2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/balloon_compaction.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item
)
31 static inline void count_compact_events(enum vm_event_item item
, long delta
)
33 count_vm_events(item
, delta
);
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
45 static unsigned long release_freepages(struct list_head
*freelist
)
47 struct page
*page
, *next
;
48 unsigned long high_pfn
= 0;
50 list_for_each_entry_safe(page
, next
, freelist
, lru
) {
51 unsigned long pfn
= page_to_pfn(page
);
61 static void map_pages(struct list_head
*list
)
65 list_for_each_entry(page
, list
, lru
) {
66 arch_alloc_page(page
, 0);
67 kernel_map_pages(page
, 1, 1);
68 kasan_alloc_pages(page
, 0);
72 static inline bool migrate_async_suitable(int migratetype
)
74 return is_migrate_cma(migratetype
) || migratetype
== MIGRATE_MOVABLE
;
77 #ifdef CONFIG_COMPACTION
79 /* Do not skip compaction more than 64 times */
80 #define COMPACT_MAX_DEFER_SHIFT 6
83 * Compaction is deferred when compaction fails to result in a page
84 * allocation success. 1 << compact_defer_limit compactions are skipped up
85 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
87 void defer_compaction(struct zone
*zone
, int order
)
89 zone
->compact_considered
= 0;
90 zone
->compact_defer_shift
++;
92 if (order
< zone
->compact_order_failed
)
93 zone
->compact_order_failed
= order
;
95 if (zone
->compact_defer_shift
> COMPACT_MAX_DEFER_SHIFT
)
96 zone
->compact_defer_shift
= COMPACT_MAX_DEFER_SHIFT
;
98 trace_mm_compaction_defer_compaction(zone
, order
);
101 /* Returns true if compaction should be skipped this time */
102 bool compaction_deferred(struct zone
*zone
, int order
)
104 unsigned long defer_limit
= 1UL << zone
->compact_defer_shift
;
106 if (order
< zone
->compact_order_failed
)
109 /* Avoid possible overflow */
110 if (++zone
->compact_considered
> defer_limit
)
111 zone
->compact_considered
= defer_limit
;
113 if (zone
->compact_considered
>= defer_limit
)
116 trace_mm_compaction_deferred(zone
, order
);
122 * Update defer tracking counters after successful compaction of given order,
123 * which means an allocation either succeeded (alloc_success == true) or is
124 * expected to succeed.
126 void compaction_defer_reset(struct zone
*zone
, int order
,
130 zone
->compact_considered
= 0;
131 zone
->compact_defer_shift
= 0;
133 if (order
>= zone
->compact_order_failed
)
134 zone
->compact_order_failed
= order
+ 1;
136 trace_mm_compaction_defer_reset(zone
, order
);
139 /* Returns true if restarting compaction after many failures */
140 bool compaction_restarting(struct zone
*zone
, int order
)
142 if (order
< zone
->compact_order_failed
)
145 return zone
->compact_defer_shift
== COMPACT_MAX_DEFER_SHIFT
&&
146 zone
->compact_considered
>= 1UL << zone
->compact_defer_shift
;
149 /* Returns true if the pageblock should be scanned for pages to isolate. */
150 static inline bool isolation_suitable(struct compact_control
*cc
,
153 if (cc
->ignore_skip_hint
)
156 return !get_pageblock_skip(page
);
159 static void reset_cached_positions(struct zone
*zone
)
161 zone
->compact_cached_migrate_pfn
[0] = zone
->zone_start_pfn
;
162 zone
->compact_cached_migrate_pfn
[1] = zone
->zone_start_pfn
;
163 zone
->compact_cached_free_pfn
=
164 round_down(zone_end_pfn(zone
) - 1, pageblock_nr_pages
);
168 * This function is called to clear all cached information on pageblocks that
169 * should be skipped for page isolation when the migrate and free page scanner
172 static void __reset_isolation_suitable(struct zone
*zone
)
174 unsigned long start_pfn
= zone
->zone_start_pfn
;
175 unsigned long end_pfn
= zone_end_pfn(zone
);
178 zone
->compact_blockskip_flush
= false;
180 /* Walk the zone and mark every pageblock as suitable for isolation */
181 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
189 page
= pfn_to_page(pfn
);
190 if (zone
!= page_zone(page
))
193 clear_pageblock_skip(page
);
196 reset_cached_positions(zone
);
199 void reset_isolation_suitable(pg_data_t
*pgdat
)
203 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
204 struct zone
*zone
= &pgdat
->node_zones
[zoneid
];
205 if (!populated_zone(zone
))
208 /* Only flush if a full compaction finished recently */
209 if (zone
->compact_blockskip_flush
)
210 __reset_isolation_suitable(zone
);
215 * If no pages were isolated then mark this pageblock to be skipped in the
216 * future. The information is later cleared by __reset_isolation_suitable().
218 static void update_pageblock_skip(struct compact_control
*cc
,
219 struct page
*page
, unsigned long nr_isolated
,
220 bool migrate_scanner
)
222 struct zone
*zone
= cc
->zone
;
225 if (cc
->ignore_skip_hint
)
234 set_pageblock_skip(page
);
236 pfn
= page_to_pfn(page
);
238 /* Update where async and sync compaction should restart */
239 if (migrate_scanner
) {
240 if (pfn
> zone
->compact_cached_migrate_pfn
[0])
241 zone
->compact_cached_migrate_pfn
[0] = pfn
;
242 if (cc
->mode
!= MIGRATE_ASYNC
&&
243 pfn
> zone
->compact_cached_migrate_pfn
[1])
244 zone
->compact_cached_migrate_pfn
[1] = pfn
;
246 if (pfn
< zone
->compact_cached_free_pfn
)
247 zone
->compact_cached_free_pfn
= pfn
;
251 static inline bool isolation_suitable(struct compact_control
*cc
,
257 static void update_pageblock_skip(struct compact_control
*cc
,
258 struct page
*page
, unsigned long nr_isolated
,
259 bool migrate_scanner
)
262 #endif /* CONFIG_COMPACTION */
265 * Compaction requires the taking of some coarse locks that are potentially
266 * very heavily contended. For async compaction, back out if the lock cannot
267 * be taken immediately. For sync compaction, spin on the lock if needed.
269 * Returns true if the lock is held
270 * Returns false if the lock is not held and compaction should abort
272 static bool compact_trylock_irqsave(spinlock_t
*lock
, unsigned long *flags
,
273 struct compact_control
*cc
)
275 if (cc
->mode
== MIGRATE_ASYNC
) {
276 if (!spin_trylock_irqsave(lock
, *flags
)) {
277 cc
->contended
= COMPACT_CONTENDED_LOCK
;
281 spin_lock_irqsave(lock
, *flags
);
288 * Compaction requires the taking of some coarse locks that are potentially
289 * very heavily contended. The lock should be periodically unlocked to avoid
290 * having disabled IRQs for a long time, even when there is nobody waiting on
291 * the lock. It might also be that allowing the IRQs will result in
292 * need_resched() becoming true. If scheduling is needed, async compaction
293 * aborts. Sync compaction schedules.
294 * Either compaction type will also abort if a fatal signal is pending.
295 * In either case if the lock was locked, it is dropped and not regained.
297 * Returns true if compaction should abort due to fatal signal pending, or
298 * async compaction due to need_resched()
299 * Returns false when compaction can continue (sync compaction might have
302 static bool compact_unlock_should_abort(spinlock_t
*lock
,
303 unsigned long flags
, bool *locked
, struct compact_control
*cc
)
306 spin_unlock_irqrestore(lock
, flags
);
310 if (fatal_signal_pending(current
)) {
311 cc
->contended
= COMPACT_CONTENDED_SCHED
;
315 if (need_resched()) {
316 if (cc
->mode
== MIGRATE_ASYNC
) {
317 cc
->contended
= COMPACT_CONTENDED_SCHED
;
327 * Aside from avoiding lock contention, compaction also periodically checks
328 * need_resched() and either schedules in sync compaction or aborts async
329 * compaction. This is similar to what compact_unlock_should_abort() does, but
330 * is used where no lock is concerned.
332 * Returns false when no scheduling was needed, or sync compaction scheduled.
333 * Returns true when async compaction should abort.
335 static inline bool compact_should_abort(struct compact_control
*cc
)
337 /* async compaction aborts if contended */
338 if (need_resched()) {
339 if (cc
->mode
== MIGRATE_ASYNC
) {
340 cc
->contended
= COMPACT_CONTENDED_SCHED
;
351 * Isolate free pages onto a private freelist. If @strict is true, will abort
352 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
353 * (even though it may still end up isolating some pages).
355 static unsigned long isolate_freepages_block(struct compact_control
*cc
,
356 unsigned long *start_pfn
,
357 unsigned long end_pfn
,
358 struct list_head
*freelist
,
361 int nr_scanned
= 0, total_isolated
= 0;
362 struct page
*cursor
, *valid_page
= NULL
;
363 unsigned long flags
= 0;
365 unsigned long blockpfn
= *start_pfn
;
367 cursor
= pfn_to_page(blockpfn
);
369 /* Isolate free pages. */
370 for (; blockpfn
< end_pfn
; blockpfn
++, cursor
++) {
372 struct page
*page
= cursor
;
375 * Periodically drop the lock (if held) regardless of its
376 * contention, to give chance to IRQs. Abort if fatal signal
377 * pending or async compaction detects need_resched()
379 if (!(blockpfn
% SWAP_CLUSTER_MAX
)
380 && compact_unlock_should_abort(&cc
->zone
->lock
, flags
,
385 if (!pfn_valid_within(blockpfn
))
392 * For compound pages such as THP and hugetlbfs, we can save
393 * potentially a lot of iterations if we skip them at once.
394 * The check is racy, but we can consider only valid values
395 * and the only danger is skipping too much.
397 if (PageCompound(page
)) {
398 unsigned int comp_order
= compound_order(page
);
400 if (likely(comp_order
< MAX_ORDER
)) {
401 blockpfn
+= (1UL << comp_order
) - 1;
402 cursor
+= (1UL << comp_order
) - 1;
408 if (!PageBuddy(page
))
412 * If we already hold the lock, we can skip some rechecking.
413 * Note that if we hold the lock now, checked_pageblock was
414 * already set in some previous iteration (or strict is true),
415 * so it is correct to skip the suitable migration target
420 * The zone lock must be held to isolate freepages.
421 * Unfortunately this is a very coarse lock and can be
422 * heavily contended if there are parallel allocations
423 * or parallel compactions. For async compaction do not
424 * spin on the lock and we acquire the lock as late as
427 locked
= compact_trylock_irqsave(&cc
->zone
->lock
,
432 /* Recheck this is a buddy page under lock */
433 if (!PageBuddy(page
))
437 /* Found a free page, break it into order-0 pages */
438 isolated
= split_free_page(page
);
439 total_isolated
+= isolated
;
440 for (i
= 0; i
< isolated
; i
++) {
441 list_add(&page
->lru
, freelist
);
445 /* If a page was split, advance to the end of it */
447 cc
->nr_freepages
+= isolated
;
449 cc
->nr_migratepages
<= cc
->nr_freepages
) {
450 blockpfn
+= isolated
;
454 blockpfn
+= isolated
- 1;
455 cursor
+= isolated
- 1;
468 * There is a tiny chance that we have read bogus compound_order(),
469 * so be careful to not go outside of the pageblock.
471 if (unlikely(blockpfn
> end_pfn
))
474 trace_mm_compaction_isolate_freepages(*start_pfn
, blockpfn
,
475 nr_scanned
, total_isolated
);
477 /* Record how far we have got within the block */
478 *start_pfn
= blockpfn
;
481 * If strict isolation is requested by CMA then check that all the
482 * pages requested were isolated. If there were any failures, 0 is
483 * returned and CMA will fail.
485 if (strict
&& blockpfn
< end_pfn
)
489 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
491 /* Update the pageblock-skip if the whole pageblock was scanned */
492 if (blockpfn
== end_pfn
)
493 update_pageblock_skip(cc
, valid_page
, total_isolated
, false);
495 count_compact_events(COMPACTFREE_SCANNED
, nr_scanned
);
497 count_compact_events(COMPACTISOLATED
, total_isolated
);
498 return total_isolated
;
502 * isolate_freepages_range() - isolate free pages.
503 * @start_pfn: The first PFN to start isolating.
504 * @end_pfn: The one-past-last PFN.
506 * Non-free pages, invalid PFNs, or zone boundaries within the
507 * [start_pfn, end_pfn) range are considered errors, cause function to
508 * undo its actions and return zero.
510 * Otherwise, function returns one-past-the-last PFN of isolated page
511 * (which may be greater then end_pfn if end fell in a middle of
515 isolate_freepages_range(struct compact_control
*cc
,
516 unsigned long start_pfn
, unsigned long end_pfn
)
518 unsigned long isolated
, pfn
, block_start_pfn
, block_end_pfn
;
522 block_start_pfn
= pfn
& ~(pageblock_nr_pages
- 1);
523 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
524 block_start_pfn
= cc
->zone
->zone_start_pfn
;
525 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
527 for (; pfn
< end_pfn
; pfn
+= isolated
,
528 block_start_pfn
= block_end_pfn
,
529 block_end_pfn
+= pageblock_nr_pages
) {
530 /* Protect pfn from changing by isolate_freepages_block */
531 unsigned long isolate_start_pfn
= pfn
;
533 block_end_pfn
= min(block_end_pfn
, end_pfn
);
536 * pfn could pass the block_end_pfn if isolated freepage
537 * is more than pageblock order. In this case, we adjust
538 * scanning range to right one.
540 if (pfn
>= block_end_pfn
) {
541 block_start_pfn
= pfn
& ~(pageblock_nr_pages
- 1);
542 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
543 block_end_pfn
= min(block_end_pfn
, end_pfn
);
546 if (!pageblock_pfn_to_page(block_start_pfn
,
547 block_end_pfn
, cc
->zone
))
550 isolated
= isolate_freepages_block(cc
, &isolate_start_pfn
,
551 block_end_pfn
, &freelist
, true);
554 * In strict mode, isolate_freepages_block() returns 0 if
555 * there are any holes in the block (ie. invalid PFNs or
562 * If we managed to isolate pages, it is always (1 << n) *
563 * pageblock_nr_pages for some non-negative n. (Max order
564 * page may span two pageblocks).
568 /* split_free_page does not map the pages */
569 map_pages(&freelist
);
572 /* Loop terminated early, cleanup. */
573 release_freepages(&freelist
);
577 /* We don't use freelists for anything. */
581 /* Update the number of anon and file isolated pages in the zone */
582 static void acct_isolated(struct zone
*zone
, struct compact_control
*cc
)
585 unsigned int count
[2] = { 0, };
587 if (list_empty(&cc
->migratepages
))
590 list_for_each_entry(page
, &cc
->migratepages
, lru
)
591 count
[!!page_is_file_cache(page
)]++;
593 mod_zone_page_state(zone
, NR_ISOLATED_ANON
, count
[0]);
594 mod_zone_page_state(zone
, NR_ISOLATED_FILE
, count
[1]);
597 /* Similar to reclaim, but different enough that they don't share logic */
598 static bool too_many_isolated(struct zone
*zone
)
600 unsigned long active
, inactive
, isolated
;
602 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
603 zone_page_state(zone
, NR_INACTIVE_ANON
);
604 active
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
605 zone_page_state(zone
, NR_ACTIVE_ANON
);
606 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
) +
607 zone_page_state(zone
, NR_ISOLATED_ANON
);
609 return isolated
> (inactive
+ active
) / 2;
613 * isolate_migratepages_block() - isolate all migrate-able pages within
615 * @cc: Compaction control structure.
616 * @low_pfn: The first PFN to isolate
617 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
618 * @isolate_mode: Isolation mode to be used.
620 * Isolate all pages that can be migrated from the range specified by
621 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
622 * Returns zero if there is a fatal signal pending, otherwise PFN of the
623 * first page that was not scanned (which may be both less, equal to or more
626 * The pages are isolated on cc->migratepages list (not required to be empty),
627 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
628 * is neither read nor updated.
631 isolate_migratepages_block(struct compact_control
*cc
, unsigned long low_pfn
,
632 unsigned long end_pfn
, isolate_mode_t isolate_mode
)
634 struct zone
*zone
= cc
->zone
;
635 unsigned long nr_scanned
= 0, nr_isolated
= 0;
636 struct list_head
*migratelist
= &cc
->migratepages
;
637 struct lruvec
*lruvec
;
638 unsigned long flags
= 0;
640 struct page
*page
= NULL
, *valid_page
= NULL
;
641 unsigned long start_pfn
= low_pfn
;
644 * Ensure that there are not too many pages isolated from the LRU
645 * list by either parallel reclaimers or compaction. If there are,
646 * delay for some time until fewer pages are isolated
648 while (unlikely(too_many_isolated(zone
))) {
649 /* async migration should just abort */
650 if (cc
->mode
== MIGRATE_ASYNC
)
653 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
655 if (fatal_signal_pending(current
))
659 if (compact_should_abort(cc
))
662 /* Time to isolate some pages for migration */
663 for (; low_pfn
< end_pfn
; low_pfn
++) {
667 * Periodically drop the lock (if held) regardless of its
668 * contention, to give chance to IRQs. Abort async compaction
671 if (!(low_pfn
% SWAP_CLUSTER_MAX
)
672 && compact_unlock_should_abort(&zone
->lru_lock
, flags
,
676 if (!pfn_valid_within(low_pfn
))
680 page
= pfn_to_page(low_pfn
);
686 * Skip if free. We read page order here without zone lock
687 * which is generally unsafe, but the race window is small and
688 * the worst thing that can happen is that we skip some
689 * potential isolation targets.
691 if (PageBuddy(page
)) {
692 unsigned long freepage_order
= page_order_unsafe(page
);
695 * Without lock, we cannot be sure that what we got is
696 * a valid page order. Consider only values in the
697 * valid order range to prevent low_pfn overflow.
699 if (freepage_order
> 0 && freepage_order
< MAX_ORDER
)
700 low_pfn
+= (1UL << freepage_order
) - 1;
705 * Check may be lockless but that's ok as we recheck later.
706 * It's possible to migrate LRU pages and balloon pages
707 * Skip any other type of page
709 is_lru
= PageLRU(page
);
711 if (unlikely(balloon_page_movable(page
))) {
712 if (balloon_page_isolate(page
)) {
713 /* Successfully isolated */
714 goto isolate_success
;
720 * Regardless of being on LRU, compound pages such as THP and
721 * hugetlbfs are not to be compacted. We can potentially save
722 * a lot of iterations if we skip them at once. The check is
723 * racy, but we can consider only valid values and the only
724 * danger is skipping too much.
726 if (PageCompound(page
)) {
727 unsigned int comp_order
= compound_order(page
);
729 if (likely(comp_order
< MAX_ORDER
))
730 low_pfn
+= (1UL << comp_order
) - 1;
739 * Migration will fail if an anonymous page is pinned in memory,
740 * so avoid taking lru_lock and isolating it unnecessarily in an
741 * admittedly racy check.
743 if (!page_mapping(page
) &&
744 page_count(page
) > page_mapcount(page
))
747 /* If we already hold the lock, we can skip some rechecking */
749 locked
= compact_trylock_irqsave(&zone
->lru_lock
,
754 /* Recheck PageLRU and PageCompound under lock */
759 * Page become compound since the non-locked check,
760 * and it's on LRU. It can only be a THP so the order
761 * is safe to read and it's 0 for tail pages.
763 if (unlikely(PageCompound(page
))) {
764 low_pfn
+= (1UL << compound_order(page
)) - 1;
769 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
771 /* Try isolate the page */
772 if (__isolate_lru_page(page
, isolate_mode
) != 0)
775 VM_BUG_ON_PAGE(PageCompound(page
), page
);
777 /* Successfully isolated */
778 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
781 list_add(&page
->lru
, migratelist
);
782 cc
->nr_migratepages
++;
785 /* Avoid isolating too much */
786 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
) {
793 * The PageBuddy() check could have potentially brought us outside
794 * the range to be scanned.
796 if (unlikely(low_pfn
> end_pfn
))
800 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
803 * Update the pageblock-skip information and cached scanner pfn,
804 * if the whole pageblock was scanned without isolating any page.
806 if (low_pfn
== end_pfn
)
807 update_pageblock_skip(cc
, valid_page
, nr_isolated
, true);
809 trace_mm_compaction_isolate_migratepages(start_pfn
, low_pfn
,
810 nr_scanned
, nr_isolated
);
812 count_compact_events(COMPACTMIGRATE_SCANNED
, nr_scanned
);
814 count_compact_events(COMPACTISOLATED
, nr_isolated
);
820 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
821 * @cc: Compaction control structure.
822 * @start_pfn: The first PFN to start isolating.
823 * @end_pfn: The one-past-last PFN.
825 * Returns zero if isolation fails fatally due to e.g. pending signal.
826 * Otherwise, function returns one-past-the-last PFN of isolated page
827 * (which may be greater than end_pfn if end fell in a middle of a THP page).
830 isolate_migratepages_range(struct compact_control
*cc
, unsigned long start_pfn
,
831 unsigned long end_pfn
)
833 unsigned long pfn
, block_start_pfn
, block_end_pfn
;
835 /* Scan block by block. First and last block may be incomplete */
837 block_start_pfn
= pfn
& ~(pageblock_nr_pages
- 1);
838 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
839 block_start_pfn
= cc
->zone
->zone_start_pfn
;
840 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
842 for (; pfn
< end_pfn
; pfn
= block_end_pfn
,
843 block_start_pfn
= block_end_pfn
,
844 block_end_pfn
+= pageblock_nr_pages
) {
846 block_end_pfn
= min(block_end_pfn
, end_pfn
);
848 if (!pageblock_pfn_to_page(block_start_pfn
,
849 block_end_pfn
, cc
->zone
))
852 pfn
= isolate_migratepages_block(cc
, pfn
, block_end_pfn
,
853 ISOLATE_UNEVICTABLE
);
856 * In case of fatal failure, release everything that might
857 * have been isolated in the previous iteration, and signal
858 * the failure back to caller.
861 putback_movable_pages(&cc
->migratepages
);
862 cc
->nr_migratepages
= 0;
866 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
)
869 acct_isolated(cc
->zone
, cc
);
874 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
875 #ifdef CONFIG_COMPACTION
877 /* Returns true if the page is within a block suitable for migration to */
878 static bool suitable_migration_target(struct page
*page
)
880 /* If the page is a large free page, then disallow migration */
881 if (PageBuddy(page
)) {
883 * We are checking page_order without zone->lock taken. But
884 * the only small danger is that we skip a potentially suitable
885 * pageblock, so it's not worth to check order for valid range.
887 if (page_order_unsafe(page
) >= pageblock_order
)
891 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
892 if (migrate_async_suitable(get_pageblock_migratetype(page
)))
895 /* Otherwise skip the block */
900 * Test whether the free scanner has reached the same or lower pageblock than
901 * the migration scanner, and compaction should thus terminate.
903 static inline bool compact_scanners_met(struct compact_control
*cc
)
905 return (cc
->free_pfn
>> pageblock_order
)
906 <= (cc
->migrate_pfn
>> pageblock_order
);
910 * Based on information in the current compact_control, find blocks
911 * suitable for isolating free pages from and then isolate them.
913 static void isolate_freepages(struct compact_control
*cc
)
915 struct zone
*zone
= cc
->zone
;
917 unsigned long block_start_pfn
; /* start of current pageblock */
918 unsigned long isolate_start_pfn
; /* exact pfn we start at */
919 unsigned long block_end_pfn
; /* end of current pageblock */
920 unsigned long low_pfn
; /* lowest pfn scanner is able to scan */
921 struct list_head
*freelist
= &cc
->freepages
;
924 * Initialise the free scanner. The starting point is where we last
925 * successfully isolated from, zone-cached value, or the end of the
926 * zone when isolating for the first time. For looping we also need
927 * this pfn aligned down to the pageblock boundary, because we do
928 * block_start_pfn -= pageblock_nr_pages in the for loop.
929 * For ending point, take care when isolating in last pageblock of a
930 * a zone which ends in the middle of a pageblock.
931 * The low boundary is the end of the pageblock the migration scanner
934 isolate_start_pfn
= cc
->free_pfn
;
935 block_start_pfn
= cc
->free_pfn
& ~(pageblock_nr_pages
-1);
936 block_end_pfn
= min(block_start_pfn
+ pageblock_nr_pages
,
938 low_pfn
= ALIGN(cc
->migrate_pfn
+ 1, pageblock_nr_pages
);
941 * Isolate free pages until enough are available to migrate the
942 * pages on cc->migratepages. We stop searching if the migrate
943 * and free page scanners meet or enough free pages are isolated.
945 for (; block_start_pfn
>= low_pfn
;
946 block_end_pfn
= block_start_pfn
,
947 block_start_pfn
-= pageblock_nr_pages
,
948 isolate_start_pfn
= block_start_pfn
) {
951 * This can iterate a massively long zone without finding any
952 * suitable migration targets, so periodically check if we need
953 * to schedule, or even abort async compaction.
955 if (!(block_start_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
956 && compact_should_abort(cc
))
959 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
964 /* Check the block is suitable for migration */
965 if (!suitable_migration_target(page
))
968 /* If isolation recently failed, do not retry */
969 if (!isolation_suitable(cc
, page
))
972 /* Found a block suitable for isolating free pages from. */
973 isolate_freepages_block(cc
, &isolate_start_pfn
,
974 block_end_pfn
, freelist
, false);
977 * If we isolated enough freepages, or aborted due to async
978 * compaction being contended, terminate the loop.
979 * Remember where the free scanner should restart next time,
980 * which is where isolate_freepages_block() left off.
981 * But if it scanned the whole pageblock, isolate_start_pfn
982 * now points at block_end_pfn, which is the start of the next
984 * In that case we will however want to restart at the start
985 * of the previous pageblock.
987 if ((cc
->nr_freepages
>= cc
->nr_migratepages
)
989 if (isolate_start_pfn
>= block_end_pfn
)
991 block_start_pfn
- pageblock_nr_pages
;
995 * isolate_freepages_block() should not terminate
996 * prematurely unless contended, or isolated enough
998 VM_BUG_ON(isolate_start_pfn
< block_end_pfn
);
1002 /* split_free_page does not map the pages */
1003 map_pages(freelist
);
1006 * Record where the free scanner will restart next time. Either we
1007 * broke from the loop and set isolate_start_pfn based on the last
1008 * call to isolate_freepages_block(), or we met the migration scanner
1009 * and the loop terminated due to isolate_start_pfn < low_pfn
1011 cc
->free_pfn
= isolate_start_pfn
;
1015 * This is a migrate-callback that "allocates" freepages by taking pages
1016 * from the isolated freelists in the block we are migrating to.
1018 static struct page
*compaction_alloc(struct page
*migratepage
,
1022 struct compact_control
*cc
= (struct compact_control
*)data
;
1023 struct page
*freepage
;
1026 * Isolate free pages if necessary, and if we are not aborting due to
1029 if (list_empty(&cc
->freepages
)) {
1031 isolate_freepages(cc
);
1033 if (list_empty(&cc
->freepages
))
1037 freepage
= list_entry(cc
->freepages
.next
, struct page
, lru
);
1038 list_del(&freepage
->lru
);
1045 * This is a migrate-callback that "frees" freepages back to the isolated
1046 * freelist. All pages on the freelist are from the same zone, so there is no
1047 * special handling needed for NUMA.
1049 static void compaction_free(struct page
*page
, unsigned long data
)
1051 struct compact_control
*cc
= (struct compact_control
*)data
;
1053 list_add(&page
->lru
, &cc
->freepages
);
1057 /* possible outcome of isolate_migratepages */
1059 ISOLATE_ABORT
, /* Abort compaction now */
1060 ISOLATE_NONE
, /* No pages isolated, continue scanning */
1061 ISOLATE_SUCCESS
, /* Pages isolated, migrate */
1062 } isolate_migrate_t
;
1065 * Allow userspace to control policy on scanning the unevictable LRU for
1066 * compactable pages.
1068 int sysctl_compact_unevictable_allowed __read_mostly
= 1;
1071 * Isolate all pages that can be migrated from the first suitable block,
1072 * starting at the block pointed to by the migrate scanner pfn within
1075 static isolate_migrate_t
isolate_migratepages(struct zone
*zone
,
1076 struct compact_control
*cc
)
1078 unsigned long block_start_pfn
;
1079 unsigned long block_end_pfn
;
1080 unsigned long low_pfn
;
1081 unsigned long isolate_start_pfn
;
1083 const isolate_mode_t isolate_mode
=
1084 (sysctl_compact_unevictable_allowed
? ISOLATE_UNEVICTABLE
: 0) |
1085 (cc
->mode
== MIGRATE_ASYNC
? ISOLATE_ASYNC_MIGRATE
: 0);
1088 * Start at where we last stopped, or beginning of the zone as
1089 * initialized by compact_zone()
1091 low_pfn
= cc
->migrate_pfn
;
1092 block_start_pfn
= cc
->migrate_pfn
& ~(pageblock_nr_pages
- 1);
1093 if (block_start_pfn
< zone
->zone_start_pfn
)
1094 block_start_pfn
= zone
->zone_start_pfn
;
1096 /* Only scan within a pageblock boundary */
1097 block_end_pfn
= ALIGN(low_pfn
+ 1, pageblock_nr_pages
);
1100 * Iterate over whole pageblocks until we find the first suitable.
1101 * Do not cross the free scanner.
1103 for (; block_end_pfn
<= cc
->free_pfn
;
1104 low_pfn
= block_end_pfn
,
1105 block_start_pfn
= block_end_pfn
,
1106 block_end_pfn
+= pageblock_nr_pages
) {
1109 * This can potentially iterate a massively long zone with
1110 * many pageblocks unsuitable, so periodically check if we
1111 * need to schedule, or even abort async compaction.
1113 if (!(low_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
1114 && compact_should_abort(cc
))
1117 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
1122 /* If isolation recently failed, do not retry */
1123 if (!isolation_suitable(cc
, page
))
1127 * For async compaction, also only scan in MOVABLE blocks.
1128 * Async compaction is optimistic to see if the minimum amount
1129 * of work satisfies the allocation.
1131 if (cc
->mode
== MIGRATE_ASYNC
&&
1132 !migrate_async_suitable(get_pageblock_migratetype(page
)))
1135 /* Perform the isolation */
1136 isolate_start_pfn
= low_pfn
;
1137 low_pfn
= isolate_migratepages_block(cc
, low_pfn
,
1138 block_end_pfn
, isolate_mode
);
1140 if (!low_pfn
|| cc
->contended
) {
1141 acct_isolated(zone
, cc
);
1142 return ISOLATE_ABORT
;
1146 * Record where we could have freed pages by migration and not
1147 * yet flushed them to buddy allocator.
1148 * - this is the lowest page that could have been isolated and
1149 * then freed by migration.
1151 if (cc
->nr_migratepages
&& !cc
->last_migrated_pfn
)
1152 cc
->last_migrated_pfn
= isolate_start_pfn
;
1155 * Either we isolated something and proceed with migration. Or
1156 * we failed and compact_zone should decide if we should
1162 acct_isolated(zone
, cc
);
1163 /* Record where migration scanner will be restarted. */
1164 cc
->migrate_pfn
= low_pfn
;
1166 return cc
->nr_migratepages
? ISOLATE_SUCCESS
: ISOLATE_NONE
;
1170 * order == -1 is expected when compacting via
1171 * /proc/sys/vm/compact_memory
1173 static inline bool is_via_compact_memory(int order
)
1178 static int __compact_finished(struct zone
*zone
, struct compact_control
*cc
,
1179 const int migratetype
)
1182 unsigned long watermark
;
1184 if (cc
->contended
|| fatal_signal_pending(current
))
1185 return COMPACT_CONTENDED
;
1187 /* Compaction run completes if the migrate and free scanner meet */
1188 if (compact_scanners_met(cc
)) {
1189 /* Let the next compaction start anew. */
1190 reset_cached_positions(zone
);
1193 * Mark that the PG_migrate_skip information should be cleared
1194 * by kswapd when it goes to sleep. kcompactd does not set the
1195 * flag itself as the decision to be clear should be directly
1196 * based on an allocation request.
1198 if (cc
->direct_compaction
)
1199 zone
->compact_blockskip_flush
= true;
1201 return COMPACT_COMPLETE
;
1204 if (is_via_compact_memory(cc
->order
))
1205 return COMPACT_CONTINUE
;
1207 /* Compaction run is not finished if the watermark is not met */
1208 watermark
= low_wmark_pages(zone
);
1210 if (!zone_watermark_ok(zone
, cc
->order
, watermark
, cc
->classzone_idx
,
1212 return COMPACT_CONTINUE
;
1214 /* Direct compactor: Is a suitable page free? */
1215 for (order
= cc
->order
; order
< MAX_ORDER
; order
++) {
1216 struct free_area
*area
= &zone
->free_area
[order
];
1219 /* Job done if page is free of the right migratetype */
1220 if (!list_empty(&area
->free_list
[migratetype
]))
1221 return COMPACT_PARTIAL
;
1224 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1225 if (migratetype
== MIGRATE_MOVABLE
&&
1226 !list_empty(&area
->free_list
[MIGRATE_CMA
]))
1227 return COMPACT_PARTIAL
;
1230 * Job done if allocation would steal freepages from
1231 * other migratetype buddy lists.
1233 if (find_suitable_fallback(area
, order
, migratetype
,
1234 true, &can_steal
) != -1)
1235 return COMPACT_PARTIAL
;
1238 return COMPACT_NO_SUITABLE_PAGE
;
1241 static int compact_finished(struct zone
*zone
, struct compact_control
*cc
,
1242 const int migratetype
)
1246 ret
= __compact_finished(zone
, cc
, migratetype
);
1247 trace_mm_compaction_finished(zone
, cc
->order
, ret
);
1248 if (ret
== COMPACT_NO_SUITABLE_PAGE
)
1249 ret
= COMPACT_CONTINUE
;
1255 * compaction_suitable: Is this suitable to run compaction on this zone now?
1257 * COMPACT_SKIPPED - If there are too few free pages for compaction
1258 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1259 * COMPACT_CONTINUE - If compaction should run now
1261 static unsigned long __compaction_suitable(struct zone
*zone
, int order
,
1262 int alloc_flags
, int classzone_idx
)
1265 unsigned long watermark
;
1267 if (is_via_compact_memory(order
))
1268 return COMPACT_CONTINUE
;
1270 watermark
= low_wmark_pages(zone
);
1272 * If watermarks for high-order allocation are already met, there
1273 * should be no need for compaction at all.
1275 if (zone_watermark_ok(zone
, order
, watermark
, classzone_idx
,
1277 return COMPACT_PARTIAL
;
1280 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1281 * This is because during migration, copies of pages need to be
1282 * allocated and for a short time, the footprint is higher
1284 watermark
+= (2UL << order
);
1285 if (!zone_watermark_ok(zone
, 0, watermark
, classzone_idx
, alloc_flags
))
1286 return COMPACT_SKIPPED
;
1289 * fragmentation index determines if allocation failures are due to
1290 * low memory or external fragmentation
1292 * index of -1000 would imply allocations might succeed depending on
1293 * watermarks, but we already failed the high-order watermark check
1294 * index towards 0 implies failure is due to lack of memory
1295 * index towards 1000 implies failure is due to fragmentation
1297 * Only compact if a failure would be due to fragmentation.
1299 fragindex
= fragmentation_index(zone
, order
);
1300 if (fragindex
>= 0 && fragindex
<= sysctl_extfrag_threshold
)
1301 return COMPACT_NOT_SUITABLE_ZONE
;
1303 return COMPACT_CONTINUE
;
1306 unsigned long compaction_suitable(struct zone
*zone
, int order
,
1307 int alloc_flags
, int classzone_idx
)
1311 ret
= __compaction_suitable(zone
, order
, alloc_flags
, classzone_idx
);
1312 trace_mm_compaction_suitable(zone
, order
, ret
);
1313 if (ret
== COMPACT_NOT_SUITABLE_ZONE
)
1314 ret
= COMPACT_SKIPPED
;
1319 static int compact_zone(struct zone
*zone
, struct compact_control
*cc
)
1322 unsigned long start_pfn
= zone
->zone_start_pfn
;
1323 unsigned long end_pfn
= zone_end_pfn(zone
);
1324 const int migratetype
= gfpflags_to_migratetype(cc
->gfp_mask
);
1325 const bool sync
= cc
->mode
!= MIGRATE_ASYNC
;
1327 ret
= compaction_suitable(zone
, cc
->order
, cc
->alloc_flags
,
1330 case COMPACT_PARTIAL
:
1331 case COMPACT_SKIPPED
:
1332 /* Compaction is likely to fail */
1334 case COMPACT_CONTINUE
:
1335 /* Fall through to compaction */
1340 * Clear pageblock skip if there were failures recently and compaction
1341 * is about to be retried after being deferred.
1343 if (compaction_restarting(zone
, cc
->order
))
1344 __reset_isolation_suitable(zone
);
1347 * Setup to move all movable pages to the end of the zone. Used cached
1348 * information on where the scanners should start but check that it
1349 * is initialised by ensuring the values are within zone boundaries.
1351 cc
->migrate_pfn
= zone
->compact_cached_migrate_pfn
[sync
];
1352 cc
->free_pfn
= zone
->compact_cached_free_pfn
;
1353 if (cc
->free_pfn
< start_pfn
|| cc
->free_pfn
>= end_pfn
) {
1354 cc
->free_pfn
= round_down(end_pfn
- 1, pageblock_nr_pages
);
1355 zone
->compact_cached_free_pfn
= cc
->free_pfn
;
1357 if (cc
->migrate_pfn
< start_pfn
|| cc
->migrate_pfn
>= end_pfn
) {
1358 cc
->migrate_pfn
= start_pfn
;
1359 zone
->compact_cached_migrate_pfn
[0] = cc
->migrate_pfn
;
1360 zone
->compact_cached_migrate_pfn
[1] = cc
->migrate_pfn
;
1362 cc
->last_migrated_pfn
= 0;
1364 trace_mm_compaction_begin(start_pfn
, cc
->migrate_pfn
,
1365 cc
->free_pfn
, end_pfn
, sync
);
1367 migrate_prep_local();
1369 while ((ret
= compact_finished(zone
, cc
, migratetype
)) ==
1373 switch (isolate_migratepages(zone
, cc
)) {
1375 ret
= COMPACT_CONTENDED
;
1376 putback_movable_pages(&cc
->migratepages
);
1377 cc
->nr_migratepages
= 0;
1381 * We haven't isolated and migrated anything, but
1382 * there might still be unflushed migrations from
1383 * previous cc->order aligned block.
1386 case ISOLATE_SUCCESS
:
1390 err
= migrate_pages(&cc
->migratepages
, compaction_alloc
,
1391 compaction_free
, (unsigned long)cc
, cc
->mode
,
1394 trace_mm_compaction_migratepages(cc
->nr_migratepages
, err
,
1397 /* All pages were either migrated or will be released */
1398 cc
->nr_migratepages
= 0;
1400 putback_movable_pages(&cc
->migratepages
);
1402 * migrate_pages() may return -ENOMEM when scanners meet
1403 * and we want compact_finished() to detect it
1405 if (err
== -ENOMEM
&& !compact_scanners_met(cc
)) {
1406 ret
= COMPACT_CONTENDED
;
1413 * Has the migration scanner moved away from the previous
1414 * cc->order aligned block where we migrated from? If yes,
1415 * flush the pages that were freed, so that they can merge and
1416 * compact_finished() can detect immediately if allocation
1419 if (cc
->order
> 0 && cc
->last_migrated_pfn
) {
1421 unsigned long current_block_start
=
1422 cc
->migrate_pfn
& ~((1UL << cc
->order
) - 1);
1424 if (cc
->last_migrated_pfn
< current_block_start
) {
1426 lru_add_drain_cpu(cpu
);
1427 drain_local_pages(zone
);
1429 /* No more flushing until we migrate again */
1430 cc
->last_migrated_pfn
= 0;
1438 * Release free pages and update where the free scanner should restart,
1439 * so we don't leave any returned pages behind in the next attempt.
1441 if (cc
->nr_freepages
> 0) {
1442 unsigned long free_pfn
= release_freepages(&cc
->freepages
);
1444 cc
->nr_freepages
= 0;
1445 VM_BUG_ON(free_pfn
== 0);
1446 /* The cached pfn is always the first in a pageblock */
1447 free_pfn
&= ~(pageblock_nr_pages
-1);
1449 * Only go back, not forward. The cached pfn might have been
1450 * already reset to zone end in compact_finished()
1452 if (free_pfn
> zone
->compact_cached_free_pfn
)
1453 zone
->compact_cached_free_pfn
= free_pfn
;
1456 trace_mm_compaction_end(start_pfn
, cc
->migrate_pfn
,
1457 cc
->free_pfn
, end_pfn
, sync
, ret
);
1459 if (ret
== COMPACT_CONTENDED
)
1460 ret
= COMPACT_PARTIAL
;
1465 static unsigned long compact_zone_order(struct zone
*zone
, int order
,
1466 gfp_t gfp_mask
, enum migrate_mode mode
, int *contended
,
1467 int alloc_flags
, int classzone_idx
)
1470 struct compact_control cc
= {
1472 .nr_migratepages
= 0,
1474 .gfp_mask
= gfp_mask
,
1477 .alloc_flags
= alloc_flags
,
1478 .classzone_idx
= classzone_idx
,
1479 .direct_compaction
= true,
1481 INIT_LIST_HEAD(&cc
.freepages
);
1482 INIT_LIST_HEAD(&cc
.migratepages
);
1484 ret
= compact_zone(zone
, &cc
);
1486 VM_BUG_ON(!list_empty(&cc
.freepages
));
1487 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1489 *contended
= cc
.contended
;
1493 int sysctl_extfrag_threshold
= 500;
1496 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1497 * @gfp_mask: The GFP mask of the current allocation
1498 * @order: The order of the current allocation
1499 * @alloc_flags: The allocation flags of the current allocation
1500 * @ac: The context of current allocation
1501 * @mode: The migration mode for async, sync light, or sync migration
1502 * @contended: Return value that determines if compaction was aborted due to
1503 * need_resched() or lock contention
1505 * This is the main entry point for direct page compaction.
1507 unsigned long try_to_compact_pages(gfp_t gfp_mask
, unsigned int order
,
1508 int alloc_flags
, const struct alloc_context
*ac
,
1509 enum migrate_mode mode
, int *contended
)
1511 int may_enter_fs
= gfp_mask
& __GFP_FS
;
1512 int may_perform_io
= gfp_mask
& __GFP_IO
;
1515 int rc
= COMPACT_DEFERRED
;
1516 int all_zones_contended
= COMPACT_CONTENDED_LOCK
; /* init for &= op */
1518 *contended
= COMPACT_CONTENDED_NONE
;
1520 /* Check if the GFP flags allow compaction */
1521 if (!order
|| !may_enter_fs
|| !may_perform_io
)
1522 return COMPACT_SKIPPED
;
1524 trace_mm_compaction_try_to_compact_pages(order
, gfp_mask
, mode
);
1526 /* Compact each zone in the list */
1527 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
1532 if (compaction_deferred(zone
, order
))
1535 status
= compact_zone_order(zone
, order
, gfp_mask
, mode
,
1536 &zone_contended
, alloc_flags
,
1538 rc
= max(status
, rc
);
1540 * It takes at least one zone that wasn't lock contended
1541 * to clear all_zones_contended.
1543 all_zones_contended
&= zone_contended
;
1545 /* If a normal allocation would succeed, stop compacting */
1546 if (zone_watermark_ok(zone
, order
, low_wmark_pages(zone
),
1547 ac
->classzone_idx
, alloc_flags
)) {
1549 * We think the allocation will succeed in this zone,
1550 * but it is not certain, hence the false. The caller
1551 * will repeat this with true if allocation indeed
1552 * succeeds in this zone.
1554 compaction_defer_reset(zone
, order
, false);
1556 * It is possible that async compaction aborted due to
1557 * need_resched() and the watermarks were ok thanks to
1558 * somebody else freeing memory. The allocation can
1559 * however still fail so we better signal the
1560 * need_resched() contention anyway (this will not
1561 * prevent the allocation attempt).
1563 if (zone_contended
== COMPACT_CONTENDED_SCHED
)
1564 *contended
= COMPACT_CONTENDED_SCHED
;
1569 if (mode
!= MIGRATE_ASYNC
&& status
== COMPACT_COMPLETE
) {
1571 * We think that allocation won't succeed in this zone
1572 * so we defer compaction there. If it ends up
1573 * succeeding after all, it will be reset.
1575 defer_compaction(zone
, order
);
1579 * We might have stopped compacting due to need_resched() in
1580 * async compaction, or due to a fatal signal detected. In that
1581 * case do not try further zones and signal need_resched()
1584 if ((zone_contended
== COMPACT_CONTENDED_SCHED
)
1585 || fatal_signal_pending(current
)) {
1586 *contended
= COMPACT_CONTENDED_SCHED
;
1593 * We might not have tried all the zones, so be conservative
1594 * and assume they are not all lock contended.
1596 all_zones_contended
= 0;
1601 * If at least one zone wasn't deferred or skipped, we report if all
1602 * zones that were tried were lock contended.
1604 if (rc
> COMPACT_SKIPPED
&& all_zones_contended
)
1605 *contended
= COMPACT_CONTENDED_LOCK
;
1611 /* Compact all zones within a node */
1612 static void __compact_pgdat(pg_data_t
*pgdat
, struct compact_control
*cc
)
1617 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
1619 zone
= &pgdat
->node_zones
[zoneid
];
1620 if (!populated_zone(zone
))
1623 cc
->nr_freepages
= 0;
1624 cc
->nr_migratepages
= 0;
1626 INIT_LIST_HEAD(&cc
->freepages
);
1627 INIT_LIST_HEAD(&cc
->migratepages
);
1630 * When called via /proc/sys/vm/compact_memory
1631 * this makes sure we compact the whole zone regardless of
1632 * cached scanner positions.
1634 if (is_via_compact_memory(cc
->order
))
1635 __reset_isolation_suitable(zone
);
1637 if (is_via_compact_memory(cc
->order
) ||
1638 !compaction_deferred(zone
, cc
->order
))
1639 compact_zone(zone
, cc
);
1641 VM_BUG_ON(!list_empty(&cc
->freepages
));
1642 VM_BUG_ON(!list_empty(&cc
->migratepages
));
1644 if (is_via_compact_memory(cc
->order
))
1647 if (zone_watermark_ok(zone
, cc
->order
,
1648 low_wmark_pages(zone
), 0, 0))
1649 compaction_defer_reset(zone
, cc
->order
, false);
1653 void compact_pgdat(pg_data_t
*pgdat
, int order
)
1655 struct compact_control cc
= {
1657 .mode
= MIGRATE_ASYNC
,
1663 __compact_pgdat(pgdat
, &cc
);
1666 static void compact_node(int nid
)
1668 struct compact_control cc
= {
1670 .mode
= MIGRATE_SYNC
,
1671 .ignore_skip_hint
= true,
1674 __compact_pgdat(NODE_DATA(nid
), &cc
);
1677 /* Compact all nodes in the system */
1678 static void compact_nodes(void)
1682 /* Flush pending updates to the LRU lists */
1683 lru_add_drain_all();
1685 for_each_online_node(nid
)
1689 /* The written value is actually unused, all memory is compacted */
1690 int sysctl_compact_memory
;
1693 * This is the entry point for compacting all nodes via
1694 * /proc/sys/vm/compact_memory
1696 int sysctl_compaction_handler(struct ctl_table
*table
, int write
,
1697 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1705 int sysctl_extfrag_handler(struct ctl_table
*table
, int write
,
1706 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1708 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
1713 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1714 static ssize_t
sysfs_compact_node(struct device
*dev
,
1715 struct device_attribute
*attr
,
1716 const char *buf
, size_t count
)
1720 if (nid
>= 0 && nid
< nr_node_ids
&& node_online(nid
)) {
1721 /* Flush pending updates to the LRU lists */
1722 lru_add_drain_all();
1729 static DEVICE_ATTR(compact
, S_IWUSR
, NULL
, sysfs_compact_node
);
1731 int compaction_register_node(struct node
*node
)
1733 return device_create_file(&node
->dev
, &dev_attr_compact
);
1736 void compaction_unregister_node(struct node
*node
)
1738 return device_remove_file(&node
->dev
, &dev_attr_compact
);
1740 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1742 static inline bool kcompactd_work_requested(pg_data_t
*pgdat
)
1744 return pgdat
->kcompactd_max_order
> 0;
1747 static bool kcompactd_node_suitable(pg_data_t
*pgdat
)
1751 enum zone_type classzone_idx
= pgdat
->kcompactd_classzone_idx
;
1753 for (zoneid
= 0; zoneid
< classzone_idx
; zoneid
++) {
1754 zone
= &pgdat
->node_zones
[zoneid
];
1756 if (!populated_zone(zone
))
1759 if (compaction_suitable(zone
, pgdat
->kcompactd_max_order
, 0,
1760 classzone_idx
) == COMPACT_CONTINUE
)
1767 static void kcompactd_do_work(pg_data_t
*pgdat
)
1770 * With no special task, compact all zones so that a page of requested
1771 * order is allocatable.
1775 struct compact_control cc
= {
1776 .order
= pgdat
->kcompactd_max_order
,
1777 .classzone_idx
= pgdat
->kcompactd_classzone_idx
,
1778 .mode
= MIGRATE_SYNC_LIGHT
,
1779 .ignore_skip_hint
= true,
1782 bool success
= false;
1784 trace_mm_compaction_kcompactd_wake(pgdat
->node_id
, cc
.order
,
1786 count_vm_event(KCOMPACTD_WAKE
);
1788 for (zoneid
= 0; zoneid
< cc
.classzone_idx
; zoneid
++) {
1791 zone
= &pgdat
->node_zones
[zoneid
];
1792 if (!populated_zone(zone
))
1795 if (compaction_deferred(zone
, cc
.order
))
1798 if (compaction_suitable(zone
, cc
.order
, 0, zoneid
) !=
1802 cc
.nr_freepages
= 0;
1803 cc
.nr_migratepages
= 0;
1805 INIT_LIST_HEAD(&cc
.freepages
);
1806 INIT_LIST_HEAD(&cc
.migratepages
);
1808 status
= compact_zone(zone
, &cc
);
1810 if (zone_watermark_ok(zone
, cc
.order
, low_wmark_pages(zone
),
1811 cc
.classzone_idx
, 0)) {
1813 compaction_defer_reset(zone
, cc
.order
, false);
1814 } else if (status
== COMPACT_COMPLETE
) {
1816 * We use sync migration mode here, so we defer like
1817 * sync direct compaction does.
1819 defer_compaction(zone
, cc
.order
);
1822 VM_BUG_ON(!list_empty(&cc
.freepages
));
1823 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1827 * Regardless of success, we are done until woken up next. But remember
1828 * the requested order/classzone_idx in case it was higher/tighter than
1831 if (pgdat
->kcompactd_max_order
<= cc
.order
)
1832 pgdat
->kcompactd_max_order
= 0;
1833 if (pgdat
->kcompactd_classzone_idx
>= cc
.classzone_idx
)
1834 pgdat
->kcompactd_classzone_idx
= pgdat
->nr_zones
- 1;
1837 void wakeup_kcompactd(pg_data_t
*pgdat
, int order
, int classzone_idx
)
1842 if (pgdat
->kcompactd_max_order
< order
)
1843 pgdat
->kcompactd_max_order
= order
;
1845 if (pgdat
->kcompactd_classzone_idx
> classzone_idx
)
1846 pgdat
->kcompactd_classzone_idx
= classzone_idx
;
1848 if (!waitqueue_active(&pgdat
->kcompactd_wait
))
1851 if (!kcompactd_node_suitable(pgdat
))
1854 trace_mm_compaction_wakeup_kcompactd(pgdat
->node_id
, order
,
1856 wake_up_interruptible(&pgdat
->kcompactd_wait
);
1860 * The background compaction daemon, started as a kernel thread
1861 * from the init process.
1863 static int kcompactd(void *p
)
1865 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1866 struct task_struct
*tsk
= current
;
1868 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1870 if (!cpumask_empty(cpumask
))
1871 set_cpus_allowed_ptr(tsk
, cpumask
);
1875 pgdat
->kcompactd_max_order
= 0;
1876 pgdat
->kcompactd_classzone_idx
= pgdat
->nr_zones
- 1;
1878 while (!kthread_should_stop()) {
1879 trace_mm_compaction_kcompactd_sleep(pgdat
->node_id
);
1880 wait_event_freezable(pgdat
->kcompactd_wait
,
1881 kcompactd_work_requested(pgdat
));
1883 kcompactd_do_work(pgdat
);
1890 * This kcompactd start function will be called by init and node-hot-add.
1891 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
1893 int kcompactd_run(int nid
)
1895 pg_data_t
*pgdat
= NODE_DATA(nid
);
1898 if (pgdat
->kcompactd
)
1901 pgdat
->kcompactd
= kthread_run(kcompactd
, pgdat
, "kcompactd%d", nid
);
1902 if (IS_ERR(pgdat
->kcompactd
)) {
1903 pr_err("Failed to start kcompactd on node %d\n", nid
);
1904 ret
= PTR_ERR(pgdat
->kcompactd
);
1905 pgdat
->kcompactd
= NULL
;
1911 * Called by memory hotplug when all memory in a node is offlined. Caller must
1912 * hold mem_hotplug_begin/end().
1914 void kcompactd_stop(int nid
)
1916 struct task_struct
*kcompactd
= NODE_DATA(nid
)->kcompactd
;
1919 kthread_stop(kcompactd
);
1920 NODE_DATA(nid
)->kcompactd
= NULL
;
1925 * It's optimal to keep kcompactd on the same CPUs as their memory, but
1926 * not required for correctness. So if the last cpu in a node goes
1927 * away, we get changed to run anywhere: as the first one comes back,
1928 * restore their cpu bindings.
1930 static int cpu_callback(struct notifier_block
*nfb
, unsigned long action
,
1935 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
1936 for_each_node_state(nid
, N_MEMORY
) {
1937 pg_data_t
*pgdat
= NODE_DATA(nid
);
1938 const struct cpumask
*mask
;
1940 mask
= cpumask_of_node(pgdat
->node_id
);
1942 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
1943 /* One of our CPUs online: restore mask */
1944 set_cpus_allowed_ptr(pgdat
->kcompactd
, mask
);
1950 static int __init
kcompactd_init(void)
1954 for_each_node_state(nid
, N_MEMORY
)
1956 hotcpu_notifier(cpu_callback
, 0);
1959 subsys_initcall(kcompactd_init
)
1961 #endif /* CONFIG_COMPACTION */