ROOT_PORT
)
481 return highest_pcie_bridge
;
483 EXPORT_SYMBOL(pci_find_pcie_root_port
);
486 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
487 * @dev: the PCI device to operate on
488 * @pos: config space offset of status word
489 * @mask: mask of bit(s) to care about in status word
491 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
493 int pci_wait_for_pending(struct pci_dev
*dev
, int pos
, u16 mask
)
497 /* Wait for Transaction Pending bit clean */
498 for (i
= 0; i
< 4; i
++) {
501 msleep((1 << (i
- 1)) * 100);
503 pci_read_config_word(dev
, pos
, &status
);
504 if (!(status
& mask
))
512 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
513 * @dev: PCI device to have its BARs restored
515 * Restore the BAR values for a given device, so as to make it
516 * accessible by its driver.
518 static void pci_restore_bars(struct pci_dev
*dev
)
522 /* Per SR-IOV spec 3.4.1.11, VF BARs are RO zero */
526 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++)
527 pci_update_resource(dev
, i
);
530 static const struct pci_platform_pm_ops
*pci_platform_pm
;
532 int pci_set_platform_pm(const struct pci_platform_pm_ops
*ops
)
534 if (!ops
->is_manageable
|| !ops
->set_state
|| !ops
->choose_state
537 pci_platform_pm
= ops
;
541 static inline bool platform_pci_power_manageable(struct pci_dev
*dev
)
543 return pci_platform_pm
? pci_platform_pm
->is_manageable(dev
) : false;
546 static inline int platform_pci_set_power_state(struct pci_dev
*dev
,
549 return pci_platform_pm
? pci_platform_pm
->set_state(dev
, t
) : -ENOSYS
;
552 static inline pci_power_t
platform_pci_choose_state(struct pci_dev
*dev
)
554 return pci_platform_pm
?
555 pci_platform_pm
->choose_state(dev
) : PCI_POWER_ERROR
;
558 static inline int platform_pci_sleep_wake(struct pci_dev
*dev
, bool enable
)
560 return pci_platform_pm
?
561 pci_platform_pm
->sleep_wake(dev
, enable
) : -ENODEV
;
564 static inline int platform_pci_run_wake(struct pci_dev
*dev
, bool enable
)
566 return pci_platform_pm
?
567 pci_platform_pm
->run_wake(dev
, enable
) : -ENODEV
;
570 static inline bool platform_pci_need_resume(struct pci_dev
*dev
)
572 return pci_platform_pm
? pci_platform_pm
->need_resume(dev
) : false;
576 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
578 * @dev: PCI device to handle.
579 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
582 * -EINVAL if the requested state is invalid.
583 * -EIO if device does not support PCI PM or its PM capabilities register has a
584 * wrong version, or device doesn't support the requested state.
585 * 0 if device already is in the requested state.
586 * 0 if device's power state has been successfully changed.
588 static int pci_raw_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
591 bool need_restore
= false;
593 /* Check if we're already there */
594 if (dev
->current_state
== state
)
600 if (state
< PCI_D0
|| state
> PCI_D3hot
)
603 /* Validate current state:
604 * Can enter D0 from any state, but if we can only go deeper
605 * to sleep if we're already in a low power state
607 if (state
!= PCI_D0
&& dev
->current_state
<= PCI_D3cold
608 && dev
->current_state
> state
) {
609 dev_err(&dev
->dev
, "invalid power transition (from state %d to %d)\n",
610 dev
->current_state
, state
);
614 /* check if this device supports the desired state */
615 if ((state
== PCI_D1
&& !dev
->d1_support
)
616 || (state
== PCI_D2
&& !dev
->d2_support
))
619 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
621 /* If we're (effectively) in D3, force entire word to 0.
622 * This doesn't affect PME_Status, disables PME_En, and
623 * sets PowerState to 0.
625 switch (dev
->current_state
) {
629 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
634 case PCI_UNKNOWN
: /* Boot-up */
635 if ((pmcsr
& PCI_PM_CTRL_STATE_MASK
) == PCI_D3hot
636 && !(pmcsr
& PCI_PM_CTRL_NO_SOFT_RESET
))
638 /* Fall-through: force to D0 */
644 /* enter specified state */
645 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
647 /* Mandatory power management transition delays */
648 /* see PCI PM 1.1 5.6.1 table 18 */
649 if (state
== PCI_D3hot
|| dev
->current_state
== PCI_D3hot
)
650 pci_dev_d3_sleep(dev
);
651 else if (state
== PCI_D2
|| dev
->current_state
== PCI_D2
)
652 udelay(PCI_PM_D2_DELAY
);
654 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
655 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
656 if (dev
->current_state
!= state
&& printk_ratelimit())
657 dev_info(&dev
->dev
, "Refused to change power state, currently in D%d\n",
661 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
662 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
663 * from D3hot to D0 _may_ perform an internal reset, thereby
664 * going to "D0 Uninitialized" rather than "D0 Initialized".
665 * For example, at least some versions of the 3c905B and the
666 * 3c556B exhibit this behaviour.
668 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
669 * devices in a D3hot state at boot. Consequently, we need to
670 * restore at least the BARs so that the device will be
671 * accessible to its driver.
674 pci_restore_bars(dev
);
677 pcie_aspm_pm_state_change(dev
->bus
->self
);
683 * pci_update_current_state - Read PCI power state of given device from its
684 * PCI PM registers and cache it
685 * @dev: PCI device to handle.
686 * @state: State to cache in case the device doesn't have the PM capability
688 void pci_update_current_state(struct pci_dev
*dev
, pci_power_t state
)
694 * Configuration space is not accessible for device in
695 * D3cold, so just keep or set D3cold for safety
697 if (dev
->current_state
== PCI_D3cold
)
699 if (state
== PCI_D3cold
) {
700 dev
->current_state
= PCI_D3cold
;
703 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
704 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
706 dev
->current_state
= state
;
711 * pci_power_up - Put the given device into D0 forcibly
712 * @dev: PCI device to power up
714 void pci_power_up(struct pci_dev
*dev
)
716 if (platform_pci_power_manageable(dev
))
717 platform_pci_set_power_state(dev
, PCI_D0
);
719 pci_raw_set_power_state(dev
, PCI_D0
);
720 pci_update_current_state(dev
, PCI_D0
);
724 * pci_platform_power_transition - Use platform to change device power state
725 * @dev: PCI device to handle.
726 * @state: State to put the device into.
728 static int pci_platform_power_transition(struct pci_dev
*dev
, pci_power_t state
)
732 if (platform_pci_power_manageable(dev
)) {
733 error
= platform_pci_set_power_state(dev
, state
);
735 pci_update_current_state(dev
, state
);
739 if (error
&& !dev
->pm_cap
) /* Fall back to PCI_D0 */
740 dev
->current_state
= PCI_D0
;
746 * pci_wakeup - Wake up a PCI device
747 * @pci_dev: Device to handle.
748 * @ign: ignored parameter
750 static int pci_wakeup(struct pci_dev
*pci_dev
, void *ign
)
752 pci_wakeup_event(pci_dev
);
753 pm_request_resume(&pci_dev
->dev
);
758 * pci_wakeup_bus - Walk given bus and wake up devices on it
759 * @bus: Top bus of the subtree to walk.
761 static void pci_wakeup_bus(struct pci_bus
*bus
)
764 pci_walk_bus(bus
, pci_wakeup
, NULL
);
768 * __pci_start_power_transition - Start power transition of a PCI device
769 * @dev: PCI device to handle.
770 * @state: State to put the device into.
772 static void __pci_start_power_transition(struct pci_dev
*dev
, pci_power_t state
)
774 if (state
== PCI_D0
) {
775 pci_platform_power_transition(dev
, PCI_D0
);
777 * Mandatory power management transition delays, see
778 * PCI Express Base Specification Revision 2.0 Section
779 * 6.6.1: Conventional Reset. Do not delay for
780 * devices powered on/off by corresponding bridge,
781 * because have already delayed for the bridge.
783 if (dev
->runtime_d3cold
) {
784 msleep(dev
->d3cold_delay
);
786 * When powering on a bridge from D3cold, the
787 * whole hierarchy may be powered on into
788 * D0uninitialized state, resume them to give
789 * them a chance to suspend again
791 pci_wakeup_bus(dev
->subordinate
);
797 * __pci_dev_set_current_state - Set current state of a PCI device
798 * @dev: Device to handle
799 * @data: pointer to state to be set
801 static int __pci_dev_set_current_state(struct pci_dev
*dev
, void *data
)
803 pci_power_t state
= *(pci_power_t
*)data
;
805 dev
->current_state
= state
;
810 * __pci_bus_set_current_state - Walk given bus and set current state of devices
811 * @bus: Top bus of the subtree to walk.
812 * @state: state to be set
814 static void __pci_bus_set_current_state(struct pci_bus
*bus
, pci_power_t state
)
817 pci_walk_bus(bus
, __pci_dev_set_current_state
, &state
);
821 * __pci_complete_power_transition - Complete power transition of a PCI device
822 * @dev: PCI device to handle.
823 * @state: State to put the device into.
825 * This function should not be called directly by device drivers.
827 int __pci_complete_power_transition(struct pci_dev
*dev
, pci_power_t state
)
833 ret
= pci_platform_power_transition(dev
, state
);
834 /* Power off the bridge may power off the whole hierarchy */
835 if (!ret
&& state
== PCI_D3cold
)
836 __pci_bus_set_current_state(dev
->subordinate
, PCI_D3cold
);
839 EXPORT_SYMBOL_GPL(__pci_complete_power_transition
);
842 * pci_set_power_state - Set the power state of a PCI device
843 * @dev: PCI device to handle.
844 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
846 * Transition a device to a new power state, using the platform firmware and/or
847 * the device's PCI PM registers.
850 * -EINVAL if the requested state is invalid.
851 * -EIO if device does not support PCI PM or its PM capabilities register has a
852 * wrong version, or device doesn't support the requested state.
853 * 0 if device already is in the requested state.
854 * 0 if device's power state has been successfully changed.
856 int pci_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
860 /* bound the state we're entering */
861 if (state
> PCI_D3cold
)
863 else if (state
< PCI_D0
)
865 else if ((state
== PCI_D1
|| state
== PCI_D2
) && pci_no_d1d2(dev
))
867 * If the device or the parent bridge do not support PCI PM,
868 * ignore the request if we're doing anything other than putting
869 * it into D0 (which would only happen on boot).
873 /* Check if we're already there */
874 if (dev
->current_state
== state
)
877 __pci_start_power_transition(dev
, state
);
879 /* This device is quirked not to be put into D3, so
880 don't put it in D3 */
881 if (state
>= PCI_D3hot
&& (dev
->dev_flags
& PCI_DEV_FLAGS_NO_D3
))
885 * To put device in D3cold, we put device into D3hot in native
886 * way, then put device into D3cold with platform ops
888 error
= pci_raw_set_power_state(dev
, state
> PCI_D3hot
?
891 if (!__pci_complete_power_transition(dev
, state
))
896 EXPORT_SYMBOL(pci_set_power_state
);
899 * pci_choose_state - Choose the power state of a PCI device
900 * @dev: PCI device to be suspended
901 * @state: target sleep state for the whole system. This is the value
902 * that is passed to suspend() function.
904 * Returns PCI power state suitable for given device and given system
908 pci_power_t
pci_choose_state(struct pci_dev
*dev
, pm_message_t state
)
915 ret
= platform_pci_choose_state(dev
);
916 if (ret
!= PCI_POWER_ERROR
)
919 switch (state
.event
) {
922 case PM_EVENT_FREEZE
:
923 case PM_EVENT_PRETHAW
:
924 /* REVISIT both freeze and pre-thaw "should" use D0 */
925 case PM_EVENT_SUSPEND
:
926 case PM_EVENT_HIBERNATE
:
929 dev_info(&dev
->dev
, "unrecognized suspend event %d\n",
935 EXPORT_SYMBOL(pci_choose_state
);
937 #define PCI_EXP_SAVE_REGS 7
939 static struct pci_cap_saved_state
*_pci_find_saved_cap(struct pci_dev
*pci_dev
,
940 u16 cap
, bool extended
)
942 struct pci_cap_saved_state
*tmp
;
944 hlist_for_each_entry(tmp
, &pci_dev
->saved_cap_space
, next
) {
945 if (tmp
->cap
.cap_extended
== extended
&& tmp
->cap
.cap_nr
== cap
)
951 struct pci_cap_saved_state
*pci_find_saved_cap(struct pci_dev
*dev
, char cap
)
953 return _pci_find_saved_cap(dev
, cap
, false);
956 struct pci_cap_saved_state
*pci_find_saved_ext_cap(struct pci_dev
*dev
, u16 cap
)
958 return _pci_find_saved_cap(dev
, cap
, true);
961 static int pci_save_pcie_state(struct pci_dev
*dev
)
964 struct pci_cap_saved_state
*save_state
;
967 if (!pci_is_pcie(dev
))
970 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
972 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
976 cap
= (u16
*)&save_state
->cap
.data
[0];
977 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &cap
[i
++]);
978 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL
, &cap
[i
++]);
979 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL
, &cap
[i
++]);
980 pcie_capability_read_word(dev
, PCI_EXP_RTCTL
, &cap
[i
++]);
981 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL2
, &cap
[i
++]);
982 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL2
, &cap
[i
++]);
983 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL2
, &cap
[i
++]);
988 static void pci_restore_pcie_state(struct pci_dev
*dev
)
991 struct pci_cap_saved_state
*save_state
;
994 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
998 cap
= (u16
*)&save_state
->cap
.data
[0];
999 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL
, cap
[i
++]);
1000 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL
, cap
[i
++]);
1001 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL
, cap
[i
++]);
1002 pcie_capability_write_word(dev
, PCI_EXP_RTCTL
, cap
[i
++]);
1003 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL2
, cap
[i
++]);
1004 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL2
, cap
[i
++]);
1005 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL2
, cap
[i
++]);
1009 static int pci_save_pcix_state(struct pci_dev
*dev
)
1012 struct pci_cap_saved_state
*save_state
;
1014 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1018 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1020 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
1024 pci_read_config_word(dev
, pos
+ PCI_X_CMD
,
1025 (u16
*)save_state
->cap
.data
);
1030 static void pci_restore_pcix_state(struct pci_dev
*dev
)
1033 struct pci_cap_saved_state
*save_state
;
1036 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1037 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1038 if (!save_state
|| !pos
)
1040 cap
= (u16
*)&save_state
->cap
.data
[0];
1042 pci_write_config_word(dev
, pos
+ PCI_X_CMD
, cap
[i
++]);
1047 * pci_save_state - save the PCI configuration space of a device before suspending
1048 * @dev: - PCI device that we're dealing with
1050 int pci_save_state(struct pci_dev
*dev
)
1053 /* XXX: 100% dword access ok here? */
1054 for (i
= 0; i
< 16; i
++)
1055 pci_read_config_dword(dev
, i
* 4, &dev
->saved_config_space
[i
]);
1056 dev
->state_saved
= true;
1058 i
= pci_save_pcie_state(dev
);
1062 i
= pci_save_pcix_state(dev
);
1066 return pci_save_vc_state(dev
);
1068 EXPORT_SYMBOL(pci_save_state
);
1070 static void pci_restore_config_dword(struct pci_dev
*pdev
, int offset
,
1071 u32 saved_val
, int retry
)
1075 pci_read_config_dword(pdev
, offset
, &val
);
1076 if (val
== saved_val
)
1080 dev_dbg(&pdev
->dev
, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1081 offset
, val
, saved_val
);
1082 pci_write_config_dword(pdev
, offset
, saved_val
);
1086 pci_read_config_dword(pdev
, offset
, &val
);
1087 if (val
== saved_val
)
1094 static void pci_restore_config_space_range(struct pci_dev
*pdev
,
1095 int start
, int end
, int retry
)
1099 for (index
= end
; index
>= start
; index
--)
1100 pci_restore_config_dword(pdev
, 4 * index
,
1101 pdev
->saved_config_space
[index
],
1105 static void pci_restore_config_space(struct pci_dev
*pdev
)
1107 if (pdev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
) {
1108 pci_restore_config_space_range(pdev
, 10, 15, 0);
1109 /* Restore BARs before the command register. */
1110 pci_restore_config_space_range(pdev
, 4, 9, 10);
1111 pci_restore_config_space_range(pdev
, 0, 3, 0);
1113 pci_restore_config_space_range(pdev
, 0, 15, 0);
1118 * pci_restore_state - Restore the saved state of a PCI device
1119 * @dev: - PCI device that we're dealing with
1121 void pci_restore_state(struct pci_dev
*dev
)
1123 if (!dev
->state_saved
)
1126 /* PCI Express register must be restored first */
1127 pci_restore_pcie_state(dev
);
1128 pci_restore_ats_state(dev
);
1129 pci_restore_vc_state(dev
);
1131 pci_cleanup_aer_error_status_regs(dev
);
1133 pci_restore_config_space(dev
);
1135 pci_restore_pcix_state(dev
);
1136 pci_restore_msi_state(dev
);
1138 /* Restore ACS and IOV configuration state */
1139 pci_enable_acs(dev
);
1140 pci_restore_iov_state(dev
);
1142 dev
->state_saved
= false;
1144 EXPORT_SYMBOL(pci_restore_state
);
1146 struct pci_saved_state
{
1147 u32 config_space
[16];
1148 struct pci_cap_saved_data cap
[0];
1152 * pci_store_saved_state - Allocate and return an opaque struct containing
1153 * the device saved state.
1154 * @dev: PCI device that we're dealing with
1156 * Return NULL if no state or error.
1158 struct pci_saved_state
*pci_store_saved_state(struct pci_dev
*dev
)
1160 struct pci_saved_state
*state
;
1161 struct pci_cap_saved_state
*tmp
;
1162 struct pci_cap_saved_data
*cap
;
1165 if (!dev
->state_saved
)
1168 size
= sizeof(*state
) + sizeof(struct pci_cap_saved_data
);
1170 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
)
1171 size
+= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1173 state
= kzalloc(size
, GFP_KERNEL
);
1177 memcpy(state
->config_space
, dev
->saved_config_space
,
1178 sizeof(state
->config_space
));
1181 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
) {
1182 size_t len
= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1183 memcpy(cap
, &tmp
->cap
, len
);
1184 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+ len
);
1186 /* Empty cap_save terminates list */
1190 EXPORT_SYMBOL_GPL(pci_store_saved_state
);
1193 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1194 * @dev: PCI device that we're dealing with
1195 * @state: Saved state returned from pci_store_saved_state()
1197 int pci_load_saved_state(struct pci_dev
*dev
,
1198 struct pci_saved_state
*state
)
1200 struct pci_cap_saved_data
*cap
;
1202 dev
->state_saved
= false;
1207 memcpy(dev
->saved_config_space
, state
->config_space
,
1208 sizeof(state
->config_space
));
1212 struct pci_cap_saved_state
*tmp
;
1214 tmp
= _pci_find_saved_cap(dev
, cap
->cap_nr
, cap
->cap_extended
);
1215 if (!tmp
|| tmp
->cap
.size
!= cap
->size
)
1218 memcpy(tmp
->cap
.data
, cap
->data
, tmp
->cap
.size
);
1219 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+
1220 sizeof(struct pci_cap_saved_data
) + cap
->size
);
1223 dev
->state_saved
= true;
1226 EXPORT_SYMBOL_GPL(pci_load_saved_state
);
1229 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1230 * and free the memory allocated for it.
1231 * @dev: PCI device that we're dealing with
1232 * @state: Pointer to saved state returned from pci_store_saved_state()
1234 int pci_load_and_free_saved_state(struct pci_dev
*dev
,
1235 struct pci_saved_state
**state
)
1237 int ret
= pci_load_saved_state(dev
, *state
);
1242 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state
);
1244 int __weak
pcibios_enable_device(struct pci_dev
*dev
, int bars
)
1246 return pci_enable_resources(dev
, bars
);
1249 static int do_pci_enable_device(struct pci_dev
*dev
, int bars
)
1252 struct pci_dev
*bridge
;
1256 err
= pci_set_power_state(dev
, PCI_D0
);
1257 if (err
< 0 && err
!= -EIO
)
1260 bridge
= pci_upstream_bridge(dev
);
1262 pcie_aspm_powersave_config_link(bridge
);
1264 err
= pcibios_enable_device(dev
, bars
);
1267 pci_fixup_device(pci_fixup_enable
, dev
);
1269 if (dev
->msi_enabled
|| dev
->msix_enabled
)
1272 pci_read_config_byte(dev
, PCI_INTERRUPT_PIN
, &pin
);
1274 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
1275 if (cmd
& PCI_COMMAND_INTX_DISABLE
)
1276 pci_write_config_word(dev
, PCI_COMMAND
,
1277 cmd
& ~PCI_COMMAND_INTX_DISABLE
);
1284 * pci_reenable_device - Resume abandoned device
1285 * @dev: PCI device to be resumed
1287 * Note this function is a backend of pci_default_resume and is not supposed
1288 * to be called by normal code, write proper resume handler and use it instead.
1290 int pci_reenable_device(struct pci_dev
*dev
)
1292 if (pci_is_enabled(dev
))
1293 return do_pci_enable_device(dev
, (1 << PCI_NUM_RESOURCES
) - 1);
1296 EXPORT_SYMBOL(pci_reenable_device
);
1298 static void pci_enable_bridge(struct pci_dev
*dev
)
1300 struct pci_dev
*bridge
;
1303 bridge
= pci_upstream_bridge(dev
);
1305 pci_enable_bridge(bridge
);
1307 if (pci_is_enabled(dev
)) {
1308 if (!dev
->is_busmaster
)
1309 pci_set_master(dev
);
1313 retval
= pci_enable_device(dev
);
1315 dev_err(&dev
->dev
, "Error enabling bridge (%d), continuing\n",
1317 pci_set_master(dev
);
1320 static int pci_enable_device_flags(struct pci_dev
*dev
, unsigned long flags
)
1322 struct pci_dev
*bridge
;
1327 * Power state could be unknown at this point, either due to a fresh
1328 * boot or a device removal call. So get the current power state
1329 * so that things like MSI message writing will behave as expected
1330 * (e.g. if the device really is in D0 at enable time).
1334 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1335 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1338 if (atomic_inc_return(&dev
->enable_cnt
) > 1)
1339 return 0; /* already enabled */
1341 bridge
= pci_upstream_bridge(dev
);
1343 pci_enable_bridge(bridge
);
1345 /* only skip sriov related */
1346 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
1347 if (dev
->resource
[i
].flags
& flags
)
1349 for (i
= PCI_BRIDGE_RESOURCES
; i
< DEVICE_COUNT_RESOURCE
; i
++)
1350 if (dev
->resource
[i
].flags
& flags
)
1353 err
= do_pci_enable_device(dev
, bars
);
1355 atomic_dec(&dev
->enable_cnt
);
1360 * pci_enable_device_io - Initialize a device for use with IO space
1361 * @dev: PCI device to be initialized
1363 * Initialize device before it's used by a driver. Ask low-level code
1364 * to enable I/O resources. Wake up the device if it was suspended.
1365 * Beware, this function can fail.
1367 int pci_enable_device_io(struct pci_dev
*dev
)
1369 return pci_enable_device_flags(dev
, IORESOURCE_IO
);
1371 EXPORT_SYMBOL(pci_enable_device_io
);
1374 * pci_enable_device_mem - Initialize a device for use with Memory space
1375 * @dev: PCI device to be initialized
1377 * Initialize device before it's used by a driver. Ask low-level code
1378 * to enable Memory resources. Wake up the device if it was suspended.
1379 * Beware, this function can fail.
1381 int pci_enable_device_mem(struct pci_dev
*dev
)
1383 return pci_enable_device_flags(dev
, IORESOURCE_MEM
);
1385 EXPORT_SYMBOL(pci_enable_device_mem
);
1388 * pci_enable_device - Initialize device before it's used by a driver.
1389 * @dev: PCI device to be initialized
1391 * Initialize device before it's used by a driver. Ask low-level code
1392 * to enable I/O and memory. Wake up the device if it was suspended.
1393 * Beware, this function can fail.
1395 * Note we don't actually enable the device many times if we call
1396 * this function repeatedly (we just increment the count).
1398 int pci_enable_device(struct pci_dev
*dev
)
1400 return pci_enable_device_flags(dev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1402 EXPORT_SYMBOL(pci_enable_device
);
1405 * Managed PCI resources. This manages device on/off, intx/msi/msix
1406 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1407 * there's no need to track it separately. pci_devres is initialized
1408 * when a device is enabled using managed PCI device enable interface.
1411 unsigned int enabled
:1;
1412 unsigned int pinned
:1;
1413 unsigned int orig_intx
:1;
1414 unsigned int restore_intx
:1;
1418 static void pcim_release(struct device
*gendev
, void *res
)
1420 struct pci_dev
*dev
= to_pci_dev(gendev
);
1421 struct pci_devres
*this = res
;
1424 if (dev
->msi_enabled
)
1425 pci_disable_msi(dev
);
1426 if (dev
->msix_enabled
)
1427 pci_disable_msix(dev
);
1429 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
1430 if (this->region_mask
& (1 << i
))
1431 pci_release_region(dev
, i
);
1433 if (this->restore_intx
)
1434 pci_intx(dev
, this->orig_intx
);
1436 if (this->enabled
&& !this->pinned
)
1437 pci_disable_device(dev
);
1440 static struct pci_devres
*get_pci_dr(struct pci_dev
*pdev
)
1442 struct pci_devres
*dr
, *new_dr
;
1444 dr
= devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1448 new_dr
= devres_alloc(pcim_release
, sizeof(*new_dr
), GFP_KERNEL
);
1451 return devres_get(&pdev
->dev
, new_dr
, NULL
, NULL
);
1454 static struct pci_devres
*find_pci_dr(struct pci_dev
*pdev
)
1456 if (pci_is_managed(pdev
))
1457 return devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1462 * pcim_enable_device - Managed pci_enable_device()
1463 * @pdev: PCI device to be initialized
1465 * Managed pci_enable_device().
1467 int pcim_enable_device(struct pci_dev
*pdev
)
1469 struct pci_devres
*dr
;
1472 dr
= get_pci_dr(pdev
);
1478 rc
= pci_enable_device(pdev
);
1480 pdev
->is_managed
= 1;
1485 EXPORT_SYMBOL(pcim_enable_device
);
1488 * pcim_pin_device - Pin managed PCI device
1489 * @pdev: PCI device to pin
1491 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1492 * driver detach. @pdev must have been enabled with
1493 * pcim_enable_device().
1495 void pcim_pin_device(struct pci_dev
*pdev
)
1497 struct pci_devres
*dr
;
1499 dr
= find_pci_dr(pdev
);
1500 WARN_ON(!dr
|| !dr
->enabled
);
1504 EXPORT_SYMBOL(pcim_pin_device
);
1507 * pcibios_add_device - provide arch specific hooks when adding device dev
1508 * @dev: the PCI device being added
1510 * Permits the platform to provide architecture specific functionality when
1511 * devices are added. This is the default implementation. Architecture
1512 * implementations can override this.
1514 int __weak
pcibios_add_device(struct pci_dev
*dev
)
1520 * pcibios_release_device - provide arch specific hooks when releasing device dev
1521 * @dev: the PCI device being released
1523 * Permits the platform to provide architecture specific functionality when
1524 * devices are released. This is the default implementation. Architecture
1525 * implementations can override this.
1527 void __weak
pcibios_release_device(struct pci_dev
*dev
) {}
1530 * pcibios_disable_device - disable arch specific PCI resources for device dev
1531 * @dev: the PCI device to disable
1533 * Disables architecture specific PCI resources for the device. This
1534 * is the default implementation. Architecture implementations can
1537 void __weak
pcibios_disable_device(struct pci_dev
*dev
) {}
1540 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1541 * @irq: ISA IRQ to penalize
1542 * @active: IRQ active or not
1544 * Permits the platform to provide architecture-specific functionality when
1545 * penalizing ISA IRQs. This is the default implementation. Architecture
1546 * implementations can override this.
1548 void __weak
pcibios_penalize_isa_irq(int irq
, int active
) {}
1550 static void do_pci_disable_device(struct pci_dev
*dev
)
1554 pci_read_config_word(dev
, PCI_COMMAND
, &pci_command
);
1555 if (pci_command
& PCI_COMMAND_MASTER
) {
1556 pci_command
&= ~PCI_COMMAND_MASTER
;
1557 pci_write_config_word(dev
, PCI_COMMAND
, pci_command
);
1560 pcibios_disable_device(dev
);
1564 * pci_disable_enabled_device - Disable device without updating enable_cnt
1565 * @dev: PCI device to disable
1567 * NOTE: This function is a backend of PCI power management routines and is
1568 * not supposed to be called drivers.
1570 void pci_disable_enabled_device(struct pci_dev
*dev
)
1572 if (pci_is_enabled(dev
))
1573 do_pci_disable_device(dev
);
1577 * pci_disable_device - Disable PCI device after use
1578 * @dev: PCI device to be disabled
1580 * Signal to the system that the PCI device is not in use by the system
1581 * anymore. This only involves disabling PCI bus-mastering, if active.
1583 * Note we don't actually disable the device until all callers of
1584 * pci_enable_device() have called pci_disable_device().
1586 void pci_disable_device(struct pci_dev
*dev
)
1588 struct pci_devres
*dr
;
1590 dr
= find_pci_dr(dev
);
1594 dev_WARN_ONCE(&dev
->dev
, atomic_read(&dev
->enable_cnt
) <= 0,
1595 "disabling already-disabled device");
1597 if (atomic_dec_return(&dev
->enable_cnt
) != 0)
1600 do_pci_disable_device(dev
);
1602 dev
->is_busmaster
= 0;
1604 EXPORT_SYMBOL(pci_disable_device
);
1607 * pcibios_set_pcie_reset_state - set reset state for device dev
1608 * @dev: the PCIe device reset
1609 * @state: Reset state to enter into
1612 * Sets the PCIe reset state for the device. This is the default
1613 * implementation. Architecture implementations can override this.
1615 int __weak
pcibios_set_pcie_reset_state(struct pci_dev
*dev
,
1616 enum pcie_reset_state state
)
1622 * pci_set_pcie_reset_state - set reset state for device dev
1623 * @dev: the PCIe device reset
1624 * @state: Reset state to enter into
1627 * Sets the PCI reset state for the device.
1629 int pci_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
1631 return pcibios_set_pcie_reset_state(dev
, state
);
1633 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state
);
1636 * pci_check_pme_status - Check if given device has generated PME.
1637 * @dev: Device to check.
1639 * Check the PME status of the device and if set, clear it and clear PME enable
1640 * (if set). Return 'true' if PME status and PME enable were both set or
1641 * 'false' otherwise.
1643 bool pci_check_pme_status(struct pci_dev
*dev
)
1652 pmcsr_pos
= dev
->pm_cap
+ PCI_PM_CTRL
;
1653 pci_read_config_word(dev
, pmcsr_pos
, &pmcsr
);
1654 if (!(pmcsr
& PCI_PM_CTRL_PME_STATUS
))
1657 /* Clear PME status. */
1658 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
1659 if (pmcsr
& PCI_PM_CTRL_PME_ENABLE
) {
1660 /* Disable PME to avoid interrupt flood. */
1661 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1665 pci_write_config_word(dev
, pmcsr_pos
, pmcsr
);
1671 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1672 * @dev: Device to handle.
1673 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1675 * Check if @dev has generated PME and queue a resume request for it in that
1678 static int pci_pme_wakeup(struct pci_dev
*dev
, void *pme_poll_reset
)
1680 if (pme_poll_reset
&& dev
->pme_poll
)
1681 dev
->pme_poll
= false;
1683 if (pci_check_pme_status(dev
)) {
1684 pci_wakeup_event(dev
);
1685 pm_request_resume(&dev
->dev
);
1691 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1692 * @bus: Top bus of the subtree to walk.
1694 void pci_pme_wakeup_bus(struct pci_bus
*bus
)
1697 pci_walk_bus(bus
, pci_pme_wakeup
, (void *)true);
1702 * pci_pme_capable - check the capability of PCI device to generate PME#
1703 * @dev: PCI device to handle.
1704 * @state: PCI state from which device will issue PME#.
1706 bool pci_pme_capable(struct pci_dev
*dev
, pci_power_t state
)
1711 return !!(dev
->pme_support
& (1 << state
));
1713 EXPORT_SYMBOL(pci_pme_capable
);
1715 static void pci_pme_list_scan(struct work_struct
*work
)
1717 struct pci_pme_device
*pme_dev
, *n
;
1719 mutex_lock(&pci_pme_list_mutex
);
1720 list_for_each_entry_safe(pme_dev
, n
, &pci_pme_list
, list
) {
1721 if (pme_dev
->dev
->pme_poll
) {
1722 struct pci_dev
*bridge
;
1724 bridge
= pme_dev
->dev
->bus
->self
;
1726 * If bridge is in low power state, the
1727 * configuration space of subordinate devices
1728 * may be not accessible
1730 if (bridge
&& bridge
->current_state
!= PCI_D0
)
1732 pci_pme_wakeup(pme_dev
->dev
, NULL
);
1734 list_del(&pme_dev
->list
);
1738 if (!list_empty(&pci_pme_list
))
1739 schedule_delayed_work(&pci_pme_work
,
1740 msecs_to_jiffies(PME_TIMEOUT
));
1741 mutex_unlock(&pci_pme_list_mutex
);
1744 static void __pci_pme_active(struct pci_dev
*dev
, bool enable
)
1748 if (!dev
->pme_support
)
1751 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1752 /* Clear PME_Status by writing 1 to it and enable PME# */
1753 pmcsr
|= PCI_PM_CTRL_PME_STATUS
| PCI_PM_CTRL_PME_ENABLE
;
1755 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1757 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
1761 * pci_pme_active - enable or disable PCI device's PME# function
1762 * @dev: PCI device to handle.
1763 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1765 * The caller must verify that the device is capable of generating PME# before
1766 * calling this function with @enable equal to 'true'.
1768 void pci_pme_active(struct pci_dev
*dev
, bool enable
)
1770 __pci_pme_active(dev
, enable
);
1773 * PCI (as opposed to PCIe) PME requires that the device have
1774 * its PME# line hooked up correctly. Not all hardware vendors
1775 * do this, so the PME never gets delivered and the device
1776 * remains asleep. The easiest way around this is to
1777 * periodically walk the list of suspended devices and check
1778 * whether any have their PME flag set. The assumption is that
1779 * we'll wake up often enough anyway that this won't be a huge
1780 * hit, and the power savings from the devices will still be a
1783 * Although PCIe uses in-band PME message instead of PME# line
1784 * to report PME, PME does not work for some PCIe devices in
1785 * reality. For example, there are devices that set their PME
1786 * status bits, but don't really bother to send a PME message;
1787 * there are PCI Express Root Ports that don't bother to
1788 * trigger interrupts when they receive PME messages from the
1789 * devices below. So PME poll is used for PCIe devices too.
1792 if (dev
->pme_poll
) {
1793 struct pci_pme_device
*pme_dev
;
1795 pme_dev
= kmalloc(sizeof(struct pci_pme_device
),
1798 dev_warn(&dev
->dev
, "can't enable PME#\n");
1802 mutex_lock(&pci_pme_list_mutex
);
1803 list_add(&pme_dev
->list
, &pci_pme_list
);
1804 if (list_is_singular(&pci_pme_list
))
1805 schedule_delayed_work(&pci_pme_work
,
1806 msecs_to_jiffies(PME_TIMEOUT
));
1807 mutex_unlock(&pci_pme_list_mutex
);
1809 mutex_lock(&pci_pme_list_mutex
);
1810 list_for_each_entry(pme_dev
, &pci_pme_list
, list
) {
1811 if (pme_dev
->dev
== dev
) {
1812 list_del(&pme_dev
->list
);
1817 mutex_unlock(&pci_pme_list_mutex
);
1821 dev_dbg(&dev
->dev
, "PME# %s\n", enable
? "enabled" : "disabled");
1823 EXPORT_SYMBOL(pci_pme_active
);
1826 * __pci_enable_wake - enable PCI device as wakeup event source
1827 * @dev: PCI device affected
1828 * @state: PCI state from which device will issue wakeup events
1829 * @runtime: True if the events are to be generated at run time
1830 * @enable: True to enable event generation; false to disable
1832 * This enables the device as a wakeup event source, or disables it.
1833 * When such events involves platform-specific hooks, those hooks are
1834 * called automatically by this routine.
1836 * Devices with legacy power management (no standard PCI PM capabilities)
1837 * always require such platform hooks.
1840 * 0 is returned on success
1841 * -EINVAL is returned if device is not supposed to wake up the system
1842 * Error code depending on the platform is returned if both the platform and
1843 * the native mechanism fail to enable the generation of wake-up events
1845 int __pci_enable_wake(struct pci_dev
*dev
, pci_power_t state
,
1846 bool runtime
, bool enable
)
1850 if (enable
&& !runtime
&& !device_may_wakeup(&dev
->dev
))
1853 /* Don't do the same thing twice in a row for one device. */
1854 if (!!enable
== !!dev
->wakeup_prepared
)
1858 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1859 * Anderson we should be doing PME# wake enable followed by ACPI wake
1860 * enable. To disable wake-up we call the platform first, for symmetry.
1866 if (pci_pme_capable(dev
, state
))
1867 pci_pme_active(dev
, true);
1870 error
= runtime
? platform_pci_run_wake(dev
, true) :
1871 platform_pci_sleep_wake(dev
, true);
1875 dev
->wakeup_prepared
= true;
1878 platform_pci_run_wake(dev
, false);
1880 platform_pci_sleep_wake(dev
, false);
1881 pci_pme_active(dev
, false);
1882 dev
->wakeup_prepared
= false;
1887 EXPORT_SYMBOL(__pci_enable_wake
);
1890 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1891 * @dev: PCI device to prepare
1892 * @enable: True to enable wake-up event generation; false to disable
1894 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1895 * and this function allows them to set that up cleanly - pci_enable_wake()
1896 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1897 * ordering constraints.
1899 * This function only returns error code if the device is not capable of
1900 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1901 * enable wake-up power for it.
1903 int pci_wake_from_d3(struct pci_dev
*dev
, bool enable
)
1905 return pci_pme_capable(dev
, PCI_D3cold
) ?
1906 pci_enable_wake(dev
, PCI_D3cold
, enable
) :
1907 pci_enable_wake(dev
, PCI_D3hot
, enable
);
1909 EXPORT_SYMBOL(pci_wake_from_d3
);
1912 * pci_target_state - find an appropriate low power state for a given PCI dev
1915 * Use underlying platform code to find a supported low power state for @dev.
1916 * If the platform can't manage @dev, return the deepest state from which it
1917 * can generate wake events, based on any available PME info.
1919 static pci_power_t
pci_target_state(struct pci_dev
*dev
)
1921 pci_power_t target_state
= PCI_D3hot
;
1923 if (platform_pci_power_manageable(dev
)) {
1925 * Call the platform to choose the target state of the device
1926 * and enable wake-up from this state if supported.
1928 pci_power_t state
= platform_pci_choose_state(dev
);
1931 case PCI_POWER_ERROR
:
1936 if (pci_no_d1d2(dev
))
1939 target_state
= state
;
1941 } else if (!dev
->pm_cap
) {
1942 target_state
= PCI_D0
;
1943 } else if (device_may_wakeup(&dev
->dev
)) {
1945 * Find the deepest state from which the device can generate
1946 * wake-up events, make it the target state and enable device
1949 if (dev
->pme_support
) {
1951 && !(dev
->pme_support
& (1 << target_state
)))
1956 return target_state
;
1960 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1961 * @dev: Device to handle.
1963 * Choose the power state appropriate for the device depending on whether
1964 * it can wake up the system and/or is power manageable by the platform
1965 * (PCI_D3hot is the default) and put the device into that state.
1967 int pci_prepare_to_sleep(struct pci_dev
*dev
)
1969 pci_power_t target_state
= pci_target_state(dev
);
1972 if (target_state
== PCI_POWER_ERROR
)
1975 pci_enable_wake(dev
, target_state
, device_may_wakeup(&dev
->dev
));
1977 error
= pci_set_power_state(dev
, target_state
);
1980 pci_enable_wake(dev
, target_state
, false);
1984 EXPORT_SYMBOL(pci_prepare_to_sleep
);
1987 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1988 * @dev: Device to handle.
1990 * Disable device's system wake-up capability and put it into D0.
1992 int pci_back_from_sleep(struct pci_dev
*dev
)
1994 pci_enable_wake(dev
, PCI_D0
, false);
1995 return pci_set_power_state(dev
, PCI_D0
);
1997 EXPORT_SYMBOL(pci_back_from_sleep
);
2000 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2001 * @dev: PCI device being suspended.
2003 * Prepare @dev to generate wake-up events at run time and put it into a low
2006 int pci_finish_runtime_suspend(struct pci_dev
*dev
)
2008 pci_power_t target_state
= pci_target_state(dev
);
2011 if (target_state
== PCI_POWER_ERROR
)
2014 dev
->runtime_d3cold
= target_state
== PCI_D3cold
;
2016 __pci_enable_wake(dev
, target_state
, true, pci_dev_run_wake(dev
));
2018 error
= pci_set_power_state(dev
, target_state
);
2021 __pci_enable_wake(dev
, target_state
, true, false);
2022 dev
->runtime_d3cold
= false;
2029 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2030 * @dev: Device to check.
2032 * Return true if the device itself is capable of generating wake-up events
2033 * (through the platform or using the native PCIe PME) or if the device supports
2034 * PME and one of its upstream bridges can generate wake-up events.
2036 bool pci_dev_run_wake(struct pci_dev
*dev
)
2038 struct pci_bus
*bus
= dev
->bus
;
2040 if (device_run_wake(&dev
->dev
))
2043 if (!dev
->pme_support
)
2046 while (bus
->parent
) {
2047 struct pci_dev
*bridge
= bus
->self
;
2049 if (device_run_wake(&bridge
->dev
))
2055 /* We have reached the root bus. */
2057 return device_run_wake(bus
->bridge
);
2061 EXPORT_SYMBOL_GPL(pci_dev_run_wake
);
2064 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2065 * @pci_dev: Device to check.
2067 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2068 * reconfigured due to wakeup settings difference between system and runtime
2069 * suspend and the current power state of it is suitable for the upcoming
2070 * (system) transition.
2072 * If the device is not configured for system wakeup, disable PME for it before
2073 * returning 'true' to prevent it from waking up the system unnecessarily.
2075 bool pci_dev_keep_suspended(struct pci_dev
*pci_dev
)
2077 struct device
*dev
= &pci_dev
->dev
;
2079 if (!pm_runtime_suspended(dev
)
2080 || pci_target_state(pci_dev
) != pci_dev
->current_state
2081 || platform_pci_need_resume(pci_dev
))
2085 * At this point the device is good to go unless it's been configured
2086 * to generate PME at the runtime suspend time, but it is not supposed
2087 * to wake up the system. In that case, simply disable PME for it
2088 * (it will have to be re-enabled on exit from system resume).
2090 * If the device's power state is D3cold and the platform check above
2091 * hasn't triggered, the device's configuration is suitable and we don't
2092 * need to manipulate it at all.
2094 spin_lock_irq(&dev
->power
.lock
);
2096 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
&&
2097 !device_may_wakeup(dev
))
2098 __pci_pme_active(pci_dev
, false);
2100 spin_unlock_irq(&dev
->power
.lock
);
2105 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2106 * @pci_dev: Device to handle.
2108 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2109 * it might have been disabled during the prepare phase of system suspend if
2110 * the device was not configured for system wakeup.
2112 void pci_dev_complete_resume(struct pci_dev
*pci_dev
)
2114 struct device
*dev
= &pci_dev
->dev
;
2116 if (!pci_dev_run_wake(pci_dev
))
2119 spin_lock_irq(&dev
->power
.lock
);
2121 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
)
2122 __pci_pme_active(pci_dev
, true);
2124 spin_unlock_irq(&dev
->power
.lock
);
2127 void pci_config_pm_runtime_get(struct pci_dev
*pdev
)
2129 struct device
*dev
= &pdev
->dev
;
2130 struct device
*parent
= dev
->parent
;
2133 pm_runtime_get_sync(parent
);
2134 pm_runtime_get_noresume(dev
);
2136 * pdev->current_state is set to PCI_D3cold during suspending,
2137 * so wait until suspending completes
2139 pm_runtime_barrier(dev
);
2141 * Only need to resume devices in D3cold, because config
2142 * registers are still accessible for devices suspended but
2145 if (pdev
->current_state
== PCI_D3cold
)
2146 pm_runtime_resume(dev
);
2149 void pci_config_pm_runtime_put(struct pci_dev
*pdev
)
2151 struct device
*dev
= &pdev
->dev
;
2152 struct device
*parent
= dev
->parent
;
2154 pm_runtime_put(dev
);
2156 pm_runtime_put_sync(parent
);
2160 * pci_pm_init - Initialize PM functions of given PCI device
2161 * @dev: PCI device to handle.
2163 void pci_pm_init(struct pci_dev
*dev
)
2168 pm_runtime_forbid(&dev
->dev
);
2169 pm_runtime_set_active(&dev
->dev
);
2170 pm_runtime_enable(&dev
->dev
);
2171 device_enable_async_suspend(&dev
->dev
);
2172 dev
->wakeup_prepared
= false;
2175 dev
->pme_support
= 0;
2177 /* find PCI PM capability in list */
2178 pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
2181 /* Check device's ability to generate PME# */
2182 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &pmc
);
2184 if ((pmc
& PCI_PM_CAP_VER_MASK
) > 3) {
2185 dev_err(&dev
->dev
, "unsupported PM cap regs version (%u)\n",
2186 pmc
& PCI_PM_CAP_VER_MASK
);
2191 dev
->d3_delay
= PCI_PM_D3_WAIT
;
2192 dev
->d3cold_delay
= PCI_PM_D3COLD_WAIT
;
2193 dev
->d3cold_allowed
= true;
2195 dev
->d1_support
= false;
2196 dev
->d2_support
= false;
2197 if (!pci_no_d1d2(dev
)) {
2198 if (pmc
& PCI_PM_CAP_D1
)
2199 dev
->d1_support
= true;
2200 if (pmc
& PCI_PM_CAP_D2
)
2201 dev
->d2_support
= true;
2203 if (dev
->d1_support
|| dev
->d2_support
)
2204 dev_printk(KERN_DEBUG
, &dev
->dev
, "supports%s%s\n",
2205 dev
->d1_support
? " D1" : "",
2206 dev
->d2_support
? " D2" : "");
2209 pmc
&= PCI_PM_CAP_PME_MASK
;
2211 dev_printk(KERN_DEBUG
, &dev
->dev
,
2212 "PME# supported from%s%s%s%s%s\n",
2213 (pmc
& PCI_PM_CAP_PME_D0
) ? " D0" : "",
2214 (pmc
& PCI_PM_CAP_PME_D1
) ? " D1" : "",
2215 (pmc
& PCI_PM_CAP_PME_D2
) ? " D2" : "",
2216 (pmc
& PCI_PM_CAP_PME_D3
) ? " D3hot" : "",
2217 (pmc
& PCI_PM_CAP_PME_D3cold
) ? " D3cold" : "");
2218 dev
->pme_support
= pmc
>> PCI_PM_CAP_PME_SHIFT
;
2219 dev
->pme_poll
= true;
2221 * Make device's PM flags reflect the wake-up capability, but
2222 * let the user space enable it to wake up the system as needed.
2224 device_set_wakeup_capable(&dev
->dev
, true);
2225 /* Disable the PME# generation functionality */
2226 pci_pme_active(dev
, false);
2230 static unsigned long pci_ea_flags(struct pci_dev
*dev
, u8 prop
)
2232 unsigned long flags
= IORESOURCE_PCI_FIXED
;
2236 case PCI_EA_P_VF_MEM
:
2237 flags
|= IORESOURCE_MEM
;
2239 case PCI_EA_P_MEM_PREFETCH
:
2240 case PCI_EA_P_VF_MEM_PREFETCH
:
2241 flags
|= IORESOURCE_MEM
| IORESOURCE_PREFETCH
;
2244 flags
|= IORESOURCE_IO
;
2253 static struct resource
*pci_ea_get_resource(struct pci_dev
*dev
, u8 bei
,
2256 if (bei
<= PCI_EA_BEI_BAR5
&& prop
<= PCI_EA_P_IO
)
2257 return &dev
->resource
[bei
];
2258 #ifdef CONFIG_PCI_IOV
2259 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
&&
2260 (prop
== PCI_EA_P_VF_MEM
|| prop
== PCI_EA_P_VF_MEM_PREFETCH
))
2261 return &dev
->resource
[PCI_IOV_RESOURCES
+
2262 bei
- PCI_EA_BEI_VF_BAR0
];
2264 else if (bei
== PCI_EA_BEI_ROM
)
2265 return &dev
->resource
[PCI_ROM_RESOURCE
];
2270 /* Read an Enhanced Allocation (EA) entry */
2271 static int pci_ea_read(struct pci_dev
*dev
, int offset
)
2273 struct resource
*res
;
2274 int ent_size
, ent_offset
= offset
;
2275 resource_size_t start
, end
;
2276 unsigned long flags
;
2277 u32 dw0
, bei
, base
, max_offset
;
2279 bool support_64
= (sizeof(resource_size_t
) >= 8);
2281 pci_read_config_dword(dev
, ent_offset
, &dw0
);
2284 /* Entry size field indicates DWORDs after 1st */
2285 ent_size
= ((dw0
& PCI_EA_ES
) + 1) << 2;
2287 if (!(dw0
& PCI_EA_ENABLE
)) /* Entry not enabled */
2290 bei
= (dw0
& PCI_EA_BEI
) >> 4;
2291 prop
= (dw0
& PCI_EA_PP
) >> 8;
2294 * If the Property is in the reserved range, try the Secondary
2297 if (prop
> PCI_EA_P_BRIDGE_IO
&& prop
< PCI_EA_P_MEM_RESERVED
)
2298 prop
= (dw0
& PCI_EA_SP
) >> 16;
2299 if (prop
> PCI_EA_P_BRIDGE_IO
)
2302 res
= pci_ea_get_resource(dev
, bei
, prop
);
2304 dev_err(&dev
->dev
, "Unsupported EA entry BEI: %u\n", bei
);
2308 flags
= pci_ea_flags(dev
, prop
);
2310 dev_err(&dev
->dev
, "Unsupported EA properties: %#x\n", prop
);
2315 pci_read_config_dword(dev
, ent_offset
, &base
);
2316 start
= (base
& PCI_EA_FIELD_MASK
);
2319 /* Read MaxOffset */
2320 pci_read_config_dword(dev
, ent_offset
, &max_offset
);
2323 /* Read Base MSBs (if 64-bit entry) */
2324 if (base
& PCI_EA_IS_64
) {
2327 pci_read_config_dword(dev
, ent_offset
, &base_upper
);
2330 flags
|= IORESOURCE_MEM_64
;
2332 /* entry starts above 32-bit boundary, can't use */
2333 if (!support_64
&& base_upper
)
2337 start
|= ((u64
)base_upper
<< 32);
2340 end
= start
+ (max_offset
| 0x03);
2342 /* Read MaxOffset MSBs (if 64-bit entry) */
2343 if (max_offset
& PCI_EA_IS_64
) {
2344 u32 max_offset_upper
;
2346 pci_read_config_dword(dev
, ent_offset
, &max_offset_upper
);
2349 flags
|= IORESOURCE_MEM_64
;
2351 /* entry too big, can't use */
2352 if (!support_64
&& max_offset_upper
)
2356 end
+= ((u64
)max_offset_upper
<< 32);
2360 dev_err(&dev
->dev
, "EA Entry crosses address boundary\n");
2364 if (ent_size
!= ent_offset
- offset
) {
2366 "EA Entry Size (%d) does not match length read (%d)\n",
2367 ent_size
, ent_offset
- offset
);
2371 res
->name
= pci_name(dev
);
2376 if (bei
<= PCI_EA_BEI_BAR5
)
2377 dev_printk(KERN_DEBUG
, &dev
->dev
, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2379 else if (bei
== PCI_EA_BEI_ROM
)
2380 dev_printk(KERN_DEBUG
, &dev
->dev
, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2382 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
)
2383 dev_printk(KERN_DEBUG
, &dev
->dev
, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2384 bei
- PCI_EA_BEI_VF_BAR0
, res
, prop
);
2386 dev_printk(KERN_DEBUG
, &dev
->dev
, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2390 return offset
+ ent_size
;
2393 /* Enhanced Allocation Initalization */
2394 void pci_ea_init(struct pci_dev
*dev
)
2401 /* find PCI EA capability in list */
2402 ea
= pci_find_capability(dev
, PCI_CAP_ID_EA
);
2406 /* determine the number of entries */
2407 pci_bus_read_config_byte(dev
->bus
, dev
->devfn
, ea
+ PCI_EA_NUM_ENT
,
2409 num_ent
&= PCI_EA_NUM_ENT_MASK
;
2411 offset
= ea
+ PCI_EA_FIRST_ENT
;
2413 /* Skip DWORD 2 for type 1 functions */
2414 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
)
2417 /* parse each EA entry */
2418 for (i
= 0; i
< num_ent
; ++i
)
2419 offset
= pci_ea_read(dev
, offset
);
2422 static void pci_add_saved_cap(struct pci_dev
*pci_dev
,
2423 struct pci_cap_saved_state
*new_cap
)
2425 hlist_add_head(&new_cap
->next
, &pci_dev
->saved_cap_space
);
2429 * _pci_add_cap_save_buffer - allocate buffer for saving given
2430 * capability registers
2431 * @dev: the PCI device
2432 * @cap: the capability to allocate the buffer for
2433 * @extended: Standard or Extended capability ID
2434 * @size: requested size of the buffer
2436 static int _pci_add_cap_save_buffer(struct pci_dev
*dev
, u16 cap
,
2437 bool extended
, unsigned int size
)
2440 struct pci_cap_saved_state
*save_state
;
2443 pos
= pci_find_ext_capability(dev
, cap
);
2445 pos
= pci_find_capability(dev
, cap
);
2450 save_state
= kzalloc(sizeof(*save_state
) + size
, GFP_KERNEL
);
2454 save_state
->cap
.cap_nr
= cap
;
2455 save_state
->cap
.cap_extended
= extended
;
2456 save_state
->cap
.size
= size
;
2457 pci_add_saved_cap(dev
, save_state
);
2462 int pci_add_cap_save_buffer(struct pci_dev
*dev
, char cap
, unsigned int size
)
2464 return _pci_add_cap_save_buffer(dev
, cap
, false, size
);
2467 int pci_add_ext_cap_save_buffer(struct pci_dev
*dev
, u16 cap
, unsigned int size
)
2469 return _pci_add_cap_save_buffer(dev
, cap
, true, size
);
2473 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2474 * @dev: the PCI device
2476 void pci_allocate_cap_save_buffers(struct pci_dev
*dev
)
2480 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_EXP
,
2481 PCI_EXP_SAVE_REGS
* sizeof(u16
));
2484 "unable to preallocate PCI Express save buffer\n");
2486 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_PCIX
, sizeof(u16
));
2489 "unable to preallocate PCI-X save buffer\n");
2491 pci_allocate_vc_save_buffers(dev
);
2494 void pci_free_cap_save_buffers(struct pci_dev
*dev
)
2496 struct pci_cap_saved_state
*tmp
;
2497 struct hlist_node
*n
;
2499 hlist_for_each_entry_safe(tmp
, n
, &dev
->saved_cap_space
, next
)
2504 * pci_configure_ari - enable or disable ARI forwarding
2505 * @dev: the PCI device
2507 * If @dev and its upstream bridge both support ARI, enable ARI in the
2508 * bridge. Otherwise, disable ARI in the bridge.
2510 void pci_configure_ari(struct pci_dev
*dev
)
2513 struct pci_dev
*bridge
;
2515 if (pcie_ari_disabled
|| !pci_is_pcie(dev
) || dev
->devfn
)
2518 bridge
= dev
->bus
->self
;
2522 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
2523 if (!(cap
& PCI_EXP_DEVCAP2_ARI
))
2526 if (pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ARI
)) {
2527 pcie_capability_set_word(bridge
, PCI_EXP_DEVCTL2
,
2528 PCI_EXP_DEVCTL2_ARI
);
2529 bridge
->ari_enabled
= 1;
2531 pcie_capability_clear_word(bridge
, PCI_EXP_DEVCTL2
,
2532 PCI_EXP_DEVCTL2_ARI
);
2533 bridge
->ari_enabled
= 0;
2537 static int pci_acs_enable
;
2540 * pci_request_acs - ask for ACS to be enabled if supported
2542 void pci_request_acs(void)
2548 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2549 * @dev: the PCI device
2551 static int pci_std_enable_acs(struct pci_dev
*dev
)
2557 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
2561 pci_read_config_word(dev
, pos
+ PCI_ACS_CAP
, &cap
);
2562 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2564 /* Source Validation */
2565 ctrl
|= (cap
& PCI_ACS_SV
);
2567 /* P2P Request Redirect */
2568 ctrl
|= (cap
& PCI_ACS_RR
);
2570 /* P2P Completion Redirect */
2571 ctrl
|= (cap
& PCI_ACS_CR
);
2573 /* Upstream Forwarding */
2574 ctrl
|= (cap
& PCI_ACS_UF
);
2576 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
2582 * pci_enable_acs - enable ACS if hardware support it
2583 * @dev: the PCI device
2585 void pci_enable_acs(struct pci_dev
*dev
)
2587 if (!pci_acs_enable
)
2590 if (!pci_std_enable_acs(dev
))
2593 pci_dev_specific_enable_acs(dev
);
2596 static bool pci_acs_flags_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2601 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ACS
);
2606 * Except for egress control, capabilities are either required
2607 * or only required if controllable. Features missing from the
2608 * capability field can therefore be assumed as hard-wired enabled.
2610 pci_read_config_word(pdev
, pos
+ PCI_ACS_CAP
, &cap
);
2611 acs_flags
&= (cap
| PCI_ACS_EC
);
2613 pci_read_config_word(pdev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2614 return (ctrl
& acs_flags
) == acs_flags
;
2618 * pci_acs_enabled - test ACS against required flags for a given device
2619 * @pdev: device to test
2620 * @acs_flags: required PCI ACS flags
2622 * Return true if the device supports the provided flags. Automatically
2623 * filters out flags that are not implemented on multifunction devices.
2625 * Note that this interface checks the effective ACS capabilities of the
2626 * device rather than the actual capabilities. For instance, most single
2627 * function endpoints are not required to support ACS because they have no
2628 * opportunity for peer-to-peer access. We therefore return 'true'
2629 * regardless of whether the device exposes an ACS capability. This makes
2630 * it much easier for callers of this function to ignore the actual type
2631 * or topology of the device when testing ACS support.
2633 bool pci_acs_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2637 ret
= pci_dev_specific_acs_enabled(pdev
, acs_flags
);
2642 * Conventional PCI and PCI-X devices never support ACS, either
2643 * effectively or actually. The shared bus topology implies that
2644 * any device on the bus can receive or snoop DMA.
2646 if (!pci_is_pcie(pdev
))
2649 switch (pci_pcie_type(pdev
)) {
2651 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2652 * but since their primary interface is PCI/X, we conservatively
2653 * handle them as we would a non-PCIe device.
2655 case PCI_EXP_TYPE_PCIE_BRIDGE
:
2657 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2658 * applicable... must never implement an ACS Extended Capability...".
2659 * This seems arbitrary, but we take a conservative interpretation
2660 * of this statement.
2662 case PCI_EXP_TYPE_PCI_BRIDGE
:
2663 case PCI_EXP_TYPE_RC_EC
:
2666 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2667 * implement ACS in order to indicate their peer-to-peer capabilities,
2668 * regardless of whether they are single- or multi-function devices.
2670 case PCI_EXP_TYPE_DOWNSTREAM
:
2671 case PCI_EXP_TYPE_ROOT_PORT
:
2672 return pci_acs_flags_enabled(pdev
, acs_flags
);
2674 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2675 * implemented by the remaining PCIe types to indicate peer-to-peer
2676 * capabilities, but only when they are part of a multifunction
2677 * device. The footnote for section 6.12 indicates the specific
2678 * PCIe types included here.
2680 case PCI_EXP_TYPE_ENDPOINT
:
2681 case PCI_EXP_TYPE_UPSTREAM
:
2682 case PCI_EXP_TYPE_LEG_END
:
2683 case PCI_EXP_TYPE_RC_END
:
2684 if (!pdev
->multifunction
)
2687 return pci_acs_flags_enabled(pdev
, acs_flags
);
2691 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2692 * to single function devices with the exception of downstream ports.
2698 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2699 * @start: starting downstream device
2700 * @end: ending upstream device or NULL to search to the root bus
2701 * @acs_flags: required flags
2703 * Walk up a device tree from start to end testing PCI ACS support. If
2704 * any step along the way does not support the required flags, return false.
2706 bool pci_acs_path_enabled(struct pci_dev
*start
,
2707 struct pci_dev
*end
, u16 acs_flags
)
2709 struct pci_dev
*pdev
, *parent
= start
;
2714 if (!pci_acs_enabled(pdev
, acs_flags
))
2717 if (pci_is_root_bus(pdev
->bus
))
2718 return (end
== NULL
);
2720 parent
= pdev
->bus
->self
;
2721 } while (pdev
!= end
);
2727 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2728 * @dev: the PCI device
2729 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2731 * Perform INTx swizzling for a device behind one level of bridge. This is
2732 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2733 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2734 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2735 * the PCI Express Base Specification, Revision 2.1)
2737 u8
pci_swizzle_interrupt_pin(const struct pci_dev
*dev
, u8 pin
)
2741 if (pci_ari_enabled(dev
->bus
))
2744 slot
= PCI_SLOT(dev
->devfn
);
2746 return (((pin
- 1) + slot
) % 4) + 1;
2749 int pci_get_interrupt_pin(struct pci_dev
*dev
, struct pci_dev
**bridge
)
2757 while (!pci_is_root_bus(dev
->bus
)) {
2758 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
2759 dev
= dev
->bus
->self
;
2766 * pci_common_swizzle - swizzle INTx all the way to root bridge
2767 * @dev: the PCI device
2768 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2770 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2771 * bridges all the way up to a PCI root bus.
2773 u8
pci_common_swizzle(struct pci_dev
*dev
, u8
*pinp
)
2777 while (!pci_is_root_bus(dev
->bus
)) {
2778 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
2779 dev
= dev
->bus
->self
;
2782 return PCI_SLOT(dev
->devfn
);
2784 EXPORT_SYMBOL_GPL(pci_common_swizzle
);
2787 * pci_release_region - Release a PCI bar
2788 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2789 * @bar: BAR to release
2791 * Releases the PCI I/O and memory resources previously reserved by a
2792 * successful call to pci_request_region. Call this function only
2793 * after all use of the PCI regions has ceased.
2795 void pci_release_region(struct pci_dev
*pdev
, int bar
)
2797 struct pci_devres
*dr
;
2799 if (pci_resource_len(pdev
, bar
) == 0)
2801 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
)
2802 release_region(pci_resource_start(pdev
, bar
),
2803 pci_resource_len(pdev
, bar
));
2804 else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)
2805 release_mem_region(pci_resource_start(pdev
, bar
),
2806 pci_resource_len(pdev
, bar
));
2808 dr
= find_pci_dr(pdev
);
2810 dr
->region_mask
&= ~(1 << bar
);
2812 EXPORT_SYMBOL(pci_release_region
);
2815 * __pci_request_region - Reserved PCI I/O and memory resource
2816 * @pdev: PCI device whose resources are to be reserved
2817 * @bar: BAR to be reserved
2818 * @res_name: Name to be associated with resource.
2819 * @exclusive: whether the region access is exclusive or not
2821 * Mark the PCI region associated with PCI device @pdev BR @bar as
2822 * being reserved by owner @res_name. Do not access any
2823 * address inside the PCI regions unless this call returns
2826 * If @exclusive is set, then the region is marked so that userspace
2827 * is explicitly not allowed to map the resource via /dev/mem or
2828 * sysfs MMIO access.
2830 * Returns 0 on success, or %EBUSY on error. A warning
2831 * message is also printed on failure.
2833 static int __pci_request_region(struct pci_dev
*pdev
, int bar
,
2834 const char *res_name
, int exclusive
)
2836 struct pci_devres
*dr
;
2838 if (pci_resource_len(pdev
, bar
) == 0)
2841 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
) {
2842 if (!request_region(pci_resource_start(pdev
, bar
),
2843 pci_resource_len(pdev
, bar
), res_name
))
2845 } else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
) {
2846 if (!__request_mem_region(pci_resource_start(pdev
, bar
),
2847 pci_resource_len(pdev
, bar
), res_name
,
2852 dr
= find_pci_dr(pdev
);
2854 dr
->region_mask
|= 1 << bar
;
2859 dev_warn(&pdev
->dev
, "BAR %d: can't reserve %pR\n", bar
,
2860 &pdev
->resource
[bar
]);
2865 * pci_request_region - Reserve PCI I/O and memory resource
2866 * @pdev: PCI device whose resources are to be reserved
2867 * @bar: BAR to be reserved
2868 * @res_name: Name to be associated with resource
2870 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2871 * being reserved by owner @res_name. Do not access any
2872 * address inside the PCI regions unless this call returns
2875 * Returns 0 on success, or %EBUSY on error. A warning
2876 * message is also printed on failure.
2878 int pci_request_region(struct pci_dev
*pdev
, int bar
, const char *res_name
)
2880 return __pci_request_region(pdev
, bar
, res_name
, 0);
2882 EXPORT_SYMBOL(pci_request_region
);
2885 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2886 * @pdev: PCI device whose resources are to be reserved
2887 * @bar: BAR to be reserved
2888 * @res_name: Name to be associated with resource.
2890 * Mark the PCI region associated with PCI device @pdev BR @bar as
2891 * being reserved by owner @res_name. Do not access any
2892 * address inside the PCI regions unless this call returns
2895 * Returns 0 on success, or %EBUSY on error. A warning
2896 * message is also printed on failure.
2898 * The key difference that _exclusive makes it that userspace is
2899 * explicitly not allowed to map the resource via /dev/mem or
2902 int pci_request_region_exclusive(struct pci_dev
*pdev
, int bar
,
2903 const char *res_name
)
2905 return __pci_request_region(pdev
, bar
, res_name
, IORESOURCE_EXCLUSIVE
);
2907 EXPORT_SYMBOL(pci_request_region_exclusive
);
2910 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2911 * @pdev: PCI device whose resources were previously reserved
2912 * @bars: Bitmask of BARs to be released
2914 * Release selected PCI I/O and memory resources previously reserved.
2915 * Call this function only after all use of the PCI regions has ceased.
2917 void pci_release_selected_regions(struct pci_dev
*pdev
, int bars
)
2921 for (i
= 0; i
< 6; i
++)
2922 if (bars
& (1 << i
))
2923 pci_release_region(pdev
, i
);
2925 EXPORT_SYMBOL(pci_release_selected_regions
);
2927 static int __pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
2928 const char *res_name
, int excl
)
2932 for (i
= 0; i
< 6; i
++)
2933 if (bars
& (1 << i
))
2934 if (__pci_request_region(pdev
, i
, res_name
, excl
))
2940 if (bars
& (1 << i
))
2941 pci_release_region(pdev
, i
);
2948 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2949 * @pdev: PCI device whose resources are to be reserved
2950 * @bars: Bitmask of BARs to be requested
2951 * @res_name: Name to be associated with resource
2953 int pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
2954 const char *res_name
)
2956 return __pci_request_selected_regions(pdev
, bars
, res_name
, 0);
2958 EXPORT_SYMBOL(pci_request_selected_regions
);
2960 int pci_request_selected_regions_exclusive(struct pci_dev
*pdev
, int bars
,
2961 const char *res_name
)
2963 return __pci_request_selected_regions(pdev
, bars
, res_name
,
2964 IORESOURCE_EXCLUSIVE
);
2966 EXPORT_SYMBOL(pci_request_selected_regions_exclusive
);
2969 * pci_release_regions - Release reserved PCI I/O and memory resources
2970 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2972 * Releases all PCI I/O and memory resources previously reserved by a
2973 * successful call to pci_request_regions. Call this function only
2974 * after all use of the PCI regions has ceased.
2977 void pci_release_regions(struct pci_dev
*pdev
)
2979 pci_release_selected_regions(pdev
, (1 << 6) - 1);
2981 EXPORT_SYMBOL(pci_release_regions
);
2984 * pci_request_regions - Reserved PCI I/O and memory resources
2985 * @pdev: PCI device whose resources are to be reserved
2986 * @res_name: Name to be associated with resource.
2988 * Mark all PCI regions associated with PCI device @pdev as
2989 * being reserved by owner @res_name. Do not access any
2990 * address inside the PCI regions unless this call returns
2993 * Returns 0 on success, or %EBUSY on error. A warning
2994 * message is also printed on failure.
2996 int pci_request_regions(struct pci_dev
*pdev
, const char *res_name
)
2998 return pci_request_selected_regions(pdev
, ((1 << 6) - 1), res_name
);
3000 EXPORT_SYMBOL(pci_request_regions
);
3003 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3004 * @pdev: PCI device whose resources are to be reserved
3005 * @res_name: Name to be associated with resource.
3007 * Mark all PCI regions associated with PCI device @pdev as
3008 * being reserved by owner @res_name. Do not access any
3009 * address inside the PCI regions unless this call returns
3012 * pci_request_regions_exclusive() will mark the region so that
3013 * /dev/mem and the sysfs MMIO access will not be allowed.
3015 * Returns 0 on success, or %EBUSY on error. A warning
3016 * message is also printed on failure.
3018 int pci_request_regions_exclusive(struct pci_dev
*pdev
, const char *res_name
)
3020 return pci_request_selected_regions_exclusive(pdev
,
3021 ((1 << 6) - 1), res_name
);
3023 EXPORT_SYMBOL(pci_request_regions_exclusive
);
3026 * pci_remap_iospace - Remap the memory mapped I/O space
3027 * @res: Resource describing the I/O space
3028 * @phys_addr: physical address of range to be mapped
3030 * Remap the memory mapped I/O space described by the @res
3031 * and the CPU physical address @phys_addr into virtual address space.
3032 * Only architectures that have memory mapped IO functions defined
3033 * (and the PCI_IOBASE value defined) should call this function.
3035 int __weak
pci_remap_iospace(const struct resource
*res
, phys_addr_t phys_addr
)
3037 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3038 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
3040 if (!(res
->flags
& IORESOURCE_IO
))
3043 if (res
->end
> IO_SPACE_LIMIT
)
3046 return ioremap_page_range(vaddr
, vaddr
+ resource_size(res
), phys_addr
,
3047 pgprot_device(PAGE_KERNEL
));
3049 /* this architecture does not have memory mapped I/O space,
3050 so this function should never be called */
3051 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3056 static void __pci_set_master(struct pci_dev
*dev
, bool enable
)
3060 pci_read_config_word(dev
, PCI_COMMAND
, &old_cmd
);
3062 cmd
= old_cmd
| PCI_COMMAND_MASTER
;
3064 cmd
= old_cmd
& ~PCI_COMMAND_MASTER
;
3065 if (cmd
!= old_cmd
) {
3066 dev_dbg(&dev
->dev
, "%s bus mastering\n",
3067 enable
? "enabling" : "disabling");
3068 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
3070 dev
->is_busmaster
= enable
;
3074 * pcibios_setup - process "pci=" kernel boot arguments
3075 * @str: string used to pass in "pci=" kernel boot arguments
3077 * Process kernel boot arguments. This is the default implementation.
3078 * Architecture specific implementations can override this as necessary.
3080 char * __weak __init
pcibios_setup(char *str
)
3086 * pcibios_set_master - enable PCI bus-mastering for device dev
3087 * @dev: the PCI device to enable
3089 * Enables PCI bus-mastering for the device. This is the default
3090 * implementation. Architecture specific implementations can override
3091 * this if necessary.
3093 void __weak
pcibios_set_master(struct pci_dev
*dev
)
3097 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3098 if (pci_is_pcie(dev
))
3101 pci_read_config_byte(dev
, PCI_LATENCY_TIMER
, &lat
);
3103 lat
= (64 <= pcibios_max_latency
) ? 64 : pcibios_max_latency
;
3104 else if (lat
> pcibios_max_latency
)
3105 lat
= pcibios_max_latency
;
3109 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, lat
);
3113 * pci_set_master - enables bus-mastering for device dev
3114 * @dev: the PCI device to enable
3116 * Enables bus-mastering on the device and calls pcibios_set_master()
3117 * to do the needed arch specific settings.
3119 void pci_set_master(struct pci_dev
*dev
)
3121 __pci_set_master(dev
, true);
3122 pcibios_set_master(dev
);
3124 EXPORT_SYMBOL(pci_set_master
);
3127 * pci_clear_master - disables bus-mastering for device dev
3128 * @dev: the PCI device to disable
3130 void pci_clear_master(struct pci_dev
*dev
)
3132 __pci_set_master(dev
, false);
3134 EXPORT_SYMBOL(pci_clear_master
);
3137 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3138 * @dev: the PCI device for which MWI is to be enabled
3140 * Helper function for pci_set_mwi.
3141 * Originally copied from drivers/net/acenic.c.
3142 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3144 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3146 int pci_set_cacheline_size(struct pci_dev
*dev
)
3150 if (!pci_cache_line_size
)
3153 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3154 equal to or multiple of the right value. */
3155 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
3156 if (cacheline_size
>= pci_cache_line_size
&&
3157 (cacheline_size
% pci_cache_line_size
) == 0)
3160 /* Write the correct value. */
3161 pci_write_config_byte(dev
, PCI_CACHE_LINE_SIZE
, pci_cache_line_size
);
3163 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
3164 if (cacheline_size
== pci_cache_line_size
)
3167 dev_printk(KERN_DEBUG
, &dev
->dev
, "cache line size of %d is not supported\n",
3168 pci_cache_line_size
<< 2);
3172 EXPORT_SYMBOL_GPL(pci_set_cacheline_size
);
3175 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3176 * @dev: the PCI device for which MWI is enabled
3178 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3180 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3182 int pci_set_mwi(struct pci_dev
*dev
)
3184 #ifdef PCI_DISABLE_MWI
3190 rc
= pci_set_cacheline_size(dev
);
3194 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
3195 if (!(cmd
& PCI_COMMAND_INVALIDATE
)) {
3196 dev_dbg(&dev
->dev
, "enabling Mem-Wr-Inval\n");
3197 cmd
|= PCI_COMMAND_INVALIDATE
;
3198 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
3203 EXPORT_SYMBOL(pci_set_mwi
);
3206 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3207 * @dev: the PCI device for which MWI is enabled
3209 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3210 * Callers are not required to check the return value.
3212 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3214 int pci_try_set_mwi(struct pci_dev
*dev
)
3216 #ifdef PCI_DISABLE_MWI
3219 return pci_set_mwi(dev
);
3222 EXPORT_SYMBOL(pci_try_set_mwi
);
3225 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3226 * @dev: the PCI device to disable
3228 * Disables PCI Memory-Write-Invalidate transaction on the device
3230 void pci_clear_mwi(struct pci_dev
*dev
)
3232 #ifndef PCI_DISABLE_MWI
3235 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
3236 if (cmd
& PCI_COMMAND_INVALIDATE
) {
3237 cmd
&= ~PCI_COMMAND_INVALIDATE
;
3238 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
3242 EXPORT_SYMBOL(pci_clear_mwi
);
3245 * pci_intx - enables/disables PCI INTx for device dev
3246 * @pdev: the PCI device to operate on
3247 * @enable: boolean: whether to enable or disable PCI INTx
3249 * Enables/disables PCI INTx for device dev
3251 void pci_intx(struct pci_dev
*pdev
, int enable
)
3253 u16 pci_command
, new;
3255 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_command
);
3258 new = pci_command
& ~PCI_COMMAND_INTX_DISABLE
;
3260 new = pci_command
| PCI_COMMAND_INTX_DISABLE
;
3262 if (new != pci_command
) {
3263 struct pci_devres
*dr
;
3265 pci_write_config_word(pdev
, PCI_COMMAND
, new);
3267 dr
= find_pci_dr(pdev
);
3268 if (dr
&& !dr
->restore_intx
) {
3269 dr
->restore_intx
= 1;
3270 dr
->orig_intx
= !enable
;
3274 EXPORT_SYMBOL_GPL(pci_intx
);
3277 * pci_intx_mask_supported - probe for INTx masking support
3278 * @dev: the PCI device to operate on
3280 * Check if the device dev support INTx masking via the config space
3283 bool pci_intx_mask_supported(struct pci_dev
*dev
)
3285 bool mask_supported
= false;
3288 if (dev
->broken_intx_masking
)
3291 pci_cfg_access_lock(dev
);
3293 pci_read_config_word(dev
, PCI_COMMAND
, &orig
);
3294 pci_write_config_word(dev
, PCI_COMMAND
,
3295 orig
^ PCI_COMMAND_INTX_DISABLE
);
3296 pci_read_config_word(dev
, PCI_COMMAND
, &new);
3299 * There's no way to protect against hardware bugs or detect them
3300 * reliably, but as long as we know what the value should be, let's
3301 * go ahead and check it.
3303 if ((new ^ orig
) & ~PCI_COMMAND_INTX_DISABLE
) {
3304 dev_err(&dev
->dev
, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3306 } else if ((new ^ orig
) & PCI_COMMAND_INTX_DISABLE
) {
3307 mask_supported
= true;
3308 pci_write_config_word(dev
, PCI_COMMAND
, orig
);
3311 pci_cfg_access_unlock(dev
);
3312 return mask_supported
;
3314 EXPORT_SYMBOL_GPL(pci_intx_mask_supported
);
3316 static bool pci_check_and_set_intx_mask(struct pci_dev
*dev
, bool mask
)
3318 struct pci_bus
*bus
= dev
->bus
;
3319 bool mask_updated
= true;
3320 u32 cmd_status_dword
;
3321 u16 origcmd
, newcmd
;
3322 unsigned long flags
;
3326 * We do a single dword read to retrieve both command and status.
3327 * Document assumptions that make this possible.
3329 BUILD_BUG_ON(PCI_COMMAND
% 4);
3330 BUILD_BUG_ON(PCI_COMMAND
+ 2 != PCI_STATUS
);
3332 raw_spin_lock_irqsave(&pci_lock
, flags
);
3334 bus
->ops
->read(bus
, dev
->devfn
, PCI_COMMAND
, 4, &cmd_status_dword
);
3336 irq_pending
= (cmd_status_dword
>> 16) & PCI_STATUS_INTERRUPT
;
3339 * Check interrupt status register to see whether our device
3340 * triggered the interrupt (when masking) or the next IRQ is
3341 * already pending (when unmasking).
3343 if (mask
!= irq_pending
) {
3344 mask_updated
= false;
3348 origcmd
= cmd_status_dword
;
3349 newcmd
= origcmd
& ~PCI_COMMAND_INTX_DISABLE
;
3351 newcmd
|= PCI_COMMAND_INTX_DISABLE
;
3352 if (newcmd
!= origcmd
)
3353 bus
->ops
->write(bus
, dev
->devfn
, PCI_COMMAND
, 2, newcmd
);
3356 raw_spin_unlock_irqrestore(&pci_lock
, flags
);
3358 return mask_updated
;
3362 * pci_check_and_mask_intx - mask INTx on pending interrupt
3363 * @dev: the PCI device to operate on
3365 * Check if the device dev has its INTx line asserted, mask it and
3366 * return true in that case. False is returned if not interrupt was
3369 bool pci_check_and_mask_intx(struct pci_dev
*dev
)
3371 return pci_check_and_set_intx_mask(dev
, true);
3373 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx
);
3376 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3377 * @dev: the PCI device to operate on
3379 * Check if the device dev has its INTx line asserted, unmask it if not
3380 * and return true. False is returned and the mask remains active if
3381 * there was still an interrupt pending.
3383 bool pci_check_and_unmask_intx(struct pci_dev
*dev
)
3385 return pci_check_and_set_intx_mask(dev
, false);
3387 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx
);
3389 int pci_set_dma_max_seg_size(struct pci_dev
*dev
, unsigned int size
)
3391 return dma_set_max_seg_size(&dev
->dev
, size
);
3393 EXPORT_SYMBOL(pci_set_dma_max_seg_size
);
3395 int pci_set_dma_seg_boundary(struct pci_dev
*dev
, unsigned long mask
)
3397 return dma_set_seg_boundary(&dev
->dev
, mask
);
3399 EXPORT_SYMBOL(pci_set_dma_seg_boundary
);
3402 * pci_wait_for_pending_transaction - waits for pending transaction
3403 * @dev: the PCI device to operate on
3405 * Return 0 if transaction is pending 1 otherwise.
3407 int pci_wait_for_pending_transaction(struct pci_dev
*dev
)
3409 if (!pci_is_pcie(dev
))
3412 return pci_wait_for_pending(dev
, pci_pcie_cap(dev
) + PCI_EXP_DEVSTA
,
3413 PCI_EXP_DEVSTA_TRPND
);
3415 EXPORT_SYMBOL(pci_wait_for_pending_transaction
);
3417 static int pcie_flr(struct pci_dev
*dev
, int probe
)
3421 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP
, &cap
);
3422 if (!(cap
& PCI_EXP_DEVCAP_FLR
))
3428 if (!pci_wait_for_pending_transaction(dev
))
3429 dev_err(&dev
->dev
, "timed out waiting for pending transaction; performing function level reset anyway\n");
3431 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL
, PCI_EXP_DEVCTL_BCR_FLR
);
3436 static int pci_af_flr(struct pci_dev
*dev
, int probe
)
3441 pos
= pci_find_capability(dev
, PCI_CAP_ID_AF
);
3445 pci_read_config_byte(dev
, pos
+ PCI_AF_CAP
, &cap
);
3446 if (!(cap
& PCI_AF_CAP_TP
) || !(cap
& PCI_AF_CAP_FLR
))
3453 * Wait for Transaction Pending bit to clear. A word-aligned test
3454 * is used, so we use the conrol offset rather than status and shift
3455 * the test bit to match.
3457 if (!pci_wait_for_pending(dev
, pos
+ PCI_AF_CTRL
,
3458 PCI_AF_STATUS_TP
<< 8))
3459 dev_err(&dev
->dev
, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3461 pci_write_config_byte(dev
, pos
+ PCI_AF_CTRL
, PCI_AF_CTRL_FLR
);
3467 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3468 * @dev: Device to reset.
3469 * @probe: If set, only check if the device can be reset this way.
3471 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3472 * unset, it will be reinitialized internally when going from PCI_D3hot to
3473 * PCI_D0. If that's the case and the device is not in a low-power state
3474 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3476 * NOTE: This causes the caller to sleep for twice the device power transition
3477 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3478 * by default (i.e. unless the @dev's d3_delay field has a different value).
3479 * Moreover, only devices in D0 can be reset by this function.
3481 static int pci_pm_reset(struct pci_dev
*dev
, int probe
)
3485 if (!dev
->pm_cap
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_PM_RESET
)
3488 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &csr
);
3489 if (csr
& PCI_PM_CTRL_NO_SOFT_RESET
)
3495 if (dev
->current_state
!= PCI_D0
)
3498 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3500 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3501 pci_dev_d3_sleep(dev
);
3503 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3505 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3506 pci_dev_d3_sleep(dev
);
3511 void pci_reset_secondary_bus(struct pci_dev
*dev
)
3515 pci_read_config_word(dev
, PCI_BRIDGE_CONTROL
, &ctrl
);
3516 ctrl
|= PCI_BRIDGE_CTL_BUS_RESET
;
3517 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
3519 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3520 * this to 2ms to ensure that we meet the minimum requirement.
3524 ctrl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
3525 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
3528 * Trhfa for conventional PCI is 2^25 clock cycles.
3529 * Assuming a minimum 33MHz clock this results in a 1s
3530 * delay before we can consider subordinate devices to
3531 * be re-initialized. PCIe has some ways to shorten this,
3532 * but we don't make use of them yet.
3537 void __weak
pcibios_reset_secondary_bus(struct pci_dev
*dev
)
3539 pci_reset_secondary_bus(dev
);
3543 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3544 * @dev: Bridge device
3546 * Use the bridge control register to assert reset on the secondary bus.
3547 * Devices on the secondary bus are left in power-on state.
3549 void pci_reset_bridge_secondary_bus(struct pci_dev
*dev
)
3551 pcibios_reset_secondary_bus(dev
);
3553 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus
);
3555 static int pci_parent_bus_reset(struct pci_dev
*dev
, int probe
)
3557 struct pci_dev
*pdev
;
3559 if (pci_is_root_bus(dev
->bus
) || dev
->subordinate
||
3560 !dev
->bus
->self
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
3563 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
3570 pci_reset_bridge_secondary_bus(dev
->bus
->self
);
3575 static int pci_reset_hotplug_slot(struct hotplug_slot
*hotplug
, int probe
)
3579 if (!hotplug
|| !try_module_get(hotplug
->ops
->owner
))
3582 if (hotplug
->ops
->reset_slot
)
3583 rc
= hotplug
->ops
->reset_slot(hotplug
, probe
);
3585 module_put(hotplug
->ops
->owner
);
3590 static int pci_dev_reset_slot_function(struct pci_dev
*dev
, int probe
)
3592 struct pci_dev
*pdev
;
3594 if (dev
->subordinate
|| !dev
->slot
||
3595 dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
3598 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
3599 if (pdev
!= dev
&& pdev
->slot
== dev
->slot
)
3602 return pci_reset_hotplug_slot(dev
->slot
->hotplug
, probe
);
3605 static int __pci_dev_reset(struct pci_dev
*dev
, int probe
)
3611 rc
= pci_dev_specific_reset(dev
, probe
);
3615 rc
= pcie_flr(dev
, probe
);
3619 rc
= pci_af_flr(dev
, probe
);
3623 rc
= pci_pm_reset(dev
, probe
);
3627 rc
= pci_dev_reset_slot_function(dev
, probe
);
3631 rc
= pci_parent_bus_reset(dev
, probe
);
3636 static void pci_dev_lock(struct pci_dev
*dev
)
3638 pci_cfg_access_lock(dev
);
3639 /* block PM suspend, driver probe, etc. */
3640 device_lock(&dev
->dev
);
3643 /* Return 1 on successful lock, 0 on contention */
3644 static int pci_dev_trylock(struct pci_dev
*dev
)
3646 if (pci_cfg_access_trylock(dev
)) {
3647 if (device_trylock(&dev
->dev
))
3649 pci_cfg_access_unlock(dev
);
3655 static void pci_dev_unlock(struct pci_dev
*dev
)
3657 device_unlock(&dev
->dev
);
3658 pci_cfg_access_unlock(dev
);
3662 * pci_reset_notify - notify device driver of reset
3663 * @dev: device to be notified of reset
3664 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3667 * Must be called prior to device access being disabled and after device
3668 * access is restored.
3670 static void pci_reset_notify(struct pci_dev
*dev
, bool prepare
)
3672 const struct pci_error_handlers
*err_handler
=
3673 dev
->driver
? dev
->driver
->err_handler
: NULL
;
3674 if (err_handler
&& err_handler
->reset_notify
)
3675 err_handler
->reset_notify(dev
, prepare
);
3678 static void pci_dev_save_and_disable(struct pci_dev
*dev
)
3680 pci_reset_notify(dev
, true);
3683 * Wake-up device prior to save. PM registers default to D0 after
3684 * reset and a simple register restore doesn't reliably return
3685 * to a non-D0 state anyway.
3687 pci_set_power_state(dev
, PCI_D0
);
3689 pci_save_state(dev
);
3691 * Disable the device by clearing the Command register, except for
3692 * INTx-disable which is set. This not only disables MMIO and I/O port
3693 * BARs, but also prevents the device from being Bus Master, preventing
3694 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3695 * compliant devices, INTx-disable prevents legacy interrupts.
3697 pci_write_config_word(dev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
3700 static void pci_dev_restore(struct pci_dev
*dev
)
3702 pci_restore_state(dev
);
3703 pci_reset_notify(dev
, false);
3706 static int pci_dev_reset(struct pci_dev
*dev
, int probe
)
3713 rc
= __pci_dev_reset(dev
, probe
);
3716 pci_dev_unlock(dev
);
3722 * __pci_reset_function - reset a PCI device function
3723 * @dev: PCI device to reset
3725 * Some devices allow an individual function to be reset without affecting
3726 * other functions in the same device. The PCI device must be responsive
3727 * to PCI config space in order to use this function.
3729 * The device function is presumed to be unused when this function is called.
3730 * Resetting the device will make the contents of PCI configuration space
3731 * random, so any caller of this must be prepared to reinitialise the
3732 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3735 * Returns 0 if the device function was successfully reset or negative if the
3736 * device doesn't support resetting a single function.
3738 int __pci_reset_function(struct pci_dev
*dev
)
3740 return pci_dev_reset(dev
, 0);
3742 EXPORT_SYMBOL_GPL(__pci_reset_function
);
3745 * __pci_reset_function_locked - reset a PCI device function while holding
3746 * the @dev mutex lock.
3747 * @dev: PCI device to reset
3749 * Some devices allow an individual function to be reset without affecting
3750 * other functions in the same device. The PCI device must be responsive
3751 * to PCI config space in order to use this function.
3753 * The device function is presumed to be unused and the caller is holding
3754 * the device mutex lock when this function is called.
3755 * Resetting the device will make the contents of PCI configuration space
3756 * random, so any caller of this must be prepared to reinitialise the
3757 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3760 * Returns 0 if the device function was successfully reset or negative if the
3761 * device doesn't support resetting a single function.
3763 int __pci_reset_function_locked(struct pci_dev
*dev
)
3765 return __pci_dev_reset(dev
, 0);
3767 EXPORT_SYMBOL_GPL(__pci_reset_function_locked
);
3770 * pci_probe_reset_function - check whether the device can be safely reset
3771 * @dev: PCI device to reset
3773 * Some devices allow an individual function to be reset without affecting
3774 * other functions in the same device. The PCI device must be responsive
3775 * to PCI config space in order to use this function.
3777 * Returns 0 if the device function can be reset or negative if the
3778 * device doesn't support resetting a single function.
3780 int pci_probe_reset_function(struct pci_dev
*dev
)
3782 return pci_dev_reset(dev
, 1);
3786 * pci_reset_function - quiesce and reset a PCI device function
3787 * @dev: PCI device to reset
3789 * Some devices allow an individual function to be reset without affecting
3790 * other functions in the same device. The PCI device must be responsive
3791 * to PCI config space in order to use this function.
3793 * This function does not just reset the PCI portion of a device, but
3794 * clears all the state associated with the device. This function differs
3795 * from __pci_reset_function in that it saves and restores device state
3798 * Returns 0 if the device function was successfully reset or negative if the
3799 * device doesn't support resetting a single function.
3801 int pci_reset_function(struct pci_dev
*dev
)
3805 rc
= pci_dev_reset(dev
, 1);
3809 pci_dev_save_and_disable(dev
);
3811 rc
= pci_dev_reset(dev
, 0);
3813 pci_dev_restore(dev
);
3817 EXPORT_SYMBOL_GPL(pci_reset_function
);
3820 * pci_try_reset_function - quiesce and reset a PCI device function
3821 * @dev: PCI device to reset
3823 * Same as above, except return -EAGAIN if unable to lock device.
3825 int pci_try_reset_function(struct pci_dev
*dev
)
3829 rc
= pci_dev_reset(dev
, 1);
3833 pci_dev_save_and_disable(dev
);
3835 if (pci_dev_trylock(dev
)) {
3836 rc
= __pci_dev_reset(dev
, 0);
3837 pci_dev_unlock(dev
);
3841 pci_dev_restore(dev
);
3845 EXPORT_SYMBOL_GPL(pci_try_reset_function
);
3847 /* Do any devices on or below this bus prevent a bus reset? */
3848 static bool pci_bus_resetable(struct pci_bus
*bus
)
3850 struct pci_dev
*dev
;
3852 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3853 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
3854 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
3861 /* Lock devices from the top of the tree down */
3862 static void pci_bus_lock(struct pci_bus
*bus
)
3864 struct pci_dev
*dev
;
3866 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3868 if (dev
->subordinate
)
3869 pci_bus_lock(dev
->subordinate
);
3873 /* Unlock devices from the bottom of the tree up */
3874 static void pci_bus_unlock(struct pci_bus
*bus
)
3876 struct pci_dev
*dev
;
3878 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3879 if (dev
->subordinate
)
3880 pci_bus_unlock(dev
->subordinate
);
3881 pci_dev_unlock(dev
);
3885 /* Return 1 on successful lock, 0 on contention */
3886 static int pci_bus_trylock(struct pci_bus
*bus
)
3888 struct pci_dev
*dev
;
3890 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3891 if (!pci_dev_trylock(dev
))
3893 if (dev
->subordinate
) {
3894 if (!pci_bus_trylock(dev
->subordinate
)) {
3895 pci_dev_unlock(dev
);
3903 list_for_each_entry_continue_reverse(dev
, &bus
->devices
, bus_list
) {
3904 if (dev
->subordinate
)
3905 pci_bus_unlock(dev
->subordinate
);
3906 pci_dev_unlock(dev
);
3911 /* Do any devices on or below this slot prevent a bus reset? */
3912 static bool pci_slot_resetable(struct pci_slot
*slot
)
3914 struct pci_dev
*dev
;
3916 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3917 if (!dev
->slot
|| dev
->slot
!= slot
)
3919 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
3920 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
3927 /* Lock devices from the top of the tree down */
3928 static void pci_slot_lock(struct pci_slot
*slot
)
3930 struct pci_dev
*dev
;
3932 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3933 if (!dev
->slot
|| dev
->slot
!= slot
)
3936 if (dev
->subordinate
)
3937 pci_bus_lock(dev
->subordinate
);
3941 /* Unlock devices from the bottom of the tree up */
3942 static void pci_slot_unlock(struct pci_slot
*slot
)
3944 struct pci_dev
*dev
;
3946 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3947 if (!dev
->slot
|| dev
->slot
!= slot
)
3949 if (dev
->subordinate
)
3950 pci_bus_unlock(dev
->subordinate
);
3951 pci_dev_unlock(dev
);
3955 /* Return 1 on successful lock, 0 on contention */
3956 static int pci_slot_trylock(struct pci_slot
*slot
)
3958 struct pci_dev
*dev
;
3960 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3961 if (!dev
->slot
|| dev
->slot
!= slot
)
3963 if (!pci_dev_trylock(dev
))
3965 if (dev
->subordinate
) {
3966 if (!pci_bus_trylock(dev
->subordinate
)) {
3967 pci_dev_unlock(dev
);
3975 list_for_each_entry_continue_reverse(dev
,
3976 &slot
->bus
->devices
, bus_list
) {
3977 if (!dev
->slot
|| dev
->slot
!= slot
)
3979 if (dev
->subordinate
)
3980 pci_bus_unlock(dev
->subordinate
);
3981 pci_dev_unlock(dev
);
3986 /* Save and disable devices from the top of the tree down */
3987 static void pci_bus_save_and_disable(struct pci_bus
*bus
)
3989 struct pci_dev
*dev
;
3991 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3992 pci_dev_save_and_disable(dev
);
3993 if (dev
->subordinate
)
3994 pci_bus_save_and_disable(dev
->subordinate
);
3999 * Restore devices from top of the tree down - parent bridges need to be
4000 * restored before we can get to subordinate devices.
4002 static void pci_bus_restore(struct pci_bus
*bus
)
4004 struct pci_dev
*dev
;
4006 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4007 pci_dev_restore(dev
);
4008 if (dev
->subordinate
)
4009 pci_bus_restore(dev
->subordinate
);
4013 /* Save and disable devices from the top of the tree down */
4014 static void pci_slot_save_and_disable(struct pci_slot
*slot
)
4016 struct pci_dev
*dev
;
4018 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4019 if (!dev
->slot
|| dev
->slot
!= slot
)
4021 pci_dev_save_and_disable(dev
);
4022 if (dev
->subordinate
)
4023 pci_bus_save_and_disable(dev
->subordinate
);
4028 * Restore devices from top of the tree down - parent bridges need to be
4029 * restored before we can get to subordinate devices.
4031 static void pci_slot_restore(struct pci_slot
*slot
)
4033 struct pci_dev
*dev
;
4035 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4036 if (!dev
->slot
|| dev
->slot
!= slot
)
4038 pci_dev_restore(dev
);
4039 if (dev
->subordinate
)
4040 pci_bus_restore(dev
->subordinate
);
4044 static int pci_slot_reset(struct pci_slot
*slot
, int probe
)
4048 if (!slot
|| !pci_slot_resetable(slot
))
4052 pci_slot_lock(slot
);
4056 rc
= pci_reset_hotplug_slot(slot
->hotplug
, probe
);
4059 pci_slot_unlock(slot
);
4065 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4066 * @slot: PCI slot to probe
4068 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4070 int pci_probe_reset_slot(struct pci_slot
*slot
)
4072 return pci_slot_reset(slot
, 1);
4074 EXPORT_SYMBOL_GPL(pci_probe_reset_slot
);
4077 * pci_reset_slot - reset a PCI slot
4078 * @slot: PCI slot to reset
4080 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4081 * independent of other slots. For instance, some slots may support slot power
4082 * control. In the case of a 1:1 bus to slot architecture, this function may
4083 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4084 * Generally a slot reset should be attempted before a bus reset. All of the
4085 * function of the slot and any subordinate buses behind the slot are reset
4086 * through this function. PCI config space of all devices in the slot and
4087 * behind the slot is saved before and restored after reset.
4089 * Return 0 on success, non-zero on error.
4091 int pci_reset_slot(struct pci_slot
*slot
)
4095 rc
= pci_slot_reset(slot
, 1);
4099 pci_slot_save_and_disable(slot
);
4101 rc
= pci_slot_reset(slot
, 0);
4103 pci_slot_restore(slot
);
4107 EXPORT_SYMBOL_GPL(pci_reset_slot
);
4110 * pci_try_reset_slot - Try to reset a PCI slot
4111 * @slot: PCI slot to reset
4113 * Same as above except return -EAGAIN if the slot cannot be locked
4115 int pci_try_reset_slot(struct pci_slot
*slot
)
4119 rc
= pci_slot_reset(slot
, 1);
4123 pci_slot_save_and_disable(slot
);
4125 if (pci_slot_trylock(slot
)) {
4127 rc
= pci_reset_hotplug_slot(slot
->hotplug
, 0);
4128 pci_slot_unlock(slot
);
4132 pci_slot_restore(slot
);
4136 EXPORT_SYMBOL_GPL(pci_try_reset_slot
);
4138 static int pci_bus_reset(struct pci_bus
*bus
, int probe
)
4140 if (!bus
->self
|| !pci_bus_resetable(bus
))
4150 pci_reset_bridge_secondary_bus(bus
->self
);
4152 pci_bus_unlock(bus
);
4158 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4159 * @bus: PCI bus to probe
4161 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4163 int pci_probe_reset_bus(struct pci_bus
*bus
)
4165 return pci_bus_reset(bus
, 1);
4167 EXPORT_SYMBOL_GPL(pci_probe_reset_bus
);
4170 * pci_reset_bus - reset a PCI bus
4171 * @bus: top level PCI bus to reset
4173 * Do a bus reset on the given bus and any subordinate buses, saving
4174 * and restoring state of all devices.
4176 * Return 0 on success, non-zero on error.
4178 int pci_reset_bus(struct pci_bus
*bus
)
4182 rc
= pci_bus_reset(bus
, 1);
4186 pci_bus_save_and_disable(bus
);
4188 rc
= pci_bus_reset(bus
, 0);
4190 pci_bus_restore(bus
);
4194 EXPORT_SYMBOL_GPL(pci_reset_bus
);
4197 * pci_try_reset_bus - Try to reset a PCI bus
4198 * @bus: top level PCI bus to reset
4200 * Same as above except return -EAGAIN if the bus cannot be locked
4202 int pci_try_reset_bus(struct pci_bus
*bus
)
4206 rc
= pci_bus_reset(bus
, 1);
4210 pci_bus_save_and_disable(bus
);
4212 if (pci_bus_trylock(bus
)) {
4214 pci_reset_bridge_secondary_bus(bus
->self
);
4215 pci_bus_unlock(bus
);
4219 pci_bus_restore(bus
);
4223 EXPORT_SYMBOL_GPL(pci_try_reset_bus
);
4226 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4227 * @dev: PCI device to query
4229 * Returns mmrbc: maximum designed memory read count in bytes
4230 * or appropriate error value.
4232 int pcix_get_max_mmrbc(struct pci_dev
*dev
)
4237 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4241 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
4244 return 512 << ((stat
& PCI_X_STATUS_MAX_READ
) >> 21);
4246 EXPORT_SYMBOL(pcix_get_max_mmrbc
);
4249 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4250 * @dev: PCI device to query
4252 * Returns mmrbc: maximum memory read count in bytes
4253 * or appropriate error value.
4255 int pcix_get_mmrbc(struct pci_dev
*dev
)
4260 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4264 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
4267 return 512 << ((cmd
& PCI_X_CMD_MAX_READ
) >> 2);
4269 EXPORT_SYMBOL(pcix_get_mmrbc
);
4272 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4273 * @dev: PCI device to query
4274 * @mmrbc: maximum memory read count in bytes
4275 * valid values are 512, 1024, 2048, 4096
4277 * If possible sets maximum memory read byte count, some bridges have erratas
4278 * that prevent this.
4280 int pcix_set_mmrbc(struct pci_dev
*dev
, int mmrbc
)
4286 if (mmrbc
< 512 || mmrbc
> 4096 || !is_power_of_2(mmrbc
))
4289 v
= ffs(mmrbc
) - 10;
4291 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4295 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
4298 if (v
> (stat
& PCI_X_STATUS_MAX_READ
) >> 21)
4301 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
4304 o
= (cmd
& PCI_X_CMD_MAX_READ
) >> 2;
4306 if (v
> o
&& (dev
->bus
->bus_flags
& PCI_BUS_FLAGS_NO_MMRBC
))
4309 cmd
&= ~PCI_X_CMD_MAX_READ
;
4311 if (pci_write_config_word(dev
, cap
+ PCI_X_CMD
, cmd
))
4316 EXPORT_SYMBOL(pcix_set_mmrbc
);
4319 * pcie_get_readrq - get PCI Express read request size
4320 * @dev: PCI device to query
4322 * Returns maximum memory read request in bytes
4323 * or appropriate error value.
4325 int pcie_get_readrq(struct pci_dev
*dev
)
4329 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
4331 return 128 << ((ctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
4333 EXPORT_SYMBOL(pcie_get_readrq
);
4336 * pcie_set_readrq - set PCI Express maximum memory read request
4337 * @dev: PCI device to query
4338 * @rq: maximum memory read count in bytes
4339 * valid values are 128, 256, 512, 1024, 2048, 4096
4341 * If possible sets maximum memory read request in bytes
4343 int pcie_set_readrq(struct pci_dev
*dev
, int rq
)
4347 if (rq
< 128 || rq
> 4096 || !is_power_of_2(rq
))
4351 * If using the "performance" PCIe config, we clamp the
4352 * read rq size to the max packet size to prevent the
4353 * host bridge generating requests larger than we can
4356 if (pcie_bus_config
== PCIE_BUS_PERFORMANCE
) {
4357 int mps
= pcie_get_mps(dev
);
4363 v
= (ffs(rq
) - 8) << 12;
4365 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
4366 PCI_EXP_DEVCTL_READRQ
, v
);
4368 EXPORT_SYMBOL(pcie_set_readrq
);
4371 * pcie_get_mps - get PCI Express maximum payload size
4372 * @dev: PCI device to query
4374 * Returns maximum payload size in bytes
4376 int pcie_get_mps(struct pci_dev
*dev
)
4380 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
4382 return 128 << ((ctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
4384 EXPORT_SYMBOL(pcie_get_mps
);
4387 * pcie_set_mps - set PCI Express maximum payload size
4388 * @dev: PCI device to query
4389 * @mps: maximum payload size in bytes
4390 * valid values are 128, 256, 512, 1024, 2048, 4096
4392 * If possible sets maximum payload size
4394 int pcie_set_mps(struct pci_dev
*dev
, int mps
)
4398 if (mps
< 128 || mps
> 4096 || !is_power_of_2(mps
))
4402 if (v
> dev
->pcie_mpss
)
4406 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
4407 PCI_EXP_DEVCTL_PAYLOAD
, v
);
4409 EXPORT_SYMBOL(pcie_set_mps
);
4412 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4413 * @dev: PCI device to query
4414 * @speed: storage for minimum speed
4415 * @width: storage for minimum width
4417 * This function will walk up the PCI device chain and determine the minimum
4418 * link width and speed of the device.
4420 int pcie_get_minimum_link(struct pci_dev
*dev
, enum pci_bus_speed
*speed
,
4421 enum pcie_link_width
*width
)
4425 *speed
= PCI_SPEED_UNKNOWN
;
4426 *width
= PCIE_LNK_WIDTH_UNKNOWN
;
4430 enum pci_bus_speed next_speed
;
4431 enum pcie_link_width next_width
;
4433 ret
= pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnksta
);
4437 next_speed
= pcie_link_speed
[lnksta
& PCI_EXP_LNKSTA_CLS
];
4438 next_width
= (lnksta
& PCI_EXP_LNKSTA_NLW
) >>
4439 PCI_EXP_LNKSTA_NLW_SHIFT
;
4441 if (next_speed
< *speed
)
4442 *speed
= next_speed
;
4444 if (next_width
< *width
)
4445 *width
= next_width
;
4447 dev
= dev
->bus
->self
;
4452 EXPORT_SYMBOL(pcie_get_minimum_link
);
4455 * pci_select_bars - Make BAR mask from the type of resource
4456 * @dev: the PCI device for which BAR mask is made
4457 * @flags: resource type mask to be selected
4459 * This helper routine makes bar mask from the type of resource.
4461 int pci_select_bars(struct pci_dev
*dev
, unsigned long flags
)
4464 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++)
4465 if (pci_resource_flags(dev
, i
) & flags
)
4469 EXPORT_SYMBOL(pci_select_bars
);
4472 * pci_resource_bar - get position of the BAR associated with a resource
4473 * @dev: the PCI device
4474 * @resno: the resource number
4475 * @type: the BAR type to be filled in
4477 * Returns BAR position in config space, or 0 if the BAR is invalid.
4479 int pci_resource_bar(struct pci_dev
*dev
, int resno
, enum pci_bar_type
*type
)
4483 if (resno
< PCI_ROM_RESOURCE
) {
4484 *type
= pci_bar_unknown
;
4485 return PCI_BASE_ADDRESS_0
+ 4 * resno
;
4486 } else if (resno
== PCI_ROM_RESOURCE
) {
4487 *type
= pci_bar_mem32
;
4488 return dev
->rom_base_reg
;
4489 } else if (resno
< PCI_BRIDGE_RESOURCES
) {
4490 /* device specific resource */
4491 *type
= pci_bar_unknown
;
4492 reg
= pci_iov_resource_bar(dev
, resno
);
4497 dev_err(&dev
->dev
, "BAR %d: invalid resource\n", resno
);
4501 /* Some architectures require additional programming to enable VGA */
4502 static arch_set_vga_state_t arch_set_vga_state
;
4504 void __init
pci_register_set_vga_state(arch_set_vga_state_t func
)
4506 arch_set_vga_state
= func
; /* NULL disables */
4509 static int pci_set_vga_state_arch(struct pci_dev
*dev
, bool decode
,
4510 unsigned int command_bits
, u32 flags
)
4512 if (arch_set_vga_state
)
4513 return arch_set_vga_state(dev
, decode
, command_bits
,
4519 * pci_set_vga_state - set VGA decode state on device and parents if requested
4520 * @dev: the PCI device
4521 * @decode: true = enable decoding, false = disable decoding
4522 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4523 * @flags: traverse ancestors and change bridges
4524 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4526 int pci_set_vga_state(struct pci_dev
*dev
, bool decode
,
4527 unsigned int command_bits
, u32 flags
)
4529 struct pci_bus
*bus
;
4530 struct pci_dev
*bridge
;
4534 WARN_ON((flags
& PCI_VGA_STATE_CHANGE_DECODES
) && (command_bits
& ~(PCI_COMMAND_IO
|PCI_COMMAND_MEMORY
)));
4536 /* ARCH specific VGA enables */
4537 rc
= pci_set_vga_state_arch(dev
, decode
, command_bits
, flags
);
4541 if (flags
& PCI_VGA_STATE_CHANGE_DECODES
) {
4542 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4544 cmd
|= command_bits
;
4546 cmd
&= ~command_bits
;
4547 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4550 if (!(flags
& PCI_VGA_STATE_CHANGE_BRIDGE
))
4557 pci_read_config_word(bridge
, PCI_BRIDGE_CONTROL
,
4560 cmd
|= PCI_BRIDGE_CTL_VGA
;
4562 cmd
&= ~PCI_BRIDGE_CTL_VGA
;
4563 pci_write_config_word(bridge
, PCI_BRIDGE_CONTROL
,
4571 bool pci_device_is_present(struct pci_dev
*pdev
)
4575 return pci_bus_read_dev_vendor_id(pdev
->bus
, pdev
->devfn
, &v
, 0);
4577 EXPORT_SYMBOL_GPL(pci_device_is_present
);
4579 void pci_ignore_hotplug(struct pci_dev
*dev
)
4581 struct pci_dev
*bridge
= dev
->bus
->self
;
4583 dev
->ignore_hotplug
= 1;
4584 /* Propagate the "ignore hotplug" setting to the parent bridge. */
4586 bridge
->ignore_hotplug
= 1;
4588 EXPORT_SYMBOL_GPL(pci_ignore_hotplug
);
4590 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4591 static char resource_alignment_param
[RESOURCE_ALIGNMENT_PARAM_SIZE
] = {0};
4592 static DEFINE_SPINLOCK(resource_alignment_lock
);
4595 * pci_specified_resource_alignment - get resource alignment specified by user.
4596 * @dev: the PCI device to get
4598 * RETURNS: Resource alignment if it is specified.
4599 * Zero if it is not specified.
4601 static resource_size_t
pci_specified_resource_alignment(struct pci_dev
*dev
)
4603 int seg
, bus
, slot
, func
, align_order
, count
;
4604 resource_size_t align
= 0;
4607 spin_lock(&resource_alignment_lock
);
4608 p
= resource_alignment_param
;
4611 if (sscanf(p
, "%d%n", &align_order
, &count
) == 1 &&
4617 if (sscanf(p
, "%x:%x:%x.%x%n",
4618 &seg
, &bus
, &slot
, &func
, &count
) != 4) {
4620 if (sscanf(p
, "%x:%x.%x%n",
4621 &bus
, &slot
, &func
, &count
) != 3) {
4622 /* Invalid format */
4623 printk(KERN_ERR
"PCI: Can't parse resource_alignment parameter: %s\n",
4629 if (seg
== pci_domain_nr(dev
->bus
) &&
4630 bus
== dev
->bus
->number
&&
4631 slot
== PCI_SLOT(dev
->devfn
) &&
4632 func
== PCI_FUNC(dev
->devfn
)) {
4633 if (align_order
== -1)
4636 align
= 1 << align_order
;
4640 if (*p
!= ';' && *p
!= ',') {
4641 /* End of param or invalid format */
4646 spin_unlock(&resource_alignment_lock
);
4651 * This function disables memory decoding and releases memory resources
4652 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4653 * It also rounds up size to specified alignment.
4654 * Later on, the kernel will assign page-aligned memory resource back
4657 void pci_reassigndev_resource_alignment(struct pci_dev
*dev
)
4661 resource_size_t align
, size
;
4664 /* check if specified PCI is target device to reassign */
4665 align
= pci_specified_resource_alignment(dev
);
4669 if (dev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
&&
4670 (dev
->class >> 8) == PCI_CLASS_BRIDGE_HOST
) {
4672 "Can't reassign resources to host bridge.\n");
4677 "Disabling memory decoding and releasing memory resources.\n");
4678 pci_read_config_word(dev
, PCI_COMMAND
, &command
);
4679 command
&= ~PCI_COMMAND_MEMORY
;
4680 pci_write_config_word(dev
, PCI_COMMAND
, command
);
4682 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++) {
4683 r
= &dev
->resource
[i
];
4684 if (!(r
->flags
& IORESOURCE_MEM
))
4686 size
= resource_size(r
);
4690 "Rounding up size of resource #%d to %#llx.\n",
4691 i
, (unsigned long long)size
);
4693 r
->flags
|= IORESOURCE_UNSET
;
4697 /* Need to disable bridge's resource window,
4698 * to enable the kernel to reassign new resource
4701 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
&&
4702 (dev
->class >> 8) == PCI_CLASS_BRIDGE_PCI
) {
4703 for (i
= PCI_BRIDGE_RESOURCES
; i
< PCI_NUM_RESOURCES
; i
++) {
4704 r
= &dev
->resource
[i
];
4705 if (!(r
->flags
& IORESOURCE_MEM
))
4707 r
->flags
|= IORESOURCE_UNSET
;
4708 r
->end
= resource_size(r
) - 1;
4711 pci_disable_bridge_window(dev
);
4715 static ssize_t
pci_set_resource_alignment_param(const char *buf
, size_t count
)
4717 if (count
> RESOURCE_ALIGNMENT_PARAM_SIZE
- 1)
4718 count
= RESOURCE_ALIGNMENT_PARAM_SIZE
- 1;
4719 spin_lock(&resource_alignment_lock
);
4720 strncpy(resource_alignment_param
, buf
, count
);
4721 resource_alignment_param
[count
] = '\0';
4722 spin_unlock(&resource_alignment_lock
);
4726 static ssize_t
pci_get_resource_alignment_param(char *buf
, size_t size
)
4729 spin_lock(&resource_alignment_lock
);
4730 count
= snprintf(buf
, size
, "%s", resource_alignment_param
);
4731 spin_unlock(&resource_alignment_lock
);
4735 static ssize_t
pci_resource_alignment_show(struct bus_type
*bus
, char *buf
)
4737 return pci_get_resource_alignment_param(buf
, PAGE_SIZE
);
4740 static ssize_t
pci_resource_alignment_store(struct bus_type
*bus
,
4741 const char *buf
, size_t count
)
4743 return pci_set_resource_alignment_param(buf
, count
);
4746 BUS_ATTR(resource_alignment
, 0644, pci_resource_alignment_show
,
4747 pci_resource_alignment_store
);
4749 static int __init
pci_resource_alignment_sysfs_init(void)
4751 return bus_create_file(&pci_bus_type
,
4752 &bus_attr_resource_alignment
);
4754 late_initcall(pci_resource_alignment_sysfs_init
);
4756 static void pci_no_domains(void)
4758 #ifdef CONFIG_PCI_DOMAINS
4759 pci_domains_supported
= 0;
4763 #ifdef CONFIG_PCI_DOMAINS
4764 static atomic_t __domain_nr
= ATOMIC_INIT(-1);
4766 int pci_get_new_domain_nr(void)
4768 return atomic_inc_return(&__domain_nr
);
4771 #ifdef CONFIG_PCI_DOMAINS_GENERIC
4772 void pci_bus_assign_domain_nr(struct pci_bus
*bus
, struct device
*parent
)
4774 static int use_dt_domains
= -1;
4775 int domain
= of_get_pci_domain_nr(parent
->of_node
);
4778 * Check DT domain and use_dt_domains values.
4780 * If DT domain property is valid (domain >= 0) and
4781 * use_dt_domains != 0, the DT assignment is valid since this means
4782 * we have not previously allocated a domain number by using
4783 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4784 * 1, to indicate that we have just assigned a domain number from
4787 * If DT domain property value is not valid (ie domain < 0), and we
4788 * have not previously assigned a domain number from DT
4789 * (use_dt_domains != 1) we should assign a domain number by
4792 * pci_get_new_domain_nr()
4794 * API and update the use_dt_domains value to keep track of method we
4795 * are using to assign domain numbers (use_dt_domains = 0).
4797 * All other combinations imply we have a platform that is trying
4798 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4799 * which is a recipe for domain mishandling and it is prevented by
4800 * invalidating the domain value (domain = -1) and printing a
4801 * corresponding error.
4803 if (domain
>= 0 && use_dt_domains
) {
4805 } else if (domain
< 0 && use_dt_domains
!= 1) {
4807 domain
= pci_get_new_domain_nr();
4809 dev_err(parent
, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4810 parent
->of_node
->full_name
);
4814 bus
->domain_nr
= domain
;
4820 * pci_ext_cfg_avail - can we access extended PCI config space?
4822 * Returns 1 if we can access PCI extended config space (offsets
4823 * greater than 0xff). This is the default implementation. Architecture
4824 * implementations can override this.
4826 int __weak
pci_ext_cfg_avail(void)
4831 void __weak
pci_fixup_cardbus(struct pci_bus
*bus
)
4834 EXPORT_SYMBOL(pci_fixup_cardbus
);
4836 static int __init
pci_setup(char *str
)
4839 char *k
= strchr(str
, ',');
4842 if (*str
&& (str
= pcibios_setup(str
)) && *str
) {
4843 if (!strcmp(str
, "nomsi")) {
4845 } else if (!strcmp(str
, "noaer")) {
4847 } else if (!strncmp(str
, "realloc=", 8)) {
4848 pci_realloc_get_opt(str
+ 8);
4849 } else if (!strncmp(str
, "realloc", 7)) {
4850 pci_realloc_get_opt("on");
4851 } else if (!strcmp(str
, "nodomains")) {
4853 } else if (!strncmp(str
, "noari", 5)) {
4854 pcie_ari_disabled
= true;
4855 } else if (!strncmp(str
, "cbiosize=", 9)) {
4856 pci_cardbus_io_size
= memparse(str
+ 9, &str
);
4857 } else if (!strncmp(str
, "cbmemsize=", 10)) {
4858 pci_cardbus_mem_size
= memparse(str
+ 10, &str
);
4859 } else if (!strncmp(str
, "resource_alignment=", 19)) {
4860 pci_set_resource_alignment_param(str
+ 19,
4862 } else if (!strncmp(str
, "ecrc=", 5)) {
4863 pcie_ecrc_get_policy(str
+ 5);
4864 } else if (!strncmp(str
, "hpiosize=", 9)) {
4865 pci_hotplug_io_size
= memparse(str
+ 9, &str
);
4866 } else if (!strncmp(str
, "hpmemsize=", 10)) {
4867 pci_hotplug_mem_size
= memparse(str
+ 10, &str
);
4868 } else if (!strncmp(str
, "pcie_bus_tune_off", 17)) {
4869 pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
4870 } else if (!strncmp(str
, "pcie_bus_safe", 13)) {
4871 pcie_bus_config
= PCIE_BUS_SAFE
;
4872 } else if (!strncmp(str
, "pcie_bus_perf", 13)) {
4873 pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
4874 } else if (!strncmp(str
, "pcie_bus_peer2peer", 18)) {
4875 pcie_bus_config
= PCIE_BUS_PEER2PEER
;
4876 } else if (!strncmp(str
, "pcie_scan_all", 13)) {
4877 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS
);
4879 printk(KERN_ERR
"PCI: Unknown option `%s'\n",
4887 early_param("pci", pci_setup
);